
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 1, pp. 113–152. DOI:10.46586/tches.v2023.i1.113-152

Low-Latency and Low-Randomness Second-Order
Masked Cubic Functions

Aein Rezaei Shahmirzadi1 ,
Siemen Dhooghe2 and Amir Moradi1

1 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

2 imec-COSIC, ESAT, KU Leuven, Leuven, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. Masking schemes are the most popular countermeasure to mitigate Side-
Channel Analysis (SCA) attacks. Compared to software, their hardware implementa-
tions require certain considerations with respect to physical defaults, such as glitches.
To counter this extended leakage effect, the technique known as Threshold Imple-
mentation (TI) has proven to be a reliable solution. However, its efficiency, namely
the number of shares, is tied to the algebraic degree of the target function. As a
result, the application of TI may lead to unaffordable implementation costs. This
dependency is relaxed by the successor schemes where the minimum number of d + 1
shares suffice for dth-order protection independent of the function’s algebraic degree.
By this, although the number of input shares is reduced, the implementation costs
are not necessarily low due to their high demand for fresh randomness. It becomes
even more challenging when a joint low-latency and low-randomness cost is desired.
In this work, we provide a methodology to realize the second-order glitch-extended
probing-secure implementation of cubic functions with three shares while allowing
to reuse fresh randomness. This enables us to construct low-latency second-order
secure implementations of several popular lightweight block ciphers, including Skinny,
Midori, and Prince, with a very limited number of fresh masks. Notably, compared
to state-of-the-art equivalent implementations, our designs lower the latency in terms
of the number of clock cycles while keeping randomness costs low.
Keywords: Low Latency, Low Randomness, Masking, Side-Channel Analysis

1 Introduction
There have been numerous studies to investigate the security of embedded devices as
an attacker can gain physical access to the target device. Hence, the attacker can gain
execution related information by monitoring the device’s power consumption and/or
electromagnetic radiation and recover secret data. This implies that the underlying
algorithm that are implemented on such devices should be mathematically secure while
the implementation is also physically secure.

Seminal contributions have been made by Kocher et al. [KJJ99] by introducing Differ-
ential Power Analysis (DPA) in 1999, where the authors managed to recover the secret
key of various algorithms by collecting power traces. This finding demonstrated the need
for additional studies to understand more about its foundations and the development of
countermeasures. Through several experimental analyses and scientific articles, it has been
proven that masking is one of the best approaches to prevent side-channel analysis attacks.
Based on secret-sharing schemes, masking techniques randomize the key-dependent inter-
mediate values of the cipher. The most common approach in masking is Boolean masking

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-07-15 Accepted: 2022-09-15 Published: 2022-11-29

https://doi.org/10.46586/tches.v2023.i1.113-152
https://orcid.org/0000-0002-9549-268X
https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-4032-7433
mailto:aein.rezaeishahmirzadi@rub.de, amir.moradi@rub.de
mailto:siemen.dhooghe@esat.kuleuven.be
http://creativecommons.org/licenses/by/4.0/

114 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

in which the sensitive value is split into several shares whose XOR results in the original
value. The application of Boolean masking on linear functions is straightforward, and
the functions can be performed on each share individually. The more challenging part
is the masked realization of non-linear functions where the design is opted for different
criteria like latency, area, randomness, a specific platform or application, etc. in the open
literature [GIB18,ZSS+21,KM22b,BDMS22,DSM22,KM22a,SBM21].

To evaluate the security of a given design, the probing model has been introduced
in [ISW03]. In this model, the number of probes that the attacker can place in a circuit
to observe intermediate values defines the order of the security. Although this model
works well in software implementations where all operations are done sequentially, it has
been shown that this model does not capture hardware implementations’ leakage due to a
phenomenon called glitches. Reparaz et al. [RBN+15] addressed the issue and introduced
the glitch-extended probing model. A probe at the output of any gate is propagated
backwards to either the last synchronization point (register) or the primary inputs leading
up to the probed intermediate signal.

A Threshold Implementation (TI) [NRR06] is the first implementation strategy that is
immune against glitches. Following this scheme and fulfilling its properties, a design can be
implemented without any fresh masks during the execution of the protected cipher. While
this techniques defines the number of input shares as td + 1, where t is the algebraic degree
of the function and d is the order of the security, other techniques have been proposed
later that relaxed the requirements. The authors of [GMK16,RBN+15] demonstrated that
d + 1 input shares can be used when d-th order security is desired. Using these schemes
can be beneficial when less area overhead is a requirement, however, it forces to use fresh
randomness to maintain security. The generation of this randomness can be inefficient in
hardware platforms. Furthermore, the cost of this generation is also not often reported in
academic literature, which makes the comparison of some countermeasures unfair.

Recently, Daemen [Dae17] introduced a technique called the changing of the guards to
avoid using fresh masks at every clock cycle to achieve uniformity. Later, Shahmirzadi and
Moradi [SM20] presented a methodology to realize first-order secure hardware implementa-
tions with two shares which do not require fresh masks. While these techniques reduced
the implementation costs in hardware platforms, it becomes more challenging to extend
them to higher-order security.

Higher-order TI was first introduced by Bilgin et al. [BGN+14], however, it was quickly
shown that this methodology is not secure due to the lack of fresh randomness leading to
composability issues [Rep15]. A methodology has been presented in [SM21] resulting in
efficient realization of a group of quadratic functions whose second-order secure hardware
implementation requires no fresh masks. Nonetheless, apart from their Keccak sharing,
8-bit of fresh masks have been used per S-box to realize glitch-extended probing-secure
implementations of popular symmetric primitives.

The authors of [BDZ20] proposed a framework to evaluate the security of higher-order
threshold implementations enabling them to avoid fresh masks that need to be updated
every clock cycles. They applied their approach to the LED cipher [GPPR11] to make
a second-order secure design with some randomness that remains unchanged during the
execution. However, the design has seven input shares which makes it inefficient on
hardware platforms. Later, the framework was generalized in [BDMS22] and also the
implementation costs have been improved. Nevertheless, they decomposed the non-linear
layer into quadratic functions in their case studies forcing them to place registers between
them. As a result, there is a need for second-order masked circuits that do not require a
high amount of fresh randomness while maintaining latency.

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 115

1.1 Our Contributions
In this work, we provide masking techniques for three-share hardware constructions of
cubic functions providing second-order security with a low fresh mask use and a low latency
in terms of clock cycles. We start our study with cubic functions and show how to achieve
glitch-extended probing security with a minimum number of input shares while using
reusable fresh masks. We apply the methodology to the S-boxes of Midori, Skinny, and
Prince, where each round is performed in only two clock cycles. We evaluate our S-box
constructions by the leakage verification tool SILVER [KSM20] under the glitch-extended
probing model and present a concrete probing security analysis for each case study that
allows for the randomness in each masked S-box to be reused. For the sake of completeness,
we verify the security of our implementations by FPGA-based practical experiments. The
HDL representations of the constructed S-boxes and full ciphers are publicly available in
GitHub.

2 Preliminaries
In this section, we introduce the probing model and its verification tools, Boolean masking,
threshold implementations, and masking with d + 1 shares.

2.1 Notations
In this work, we operate over binary vector spaces Fn

2 . For the binary field F2, its field
operations correspond to the XOR and AND gates. We denote operations over binary
variables in its Algebraic Normal Form (ANF), for example ab + c denotes the AND
between the variables a and b and the XOR of its result with c.

We denote shares of binary variables with a subscript, i.e. the variable xi denotes the
ith share of x. The same holds for shared functions, where each share of the function
is denoted by a subscript. For example, the coordinate fi denotes the ith share of the
function F̄ and calculates the ith share of the function’s output.

2.2 The Glitch-Extended Probing Model
Ever since the seminal work by Kocher et al. [KJJ99], there has been a considerable
body of work on understanding the foundation of Side-Channel Analysis (SCA) and
how to mitigate the attacks. Masking, as the most promising countermeasure, has
been investigated by a great number of authors in literature leading to many different
schemes [Tri03, ISW03,NRR06,RBN+15,GMK16,NRS11,GM18,GIB18]. An important
question associated with the proposition of the masking schemes is how to model adversaries
considering physical defaults and their different execution environments.

The probing model, first introduced by Ishai et al. [ISW03], is one of the first steps in
the security assessment of masking schemes. In the dth-order probing model, an adversary
is able to observe d intermediate wires of the circuit during the execution of the cipher.
Security in this model is guaranteed by showing that the stochastic values returned by
the probes can be simulated by a simulator which is not given the secret inputs to the
circuit while the adversary and the real circuit are given this information. The security
is achieved by using randomness generated by the simulator and the circuit which the
adversary does not have access to. Practically speaking, probing security is proven by
showing that the probed values follow a random distribution which is not affected by the
choice of the secret value.

While the probing model is a good first step as a security model, hardware imple-
mentations can be insecure in practice while fulfilling its security requirements. The
model provides security under the assumption that there is no data-dependent activation

https://github.com/ChairImpSec/Low-Latency-masked-cubic-functions

116 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

timing, which fits best on software platforms. This is due to a common phenomenon in
CMOS technologies called glitches. The inaccurate assumption of the probing model not
capturing the effect of glitches leads to insecure designs as shown in [MPO05,MME10].
More precisely, the physical characteristics such as transitions, coupling effects, or glitches
are not considered in the d-probing model [FGP+18]. Hence, an extended model is needed
for these unwanted effects.

Originally, Reparaz et al. [RBN+15] introduced an extension to the probing model to
capture glitches. This was later put into the robust-probing model by Faust et al. [FGP+18].
This model covers the physical properties of hardware platforms. For example, to cover
the effect of glitches, a glitch-extended probe is made where a probe on a combinatorial
circuit is extended to all signals (up to registers or primary inputs) that involve in
the computation of the probed wire. The introduction of such a simple model enabled
the relevant scientific communities to develop formal verification tools to evaluate a
small circuit [BBC+19, KSM20] (small due to the limitations of the complexity of the
method). Furthermore, it helped to reduce the implementation cost of several schemes
while maintaining the same level of security [BGR18,SM20,SM21].

2.3 Verification Tools
The development of automated formal verification tools for the probing model enables
researchers to reduce the complexity of security proofs for masking schemes while also opti-
mizing their implementations costs. Considering the recent tools dedicated to masked hard-
ware designs, a language-based verification tool named MaskVerif is presented in [BBC+19].
This tool uses conservative heuristics leading to false positive cases. In other words, this
tool may report the insecurity of a design that is actually secure. The authors of [KSM20]
addressed this issue and presented a formal verification tool called SILVER. It works
directly on the gate-level netlist of a hardware design and makes an exhaustive analysis of
its probability distributions. It does not simplify anything and hence the results are reliable
and the tool avoids false negatives. It reports the result of evaluations based on the security
notions defined in [MBR19]. In this paper, we used SILVER to assess the second-order
security of our designs under the “glitch-extended probing model”. Since it can only handle
small circuits and cannot deal with a full encryption module, we also confirmed the security
of our constructions with a practical analysis on an FPGA evaluation board in Section 5.

2.4 Boolean Masking and Threshold Implementation
Boolean masking is a technique based on splitting each secret variable x ∈ F2 in the
circuit into shares x̄ = (x1, x2, . . . , xsx

) such that x =
∑sx

i=1 xi over F2. A random Boolean
masking of a fixed secret is uniform if all sharings of that secret are equally likely.

In this paper, we will use the notions of threshold implementations as introduced
by Nikova et al. [NRR06]. As such, we introduce the notions of non-completeness and
uniformity.

A shared function F̄ is non-complete if each of its coordinate functions fi operate
on all but one shares of each input secret. This notion has been extended by Bilgin et
al. [BGN+14] to capture each set of d coordinate functions being jointly non-complete.

Definition 1 (dth-order non-complete). A masked function F̄ is dth-order non-complete
if any d coordinate functions fi depend on at most sx − 1 input shares.

The above notion was created as a necessary property to secure maskings against
higher-order univariate attacks including the effect of glitches.

A shared function is called uniform if, when given a uniform input sharing, it outputs
a sharing which is uniform.

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 117

Definition 2 (Uniformity [NRR06]). A shared function F̄ (x̄) = ȳ is uniform if ∀x ∈ F,
∀ȳ ∈ Sh(F (x)) : ∣∣ {

x̄ ∈ Sh(x)
∣∣ F̄ (x̄) = ȳ

} ∣∣ = |F|sx−1

|F|sy−1 ,

where Sh(x) denotes the set of valid share vectors x̄ of the secret x.

The notion of uniformity has been shown to help reduce randomness overheads in both
first-order and higher-order designs. Special search algorithms are typically needed to find
a non-complete and uniform sharing of a given function.

In this work, we will reduce randomness costs by employing threshold implementations
in a higher-order setting. More specifically, considering that all shared functions are
uniform, then in a second-order scenario multivariate security (if univariate security is
already achieved) is ensured by having fresh masks be present after each possible probe
position in that layer. The first probe’s returned values are then re-masked causing the
second probe to view independent data from the first probe. In case the masked function
is first-order probing secure without the use of randomness, each probe’s returned values
separately need to be independent of the secret data. From this reasoning, we find that
we only need to re-mask what can be observed by a probe and thus some randomness
can be re-used when re-masking the S-boxes. For example, instead of re-masking the
full state after an S-box calculation, it could suffice to re-mask the columns where the
same randomness is used for each column. This technique was introduced as “resilient
uniformity” by Dhooghe et al. [DN22] where the authors show a uniform second-order
masked PRESENT where this trick is applied. However, the technique can also be viewed
from the cryptanalytic framework by Beyne et al. [BDZ20], where the argument would be
that no trails can exist between two probe positions due to the added randomness present
in the design.

2.5 Masking with d + 1 Shares
It has been shown that the implementation cost of classical Threshold Implementations
(TI) [NRR06] can be quite significant as the number of input shares increases based on the
algebraic degree of the target function. It becomes more challenging to achieve higher-order
security using TI [BGN+14] as it is insecure against multivariate adversaries [Rep15], and
fresh masks should be added when composing the functions [MPL+11,CBR+15].

In order to use the minimum number of input shares, i.e., d + 1 shares for dth-order
security, the authors of [GMK16] presented a methodology called Domain Oriented Masking
(DOM) to achieve security in hardware platforms. However, it demands fresh randomness
to achieve non-completeness even in a first-order secure design contrary to TI which can be
secure without fresh masks. Following this technique, a two-share variant of a two-input
AND gate f(a, b) = x with a single-bit fresh mask r can be realized as follows

f0(a0, b0) = a0b0 → x′
0

f1(a0, b1, r) = a0b1 + r → x′
1 x′

0 + x′
1 = x0

f2(a1, b0, r) = a1b0 + r → x′
2 x′

2 + x′
3 = x1

f3(a1, b1) = a1b1 → x′
3

,

where a0, a1, b0, b1 are the input shares, and x0, x1 are the output shares. The coordinate
functions’ fi result is stored in registers and its computation is referred to as the expansion
layer. These outputs are then XORed to generate the output shares (this phase is known
as the compression layer).

It has been shown that there is no need for fresh masks to achieve two-share first-
order security for some quadratic functions [RBN+15]. This result has been extended

118 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

by Shahmirzadi and Moradi [SM20] who presented an algorithm to realize a two-share
first-order secure implementation of a cubic function without fresh masks. In another
paper, the technique has been further extended to second-order security with three-shares
in [SM21]. In this paper, we consider masking cubic S-boxes of several lightweight block
ciphers decomposed into quadratic functions which require no fresh masks.

Nevertheless, even though we can create second-order maskings of cubic functions
without fresh masks, some randomness should still be introduced at the intersection of the
separate functions to assure multivariate security. These fresh masks should be updated
each clock cycle and we refer to them as dynamic fresh masks. The goal of this paper is to
keep the need for dynamic fresh masks at a minimum. Apart from dynamic fresh masks,
we also use static masks. These are masks which are given to the design and can remain
unchanged during the execution of the cipher.

Fixing the shares to d + 1, there is a duality between latency and randomness. In
order to reduce randomness, it is better to work with decomposed S-boxes. However, this
inherently increases the latency and vice versa. Thus, there is a need for a technique which
allows for both lower latency designs and for low randomness overheads.

3 Masking Techniques
In this section, we first explain our generic procedure allowing to find first-order glitch-
extended probing secure constructions of 4-bit cubic functions without any fresh masks
using three shares. Afterwards, we add several static masks that can be reused to realize a
second-order secure implementation.

3.1 Finding a Uniform Sharing
As explained in Section 2.5, the general structure of a d + 1 masked nonlinear operation is
divided into two separated parts: the expansion layer and the compression layer. Since
we intend to create second-order secure sharings, at least three input shares are used
and the coordinate functions in the expansion layer should be second-order non-complete
(Definition 1). In this paper, we focus on 4-bit cubic functions and hence we need a
minimum of 27 coordinate functions to achieve second-order non-completeness. The
minimum of 27 comes from the algebraic degree of the target function being three. As
each input is represented by 3 shares, a three-shared cubic monomial is the sum of 33 = 27
different cubic monomials of the shares. Each of these cubic monomials is assigned to a
coordinate function to ensure second-order non-completeness.

