Evadedroid: A practical evasion attack on machine learning for black-box android malware detection
2024Konferenz / Journal
Autor*innen
Veelasha Moonsamy Hamid Bostani
Research Hub
Research Hub C: Sichere Systeme
Research Challenges
RC 7: Building Secure Systems
RC 9: Intelligent Security Systems
Abstract
Over the last decade, researchers have extensively explored the vulnerabilities of Android malware detectors to adversarial examples through the development of evasion attacks; however, the practicality of these attacks in real-world scenarios remains arguable. The majority of studies have assumed attackers know the details of the target classifiers used for malware detection, while in reality, malicious actors have limited access to the target classifiers. This paper introduces EvadeDroid, a problem-space adversarial attack designed to effectively evade black-box Android malware detectors in real-world scenarios. EvadeDroid constructs a collection of problem-space transformations derived from benign donors that share opcode-level similarity with malware apps by leveraging an n-gram-based approach. These transformations are then used to morph malware instances into benign ones via an iterative and incremental manipulation strategy. The proposed manipulation technique is a query-efficient optimization algorithm that can find and inject optimal sequences of transformations into malware apps. Our empirical evaluations, carried out on 1K malware apps, demonstrate the effectiveness of our approach in generating real-world adversarial examples in both soft- and hard-label settings. Our findings reveal that EvadeDroid can effectively deceive diverse malware detectors that utilize different features with various feature types. Specifically, EvadeDroid achieves evasion rates of 80%–95% against DREBIN, Sec-SVM, ADE-MA, MaMaDroid, and Opcode-SVM with only 1–9 queries. Furthermore, we show that the proposed problem-space adversarial attack is able to preserve its stealthiness against five popular commercial antiviruses with an average of 79% evasion rate, thus demonstrating its feasibility in the real world.