Ruhr-Uni-Bochum

Typing High-Speed Cryptography against Spectre v1

2023

Konferenz / Medium

Autor*innen

Lucas Tabary-Maujean Swarn Priya Tiago Oliviera Vincent Laporte Benjamin Grégoire Basavesh Ammanaghatta Shivakumar Peter Schwabe Gilles Barthe

Research Hub

Research Hub B: Eingebettete Sicherheit

Research Challenges

RC 6: Next-Generation Implementation Security

Abstract

The current gold standard of cryptographic software is to write efficient libraries with systematic protections against timing attacks. In order to meet this goal, cryptographic engineers increasingly use high-assurance cryptography tools. These tools guide programmers and provide rigorous guarantees that can be verified independently by library users. However, high-assurance tools reason about overly simple execution models that elide micro-architectural leakage. Thus, implementations validated by high-assurance cryptography tools remain potentially vulnerable to micro-architectural attacks such as Spectre or Meltdown. Moreover, proposed countermeasures are not used in practice due to performance overhead. We propose, analyze, implement and evaluate an approach for writing efficient cryptographic implementations that are protected against Spectre v1 attacks. Our approach ensures speculative constant-time, an information flow property which guarantees that programs are protected against Spectre v1. Speculative constant-time is enforced by means of a (value-dependent) information flow type system. The type system tracks security levels depending on whether execution is misspeculating. We implement our approach in the Jasmin framework for high assurance cryptography, and use it for protecting all implementations of an experimental cryptographic library that includes highly optimized implementations of symmetric primitives, of elliptic-curve cryptography, and of Kyber, a lattice-based KEM recently selected by NIST for standardization. The performance impact of our protections is very low; for example, less than 1% for Kyber and essentially zero for X25519.

Tags

Software Implementation