Let us denote a cubic function by x = f(a, b, c, d), where ⟨a, b, c, d⟩ are four bits. We
refer to the coordinate functions and the output shares of the masked version by x′

i = f ′
i(.)

and xi, respectively. We represent the share index of the input variables given to the
coordinate functions by a table called the index configuration as shown in Table 1 which
bears some similarities to the one given in [ZSS+21]. Since in this paper we focus on 4-bit
cubic S-boxes, we follow the sharing indices presented in by Bozilov et al. [BKN19] which
guarantees a non-complete and correct sharing of any 4-bit cubic function. The table
reflects the share index of each input variable that is involved in the calculation of each
coordinate function. The coordinate functions, whose results are stored in a register layer,

are categorized by dashed lines and are combined in the compression layer, i.e., x0 =
8⊕

i=0
x′

i,

x1 =
17⊕

i=9
x′

i, x2 =
26⊕

i=18
x′

i.

For example, if we assign ⟨I0, I1, I2, I3⟩ to ⟨a, b, c, d⟩, the first and second coordinate
functions f ′

0() and f ′
1() receive {a0, b0, c0, d0} and {a0, b0, c1, d1} as their input list, respec-

tively. To make it more clear in this example, we provided the full input list of coordinate

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 119

Table 1: Index configuration of our sharing.

#coordinate function I0 I1 I2 I3
0 0 0 0 0
1 0 0 1 1
2 0 0 2 2
3 0 1 1 0
4 0 1 2 1
5 0 1 0 2
6 0 2 0 1
7 0 2 1 2
8 0 2 2 0
9 1 0 2 0
10 1 0 0 1
11 1 0 1 2
12 1 1 2 2
13 1 1 0 0
14 1 1 1 1
15 1 2 0 2
16 1 2 1 0
17 1 2 2 1
18 2 0 0 2
19 2 0 1 0
20 2 0 2 1
21 2 1 0 1
22 2 1 2 0
23 2 1 1 2
24 2 2 1 1
25 2 2 0 0
26 2 2 2 2

functions in Table 2. We should highlight that any combination of Ii∈{0,1,2,3} can be
assigned to the four input variables of the target function leading to 4! = 24 different index
configuration tables. Table 2 shows only one possibility where ⟨I0, I1, I2, I3⟩ is assigned to
⟨a, b, c, d⟩.

Once an index configuration table is assigned to the input variables, the place of all
cubic monomials of the target function become clear. To demonstrate our approach, we
assume that the target function is f(a, b, c, d) = abc + bc + d. For the cubic monomial abc,
we have 27 shared cubic monomials in the masked variant, each of which can be placed
only in one coordinate function. In other words, the ANF of each coordinate function can
contain only one of the shared cubic monomials depending on the index configuration table.
For instance, in the case shown in Table 2, the shared monomials a0b0c0 and a0b0c1 must
be placed in coordinate functions f ′

0(a0, b0, c0, d0) and f ′
1(a0, b0, c1, d1), respectively. There

is only one possibility for the rest shared cubic monomials as well. However, the place
of the quadratic and linear terms are not fixed. We use this freedom to find a uniform
sharing (Definition 2). In case of our exemplary target function, the quadratic monomial bc
has four shared quadratic monomials, i.e., b0c0, b0c1, b1c0, b1c1. Contrary to shared cubic
monomials, there are multiple possibilities for the placement of these shared monomials.
For example, considering the index configuration shown in Table 2, the shared monomial
b0c0 can be placed in f ′

0(.), f ′
10(.), and f ′

18(.). The same holds for linear terms where the
shared linear monomials can be placed in different coordinate functions. As mentioned, we

120 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

Table 2: A sample index configuration tables, where ⟨I0, I1, I2, I3⟩ is assigned to ⟨a, b, c, d⟩.

#coordinate function a b c d coordinate function
0 0 0 0 0 f ′

0(a0, b0, c0, d0)
1 0 0 1 1 f ′

1(a0, b0, c1, d1)
2 0 0 2 2 f ′

2(a0, b0, c2, d2)
3 0 1 1 0 f ′

3(a0, b1, c1, d0)
4 0 1 2 1 f ′

4(a0, b1, c2, d1)
5 0 1 0 2 f ′

5(a0, b1, c0, d2)
6 0 2 0 1 f ′

6(a0, b2, c0, d1)
7 0 2 1 2 f ′

7(a0, b2, c1, d2)
8 0 2 2 0 f ′

8(a0, b2, c2, d0)
9 1 0 2 0 f ′

9(a1, b0, c2, d0)
10 1 0 0 1 f ′

10(a1, b0, c0, d1)
11 1 0 1 2 f ′

11(a1, b0, c1, d2)
12 1 1 2 2 f ′

12(a1, b1, c2, d2)
13 1 1 0 0 f ′

13(a1, b1, c0, d0)
14 1 1 1 1 f ′

14(a1, b1, c1, d1)
15 1 2 0 2 f ′

15(a1, b2, c0, d2)
16 1 2 1 0 f ′

16(a1, b2, c1, d0)
17 1 2 2 1 f ′

17(a1, b2, c2, d1)
18 2 0 0 2 f ′

18(a2, b0, c0, d2)
19 2 0 1 0 f ′

19(a2, b0, c1, d0)
20 2 0 2 1 f ′

20(a2, b0, c2, d1)
21 2 1 0 1 f ′

21(a2, b1, c0, d1)
22 2 1 2 0 f ′

22(a2, b1, c2, d0)
23 2 1 1 2 f ′

23(a2, b1, c1, d2)
24 2 2 1 1 f ′

24(a2, b2, c1, d1)
25 2 2 0 0 f ′

25(a2, b2, c0, d0)
26 2 2 2 2 f ′

26(a2, b2, c2, d2)

can form 24 different index configuration tables by assigning the different configurations
Ii to the input variables. In the first step, we select one index configuration and make a
correct sharing of the target function while maintaining second-order non-completeness
in the coordinate functions. To do so, we just use one possible placement of the shared
quadratic and linear terms to have a correct sharing. At this step, we only want to have a
correct sharing where second-order non-completeness is fulfilled in the coordinate functions.
We search for a uniform sharing in the next step.

To find a uniform sharing, we only consider linear terms as the search space would be
too large when including quadratic terms. We refer to these terms that are added to achieve
uniformity as correction terms following the work by Bilgin et al. [BNN+15]. Since we have
already a correct sharing, we must add each correction term an even number of times to
the output shares {x0, x1, x2} and since we are working with three shares this means that
each correction term is added exactly twice. Hence for each correction term, denoted by z,
we have four possibilities: 1) add it to first and second output shares{x0 + z, x1 + z, x2};
2) add it to first and third output shares{x0 + z, x1, x2 + z}; 3) add it to second and
third output shares{x0, x1 + z, x2 + z}; 4) do not use it. Note that we cannot use the
shares of the input variables assigned to I0 as correction terms since only one share of
the input value is involved in the computation of each output share (see Table 1). For
example, in the case shown in Table 2, a0, a1, and a2 cannot be used as correction terms.

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 121

As a result, since any correction term should be assigned to the coordinate functions that
generate the output shares, it is not possible to add them to two different output shares
without violating non-completeness. We can consider the other three input variables, each
of which has three shares leading to nine different correction terms. As stated earlier,
for each correction term we have four possibilities making the size of the search space
equal to 49 = 218 per index configuration table. As a result, we need to search through
24 × 218 different possibilities for each cubic function, which is a large search space. For
this reason, we do not search over quadratic terms for finding a uniform sharing. To check
the uniformity of each solution, we go over all shared values of each unshared input. This
way, we can discard one candidate earlier improving the run time of our program.

4-bit cubic bijections are commonly used for S-boxes in lightweight block ciphers,
e.g., Midori [BBI+15], Skinny [BJK+16], Prince [BCG+12]. As a result, we focus
our work on this class of functions. Each coordinate function of such a bijection can be
at most cubic. Hence, we can apply the technique described above to each coordinate
function. Fresh masks are not used in the construction of each shared coordinate function
so they are not necessarily jointly uniform. Consequently, we should find a combination of
coordinate functions that have this property. The number of solutions for each coordinate
function is usually high leading to a significant number of combinations requiring an
optimized search algorithm. We use a step-by-step approach where we first search for
jointly-uniform solutions for two coordinate functions and then search for the third one
that is jointly-uniform with the first two to finally find the last one. This technique has
also been employed in several other publications [SM20, SM21] to optimize this search
process.

3.2 Achieving First-Order Security
In this paper, we aim to fulfill the first-order security of the design without the use of
randomness. We achieve this by pairing two S-boxes that make use of each other’s inputs
as shown in Figure 1. We note that this technique bears some similarity to the technique
presented in [BDMS22]. However, we are dealing with cubic functions instead of quadratic
ones. Since each coordinate function is second-order non-complete, the only place that
adversaries can gain information about the secret is in the compression layer. More
precisely, each probe extends to the output of nine different coordinate functions in the
glitch-extended probing model and we require that these nine coordinate functions are
jointly probing secure.

x̄

ȳ

S̄(x̄)

S̄(ȳ)

Ex
pa

ns
io

n
Ex

pa
ns

io
n

⊕
...

⊕

⊕
...

⊕

C
om

pr
es

sio
n

C
om

pr
es

sio
n

r1

r2

Figure 1: Depiction of the pairing of two masked S-boxes.

122 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

We demonstrate our approach by providing a uniform sharing of the function x =
f(a, b, c, d) = abc + bc + d using three shares which can be considered as one coordinate
function of a 4-bit cubic S-box.

f0(a0, b0, c0, d0) = a0b0c0 + b0c0 + d0 + k0 + r0 + r1 → x′
0

f1(a0, b0, c1) = a0b0c1 + b0c1 + k0 + l0 + r1 + r2 → x′
1

f2(a0, b0, c2) = a0b0c2 + b0c2 + l0 + m0 + r2 + r3 → x′
2

f3(a0, b1, c0) = a0b1c0 + m0 + n0 + r3 + r4 → x′
3

f4(a0, b1, c1) = a0b1c1 + n0 + k1 + r4 + r5 → x′
4

⊕8
i=0 x′

i = x0
f5(a0, b1, c2) = a0b1c2 + k1 + l1 + r5 + r6 → x′

5
f6(a0, b2, c0) = a0b2c0 + l1 + m1 + r6 + r7 → x′

6
f7(a0, b2, c1) = a0b2c1 + m1 + n1 + r7 + r8 → x′

7
f8(a0, b2, c2) = a0b2c2 + n1 + r8 + r9 → x′

8
f9(a1, b0, c0, d1) = a1b0c0 + d1 + k0 + r9 + r10 → x′

9
f10(a1, b0, c1) = a1b0c1 + k0 + l0 + r10 + r11 → x′

10
f11(a1, b0, c2) = a1b0c2 + l0 + m0 + r11 + r12 → x′

11
f12(a1, b1, c0) = a1b1c0 + b1c0 + m0 + n0 + r12 + r13 → x′

12
f13(a1, b1, c1) = a1b1c1 + b1c1 + n0 + k1 + r13 + r14 → x′

13
⊕17

i=9 x′
i = x1

f14(a1, b1, c2) = a1b1c2 + b1c2 + k1 + l1 + r14 + r15 → x′
14

f15(a1, b2, c0) = a1b2c0 + l1 + m1 + r15 + r16 → x′
15

f16(a1, b2, c1) = a1b2c1 + m1 + n1 + r16 + r17 → x′
16

f17(a1, b2, c2) = a1b2c2 + n1 + r17 + r18 → x′
17

f18(a2, b0, c0, d2) = a2b0c0 + d2 + k0 + r18 + r19 → x′
18

f19(a2, b0, c1) = a2b0c1 + k0 + l0 + r19 + r20 → x′
19

f20(a2, b0, c2) = a2b0c2 + l0 + m0 + r20 + r21 → x′
20

f21(a2, b1, c0) = a2b1c0 + m0 + n0 + r21 + r22 → x′
21

f22(a2, b1, c1) = a2b1c1 + n0 + k1 + r22 + r23 → x′
22

⊕26
i=18 x′

i = x2
f23(a2, b1, c2) = a2b1c2 + k1 + l1 + r23 + r24 → x′

23
f24(a2, b2, c0) = a2b2c0 + b2c0 + l1 + m1 + r24 + r25 → x′

24
f25(a2, b2, c1) = a2b2c1 + b2c1 + m1 + n1 + r25 + r26 → x′

25
f26(a2, b2, c2) = a2b2c2 + b2c2 + n1 + r26 + r0 → x′

26

In black, we denote the uniform sharing of the function. To make the sharing first-
order glitch-extended probing secure, we use the inputs of the paired S-box ⟨k, l, m, n⟩
which are denoted in green in the equations above. Obviously, we only use two out of
three shares of each input variables and we should carefully add them in such a way
that first-order non-completeness is fulfilled. These terms are added to all coordinate
functions that are compressed to generate one output shares. As a result, regarding the
first-order security with no fresh masks, probing an output share reveals the information
about the paired S-box’s input shares (at most two out of three shares). For instance,
in the given example above with no fresh masks, probing the output share x0 reveals
⟨k0, l0, m0, n0, k1, l1, m1, n1⟩. In other words, a probe on the output share x0 in glitch-
extended probing model is propagated backwards to the registered results of all coordinate
functions x′

i for 0 ≤ i ≤ 8. The probe on x′
8 reveals information about n1, considering

the fact that there are no fresh masks in the design yet. The probe on x′
7 reveals

information about m1 + n1. Using the information about n1 by the probe on x′
8, m1

can be recovered. Following the probes one by one, the information on the other S-box’s
input ⟨k0, l0, m0, n0, k1, l1⟩ can be recovered as well. Since only two out of three shares
can be recovered, the design is first-order secure with no fresh masks. We also confirmed
the first-order security of our example using SILVER. The property that probing the

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 123

compression layer of one S-box solely reveals inputs of the paired S-box will be used in
the case studies in Section 4 to reduce the dynamic fresh randomness used to re-mask the
output of the S-boxes. Essentially, in this technique, the paired S-box’s input shares act
as fresh randomness enabling us to achieve first-order security without added randomness
cost. From this point of view, the technique bears some similarity with the changing of
the guard technique [Dae17] in the sense that both use one masked S-box’s input shares to
mask another. However, the changing of the guards is a technique to achieve uniformity
for a design fulfilling non-completeness property. Instead, we solve the non-completeness
issue of a sharing which is uniform.

3.3 Extension to Second-Order Security

To achieve second-order security in the compression layer (as the expansion layer is already
secure thanks to its second-order non-completeness), we add fresh randomness in a ring
refreshing approach, as shown in red in the equations of the previous section. This addition
of fresh randomness follows the methodology from Reparaz et al. [RBN+15] where it was
shown to ensure the second-order probing security of the compression layer. For example,
probing x0 in the 3-input multiplier above would provide the values y0+r0+r1, ..., y8+r8+r9,
with y0, ..., y8 values created from the inputs from the paired S-box. Each of these yi

is re-masked by unique random values providing no information to the adversary. The
randomness for each S-box in a pair should be different. This ensures that probing the two
S-boxes in a pair is still second-order secure. However, the randomness used in the S-box
pair can be reused in other paired S-boxes. The reason is that probing two different pairs
is still second-order secure even though their fresh masks are the same due to each S-box
pair being first-order probing secure without fresh randomness. Thus, given that the two
pairs work on independent inputs (for example, the two pairs are in the same S-box layer),
then if adversaries can recover all fresh masks with one probe in one pair, the other pair
is still first-order secure without these fresh masks and hence the second probe does not
reveal information about the secret.

This leaves us with proving the inputs from all possible pairs of S-boxes are indeed
independent. While this is already true for pairs in the same S-box layer (due to the joint
uniformity of the state), we need to verify whether this holds between pairs in different
rounds of the symmetric primitive. To ensure this independence, we use dynamic fresh
randomness between the rounds of the primitive. A simple solution is to simply mask the
output of the linear layer per round. However, in order to reduce this need of dynamic
randomness, we observe that it is sufficient to re-mask what an adversary can probe. The
first probe’s observed values would be re-masked by fresh randomness causing the second
probe’s values to necessarily be independent of the first one’s. As a result, the security
reverts back to the previous section on the first-order probing security. To provide an
example on how this can be applied, consider an unpaired masked case for an AES. We
want to add randomness after the linear layer in order to make the design multivariate
secure. We consider what an adversary can observe when probing a masked S-box or a
masked linear layer as shown in Figure 2. From the figure, we observe that a probing
adversary is only capable of viewing one column of the state when placing one probe. As a
result, when re-masking each column with the same randomness, we can ensure that every
two S-boxes in the design (even in different rounds) have independent inputs. Namely,
the values observed by the first probe are indeed re-masked meaning that the second
probe can not observe related data. Another way of viewing this property is via the linear
cryptanalytic framework by Beyne et al. [BDZ20] where the argument would be that there
can not exist a non-zero correlation trail between any two S-boxes.

124 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

S-Box Layer Linear Layer Linear Layer

Figure 2: The output of the linear layer an adversary can observe by placing a probe in
either one S-box (in the top left S-box) or in the linear layer (in the left ShiftRows and
MixColumns operation) of a masked AES (where for the sake of an example, we don’t
consider the S-boxes are paired). Other probe positions are similar in that an adversary
can at most observe one column of the state.

