Mosaics of combinatorial designs for information-theoretic security


Konferenz / Medium

Research Hub

Research Hub A: Kryptographie der Zukunft
Research Hub B: Eingebettete Sicherheit

Research Challenges

RC 2: Quantum-Resistant Cryptography
RC 5: Physical-Layer Security


We study security functions which can serve to establish semantic security for the two central problems of information-theoretic security: the wiretap channel, and privacy amplification for secret key generation. The security functions are functional forms of mosaics of combinatorial designs, more precisely, of group divisible designs and balanced incomplete block designs. Every member of a mosaic is associated with a unique color, and each color corresponds to a unique message or key value. Every block index of the mosaic corresponds to a public seed shared between the two trusted communicating parties. The seed set should be as small as possible. We give explicit examples which have an optimal or nearly optimal trade-off of seed length versus color (i.e., message or key) rate. We also derive bounds for the security performance of security functions given by functional forms of mosaics of designs.


Coding Theory
Complexity Theory
Information Theory
Implementation Attacks
Post-Quantum Cryptography