Ruhr-Uni-Bochum

New First-Order Secure AES Performance Records

2021

Konferenz / Medium

Autor*innen

Božilov, Dušan Moradi, Amir Rezaei Shahmirzadi, Aein

Research Hub

Research Hub B: Eingebettete Sicherheit

Research Challenges

RC 6: Next-Generation Implementation Security

Abstract

Being based on a sound theoretical basis, masking schemes are commonly applied to protect cryptographic implementations against Side-Channel Analysis (SCA) attacks. Constructing SCA-protected AES, as the most widely deployed block cipher, has been naturally the focus of several research projects, with a direct application in industry. The majority of SCA-secure AES implementations introduced to the community opted for low area and latency overheads considering ApplicationSpecific Integrated Circuit (ASIC) platforms. Albeit a few, those which particularly targeted Field Programmable Gate Arrays (FPGAs) as the implementation platform yield either a low throughput or a not-highly secure design. In this work, we fill this gap by introducing first-order glitch-extended probing secure masked AES implementations highly optimized for FPGAs, which support both encryption and decryption. Compared to the state of the art, our designs efficiently map the critical non-linear parts of the masked S-box into the built-in Block RAMs (BRAMs). The most performant variant of our constructions accomplishes five first-order secure AES encryptions/decryptions simultaneously in 50 clock cycles. Compared to the equivalent state-of-the-art designs, this leads to at least 70% reduction in utilization of FPGA resources (slices) at the cost of occupying BRAMs. Last but not least, we provide a wide range of such secure and efficient implementations supporting a large set of applications, ranging from low-area to high-throughput.

Tags

Hardware Implementation
Implementation Attacks
FPGA Security