4 Case Studies
In this section, we apply the masking technique from Section 3 to three lightweight block
ciphers Midori, Skinny, and Prince. We confirm the security of the masked S-boxes
with SILVER [KSM20] and have a theoretical analysis of multi-round probing security.
We support our evaluations by practical experiments in Section 5.

4.1 Midori
As the first case study, we focus on Midori [BBI+15] which is a block cipher opti-
mized for low-energy usage. The S-box is also used in other block ciphers including
CRAFT [BLMR19] and MANTIS [BJK+16]. It has 128-bit key and 64-bit state that is
split into 4-bit cells. An involutive binary quasi-MDS matrix together with a permutation
of the 4-bit cells form the diffusion layer and it uses a 4-bit cubic S-box as the non-linear
layer. Midori has a simple key schedule where each round either the left or right half of
the master key is XORed to the state of the cipher.

Masking. Midori-64’s S-box has three cubic coordinate functions and one quadratic one.
Its lookup table is given by cad3ebf789150246. We can apply the technique expressed in
Section 3.1 to find solutions for uniform sharings of each cubic coordinate functions. Since
one coordinate function is quadratic, we need fewer coordinate functions. More precisely,
15 coordinate functions were enough to find a uniform sharing of the quadratic coordinate
function. We found millions of uniform solutions for each coordinate function leading to a
substantially large search space to find a joint-uniform solution. Therefore, we reduced the
search space by removing some index configurations of each coordinate function. Looking
at Table 1, we have four index configurations Ii that should be assigned to four input
variables. We assign I0 to the input variable that is common in all cubic monomials in
the Algebraic Normal Form (ANF) of the target coordinate function. For example, the
first coordinate function can be represented as f(a, b, c, d) = b + ac + ad + abc + abd + bcd.
Since the input variable b exists in all cubic monomials, we assign the index configuration
I0 to b and assign other index configurations to the rest input variables randomly. If only
one cubic monomial exists in the ANF of the function, we can freely choose any input
variable in that cubic monomial to be assigned to I0. We note that if no input variable
can be identified, we search for all possible index configuration tables. In this way, we
have to search using only one possible index configuration table per coordinate function
which significantly reduces the search space size. Based on our observation, the probability
of finding a joint-uniform sharing is also higher. However, we do not claim there is no
joint-uniform sharing using other index configuration tables since the search space is too
large to verify all possibilities.

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 125

m / c

c / m

SC

MC

 SC

-1

k0

k1

αi

C
o
m

p
re

ss
io

n

Sbox

Static randomness Dynamic randomness

Figure 3: Design architecture of the round-based second-order secure Midori-64 encryp-
tion/decryption function.

To find a joint-uniform solution, we used the trick described in Section 3.1 to discard
non-uniform combinations during the search. Namely, we started by finding a joint-uniform
solution for two coordinate functions and then add the third and fourth one step-by-step
checking the joint uniformity on the way. Our program, which ran on a machine with 24
CPU cores using 96 GB of RAM, found joint-uniform solutions in mere minutes.

To achieve first-order probing security, we paired two S-boxes as explained in Section 3.2.
We added fresh masks to make the constructions second-order probing secure following the
strategy discussed in Section 3.3. Notably, these fresh masks can be reused in all S-box
pairs making it static randomness. Furthermore, these fresh masks stay unchanged during
the execution of the cipher. One of the solutions is given in Appendix A.

Architecture. The design architecture of our round-based second-order secure Midori-64
implementation is depicted in Figure 3. The construction supports both encryption and
decryption to make a fair comparison to the state of the art. It has two layers of registers;
one right before the compression layer and one before the masked S-box. We used 96 fresh
masks to make the S-box second-order secure. Since the S-boxes are paired, the randomness
cost is doubled. In other words, a pair of S-boxes needs 96 × 2 = 192 fresh masks. These
fresh masks can be reused in all other pairs in all rounds and we marked it in the figure as
“static randomness”. They are given to the design at the start of the encryption and stay
unchanged during the execution of the masked cipher. To ensure multivariate security we
add 24-bits of fresh masks (dynamic randomness) after the diffusion layer of the cipher for
the security reasons explained in Section 3.3. More specifically, we re-mask the columns
using the random bytes (r1, r2, r3, r1 + r2 + r3) (the fourth cell in a column is re-masked
using the sum of the randomness of the other cells). We use the same randomness for each
column in that round but refresh the randomness per round. In addition, we add 8-bits of
fresh randomness (denoted r0) on the second paired S-box. Meaning that the first S-box
in a pair is not re-masked but the second one is, where the same randomness is used per
pair in that round but is refreshed per round. The explanation for this choice of refreshing
is given further on in the security analysis.

To compare our synthesis results to the state of the art, we refer to Table 3 where
the randomness cost of sharing the plaintext and key is included . The design presented
in [SM21] has high randomness complexity and requires four clock cycles per round. The
implementation cost is reduced in [BDMS22] in terms of randomness and latency. However,
each round is performed in three clock cycles. Namely, in both mentioned works, the
authors dealt with quadratic functions and hence they had to decompose the S-box,
resulting in higher latency in the number of clock cycles. However, our technique can be
applied to cubic functions making us achieve lower latency (two clock cycles per round)
while maintaining the same throughput and delay at the cost of a higher area overhead.

126 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

Table 3: Performance figures of different implementations.
(using Synopsis Design Compiler, and UMC 90 standard cell library, excluding RNGs)

Design Security No. of Fresh Masks/ Area Delay Latency Throughput
Order Shares Encryption [bit] [kGE] [ns] [cycles] [MB/s]

Midori-64
[SM21] 2 3 8576 15.5 2.86 64 174.8
[BDMS22] 2 3 408 13.9 2.94 64 170.0
[BDMS22] 2 3 456 16.6 2.95 48 169.5

This work 2 3 1088 40.8 2.94 32 170.0
Skinny-64-64
[SM21] 2 3 16640 10.6 1.22 128 204.9
[BDMS22] 2 3 296 12.4 1.33 128 188.0
[BDMS22] 2 3 320 12.3 1.33 96 188.0

This work 2 3 1424 25.5 2.24 64 111.6
Prince
[BKN19]a 2 3 21120 13.4 4.00 72 27.7
[BKN19]a 2 5 12032 18.7 4.10 72 27.1
[BKN19]a,b 2 3 41856 32.4 3.42 24 194.9
[BKN19]a,b 2 8 34496 177.6 3.54 24 188.3
[SM21] 2 3 11136 19.4 3.11 84 214.3
[BDMS22] 2 3 454 19.5 3.08 72 216.4
[BDMS22] 2 3 584 20.3 3.41 48 195.5

This work 2 3 984 62.3 4.85 24 137.5

a using TSMC 90
b without S-box decomposition

The reason behind the higher area overhead is the fact that at least 27 coordinate functions
are needed per cubic function to realize a second-order secure implementation using the
minimum number of shares. Instead, the same level of security can be achieved with
9 coordinate functions for a quadratic function. The randomness cost of our design is
significantly lower than the proposed design in [SM21], but higher than the construction
in [BDMS22] as we have to introduce some fresh masks in the diffusion layer that should
be updated each round. It is noteworthy to mention that since all designs in Table 3 are
fully-pipelined, the throughput only rely on the delay (critical path) of the circuit and
reducing the number of clock cycle does not lead to better throughput. Instead, as an
advantage, the result would be ready to use in less number of clock cycles.

Algorithmic Security Analysis. As a first step, we evaluate the glitch-extended probing
security of one round of the masked construction. To this end, we use the formal verification
tool SILVER [KSM20]. The verification is split in two parts. For the first part, we removed
all fresh masks from our paired S-box construction and checked the first-order probing
security. For the second part, we verified the second-order probing security of one S-box
which uses fresh randomness. However, because of using different fresh masks for the other
S-box in the same pair, we can conclude that the entire construction of a paired S-box
is second-order secure. It is important to follow this manner as the fresh masks that are
used to achieve first-order security cannot be reused in our constructions. Let us assume
that an intermediate variable is secured against a first-order attack by a single bit fresh
mask that is reused in another part of the cipher. The adversary can observe the fresh
mask by one probe and use the other probe to observe the sensitive variable whose security
is dependent on that fresh mask. Hence, we first remove all fresh masks in the S-box
construction - which will be reused - and verify the first-order security. The second-order

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 127

verification has been done only for one S-box in a pair as the paired S-box is too large for
the tool as a whole (as there are too many input variables considering the fresh masks for
the tool). We should highlight that the two S-boxes in a pair receive completely different
fresh masks so we can conclude that a paired construction is second-order secure.

We claim that placing two probes in two different pairs is also second-order secure
while fresh masks are reused. Note that each pair is first-order secure with no fresh masks.
One probe reveals at most all fresh masks and due to first-order security of a pair with no
fresh masks, the second probe does not observe any sensitive variables. As a result, one
round of the masked Midori is glitch-extended second-order probing secure.

For a second step, we show that the Midori is multivariate second-order probing secure.
More specifically, that the design is secure in the case two probes are placed in different
rounds of the cipher. This security is guaranteed by the use of dynamic randomness
between the rounds as explained in Section 3.3. To show this security, we evaluate what
an adversary can observe by placing a probe in a masked S-box pair or the linear layer.
We overlap this by the dynamic randomness which is added to that layer. The result is
shown in Figure 4.

Theorem 1. The activity patterns caused by a glitch-extended probe (up to symmetry, the
ones shown in Figure 4) are masked by the dynamic randomness of the masked Midori
design from Section 4.1.

Proof. We show that when one probe is placed in the round function of the masked Midori,
the dynamic randomness refreshes what is observed. We split the reasoning in two parts,
a probe is placed in the linear layer and a probe is placed in the masked S-box.

• We consider the case where a probe is placed in the linear layer. From the design of
Midori’s linear layer, this probe can view at most three cells of the state. Due to
glitches, the adversary can view the compression layers of three S-boxes. Since this
compression layer is fully masked by the paired S-box’s inputs, the adversary can
only view one of the paired S-boxes. As a result, the adversary views three cells of
the state with the condition that there can be at most one cell active per row (an
example is shown in Figure 4). It is clear that the dynamic randomness (r1, r2, r3, r4)
with r4 = r1 + r2 + r3 refreshes this pattern.

• We consider the case where a probe is placed in the paired masked S-box which
results in the adversary viewing the input of two S-boxes (an example is shown in
Figure 4). The randomness r0 refreshed one S-box in the pair. The leftover S-box
cascades through the linear layer of Midori which, since the linear layer has branch
number four, means at most three cells of the state after the linear layer are active (in
one column). This reverts to the previous case where the randomness (r1, r2, r3, r4)
re-masks this pattern.

From Theorem 1, we find that when two probes are placed in two separate rounds, their
observed values are independently distributed. Since the shared functions are uniform, the
observed values from each separate probe act as joint uniform randomness. As a result, the
values returned by the two probes are joint uniform random. Thus, following the probing
security model as introduced in Section 2.2, the shared Midori is second-order probing
secure when the two probes are placed in two different rounds of the state.

4.2 SKINNY
For the second case study, we consider the Skinny tweakable block cipher [BJK+16].
In this work, we consider the Skinny-64-64 variant of the family which consists of a

128 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

S-Box Layer
r0

r0

r0

r0

r0

r0

r0

r0

Linear Layer
r1 r1 r1 r1

r2 r2 r2 r2

r3 r3 r3 r3

r4 r4 r4 r4

Figure 4: Examples of what an adversary can observe in the masked Midori (similarly in
Skinny and Prince) by placing a probe in a masked S-box pair or in the linear layer. We
include the dynamic randomness (with r4 = r1 + r2 + r3) which is added after the layers.

64-bit block size and a 64-bit tweakey. The state is divided in a 4x4 roster where each
cell is a nibble. The S-box consists of a 4-bit cubic function and its linear layer consist
of a ShiftRows and a MixColumns operation. More specifically, it uses a quasi-MDS
MixColumns. The tweakey schedule from Skinny is linear and consists of a permutation
and the application of a Linear Feedback Shift Register (LFSR).

Masking. The S-box of Skinny is given by the lookup table c6901a2b385d4e7f. It has
two cubic coordinate functions and two quadratic ones. For the sharing, we started with
the two quadratic coordinate functions. Since the ANF of both are simple, we could find a
first-order probing secure (but non-uniform) sharing just by placing the shared monomials
in 9 different coordinate functions for both of them. Then, we searched for a uniform
sharing by adding linear correction terms to both and found a joint-uniform solution in
just a few seconds. We should highlight that we did not use the pairing technique (from
Section 3.2) for these two quadratic coordinate functions. The process for the two cubic
coordinate functions is similar to the sharing of Midori. More precisely, we applied the
technique expressed in Section 3 and found many solutions for each of them. As we had
a joint-uniform solution for the quadratic coordinate functions, we first add the third
coordinate function and check the joint uniformity. Once we found a solution for three
coordinate functions, we added the solutions for the last coordinate function. This way, we
found a joint-uniform solution in a couple of minutes for the Skinny S-box. By pairing two
S-boxes (more precisely, only the cubic coordinate functions), we made the construction
first-order glitch-extended probing secure. A total of 27 and 9 fresh masks are needed
to secure the cubic and quadratic coordinate functions, respectively. As a result, each
S-box requires 2 × 27 + 2 × 9 = 72 fresh masks and a total of 2 × 72 = 144 fresh masks are
needed for one pair. Again, these 144 fresh masks can be re-used in all other pairs in all
rounds. The second-order probing secure masking of the Skinny S-box is given in detail
in Appendix B. In summary, the above details a three-share second-order probing-secure
realization of the SkinnyS-box with only one register layer using 144 static random bits.

Architecture. The general structure of our fully-pipelined round-based second-order
Skinny-64 is illustrated in Figure 5, where each round is performed in only two clock
cycles. Note that we had to place a layer of registers right before the S-box to maintain
the second-order glitch-extended probing security of the entire design (this can be seen as
the state register). As previously stated, 144 fresh masks are given to the design at the
start of the encryption together with the shared key and the shared plaintext. The design
also requires 32 fresh masks which should be updated each round to be introduced in the
diffusion layer to achieve multivariate (multi-round) security. This addition of dynamic
randomness follows the same design as used in our sharing of Midori. Namely, we refresh
the second S-box of a pair (using 8-bits of randomness) and we refresh the columns after
the linear layer (using 24 bits of randomness as the fourth cell’s randomness can be the
sum of the other three). Table 3 shows the corresponding performance figures, where the

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 129

m SR MCMC cSbox

C
o
m

p
re

ss
io

n

TKi

Static randomness Dynamic randomness

Figure 5: Design architecture of our round-based second-order Skinny-64 encryption
function.

required fresh masks for sharing the key and plaintext are included. We only implemented
and reported the synthesis result for Skinny-64-64 (64-bit state and 64-bit key) in order
to make a fair comparison to the state of the art. Note that other variants with larger
key sizes can be easily implemented due to the simplicity of the Skinny key schedule.
Our design outperforms the implementation presented in [SM21] as it needs significantly
more fresh masks and double the latency. Compared to [BDMS22], we reduced the latency
at the cost of more fresh masks and an area overhead due to us sharing cubic functions
instead of quadratic ones. Since we removed register layers to achieve lower latency, the
critical path (delay) of the circuit increased as well.

Algorithmic Security Analysis. We first start with the verification of our masked S-box
using SILVER [KSM20]. We employed the same approach described in the security analysis
of Midori. Namely, we first verified the first-order glitch-extended probing security of
the paired S-boxes without fresh masks. This implies that two probes placed in two
different paired S-boxes in the same round is secure. Second, we were able to confirm the
second-order security of one S-box with fresh masks. As a result, the security of the case
that the adversary place two probes in the same pair is also verified and thus a single
round of our shared Skinny is second-order probing secure. The verification took a day
on a machine with 16 cores and 128 GB of RAM.

The multi-round probing security of the shared Skinny follows from the use of dynamic
randomness between the rounds. This is proven by going through what an adversary
can observe using a single probe and tracking this activity pattern through the dynamic
randomness separating the rounds. We then verify that the dynamic randomness covers
the produced activity patterns. Since the activity patterns and the added randomness are
the same as the one from the shared Midori, the same security arguments as in Section 4.1
can be used.

Theorem 2. The activity patterns caused by a glitch-extended probe (up to symmetry, the
ones shown in Figure 4) are masked by the dynamic randomness of the masked Skinny
design from Section 4.2.

Proof. Since the patterns and the addition of randomness are exactly the same as in the
case for the share Midori, the proof is the same as for Theorem 1.

Similar to the Midori case, since two probes placed in two separate rounds return
independent distributed data, the observed values from each probe follow a joint uniform
random distribution. As a result, the shared Skinny is second-order probing secure when
the two probes are placed in two different rounds of the state.

4.3 PRINCE
For the third case study, we investigate a sharing of the Prince block cipher [BCG+12].
Prince is an AES-like cipher which consists of a 64-bit state divided in a 4x4 roster of

130 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

nibbles and a 128-bit key. The S-box is a 4-bit cubic function and the linear layer consists
of a ShiftRows and a MixColumns operation with a quasi-MDS matrix. The key schedule
is simple where the first and last round key are the first 64-bits of the master key and
the other round keys form the last 64-bits of the master key. The cipher consists of 12
nonlinear layers, where the first half applies the S-box and the second half applies the
inverse S-box. Both the S-box and its inverse are affine equivalent.

Masking. Both the S-box (given by the lookup table BF32AC916780E5D4) and its inverse
(given by the lookup table B732FD89A6405EC1) are used in the Prince block cipher in
both the encryption and the decryption procedure. As a result, the application of our
technique is not as straightforward as for Midori and Skinny. The algebraic degree of
all coordinate functions of both the S-box and its inverse are three, making the search
space to find a joint-uniform sharing large and its search non-trivial. Nevertheless, the
Prince S-box and its inverse are affine equivalent. However, while this fact has proven
useful in [MS16] and later in [SM21,BDMS22], it forces us to introduce several register
stages to fulfill second-order glitch-extended probing security leading to a higher latency.
Hence, the application of our strategy to only S-box (or its inverse) would lead to a
construction where each round is performed in three clock cycles. While it is still better
than the state-of-the-art, we intend to reduce it further down to two clock cycles per round.
Therefore, we follow another design architecture presented in [SM20], where both the S-box
and its inverse are implemented, as depicted in Figure 6. The compression layer is shared
between the S-box and its inverse and is selected based on the cipher round. Since no
register layer is placed before the multiplexer that selects either the S-box or its inverse,
the probes that observes the output of the multiplexer expand backwards to all its inputs.
As a result, both inputs of the multiplexer must fulfill the non-completeness property. In
other words, the index shares that are used for a coordinate function of an S-box must
be used in the corresponding coordinate functions of its inverse as well. This criterion
forces us to use the same index configuration table per coordinate function. Following this
approach, the corresponding coordinate functions of the S-box and its inverse plus the
subsequent multiplexer in Figure 6 can be combined in a single module, to achieve a lower
area overhead.

In order to reduce the search space’s size, we first look at the cubic monomials of
a particular coordinate function in both the S-box and its inverse and assign the index
configuration I0 to the common input variable of the cubic monomials. For example, the
third coordinate function of the Prince S-box is f(a, b, c, d) = a+ab+d+ad+bd+abd+bcd
and the ANF representation of the corresponding coordinate function of the inverse S-box
is g(a, b, c, d) = a + ab + c + ac + bc + abc + bd + abd. The input variable b is the only
one that is used in all cubic monomials. Hence, we assign the index configuration I0
to the input variable b and assign the rest randomly. This approach can be applied to
three coordinate functions, however, there is no input variable that is common in all cubic
monomials in the fourth coordinate function of the S-box and its inverse. Our program
found over ten million joint-uniform solutions for these three coordinate functions for both
the S-box and its inverse in only a couple of hours. For the fourth coordinate function, we
considered all possible index configuration tables. We also considered a limited number
of quadratic correction terms as well. Our program, running on a machine with 48 cores
and 256 GB of RAM, could not find a joint-uniform solution after two weeks. Therefore,
we had to use two different index configuration tables for this last function. Note that
we can use multiplexer for two component functions that receive the same set of input.
Since we had to use two different index configuration tables, we increased the number
of coordinate functions to fulfill second-order non-completeness. For example, without
violating second-order non-completeness, we can switch between two component functions
f0(a0, b1, c1, d0) and f ′′

0 (a0, b1, c1, d0) using a multiplexer with not registers as their input

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 131

m / c

RC k1

k0 k0k0́́

c / m

SR
-1

SR
-1

SR
-1

SR
-1

Mʹ
SR

-1
SRSR

-1
SR

Sbox

Sbox
-1

Dynamic randomness

Static randomness

C
o
m

p
re

ss
io

n
C

o
m

p
re

ss
io

n

Figure 6: Design architecture of our round-based second-order Prince encryp-
tion/decryption function.

list are the same. However, that is not the case for f ′′
0 (a1, b1, c1, d0) since it violates the

second-order non-completeness for input variable a. For this reason, we had to increase
the number of component functions for the last coordinate functions of Prince S-box and
its inverse. Namely, we increased it to 45 component functions instead of 27 where each
15 of them are compressed to generate one output share. One solution is given in detail
in Appendix C.

We coupled two S-box/inverse S-box constructions to make it first-order glitch-extended
probing secure and added 4 × 27 = 108 fresh masks to each construction (giving a total
randomness cost of 2 × 108 = 216 bits for one pair) to achieve second-order glitch-extended
probing security. These masks are static and thus can be reused in other pairs in all cipher
rounds.

Architecture. The design architecture of our round-based second-order Prince is shown
in Figure 6. We placed a state register right after the the first multiplexer (which also
serves to ensure second-order probing security). The design requires 216 static masks and
32 dynamic ones. Recall that these dynamic masks should be updated each round. These
dynamic masks re-mask the second S-box (or inverse S-box) in a pair (requiring 8 bits)
and refresh the columns of the state (requiring 24 bits) similar to the constructions in our
proposed Midori and Skinny.

There are three other works proposing second-order masked hardware implementations
of Prince. Table 3 shows a comparison between the performance of these designs.
In [BKN19], the S-box is decomposed into quadratic bijections and some modules are
reused in the implementation to reduce the area of the construction. The designs demand
a high number of fresh masks and has a low throughput due to its serial architecture. The
authors also presented two different constructions without a decomposition of the S-box
at the cost of a significant randomness overhead. The number of fresh masks is reduced
in [SM21], however, the latency increased. The low-latency design presented in [BDMS22]
outperformed all mentioned designs in terms of fresh masks and latency with roughly the
same area overhead. Still, in the low-latency design, each round is performed in four clock
cycles. Whereas our design requires only two clock cycles while keeping the randomness
cost low. Contrary to most proposed designs, we employed no S-box decomposition and
implemented both the S-box and its inverse to achieve a lower latency leading to a higher
area overhead. Since we removed register layers, the critical path of our construction is
longer.

Algorithmic Security Analysis. We start with the security analysis of one round of
the primitive. The verification has been done using SILVER [KSM20]. We followed the
approach outlined in the security analysis of Midori and Skinny and confirmed the first-
and second-order glitch-extended probing security of our construction.

132 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

The multi-round probing security of the shared Prince follows from the use of dy-
namic randomness between the rounds. Since the linear layers in Prince have the same
construction (same branch number and the use of a ShiftRows operation) as Midori and
Skinny, and since dynamic randomness is added in the same fashion as the other designs,
its security follows similarly to the other cases.

Theorem 3. The activity patterns caused by a glitch-extended probe (up to symmetry, the
ones shown in Figure 4) are masked by the dynamic randomness of the masked Prince
design from Section 4.3.

Proof. Since the patterns and the addition of randomness are exactly the same as in the
case for the share Midori, the proof is the same as for Theorem 1.

Similar to the Midori and Skinny cases, since two probes placed in two separate
rounds return independent distributed data, the observed values from each probe follow a
joint uniform random distribution. As a result, the shared Prince is second-order probing
secure when the two probes are placed in two different rounds of the state.

5 Experimental Analysis
As previously stated, we confirmed the security of all S-box constructions with SIL-
VER [KSM20]. Since no tool can currently evaluate an entire cipher, we have conducted
experimental analyses in addition to the theoretical analyses. For the first experimental
analysis, we have taken our full cipher implementation of Prince. It requires 216 bits of
static fresh masks and 32 bits of dynamic masks apart from the sharing of the plaintext
and key. We implemented this design on a Xilinx Kintex-7 FPGA of the SAKURA-X
evaluation board [SAK] which is supplied by a stable 6 MHz oscillator as the source for the
clock. Each required fresh mask bit is provided by an LFSR with the feedback polynomial
x31 + x28 + 1. As discussed in [DMW18], the LFSR can be efficiently implemented in
Xilinx FPGAs using only three 6-to-1 Look-Up Tables (LUTs). The LFSRs dedicated to
the dynamic fresh masks are updated at every clock cycle, but those that generate static
fresh masks are activated for only one clock cycle for each encryption. Namely, they are
only updated once at the start of encryption and remain constant for each given plaintext
to be encrypted. The target FPGA receives a three-share masked input (plaintext) and a
masked key and provides the output (ciphertext) also in a three-share masked form.

By means of a digital oscilloscope at a sampling rate of 500 MS/s, we collected power
consumption traces while measuring the voltage drop over a 1 Ω shunt resistor placed on
the VDD path of the target FPGA. We have conducted a fixed-versus-random t-test - also
known as TVLA [CDG+13] - for each design using 100 million traces. In this test, the key
is fixed to a certain value during the measurement and the masked design receives either
a fixed or a random plaintext. Independent on this, all inputs are given in a three-share
masked form with uniform sharing.

We have performed three different univariate analyses. The first one is an ordinary
t-test, where the test is applied to each sample point one-by-one called a first-order
univariate test. To apply a second-order univariate test, we need to pre-process the traces.
Namely, for each group of fixed and random samples, individually, we made the traces
mean-free followed by squaring each sample point. Afterwards, the same procedure for the
first-order univariate test is followed. For the third-order univariate test, we performed the
same pre-processing method as for the second-order univariate test while each mean-free
sample was cubed instead of squared.

We have also conducted a bivariate second-order t-test. In this case, each combination
of every two mean-free sample points should be multiplied, and an individual t-test should
be performed for each combination leading to a significant number of individual tests.

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 133

0 2 4 6 8 10 12
Time [s]

P
ow

er

(a) A sample trace

0 2 4 6 8 10 12
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(b) 1st-order t-test

0 2 4 6 8 10 12
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(c) 2nd-order t-test

0 2 4 6 8 10 12
Time [s]

-8

-4

0

4

t-
st

at
is

tic
s

(d) 3rd-order t-test

0 2 4 6 8 10 12
Time [s]

0

2

4

6

8

10

12

T
im

e
[

s]

1

2

3

4

t-
st

at
is

tic
s

(e) 2nd-order bivariate t-test (f) 3rd-order trivariate t-test

Figure 7: Experimental analysis of our masked Prince using 100 million traces.

Since this is not feasible in practice, we took four samples per clock cycle that are carefully
selected to over start, end and middle of each clock cycle. Therefore, we were able to
cover all clock cycles involved in the power traces. This downsampling trick has been
also used in several other publications including [CRB+16,SM21,BDMS22]. Note that,
as discussed in [MOP07], power consumption traces are low-pass filtered by the Printed
Circuit Board (PCB), the measurement facility, etc. As a result, the information on the
leakage is roughly the same for several sample points in each clock cycle of the power traces.
More discussion and information can be found in [MM13]. For the sake of completeness,
we also performed a trivariate second-order t-test, where an individual t-test for each
combination of every three possible sample points should be performed. For this analysis,
we used the same downsampled traces as we used for the bivariate analysis, i.e., four
samples per clock cycle.

The corresponding results are depicted in Figure 7, confirming the second-order security
of our design. Our experimental analyses have not shown any first- or second-order leakage
in both the univariate and bivariate tests. As presented in Figures 7d and 7f, the design
exhibits third-order leakage in both univariate and multivariate scenarios. This confirms

134 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

the ability of our setup to detect such higher-order leakages. The observed third-order
leakage actually corresponds to the middle of the Prince encryption, i.e., the clock cycle
when the multiplexers switch between the S-box and the inverse S-box modules (see
Figure 6). Note that, the 128-bit key in Prince is split into two 64-bit parts and both are
XORed to the plaintexts as the first operation. In the round that the leakage is detected,
all bits of the key and the given plaintext are fully mixed. Hence, it is almost impossible
to exploit this leakage and conduct a successful key-recovery since a large part of the key
should be guessed (almost all 128 bits). Due to the reasons explained in Section 4.3, the
area overhead of the S-box and S-box inverse is larger than other case studies followed by
large multiplexers. As a result, this part of the cipher consumes more energy and would
amplify the third-order leakage while switching from S-box to S-box inverse leading to
detectable third-order leakage even in the univariate analysis.

We have also followed the same procedure for our Midori and Skinny designs, where
the corresponding results are given in Appendix D. In short, we do not detect any first-
order or second-order leakage in the univariate or bivariate analyses. Contrary to Prince
where the third-order leakage is detected in both univariate and bivariate analyses, we
only have third-order leakage in the multivariate t-test of Skinny.

For the sake of sanity check of our measurement setup, we evaluated the masked
Skinny design turning the PRNG off with an unshared input to emulate an unprotected
implementation. We performed a t-test and detected first-order leakage as demonstrated
in Figure 10. We also performed a first- and second-order t-test on Skinny with the
PRNG off but with a shared input. As stated in Section 4.2, the design is first-order secure
with no fresh masks but not second-order secure. Our experimental analysis also confirms
this claim, as depicted in Figure 11.

6 Discussions and Conclusions
In this work, we have introduced a methodology to create three-share second-order secure
implementations of cubic functions with a low randomness cost. We then applied the
methodology to create second-order secure hardware implementations of Midori, Skinny,
and Prince. To the best of our knowledge, our designs are the only ones that provide
second-order security where each round of the cipher is performed in only two clock cycles
without demanding a high number of fresh masks. More importantly, we confirmed the
second-order glitch-extended probing security of our masked S-box constructions using
the formal verification tool SILVER, we provided a theoretical analysis of the multi-round
probing security of our designs, and we conducted experimental analyses to support our
claims.

Apart from these achievements, we should highlight that our masked S-box’s security
have not been proven in the Non-Interferent (NI) [BBD+16] or Probe-Isolating Non-
Interferent (PINI) [CS20] frameworks (since we use inputs from another S-box for re-
masking purposes). Instead, extra randomness can be used to wall-off the masked primitives
or the security of the larger whole can be carefully examined to save these extra costs.

The application of our methodology on the AES S-box is the most interesting case
for future work given that it can be decomposed into cubic functions. However, this is
challenging as the composition of the masked cubic functions may require a high number
of fresh masks to ensure its security. Hence, this difficulty needs to be overcome to achieve
better results compared to the state-of-the-art.

Another important line of future work is the investigation on the cost of randomness
generation in hardware in terms of area, energy, power, and latency. Similar to other
publications in the field, we did not consider the cost of the PRNGs which generate the
fresh masks in the performance figures in Table 3. The generation of (SCA secure) fresh
masks can be costly in hardware, particularly when they must be updated every clock

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 135

cycles. Therefore, it would be beneficial to determine how expensive it is to generate them
and what the best approach would be to lower area/energy/power/latency.

Acknowledgment. The work described in this paper has been supported in part by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972 and through the project 406956718 SuC-
CESS. Siemen Dhooghe is supported by a PhD Fellowship from the Research Foundation –
Flanders (FWO).

References
[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin

Grégoire, and François-Xavier Standaert. maskVerif: Automated Verification
of Higher-Order Masking in Presence of Physical Defaults. In ESORICS 2019,
volume 11735 of Lecture Notes in Computer Science, pages 300–318. Springer,
2019.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-
Interference and Type-Directed Higher-Order Masking. In CCS 2016, pages
116–129. ACM, 2016.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
Block Cipher for Low Energy. In ASIACRYPT 2015, volume 9453 of Lecture
Notes in Computer Science, pages 411–436. Springer, 2015.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract. In ASIACRYPT 2012, volume 7658 of Lecture Notes in
Computer Science, pages 208–225. Springer, 2012.

[BDMS22] Tim Beyne, Siemen Dhooghe, Amir Moradi, and Aein Rezaei Shahmirzadi.
Cryptanalysis of efficient masked ciphers: Applications to low latency. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):679–721, 2022.

[BDZ20] Tim Beyne, Siemen Dhooghe, and Zhenda Zhang. Cryptanalysis of Masked
Ciphers: A Not So Random Idea. In ASIACRYPT 2020, volume 12491 of
Lecture Notes in Computer Science, pages 817–850. Springer, 2020.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-Order Threshold Implementations. In ASIACRYPT 2014,
volume 8874 of Lecture Notes in Computer Science, pages 326–343. Springer,
2014.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight Private Circuits:
Achieving Probing Security with the Least Refreshing. In ASIACRYPT 2018,
volume 11273 of Lecture Notes in Computer Science, pages 343–372. Springer,
2018.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
Family of Block Ciphers and Its Low-Latency Variant MANTIS. In CRYPTO

136 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

2016, volume 9815 of Lecture Notes in Computer Science, pages 123–153.
Springer, 2016.

[BKN19] Dusan Bozilov, Miroslav Knezevic, and Ventzislav Nikov. Optimized Threshold
Implementations: Minimizing the Latency of Secure Cryptographic Accelerators.
In CARDIS 2019, volume 11833 of Lecture Notes in Computer Science, pages
20–39. Springer, 2019.

[BLMR19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: Lightweight Tweakable Block Cipher with Efficient Protection Against
DFA Attacks. IACR Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

[BNN+15] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, Natalia N.
Tokareva, and Valeriya Vitkup. Threshold implementations of small S-boxes.
Cryptogr. Commun., 7(1):3–33, 2015.

[CBR+15] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and Svetla
Nikova. Higher-order threshold implementation of the AES s-box. In CARDIS
2015, volume 9514 of Lecture Notes in Computer Science, pages 259–272.
Springer, 2015.

[CDG+13] Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary Kenwor-
thy, Pankaj Rohatgi, et al. Test vector leakage assessment (TVLA) methodology
in practice. In International Cryptographic Module Conference, volume 20,
2013.

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 Shares in Hardware. In
CHES 2016, volume 9813 of Lecture Notes in Computer Science, pages 194–212.
Springer, 2016.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE
Trans. Information Forensics and Security, 15:2542–2555, 2020.

[Dae17] Joan Daemen. Changing of the Guards: A Simple and Efficient Method for
Achieving Uniformity in Threshold Sharing. In CHES 2017, volume 10529 of
Lecture Notes in Computer Science, pages 137–153. Springer, 2017.

[DMW18] Lauren De Meyer, Amir Moradi, and Felix Wegener. Spin Me Right Round
Rotational Symmetry for FPGA-Specific AES. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):596–626, 2018.

[DN22] Siemen Dhooghe and Svetla Nikova. Resilient uniformity: applying resiliency
in masking. Cryptogr. Commun., 14(1):41–58, 2022.

[DSM22] Siemen Dhooghe, Aein Rezaei Shahmirzadi, and Amir Moradi. Second-order
low-randomness d + 1 hardware sharing of the aes. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, CCS
2022, Los Angeles, U.S.A., November 7-11, 2022. ACM, 2022.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 137

[GIB18] Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic Low-Latency
Masking in Hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):1–
21, 2018.

[GM18] Hannes Groß and Stefan Mangard. A unified masking approach. J. Cryptogr.
Eng., 8(2):109–124, 2018.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-Oriented Masking:
Compact Masked Hardware Implementations with Arbitrary Protection Order.
In Theory of Implementation Security - TIS@CCS 2016, page 3. ACM, 2016.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. volume 6917 of Lecture Notes in Computer Science, pages
326–341. Springer, 2011.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[KM22a] David Knichel and Amir Moradi. Composable gadgets with reused fresh masks
first-order probing-secure hardware circuits with only 6 fresh masks. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(3):114–140, 2022.

[KM22b] David Knichel and Amir Moradi. Low-latency hardware private circuits. 2022.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - Statistical
Independence and Leakage Verification. In ASIACRYPT 2020, volume 12491
of Lecture Notes in Computer Science, pages 787–816. Springer, 2020.

[MBR19] Lauren De Meyer, Begül Bilgin, and Oscar Reparaz. Consolidating Security
Notions in Hardware Masking. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(3):119–147, 2019.

[MM13] Amir Moradi and Oliver Mischke. On the Simplicity of Converting Leakages
from Multivariate to Univariate - (Case Study of a Glitch-Resistant Masking
Scheme). In CHES 2013, volume 8086 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2013.

[MME10] Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-Enhanced
Power Analysis Collision Attack. In CHES 2010, volume 6225 of Lecture Notes
in Computer Science, pages 125–139. Springer, 2010.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the Limits: A Very Compact and a Threshold Implementation of AES.
In EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 69–88. Springer, 2011.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
Attacking Masked AES Hardware Implementations. In CHES 2005, volume
3659 of Lecture Notes in Computer Science, pages 157–171. Springer, 2005.

138 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

[MS16] Amir Moradi and Tobias Schneider. Side-Channel Analysis Protection and Low-
Latency in Action - - Case Study of PRINCE and Midori -. In ASIACRYPT
2016, volume 10031 of Lecture Notes in Computer Science, pages 517–547,
2016.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold Imple-
mentations Against Side-Channel Attacks and Glitches. In ICICS 2006, volume
4307 of Lecture Notes in Computer Science, pages 529–545. Springer, 2006.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Imple-
mentation of Nonlinear Functions in the Presence of Glitches. J. Cryptology,
24(2):292–321, 2011.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating Masking Schemes. In CRYPTO 2015, volume
9215 of Lecture Notes in Computer Science, pages 764–783. Springer, 2015.

[Rep15] Oscar Reparaz. A note on the security of Higher-Order Threshold Implementa-
tions. IACR Cryptol. ePrint Arch., 2015:1, 2015.

[SAK] SAKURA. Side-channel Attack User Reference Architecture. http://satoh.
cs.uec.ac.jp/SAKURA/index.html.

[SBM21] Aein Rezaei Shahmirzadi, Dusan Bozilov, and Amir Moradi. New first-order
secure AES performance records. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(2):304–327, 2021.

[SM20] Aein Rezaei Shahmirzadi and Amir Moradi. Re-Consolidating First-Order
Masking Schemes - Nullifying Fresh Randomness. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(1):305–342, 2020.

[SM21] Aein Rezaei Shahmirzadi and Amir Moradi. Second-order SCA security with
almost no fresh randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(3):708–755, 2021.

[Tri03] Elena Trichina. Combinational Logic Design for AES SubByte Transformation
on Masked Data. IACR Cryptol. ePrint Arch., 2003:236, 2003.

[ZSS+21] Sara Zarei, Aein Rezaei Shahmirzadi, Hadi Soleimany, Raziyeh Salarifard,
and Amir Moradi. Low-latency keccak at any arbitrary order. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(4):388–411, 2021.

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 139

A 3-share Midori S-Box with 96-bit Fresh Masks

F (a, b, c, d) = (x, y, z, t) with lookup table cad3ebf789150246

x = f(a, b, c, d) = b + ac + ad + abc + abd + bcd

y = g(a, b, c, d) = a + c + ac + ad + cd

z = h(a, b, c, d) = 1 + a + d + ad + abc + abd + bcd

t = u(a, b, c, d) = 1 + ab + bd + cd + abd + bcd

We denote the uniform sharing of the function in black.
(k, l, m, n) are the input variables of the paired S-box, which are denoted in green.
Fresh masks are denoted in red.

f0(a0, b0, c0, d0) = b0a0c0 + b0a0d0 + b0c0d0 + a0d0 + a0c0 + k0 + r0 + r1 → x′
0

f1(a0, b0, c1, d1) = b0a0c1 + b0a0d1 + b0c1d1 + a0d1 + d1 + a0 + k0 + l0 + r1 + r2 → x′
1

f2(a0, b0, c2, d2) = b0a0c2 + b0a0d2 + b0c2d2 + a0d2 + c2 + l0 + m0 + r2 + r3 → x′
2

f3(a1, b0, c1, d0) = b0a1c1 + b0a1d0 + b0c1d0 + c1 + a1 + d0 + m0 + n0 + r3 + r4 → x′
3

f4(a1, b0, c2, d1) = b0a1c2 + b0a1d1 + b0c2d1 + +n0 + k1 + r4 + r5 → x′
4

⊕8
i=0 x′

i = x0
f5(a1, b0, c0, d2) = b0a1c0 + b0a1d2 + b0c0d2 + a1c0 + c0 + k1 + l1 + r5 + r6 → x′

5
f6(a2, b0, c0, d1) = b0a2c0 + b0a2d1 + b0c0d1 + a2c0 + l1 + m1 + r6 + r7 → x′

6
f7(a2, b0, c1, d2) = b0a2c1 + b0a2d2 + b0c1d2 + a2 + m1 + n1 + r7 + r8 → x′

7
f8(a2, b0, c2, d0) = b0a2c2 + b0a2d0 + b0c2d0 + b0 + n1 + r8 + r9 → x′

8
f9(a0, b1, c2, d0) = b1a0c2 + b1a0d0 + b1c2d0 + b1 + k0 + r9 + r10 → x′

9
f10(a0, b1, c0, d1) = b1a0c0 + b1a0d1 + b1c0d1 + +d1 + c0 + k0 + l0 + r10 + r11 → x′

10
f11(a0, b1, c1, d2) = b1a0c1 + b1a0d2 + b1c1d2 + c1 + a0 + a0c1 + l0 + m0 + r11 + r12 → x′

11
f12(a1, b1, c2, d2) = b1a1c2 + b1a1d2 + b1c2d2 + a1d2 + m0 + n0 + r12 + r13 → x′

12
f13(a1, b1, c0, d0) = b1a1c0 + b1a1d0 + b1c0d0 + a1d0 + n0 + k1 + r13 + r14 → x′

13
⊕17

i=9 x′
i = x1

f14(a1, b1, c1, d1) = b1a1c1 + b1a1d1 + b1c1d1 + a1d1 + a1c1 + k1 + l1 + r14 + r15 → x′
14

f15(a2, b1, c0, d2) = b1a2c0 + b1a2d2 + b1c0d2 + l1 + m1 + r15 + r16 → x′
15

f16(a2, b1, c1, d0) = b1a2c1 + b1a2d0 + b1c1d0 + a2c1 + m1 + n1 + r16 + r17 → x′
16

f17(a2, b1, c2, d1) = b1a2c2 + b1a2d1 + b1c2d1 + c2 + n1 + r17 + r18 → x′
17

f18(a0, b2, c0, d2) = b2a0c0 + b2a0d2 + b2c0d2 + b2 + k0 + r18 + r19 → x′
18

f19(a0, b2, c1, d0) = b2a0c1 + b2a0d0 + b2c1d0 + d0 + k0 + l0 + r19 + r20 → x′
19

f20(a0, b2, c2, d1) = b2a0c2 + b2a0d1 + b2c2d1 + a0c2 + l0 + m0 + r20 + r21 → x′
20

f21(a1, b2, c0, d1) = b2a1c0 + b2a1d1 + b2c0d1 + m0 + n0 + r21 + r22 → x′
21

f22(a1, b2, c2, d0) = b2a1c2 + b2a1d0 + b2c2d0 + a1c2 + n0 + k1 + r22 + r23 → x′
22

⊕26
i=18 x′

i = x2
f23(a1, b2, c1, d2) = b2a1c1 + b2a1d2 + b2c1d2 + a1 + k1 + l1 + r23 + r24 → x′

23
f24(a2, b2, c1, d1) = b2a2c1 + b2a2d1 + b2c1d1 + a2d1 + a2 + l1 + m1 + r24 + r25 → x′

24
f25(a2, b2, c0, d0) = b2a2c0 + b2a2d0 + b2c0d0 + a2d0 + m1 + n1 + r25 + r26 → x′

25
f26(a2, b2, c2, d2) = b2a2c2 + b2a2d2 + b2c2d2 + a2d2 + a2c2 + n1 + r26 + r0 → x′

26

g0(a0, c0, d0) = a0c0 + a0d0 + c0d0 + k0 + l0 + r27 + r28 → y′
0

g1(a0, c1, d1) = a0c1 + a0d1 + a0 + l0 + m0 + r28 + r29 → y′
1

g2(a0, c2, d2) = a0c2 + a0d2 + m0 + k1 + r29 + r30 → y′
2

⊕4
i=0 y′

i = y0
g3(c0, d1) = c0d1 + c0 + n0 + k0 + r30 + r31 → y′

3
g4(b2, c0, d2) = c0d2 + b2 + n0 + k1 + r31 + r32 → y′

4
g5(a1, c1, d1) = a1c1 + a1d1 + c1d1 + k0 + l0 + r32 + r33 → y′

0
g6(a1, c0, d0) = a1c0 + a1d0 + c0 + l0 + m0 + r33 + r34 → y′

1
g7(a1, c2, d2) = a1c2 + a1d2 + a1 + m0 + k1 + r34 + r35 → y′

2
⊕9

i=5 y′
i = y1

g8(c1, d0) = c1d0 + d0 + n0 + k0 + r35 + r36 → y′
3

g9(c1, d2) = c1d2 + c1 + n0 + k1 + r36 + r37 → y′
4

g10(a2, c2, d2) = a2c2 + a2d2 + c2d2 + k0 + l0 + r37 + r38 → y′
0

g11(a2, c0, d0) = a2c0 + a2d0 + c0 + a2 + l0 + m0 + r38 + r39 → y′
1

g12(a2, c1, d1) = a2c1 + a2d1 + m0 + k1 + r39 + r40 → y′
2

⊕14
i=10 y′

i = y2
g13(c2, d0) = c2d0 + d0 + c2 + n0 + k0 + r40 + r41 → y′

3
g14(b2, c2, d1) = c2d1 + b2 + n0 + k1 + r41 + r27 → y′

4

140 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

h0(a0, b0, c0, d0) = b0a0c0 + b0a0d0 + b0c0d0 + a0d0 + k0 + r42 + r43 → z′
0

h1(a0, b0, c1, d1) = b0a0c1 + b0a0d1 + b0c1d1 + a0d1 + d1 + k0 + l0 + r43 + r44 → z′
1

h2(a0, b0, c2, d2) = b0a0c2 + b0a0d2 + b0c2d2 + a0d2 + a0 + l0 + m0 + r44 + r45 → z′
2

h3(a1, b0, c1, d0) = b0a1c1 + b0a1d0 + b0c1d0 + d0 + m0 + n0 + r45 + r46 → z′
3

h4(a1, b0, c2, d1) = b0a1c2 + b0a1d1 + b0c2d1 + n0 + k1 + r46 + r47 → z′
4

⊕8
i=0 z′

i = z0
h5(a1, b0, c0, d2) = b0a1c0 + b0a1d2 + b0c0d2 + c0 + k1 + l1 + r47 + r48 → z′

5
h6(a2, b0, c0, d1) = b0a2c0 + b0a2d1 + b0c0d1 + l1 + m1 + r48 + r49 → z′

6
h7(a2, b0, c1, d2) = b0a2c1 + b0a2d2 + b0c1d2 + m1 + n1 + r49 + r50 → z′

7
h8(a2, b0, c2, d0) = b0a2c2 + b0a2d0 + b0c2d0 + a2 + n1 + r50 + r51 → z′

8
h9(a0, b1, c2, d0) = b1a0c2 + b1a0d0 + b1c2d0 + d0 + 1 + k0 + r51 + r52 → z′

9
h10(a0, b1, c0, d1) = b1a0c0 + b1a0d1 + b1c0d1 + k0 + l0 + r52 + r53 → z′

10
h11(a0, b1, c1, d2) = b1a0c1 + b1a0d2 + b1c1d2 + l0 + m0 + r53 + r54 → z′

11
h12(a1, b1, c2, d2) = b1a1c2 + b1a1d2 + b1c2d2 + a1d2 + m0 + n0 + r54 + r55 → z′

12
h13(a1, b1, c0, d0) = b1a1c0 + b1a1d0 + b1c0d0 + a1d0 + n0 + k1 + r55 + r56 → z′

13
⊕17

i=9 z′
i = z1

h14(a1, b1, c1, d1) = b1a1c1 + b1a1d1 + b1c1d1 + a1d1 + a1 + k1 + l1 + r56 + r57 → z′
14

h15(a2, b1, c0, d2) = b1a2c0 + b1a2d2 + b1c0d2 + l1 + m1 + r57 + r58 → z′
15

h16(a2, b1, c1, d0) = b1a2c1 + b1a2d0 + b1c1d0 + m1 + n1 + r58 + r59 → z′
16

h17(a2, b1, c2, d1) = b1a2c2 + b1a2d1 + b1c2d1 + a2 + n1 + r59 + r60 → z′
17

h18(a0, b2, c0, d2) = b2a0c0 + b2a0d2 + b2c0d2 + c0 + k0 + r60 + r61 → z′
18

h19(a0, b2, c1, d0) = b2a0c1 + b2a0d0 + b2c1d0 + d0 + k0 + l0 + r61 + r62 → z′
19

h20(a0, b2, c2, d1) = b2a0c2 + b2a0d1 + b2c2d1 + l0 + m0 + r62 + r63 → z′
20

h21(a1, b2, c0, d1) = b2a1c0 + b2a1d1 + b2c0d1 + m0 + n0 + r63 + r64 → z′
21

h22(a1, b2, c2, d0) = b2a1c2 + b2a1d0 + b2c2d0 + n0 + k1 + r64 + r65 → z′
22

⊕26
i=18 z′

i = z2
h23(a1, b2, c1, d2) = b2a1c1 + b2a1d2 + b2c1d2 + k1 + l1 + r65 + r66 → z′

23
h24(a2, b2, c1, d1) = b2a2c1 + b2a2d1 + b2c1d1 + a2d1 + l1 + m1 + r66 + r67 → z′

24
h25(a2, b2, c0, d0) = b2a2c0 + b2a2d0 + b2c0d0 + a2d0 + m1 + n1 + r67 + r68 → z′

25
h26(a2, b2, c2, d2) = b2a2c2 + b2a2d2 + b2c2d2 + a2d2 + a2 + d2 + n1 + r68 + r42 → z′

26

u0(a0, b0, c0, d0) = b0a0d0 + b0c0d0 + c0d0 + c0 + k0 + r69 + r70 → t′
0

u1(a0, b0, c1, d1) = b0a0d1 + b0c1d1 + c1 + b0a0 + b0d1 + c1d1 + k0 + l0 + r70 + r71 → t′
1

u2(a0, b0, c2, d2) = b0a0d2 + b0c2d2 + b0d2 + c2d2 + l0 + m0 + r71 + r72 → t′
2

u3(a1, b0, c1, d0) = b0a1d0 + b0c1d0 + b0a1 + c1d0 + b0d0 + m0 + n0 + r72 + r73 → t′
3

u4(a1, b0, c2, d1) = b0a1d1 + b0c2d1 + n0 + k1 + r73 + r74 → t′
4

⊕8
i=0 t′

i = t0
u5(a1, b0, c0, d2) = b0a1d2 + b0c0d2 + c0 + k1 + l1 + r74 + r75 → t′

5
u6(a2, b0, c0, d1) = b0a2d1 + b0c0d1 + c0d1 + l1 + m1 + r75 + r76 → t′

6
u7(a2, b0, c1, d2) = b0a2d2 + b0c1d2 + m1 + n1 + r76 + r77 → t′

7
u8(a2, b0, c2, d0) = b0a2d0 + b0c2d0 + b0a2 + c2d0 + c2d0 + n1 + r77 + r78 → t′

8
tu9(a0, b1, c2, d0) = b1a0d0 + b1c2d0 + b1a0 + b1d0 + a0 + c2d0 + k0 + r78 + r79 → t′

9
u10(a0, b1, c0, d1) = b1a0d1 + b1c0d1 + c0d1 + b1d1 + a0c0 + c0d1 + k0 + l0 + r79 + r80 → t′

10
u11(a0, b1, c1, d2) = b1a0d2 + b1c1d2 + b1d2 + a0c1 + l0 + m0 + r80 + r81 → t′

11
u12(a1, b1, c2, d2) = b1a1d2 + b1c2d2 + b1a1 + a1 + a1c2 + c2d2 + m0 + n0 + r81 + r82 → t′

12
u13(a1, b1, c0, d0) = b1a1d0 + b1c0d0 + n0 + k1 + r82 + r83 → t′

13
⊕17

i=9 t′
i = t1

u14(a1, b1, c1, d1) = b1a1d1 + b1c1d1 + c1d1 + c1d1 + k1 + l1 + r83 + r84 → t′
14

u15(a2, b1, c0, d2) = b1a2d2 + b1c0d2 + l1 + m1 + r84 + r85 → t′
15

u16(a2, b1, c1, d0) = b1a2d0 + b1c1d0 + m1 + n1 + r85 + r86 → t′
16

u17(a2, b1, c2, d1) = b1a2d1 + b1c2d1 + b1a2 + c2d1 + a2c2 + n1 + r86 + r87 → t′
17

u18(a0, b2, c0, d2) = b2a0d2 + b2c0d2 + b2a0 + c0d2 + b2d2 + a0 + a0c0 + k0 + r87 + r88 → t′
18

u19(a0, b2, c1, d0) = b2a0d0 + b2c1d0 + b2d0 + a0c1 + k0 + l0 + r88 + r89 → t′
19

u20(a0, b2, c2, d1) = b2a0d1 + b2c2d1 + b2d1 + l0 + m0 + r89 + r90 → t′
20

u21(a1, b2, c0, d1) = b2a1d1 + b2c0d1 + b2a1 + m0 + n0 + r90 + r91 → t′
21

u22(a1, b2, c2, d0) = b2a1d0 + b2c2d0 + +a1c2 + n0 + k1 + r91 + r92 → t′
22

⊕26
i=18 t′

i = t2
u23(a1, b2, c1, d2) = b2a1d2 + b2c1d2 + c1d2 + a1 + c1 + k1 + l1 + r92 + r93 → t′

23
u24(a2, b2, c1, d1) = b2a2d1 + b2c1d1 + l1 + m1 + r93 + r94 → t′

24
u25(a2, b2, c0, d0) = b2a2d0 + b2c0d0 + 1′b1 + m1 + n1 + r94 + r95 → t′

25
u26(a2, b2, c2, d2) = b2a2d2 + b2c2d2 + b2a2 + c2d2 + a2c2 + n1 + r95 + r69 → t′

26

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 141

B 3-share Skinny S-Box with 72-bit Fresh Masks

F (a, b, c, d) = (x, y, z, t) with lookup table c6901a2b385d4e7f

x = f(a, b, c, d) = b + ab + c + ac + abc + d + ad + bd + bcd

y = g(a, b, c, d) = a + ab + bc + d + bd + cd + bcd

z = h(a, b, c, d) = 1 + b + c + bc + d

t = u(a, b, c, d) = 1 + a + c + d + cd

We denote the uniform sharing of the function in black.
(k, l, m, n) are the input variables of the paired S-box, which are denoted in green.
Fresh masks are denoted in red.

f0(a0, b0, c0, d0) = b0a0c0 + b0c0d0 + b0a0 + c0a0 + a0d0 + c0 + d0 + k0 + r0 + r1 → x′
0

f1(a0, b0, c1, d1) = b0a0c1 + b0c1d1 + b0d1 + a0 + k0 + l0 + r1 + r2 → x′
1

f2(a0, b0, c2, d2) = b0a0c2 + b0c2d2 + b0d2 + b0 + l0 + m0 + r2 + r3 → x′
2

f3(a1, b0, c1, d0) = b0a1c1 + b0c1d0 + b0a1 + a1d0 + b0d0 + m0 + n0 + r3 + r4 → x′
3

f4(a1, b0, c2, d1) = b0a1c2 + b0c2d1 + n0 + k1 + r4 + r5 → x′
4

⊕8
i=0 x′

i = x0

f5(a1, b0, c0, d2) = b0a1c0 + b0c0d2 + c0a1 + k1 + l1 + r5 + r6 → x′
5

f6(a2, b0, c0, d1) = b0a2c0 + b0c0d1 + b0a2 + c0a2 + l1 + m1 + r6 + r7 → x′
6

f7(a2, b0, c1, d2) = b0a2c1 + b0c1d2 + m1 + n1 + r7 + r8 → x′
7

f8(a2, b0, c2, d0) = b0a2c2 + b0c2d0 + a2d0 + a2 + n1 + r8 + r9 → x′
8

f9(a0, b1, c2, d0) = b1a0c2 + b1c2d0 + b1a0 + b1d0 + b1 + k0 + r9 + r10 → x′
9

f10(a0, b1, c0, d1) = b1a0c0 + b1c0d1 + a0d1 + b1d1 + k0 + l0 + r10 + r11 → x′
10

f11(a0, b1, c1, d2) = b1a0c1 + b1c1d2 + c1a0 + b1d2 + l0 + m0 + r11 + r12 → x′
11

f12(a1, b1, c2, d2) = b1a1c2 + b1c2d2 + b1a1 + m0 + n0 + r12 + r13 → x′
12

f13(a1, b1, c0, d0) = b1a1c0 + b1c0d0 + n0 + k1 + r13 + r14 → x′
13

⊕17
i=9 x′

i = x1

f14(a1, b1, c1, d1) = b1a1c1 + b1c1d1 + c1a1 + a1d1 + c1 + d1 + k1 + l1 + r14 + r15 → x′
14

f15(a2, b1, c0, d2) = b1a2c0 + b1c0d2 + b1a2 + l1 + m1 + r15 + r16 → x′
15

f16(a2, b1, c1, d0) = b1a2c1 + b1c1d0 + c1a2 + m1 + n1 + r16 + r17 → x′
16

f17(a2, b1, c2, d1) = b1a2c2 + b1c2d1 + a2d1 + a2 + n1 + r17 + r18 → x′
17

f18(a0, b2, c0, d2) = b2a0c0 + b2c0d2 + b2a0 + a0d2 + b2d2 + b2 + a0 + k0 + r18 + r19 → x′
18

f19(a0, b2, c1, d0) = b2a0c1 + b2c1d0 + b2d0 + k0 + l0 + r19 + r20 → x′
19

f20(a0, b2, c2, d1) = b2a0c2 + b2c2d1 + c2a0 + b2d1 + l0 + m0 + r20 + r21 → x′
20

f21(a1, b2, c0, d1) = b2a1c0 + b2c0d1 + b2a1 + m0 + n0 + r21 + r22 → x′
21

f22(a1, b2, c2, d0) = b2a1c2 + b2c2d0 + c2a1 + n0 + k1 + r22 + r23 → x′
22

⊕26
i=18 x′

i = x2

f23(a1, b2, c1, d2) = b2a1c1 + b2c1d2 + a1d2 + k1 + l1 + r23 + r24 → x′
23

f24(a2, b2, c1, d1) = b2a2c1 + b2c1d1 + b2a2 + l1 + m1 + r24 + r25 → x′
24

f25(a2, b2, c0, d0) = b2a2c0 + b2c0d0 + m1 + n1 + r25 + r26 → x′
25

f26(a2, b2, c2, d2) = b2a2c2 + b2c2d2 + c2a2 + a2d2 + c2 + d2 + n1 + r26 + r0 → x′
26

h0(b0, c0, d0) = b0c0 + d0 + c0 + b0 + 1 + k0 + l0 + r27 + r28 → z′
0

h1(b0, c1) = b0c1 + l0 + m0 + r28 + r29 → z′
1

⊕2
i=0 z′

i = z0

h2(b0, c2) = b0c2 + m0 + k0 + r29 + r30 → z′
2

h3(b1, c0, d1) = b1c0 + d1 + b1 + k0 + l0 + r30 + r31 → z′
3

h4(b1, c1) = b1c1 + c1 + l0 + m0 + r31 + r32 → z′
4

⊕5
i=3 z′

i = z1

h5(b1, c2) = b1c2 + m0 + k0 + r32 + r33 → z′
5

h6(b2, c0, d2) = b2c0 + d2 + b2 + k0 + l0 + r33 + r34 → z′
6

h7(b2, c1) = b2c1 + l0 + m0 + r34 + r35 → z′
7

⊕8
i=6 z′

i = z2

h8(b2, c2) = b2c2 + c2 + m0 + k0 + r35 + r27 → z′
8

142 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

g0(a0, b0, c0, d0) = b0c0d0 + b0a0 + b0c0 + b0d0 + c0d0 + k0 + r36 + r37 → y′
0

g1(a0, b0, c1, d1) = b0c1d1 + b0c1 + b0d1 + a0 + k0 + l0 + r37 + r38 → y′
1

g2(a0, b0, c2, d2) = b0c2d2 + b0c2 + b0d2 + c2 + l0 + m0 + r38 + r39 → y′
2

g3(a1, b0, c1, d0) = b0c1d0 + b0a1 + c1d0 + m0 + n0 + r39 + r40 → y′
3

g4(a1, b0, c2, d1) = b0c2d1 + n0 + k1 + r40 + r41 → y′
4

⊕8
i=0 y′

i = y0

g5(a1, b0, c0, d2) = b0c0d2 + c0 + k1 + l1 + r41 + r42 → y′
5

g6(a2, b0, c0, d1) = b0c0d1 + b0a2 + l1 + m1 + r42 + r43 → y′
6

g7(a2, b0, c1, d2) = b0c1d2 + m1 + n1 + r43 + r44 → y′
7

g8(a2, b0, c2, d0) = b0c2d0 + c2d0 + d0 + n1 + r44 + r45 → y′
8

g9(a0, b1, c2, d0) = b1c2d0 + b1a0 + b1c2 + b1d0 + k0 + r45 + r46 → y′
9

g10(a0, b1, c0, d1) = b1c0d1 + b1c0 + b1d1 + c0d1 + d1 + a1 + k0 + l0 + r46 + r47 → y′
10

g11(a0, b1, c1, d2) = b1c1d2 + b1c1 + b1d2 + l0 + m0 + r47 + r48 → y′
11

g12(a1, b1, c2, d2) = b1c2d2 + b1a1 + m0 + n0 + r48 + r49 → y′
12

g13(a1, b1, c0, d0) = b1c0d0 + n0 + k1 + r49 + r50 → y′
13

⊕17
i=9 y′

i = y1

g14(a1, b1, c1, d1) = b1c1d1 + c1d1 + k1 + l1 + r50 + r51 → y′
14

g15(a2, b1, c0, d2) = b1c0d2 + b1a2 + l1 + m1 + r51 + r52 → y′
15

g16(a2, b1, c1, d0) = b1c1d0 + m1 + n1 + r52 + r53 → y′
16

g17(a2, b1, c2, d1) = b1c2d1 + c2d1 + c2 + n1 + r53 + r54 → y′
17

g18(a0, b2, c0, d2) = b2c0d2 + b2a0 + b2c0 + b2d2 + c0d2 + k0 + r54 + r55 → y′
18

g19(a0, b2, c1, d0) = b2c1d0 + b2c1 + b2d0 + k0 + l0 + r55 + r56 → y′
19

g20(a0, b2, c2, d1) = b2c2d1 + b2c2 + b2d1 + l0 + m0 + r56 + r57 → y′
20

g21(a1, b2, c0, d1) = b2c0d1 + b2a1 + m0 + n0 + r57 + r58 → y′
21

g22(a1, b2, c2, d0) = b2c2d0 + n0 + k1 + r58 + r59 → y′
22

⊕26
i=18 y′

i = y2

g23(a1, b2, c1, d2) = b2c1d2 + c1d2 + k1 + l1 + r59 + r60 → y′
23

g24(a2, b2, c1, d1) = b2c1d1 + b2a2 + l1 + m1 + r60 + r61 → y′
24

g25(a2, b2, c0, d0) = b2c0d0 + c0 + m1 + n1 + r61 + r62 → y′
25

g26(a2, b2, c2, d2) = b2c2d2 + c2d2 + d2 + a2 + n1 + r62 + r36 → y′
26

u0(a0, c0, d0) = c0d0 + d0 + c0 + a0 + 1 + k0 + l0 + r63 + r64 → t′
0

u1(c0, d1) = c0d1 + l0 + m0 + r64 + r65 → t′
1

⊕2
i=0 t′

i = t0

u2(c0, d2) = c0d2 + m0 + k0 + r65 + r66 → t′
2

u3(a1, c1, d0) = c1d0 + c1 + a1 + k0 + l0 + r66 + r67 → t′
3

u4(c1, d1) = c1d1 + d1 + l0 + m0 + r67 + r68 → t′
4

⊕5
i=3 t′

i = t1

u5(c1, d2) = c1d2 + m0 + k0 + r68 + r69 → t′
5

u6(a2, c2, d0) = c2d0 + c2 + a2 + k0 + l0 + r69 + r70 → t′
6

u7(c2, d1) = c2d1 + l0 + m0 + r70 + r71 → t′
7

⊕8
i=6 t′

i = t2

u8(c2, d2) = c2d2 + d2 + m0 + k0 + r71 + r63 → t′
8

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 143

C 3-share Prince S-Box/S-Box−1 with 108-bit Fresh Masks

S(a, b, c, d) = (x, y, z, t) with lookup table BF32AC916780E5D4

x = f(a, b, c, d) = 1 + ab + c + bc + abc + d + ad + cd

y = g(a, b, c, d) = 1 + ac + bc + abc + bd + bcd

z = h(a, b, c, d) = a + ab + d + ad + bd + abd + bcd

t = u(a, b, c, d) = 1 + b + bc + abc + d + abd + cd + acd

S−1(a, b, c, d) = (x, y, z, t) with lookup table B732FD89A6405EC1

x′′ = f ′′(a, b, c, d) = 1 + ab + bc + d + abd + cd + acd

y′′ = g′′(a, b, c, d) = 1 + ac + bc + abc + bd + cd

z′′ = h′′(a, b, c, d) = a + ab + c + ac + bc + abc + bd + abd

t′′ = u′′(a, b, c, d) = 1 + a + b + ab + ac + bc + abc + cd + acd + bcd

q = MUX(sel, fi(.), f ′′
i (.)) selects either result of function fi(.) or f ′′

i (.) based on the selctor signal sel.
We denote the uniform sharing of the functions in black.
(k, l, m, n) are the input variables of the paired S-box, which are denoted in green.
Fresh masks are denoted in red.

The output shares are generated as follow:

x0 = ⊕8
i=0q′

i, x1 = ⊕17
i=9q′

i, x2 = ⊕26
i=18q′

i

y0 = ⊕38
i=27q′

i, y1 = ⊕44
i=36q′

i, y2 = ⊕53
i=45q′

i

z0 = ⊕62
i=54q′

i, z1 = ⊕71
i=63q′

i, z2 = ⊕80
i=72q′

i

t0 = ⊕95
i=81q′

i, t1 = ⊕110
i=96q′

i, t2 = ⊕125
i=111q′

i

The coordinate functions are given in full in the next pages.
f0(a0, b0, c0, d0) = a0b0c0 + a0b0 + c0b0 + c0d0 + a0d0 + c0 + d0 + b0 + 1
f ′′

0 (a0, b0, c0, d0) = a0b0d0 + a0c0d0 + a0b0 + c0b0 + c0d0 + d0 + b0 + 1
q0 = MUX(sel, f0(.), f ′′

0 (.)) + k0 + r0 + r1 → q′
0

f1(a0, b0, c1, d1) = a0b0c1 + c1 + d1
f ′′

1 (a0, b0, c1, d1) = a0b0d1 + a0c1d1
q1 = MUX(sel, f1(.), f ′′

1 (.)) + k0 + l0 + r1 + r2 → q′
1

f2(a0, b0, c2, d2) = a0b0c2
f ′′

2 (a0, b0, c2, d2) = a0b0d2 + a0c2d2
q2 = MUX(sel, f2(.), f ′′

2 (.)) + l0 + m0 + r2 + r3 → q′
2

f3(a0, b1, c1, d0) = a0b1c1 + a0b1
f ′′

3 (a0, b1, c1, d0) = a0b1d0 + a0c1d0 + a0b1 + b1
q3 = MUX(sel, f3(.), f ′′

3 (.)) + m0 + n0 + r3 + r4 → q′
3

f4(a0, b1, c2, d1) = a0b1c2
f ′′

4 (a0, b1, c2, d1) = a0b1d1 + a0c2d1
q4 = MUX(sel, f4(.), f ′′

4 (.)) + n0 + k1 + r4 + r5 → q′
4

f5(a0, b1, c0, d2) = a0b1c0 + c0b1 + c0d2 + a0d2
f ′′

5 (a0, b1, c0, d2) = a0b1d2 + a0c0d2 + c0b1 + c0d2
q5 = MUX(sel, f5(.), f ′′

5 (.)) + k1 + l1 + r5 + r6 → q′
5

f6(a0, b2, c0, d1) = a0b2c0 + a0b2 + c0b2 + c0d1 + a0d1
f ′′

6 (a0, b2, c0, d1) = a0b2d1 + a0c0d1 + a0b2 + c0b2 + c0d1
q6 = MUX(sel, f6(.), f ′′

6 (.)) + l1 + m1 + r6 + r7 → q′
6

f7(a0, b2, c1, d2) = a0b2c1
f ′′

7 (a0, b2, c1, d2) = a0b2d2 + a0c1d2
q7 = MUX(sel, f7(.), f ′′

7 (.)) + m1 + n1 + r7 + r8 → q′
7

f8(a0, b2, c2, d0) = a0b2c2
f ′′

8 (a0, b2, c2, d0) = a0b2d0 + a0c2d0
q8 = MUX(sel, f8(.), f ′′

8 (.)) + n1 + r8 + r9 → q′
8

144 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

f9(a1, b0, c2, d0) = a1b0c2 + a1b0 + d0
f ′′

9 (a1, b0, c2, d0) = a1b0d0 + a1c2d0 + a1b0
q9 = MUX(sel, f9(.), f ′′

9 (.)) + k0 + r9 + r10 → q′
9

f10(a1, b0, c0, d1) = a1b0c0 + c0
f ′′

10(a1, b0, c0, d1) = a1b0d1 + a1c0d1 + d1
q10 = MUX(sel, f10(.), f ′′

10(.)) + k0 + l0 + r10 + r11 → q′
10

f11(a1, b0, c1, d2) = a1b0c1 + c1b0 + c1d2 + a1d2 + c1
f ′′

11(a1, b0, c1, d2) = a1b0d2 + a1c1d2 + c1b0 + c1d2
q11 = MUX(sel, f11(.), f ′′

11(.)) + l0 + m0 + r11 + r12 → q′
11

f12(a1, b1, c2, d2) = a1b1c2 + a1b1
f ′′

12(a1, b1, c2, d2) = a1b1d2 + a1c2d2 + a1b1 + b1
q12 = MUX(sel, f12(.), f ′′

12(.)) + m0 + n0 + r12 + r13 → q′
12

f13(a1, b1, c0, d0) = a1b1c0
f ′′

13(a1, b1, c0, d0) = a1b1d0 + a1c0d0
q13 = MUX(sel, f13(.), f ′′

13(.)) + n0 + k1 + r13 + r14 → q′
13

f14(a1, b1, c1, d1) = a1b1c1 + c1b1 + c1d1 + a1d1
f ′′

14(a1, b1, c1, d1) = a1b1d1 + a1c1d1 + c1b1 + c1d1
q14 = MUX(sel, f14(.), f ′′

14(.)) + k1 + l1 + r14 + r15 → q′
14

f15(a1, b2, c0, d2) = a1b2c0 + a1b2
f ′′

15(a1, b2, c0, d2) = a1b2d2 + a1c0d2 + a1b2
q15 = MUX(sel, f15(.), f ′′

15(.)) + l1 + m1 + r15 + r16 → q′
15

f16(a1, b2, c1, d0) = a1b2c1 + c1b2 + c1d0 + a1d0
f ′′

16(a1, b2, c1, d0) = a1b2d0 + a1c1d0 + c1b2 + c1d0
q16 = MUX(sel, f16(.), f ′′

16(.)) + m1 + n1 + r16 + r17 → q′
16

f17(a1, b2, c2, d1) = a1b2c2
f ′′

17(a1, b2, c2, d1) = a1b2d1 + a1c2d1 + b2
q17 = MUX(sel, f17(.), f ′′

17(.)) + n1 + r17 + r18 → q′
17

f18(a2, b0, c0, d2) = a2b0c0 + a2b0 + b0
f ′′

18(a2, b0, c0, d2) = a2b0d2 + a2c0d2 + a2b0 + d2 + b0
q18 = MUX(sel, f18(.), f ′′

18(.)) + k0 + r18 + r19 → q′
18

f19(a2, b0, c1, d0) = a2b0c1 + c1 + d0
f ′′

19(a2, b0, c1, d0) = a2b0d0 + a2c1d0
q19 = MUX(sel, f19(.), f ′′

19(.)) + k0 + l0 + r19 + r20 → q′
19

f20(a2, b0, c2, d1) = a2b0c2 + c2b0 + c2d1 + a2d1
f ′′

20(a2, b0, c2, d1) = a2b0d1 + a2c2d1 + c2b0 + c2d1
q20 = MUX(sel, f20(.), f ′′

20(.)) + l0 + m0 + r20 + r21 → q′
20

f21(a2, b1, c0, d1) = a2b1c0 + a2b1
f ′′

21(a2, b1, c0, d1) = a2b1d1 + a2c0d1 + a2b1
q21 = MUX(sel, f21(.), f ′′

21(.)) + m0 + n0 + r21 + r22 → q′
21

f22(a2, b1, c2, d0) = a2b1c2 + c2b1 + c2d0 + a2d0
f ′′

22(a2, b1, c2, d0) = a2b1d0 + a2c2d0 + c2b1 + c2d0
q22 = MUX(sel, f22(.), f ′′

22(.)) + n0 + k1 + r22 + r23 → q′
22

f23(a2, b1, c1, d2) = a2b1c1
f ′′

23(a2, b1, c1, d2) = a2b1d2 + a2c1d2
q23 = MUX(sel, f23(.), f ′′

23(.)) + k1 + l1 + r23 + r24 → q′
23

f24(a2, b2, c1, d1) = a2b2c1 + a2b2
f ′′

24(a2, b2, c1, d1) = a2b2d1 + a2c1d1 + a2b2
q24 = MUX(sel, f24(.), f ′′

24(.)) + l1 + m1 + r24 + r25 → q′
24

f25(a2, b2, c0, d0) = a2b2c0 + c0
f ′′

25(a2, b2, c0, d0) = a2b2d0 + a2c0d0
q25 = MUX(sel, f25(.), f ′′

25(.)) + m1 + n1 + r25 + r26 → q′
25

f26(a2, b2, c2, d2) = a2b2c2 + c2b2 + c2d2 + a2d2 + c2 + d2
f ′′

26(a2, b2, c2, d2) = a2b2d2 + a2c2d2 + c2b2 + c2d2 + b2
q26 = MUX(sel, f26(.), f ′′

26(.)) + n1 + r26 + r0 → q′
26

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 145

g0(a0, b0, c0, d0) = b0a0c0 + b0d0c0 + d0b0 + c0b0 + a0c0 + 1
g′′

0 (a0, b0, c0, d0) = b0a0c0 + c0b0 + a0c0 + d0b0 + d0 + d0c0 + 1
q27 = MUX(sel, g0(.), g′′

0 (.)) + k0 + r27 + r28 → q′
27

g1(a0, b0, c1, d1) = b0a0c1 + b0d1c1 + d1b0 + c1b0 + c1
g′′

1 (a0, b0, c1, d1) = b0a0c1 + c1b0 + a0c1 + d1b0 + d1
q28 = MUX(sel, g1(.), g′′

1 (.)) + k0 + l0 + r28 + r29 → q′
28

g2(a0, b0, c2, d2) = b0a0c2 + b0d2c2 + d2b0 + c2b0
g′′

2 (a0, b0, c2, d2) = b0a0c2 + c2b0 + a0c2 + d2b0
q29 = MUX(sel, g2(.), g′′

2 (.)) + l0 + m0 + r29 + r30 → q′
29

g3(a1, b0, c1, d0) = b0a1c1 + b0d0c1
g′′

3 (a1, b0, c1, d0) = b0a1c1 + d0c1
q30 = MUX(sel, g3(.), g′′

3 (.)) + m0 + n0 + r30 + r31 → q′
30

g4(a1, b0, c2, d1) = b0a1c2 + b0d1c2
g′′

4 (a1, b0, c2, d1) = b0a1c2
q31 = MUX(sel, g4(.), g′′

4 (.)) + n0 + k1 + r31 + r32 → q′
31

g5(a1, b0, c0, d2) = b0a1c0 + b0d2c0 + a1c0
g′′

5 (a1, b0, c0, d2) = b0a1c0
q32 = MUX(sel, g5(.), g′′

5 (.)) + k1 + l1 + r32 + r33 → q′
32

g6(a2, b0, c0, d1) = b0a2c0 + b0d1c0 + a2c0
g′′

6 (a2, b0, c0, d1) = b0a2c0
q33 = MUX(sel, g6(.), g′′

6 (.)) + l1 + m1 + r33 + r34 → q′
33

g7(a2, b0, c1, d2) = b0a2c1 + b0d2c1
g′′

7 (a2, b0, c1, d2) = b0a2c1
q34 = MUX(sel, g7(.), g′′

7 (.)) + m1 + n1 + r34 + r35 → q′
34

g8(a2, b0, c2, d0) = b0a2c2 + b0d0c2
g′′

8 (a2, b0, c2, d0) = b0a2c2 + d0c2
q35 = MUX(sel, g8(.), g′′

8 (.)) + n1 + r35 + r36 → q′
35

g9(a0, b1, c2, d0) = b1a0c2 + b1d0c2 + b1d0 + b1c2
g′′

9 (a0, b1, c2, d0) = b1a0c2 + b1c2 + b1d0
q36 = MUX(sel, g9(.), g′′

9 (.)) + k0 + r36 + r37 → q′
36

g10(a0, b1, c0, d1) = b1a0c0 + b1d1c0 + b1d1 + b1c0 + c0
g′′

10(a0, b1, c0, d1) = b1a0c0 + b1c0 + b1d1 + d1c0 + d1
q37 = MUX(sel, g10(.), g′′

10(.)) + k0 + l0 + r37 + r38 → q′
37

g11(a0, b1, c1, d2) = b1a0c1 + b1d2c1 + b1d2 + b1c1 + a0c1 + c1
g′′

11(a0, b1, c1, d2) = b1a0c1 + b1c1 + b1d2 + d2
q38 = MUX(sel, g11(.), g′′

11(.)) + l0 + m0 + r38 + r39 → q′
38

g12(a1, b1, c2, d2) = b1a1c2 + b1d2c2
g′′

12(a1, b1, c2, d2) = b1a1c2 + a1c2
q39 = MUX(sel, g12(.), g′′

12(.)) + m0 + n0 + r39 + r40 → q′
39

g13(a1, b1, c0, d0) = b1a1c0 + b1d0c0
g′′

13(a1, b1, c0, d0) = b1a1c0 + a1c0
q40 = MUX(sel, g13(.), g′′

13(.)) + n0 + k1 + r40 + r41 → q′
40

g14(a1, b1, c1, d1) = b1a1c1 + b1d1c1 + a1c1
g′′

14(a1, b1, c1, d1) = b1a1c1 + d1c1 + a1c1
q41 = MUX(sel, g14(.), g′′

14(.)) + k1 + l1 + r41 + r42 → q′
41

g15(a2, b1, c0, d2) = b1a2c0 + b1d2c0
g′′

15(a2, b1, c0, d2) = b1a2c0
q42 = MUX(sel, g15(.), g′′

15(.)) + l1 + m1 + r42 + r43 → q′
42

g16(a2, b1, c1, d0) = b1a2c1 + b1d0c1 + a2c1
g′′

16(a2, b1, c1, d0) = b1a2c1
q43 = MUX(sel, g16(.), g′′

16(.)) + m1 + n1 + r43 + r44 → q′
43

g17(a2, b1, c2, d1) = b1a2c2 + b1d1c2
g′′

17(a2, b1, c2, d1) = b1a2c2
q44 = MUX(sel, g17(.), g′′

17(.)) + n1 + r44 + r45 → q′
44

146 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

g18(a0, b2, c0, d2) = b2a0c0 + b2d2c0 + b2d2 + c0b2 + c0
g′′

18(a0, b2, c0, d2) = b2a0c0 + b2c0 + b2d2 + d2c0 + d2
q45 = MUX(sel, g18(.), g′′

18(.)) + k0 + r45 + r46 → q′
45

g19(a0, b2, c1, d0) = b2a0c1 + b2d0c1 + b2d0 + c1b2
g′′

19(a0, b2, c1, d0) = b2a0c1 + b2c1 + b2d0 + d0
q46 = MUX(sel, g19(.), g′′

19(.)) + k0 + l0 + r46 + r47 → q′
46

g20(a0, b2, c2, d1) = b2a0c2 + b2d1c2 + b2d1 + c2b2 + a0c2
g′′

20(a0, b2, c2, d1) = b2a0c2 + b2c2 + b2d1
q47 = MUX(sel, g20(.), g′′

20(.)) + l0 + m0 + r47 + r48 → q′
47

g21(a1, b2, c0, d1) = b2a1c0 + b2d1c0
g′′

21(a1, b2, c0, d1) = b2a1c0 + d2c0
q48 = MUX(sel, g21(.), g′′

21(.)) + m0 + n0 + r48 + r49 → q′
48

g22(a1, b2, c2, d0) = b2a1c2 + b2d0c2 + a1c2
g′′

22(a1, b2, c2, d0) = b2a1c2
q49 = MUX(sel, g22(.), g′′

22(.)) + n0 + k1 + r49 + r50 → q′
49

g23(a1, b2, c1, d2) = b2a1c1 + b2d2c1
g′′

23(a1, b2, c1, d2) = b2a1c1 + d2c1
q50 = MUX(sel, g23(.), g′′

23(.)) + k1 + l1 + r50 + r51 → q′
50

g24(a2, b2, c1, d1) = b2a2c1 + b2d1c1
g′′

24(a2, b2, c1, d1) = b2a2c1 + a2c1
q51 = MUX(sel, g24(.), g′′

24(.)) + l1 + m1 + r51 + r52 → q′
51

g25(a2, b2, c0, d0) = b2a2c0 + b2d0c0
g′′

25(a2, b2, c0, d0) = b2a2c0 + a2c0
q52 = MUX(sel, g25(.), g′′

25(.)) + m1 + n1 + r52 + r53 → q′
52

g26(a2, b2, c2, d2) = b2a2c2 + b2d2c2 + a2c2
g′′

26(a2, b2, c2, d2) = b2a2c2 + a2c2 + d2c2
q53 = MUX(sel, g26(.), g′′

26(.)) + n1 + r53 + r27 → q′
53

h0(a0, b0, c0, d0) = b0d0c0 + b0a0d0 + a0b0 + b0d0 + a0d0
h′′

0 (a0, b0, c0, d0) = b0a0c0 + b0a0d0 + a0c0 + a0b0 + b0c0
q54 = MUX(sel, h0(.), h′′

0 (.)) + k0 + r54 + r55 → q′
54

h1(a0, b0, c1, d1) = b0d1c1 + b0a0d1 + b0d1
h′′

1 (a0, b0, c1, d1) = b0a0c1 + b0a0d1 + a0c1 + b0c1 + b0d1
q55 = MUX(sel, h1(.), h′′

1 (.)) + k0 + l0 + r55 + r56 → q′
55

h2(a0, b0, c2, d2) = b0d2c2 + b0a0d2 + b0d2 + a0
h′′

2 (a0, b0, c2, d2) = b0a0c2 + b0a0d2 + a0c2 + b0c2 + b0d2 + a0
q56 = MUX(sel, h2(.), h′′

2 (.)) + l0 + m0 + r56 + r57 → q′
56

h3(a1, b0, c1, d0) = b0d0c1 + b0a1d0 + a1b0 + a1d0
h′′

3 (a1, b0, c1, d0) = b0a1c1 + b0a1d0 + a1b0
q57 = MUX(sel, h3(.), h′′

3 (.)) + m0 + n0 + r57 + r58 → q′
57

h4(a1, b0, c2, d1) = b0d1c2 + b0a1d1 + a1
h′′

4 (a1, b0, c2, d1) = b0a1c2 + b0a1d1
q58 = MUX(sel, h4(.), h′′

4 (.)) + n0 + k1 + r58 + r59 → q′
58

h5(a1, b0, c0, d2) = b0d2c0 + b0a1d2
h′′

5 (a1, b0, c0, d2) = b0a1c0 + b0a1d2 + c0
q59 = MUX(sel, h5(.), h′′

5 (.)) + k1 + l1 + r59 + r60 → q′
59

h6(a2, b0, c0, d1) = b0d1c0 + b0a2d1 + a2b0
h′′

6 (a2, b0, c0, d1) = b0a2c0 + b0a2d1 + a2b0
q60 = MUX(sel, h6(.), h′′

6 (.)) + l1 + m1 + r60 + r61 → q′
60

h7(a2, b0, c1, d2) = b0d2c1 + b0a2d2
h′′

7 (a2, b0, c1, d2) = b0a2c1 + b0a2d2
q61 = MUX(sel, h7(.), h′′

7 (.)) + m1 + n1 + r61 + r62 → q′
61

h8(a2, b0, c2, d0) = b0d0c2 + b0a2d0 + a2d0 + d0
h′′

8 (a2, b0, c2, d0) = b0a2c2 + b0a2d0 + b0d0
q62 = MUX(sel, h8(.), h′′

8 (.)) + n1 + r62 + r63 → q′
62

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 147

h9(a0, b1, c2, d0) = b1d0c2 + b1a0d0 + a0b1 + b1d0
h′′

9 (a0, b1, c2, d0) = b1a0c2 + b1a0d0 + a0b1 + b1c2 + b1d0
q63 = MUX(sel, h9(.), h′′

9 (.)) + k0 + r63 + r64 → q′
63

h10(a0, b1, c0, d1) = b1d1c0 + b1a0d1 + b1d1 + a0d1 + d1 + a0
h′′

10(a0, b1, c0, d1) = b1a0c0 + b1a0d1 + b1c0 + b1d1
q64 = MUX(sel, h10(.), h′′

10(.)) + k0 + l0 + r64 + r65 → q′
64

h11(a0, b1, c1, d2) = b1d2c1 + b1a0d2 + b1d2
h′′

11(a0, b1, c1, d2) = b1a0c1 + b1a0d2 + b1c1 + b1d2
q65 = MUX(sel, h11(.), h′′

11(.)) + l0 + m0 + r65 + r66 → q′
65

h12(a1, b1, c2, d2) = b1d2c2 + b1a1d2 + a1b1
h′′

12(a1, b1, c2, d2) = b1a1c2 + b1a1d2 + a1c0 + a1b1
q66 = MUX(sel, h12(.), h′′

12(.)) + m0 + n0 + r66 + r67 → q′
66

h13(a1, b1, c0, d0) = b1d0c0 + b1a1d0
h′′

13(a1, b1, c0, d0) = b1a1c0 + b1a1d0 + a1c1
q67 = MUX(sel, h13(.), h′′

13(.)) + n0 + k1 + r67 + r68 → q′
67

h14(a1, b1, c1, d1) = b1d1c1 + b1a1d1 + a1d1
h′′

14(a1, b1, c1, d1) = b1a1c1 + b1a1d1 + a1c2 + a1 + c1
q68 = MUX(sel, h14(.), h′′

14(.)) + k1 + l1 + r68 + r69 → q′
68

h15(a2, b1, c0, d2) = b1d2c0 + b1a2d2 + a2b1
h′′

15(a2, b1, c0, d2) = b1a2c0 + b1a2d2 + a2b1
q69 = MUX(sel, h15(.), h′′

15(.)) + l1 + m1 + r69 + r70 → q′
69

h16(a2, b1, c1, d0) = b1d0c1 + b1a2d0
h′′

16(a2, b1, c1, d0) = b1a2c1 + b1a2d0
q70 = MUX(sel, h16(.), h′′

16(.)) + m1 + n1 + r70 + r71 → q′
70

h17(a2, b1, c2, d1) = b1d1c2 + b1a2d1 + a2d1
h′′

17(a2, b1, c2, d1) = b1a2c2 + b1a2d1
q71 = MUX(sel, h17(.), h′′

17(.)) + n1 + r71 + r72 → q′
71

h18(a0, b2, c0, d2) = b2d2c0 + b2a0d2 + a0b2 + b2d2 + a0d2 + a0
h′′

18(a0, b2, c0, d2) = b2a0c0 + b2a0d2 + a0b2 + b2c0 + b2d2
q72 = MUX(sel, h18(.), h′′

18(.)) + k0 + r72 + r73 → q′
72

h19(a0, b2, c1, d0) = b2d0c1 + b2a0d0 + b2d0
h′′

19(a0, b2, c1, d0) = b2a0c1 + b2a0d0 + b2c1 + b2d0
q73 = MUX(sel, h19(.), h′′

19(.)) + k0 + l0 + r73 + r74 → q′
73

h20(a0, b2, c2, d1) = b2d1c2 + b2a0d1 + b2d1
h′′

20(a0, b2, c2, d1) = b2a0c2 + b2a0d1 + b2c2 + b2d1
q74 = MUX(sel, h20(.), h′′

20(.)) + l0 + m0 + r74 + r75 → q′
74

h21(a1, b2, c0, d1) = b2d1c0 + b2a1d1 + a1b2
h′′

21(a1, b2, c0, d1) = b2a1c0 + b2a1d1 + a1b2
q75 = MUX(sel, h21(.), h′′

21(.)) + m0 + n0 + r75 + r76 → q′
75

h22(a1, b2, c2, d0) = b2d0c2 + b2a1d0
h′′

22(a1, b2, c2, d0) = b2a1c2 + b2a1d0
q76 = MUX(sel, h22(.), h′′

22(.)) + n0 + k1 + r76 + r77 → q′
76

h23(a1, b2, c1, d2) = b2d2c1 + b2a1d2 + a1d2
h′′

23(a1, b2, c1, d2) = b2a1c1 + b2a1d2
q77 = MUX(sel, h23(.), h′′

23(.)) + k1 + l1 + r77 + r78 → q′
77

h24(a2, b2, c1, d1) = b2d1c1 + b2a2d1 + a2b2
h′′

24(a2, b2, c1, d1) = b2a2c1 + b2a2d1 + a2c0 + a2b2
q78 = MUX(sel, h24(.), h′′

24(.)) + l1 + m1 + r78 + r79 → q′
78

h25(a2, b2, c0, d0) = b2d0c0 + b2a2d0
h′′

25(a2, b2, c0, d0) = b2a2c0 + b2a2d0 + a2c1
q79 = MUX(sel, h25(.), h′′

25(.)) + m1 + n1 + r79 + r80 → q′
79

h26(a2, b2, c2, d2) = b2d2c2 + b2a2d2 + a2d2 + a2 + d2
h′′

26(a2, b2, c2, d2) = b2a2c2 + b2a2d2 + a2c2 + a2 + c2
q80 = MUX(sel, h26(.), h′′

26(.)) + n1 + r80 + r54 → q′
80

148 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions
u0(a0, b0, c0, d0) = a0c0b0 + a0c0d0 + a0b0d0 + c0b0 + c0d0 + b0
u′′

0 (a0, b0, c0, d0) = c0a0b0 + c0a0d0 + c0b0d0 + a0b0 + c0b0 + c0d0 + a0 + b0
q81 = MUX(sel, u81(.), u′′

81(.)) + k0 + r54 + r55 → q′
81

u1(a0, b1, c0, d1) = a0c0b1 + a0c0d1 + a0b1d1 + c0b1 + 1
u′′

1 (a0, b1, c0, d1) = c0a0b1 + c0a0d1 + c0b1d1 + a0b1 + c0b1 + c0d1 + b1
q82 = MUX(sel, u82(.), u′′

82(.)) + k0 + l0 + r55 + r56 → q′
82

u2(a0, b2, c0, d2) = a0c0b2 + a0c0d2 + a0b2d2 + c0b2
u′′

2 (a0, b2, c0, d2) = c0a0b2 + c0a0d2 + c0b2d2 + a0b2 + c0a0 + c0b2 + c0d2 + d2 + b2
q83 = MUX(sel, u83(.), u′′

83(.)) + l0 + m0 + r56 + r57 → q′
83

u3(a1, b1, c0, d0) = 0
u′′

3 (a1, b1, c0, d0) = c0a1b1 + c0a1d0 + c0b1d0 + c0a1 + a1 + d0
q84 = MUX(sel, u84(.), u′′

84(.)) + m0 + n0 + r57 + r58 → q′
84

u4(a1, b2, c0, d1) = 0
u′′

4 (a1, b2, c0, d1) = c0a1b2 + c0a1d1 + c0b2d1 + 1
q85 = MUX(sel, u85(.), u′′

85(.)) + n0 + k1 + r58 + r59 → q′
85

u5(a1, b0, c0, d2) = 0
u′′

5 (a1, b0, c0, d2) = c0a1b0 + c0a1d2 + c0b0d2
q86 = MUX(sel, u86(.), u′′

86(.)) + k1 + l1 + r59 + r60 → q′
86

u6(a2, b0, c0, d1) = 0
u′′

6 (a2, b0, c0, d1) = c0a2b0 + c0a2d1 + c0b0d1
q87 = MUX(sel, u87(.), u′′

87(.)) + l1 + m1 + r60 + r61 → q′
87

u7(a2, b1, c0, d2) = 0
u′′

7 (a2, b1, c0, d2) = c0a2b1 + c0a2d2 + c0b1d2
q88 = MUX(sel, u88(.), u′′

88(.)) + m1 + n1 + r61 + r62 → q′
88

u8(a2, b2, c0, d0) = 0
u′′

8 (a2, b2, c0, d0) = c0a2b2 + c0a2d0 + c0b2d0 + c0a2
q89 = MUX(sel, u89(.), u′′

89(.)) + n1 + r62 + r63 → q′
89

u9(a0, b1, c1, d0) = a0c1b1 + a0c1d0 + a0b1d0 + c1d0
u′′

9 (a0, b1, c1, d0) = 0
q90 = MUX(sel, u90(.), u′′

90(.)) + m0 + n0 + r57 + r58 → q′
90

u10(a0, b2, c1, d1) = a0c1b2 + a0c1d1 + a0b2d1
u′′

10(a0, b2, c1, d1) = 0
q91 = MUX(sel, u91(.), u′′

91(.)) + n0 + k1 + r58 + r59 → q′
91

u11(a0, b0, c1, d2) = a0c1b0 + a0c1d2 + a0b0d2
u′′

11(a0, b0, c1, d2) = 0
q92 = MUX(sel, u92(.), u′′

92(.)) + k1 + l1 + r59 + r60 → q′
92

u12(a0, b0, c2, d1) = a0c2b0 + a0c2d1 + a0b0d1
u′′

12(a0, b0, c2, d1) = 0
q93 = MUX(sel, u93(.), u′′

93(.)) + l1 + m1 + r60 + r61 → q′
93

u13(a0, b1, c2, d2) = a0c2b1 + a0c2d2 + a0b1d2
u′′

13(a0, b1, c2, d2) = 0
q94 = MUX(sel, u94(.), u′′

94(.)) + m1 + n1 + r61 + r62 → q′
94

u14(a0, b2, c2, d0) = a0c2b2 + a0c2d0 + a0b2d0 + c2d0
u′′

14(a0, b2, c2, d0) = 0
q95 = MUX(sel, u95(.), u′′

95(.)) + n1 + r62 + r63 → q′
95

u15(a0, b2, c1, d0) = 0
u′′

15(a0, b2, c1, d0) = c1a0b2 + c1a0d0 + c1b2d0 + c1d0
q96 = MUX(sel, u15(.), u′′

15(.)) + k0 + r63 + r64 → q′
96

u16(a0, b0, c1, d1) = 0
u′′

16(a0, b0, c1, d1) = c1a0b0 + c1a0d1 + c1b0d1 + c1d1
q97 = MUX(sel, u16(.), u′′

16(.)) + k0 + l0 + r64 + r65 → q′
97

u17(a0, b1, c1, d2) = 0
u′′

17(a0, b1, c1, d2) = c1a0b1 + c1a0d2 + c1b1d2 + c1a0 + c1d2 + a0 + d2
q98 = MUX(sel, u17(.), u′′

17(.)) + l0 + m0 + r65 + r66 → q′
98

u18(a1, b2, c1, d2) = a1c1b2 + a1c1d2 + a1b2d2 + c1b2
u′′

18(a1, b2, c1, d2) = c1a1b2 + c1a1d2 + c1b2d2 + a1b2 + c1a1 + c1b2
q99 = MUX(sel, u18(.), u′′

18(.)) + m0 + n0 + r66 + r67 → q′
99

u19(a1, b0, c1, d0) = a1c1b0 + a1c1d0 + a1b0d0 + c1b0
u′′

19(a1, b0, c1, d0) = c1a1b0 + c1a1d0 + c1b0d0 + a1b0 + c1b0
q100 = MUX(sel, u19(.), u′′

19(.)) + n0 + k1 + r67 + r68 → q′
100

u20(a1, b1, c1, d1) = a1c1b1 + a1c1d1 + a1b1d1 + c1b1 + c1d1 + b1 + d1
u′′

20(a1, b1, c1, d1) = c1a1b1 + c1a1d1 + c1b1d1 + a1b1 + c1b1 + b1 + b1
q101 = MUX(sel, u20(.), u′′

20(.)) + k1 + l1 + r68 + r69 → q′
101

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 149

u21(a2, b0, c1, d2) = 0
u′′

21(a2, b0, c1, d2) = c1a2b0 + c1a2d2 + c1b0d2
q102 = MUX(sel, u21(.), u′′

21(.)) + l1 + m1 + r69 + r70 → q′
102

u22(a2, b1, c1, d0) = 0
u′′

22(a2, b1, c1, d0) = c1a2b1 + c1a2d0 + c1b1d0
q103 = MUX(sel, u22(.), u′′

22(.)) + m1 + n1 + r70 + r71 → q′
103

u23(a2, b2, c1, d1) = 0
u′′

23(a2, b2, c1, d1) = c1a2b2 + c1a2d1 + c1b2d1 + c1a2
q104 = MUX(sel, u23(.), u′′

23(.)) + n1 + r71 + r72 → q′
104

u24(a1, b2, c0, d0) = a1c0b2 + a1c0d0 + a1b2d0
u′′

24(a1, b2, c0, d0) = 0
q105 = MUX(sel, u24(.), u′′

24(.)) + m0 + n0 + r66 + r67 → q′
105

u25(a1, b0, c0, d1) = a1c0b0 + a1c0d1 + a1b0d1 + c0d1
u′′

25(a1, b0, c0, d1) = 0
q106 = MUX(sel, u25(.), u′′

25(.)) + n0 + k1 + r67 + r68 → q′
106

u26(a1, b1, c0, d2) = a1c0b1 + a1c0d2 + a1b1d2
u′′

26(a1, b1, c0, d2) = 0
q107 = MUX(sel, u26(.), u′′

26(.)) + k1 + l1 + r68 + r69 → q′
107

u27(a1, b0, c2, d2) = a1c2b0 + a1c2d2 + a1b0d2
u′′

27(a1, b0, c2, d2) = 0
q108 = MUX(sel, u27(.), u′′

27(.)) + l1 + m1 + r69 + r70 → q′
108

u28(a1, b1, c2, d0) = a1c2b1 + a1c2d0 + a1b1d0
u′′

28(a1, b1, c2, d0) = 0
q109 = MUX(sel, u28(.), u′′

28(.)) + m1 + n1 + r70 + r71 → q′
109

u29(a1, b2, c2, d1) = a1c2b2 + a1c2d1 + a1b2d1 + c2d1
u′′

29(a1, b2, c2, d1) = 0
q110 = MUX(sel, u29(.), u′′

29(.)) + n1 + r71 + r72 → q′
110

u30(a0, b0, c2, d2) = 0
u′′

30(a0, b0, c2, d2) = c2a0b0 + c2a0d2 + c2b0d2 + c2d2
q111 = MUX(sel, u30(.), u′′

30(.)) + k0 + r72 + r73 → q′
111

u31(a0, b1, c2, d0) = 0
u′′

31(a0, b1, c2, d0) = c2a0b1 + c2a0d0 + c2b1d0 + c2d0 + a0 + d0
q112 = MUX(sel, u31(.), u′′

31(.)) + k0 + l0 + r73 + r74 → q′
112

u32(a0, b2, c2, d1) = 0
u′′

32(a0, b2, c2, d1) = c2a0b2 + c2a0d1 + c2b2d1 + c2a0 + c2d1
q113 = MUX(sel, u32(.), u′′

32(.)) + l0 + m0 + r74 + r75 → q′
113

u33(a1, b0, c2, d1) = 0
u′′

33(a1, b0, c2, d1) = c2a1b0 + c2a1d1 + c2b0d1 + c2a1
q114 = MUX(sel, u33(.), u′′

33(.)) + m0 + n0 + r75 + r76 → q′
114

u34(a1, b2, c2, d0) = 0
u′′

34(a1, b2, c2, d0) = c2a1b2 + c2a1d0 + c2b2d0
q115 = MUX(sel, u34(.), u′′

34(.)) + n0 + k1 + r76 + r77 → q′
115

u35(a1, b1, c2, d2) = 0
u′′

35(a1, b1, c2, d2) = c2a1b1 + c2a1d2 + c2b1d2
q116 = MUX(sel, u35(.), u′′

35(.)) + k1 + l1 + r77 + r78 → q′
116

u36(a2, b1, c2, d1) = a2c2b1 + a2c2d1 + a2b1d1 + c2b1
u′′

36(a2, b1, c2, d1) = c2a2b1 + c2a2d1 + c2b1d1 + a2b1 + c2b1
q117 = MUX(sel, u36(.), u′′

36(.)) + l1 + m1 + r78 + r79 → q′
117

u37(a2, b0, c2, d0) = a2c2b0 + a2c2d0 + a2b0d0 + c2b0
u′′

37(a2, b0, c2, d0) = c2a2b0 + c2a2d0 + c2b0d0 + a2b0 + c2b0
q118 = MUX(sel, u37(.), u′′

37(.)) + m1 + n1 + r79 + r80 → q′
118

u38(a2, b2, c2, d2) = a2c2b2 + a2c2d2 + a2b2d2 + c2b2 + c2d2 + b2 + d2
u′′

38(a2, b2, c2, d2) = c2a2b2 + c2a2d2 + c2b2d2 + a2b2 + c2a2 + c2b2 + a2
q119 = MUX(sel, u38(.), u′′

38(.)) + n1 + r80 + r54 → q′
119

u39(a2, b0, c1, d1) = a2c1b0 + a2c1d1 + a2b0d1
u′′

39(a2, b0, c1, d1) = 0
q120 = MUX(sel, u39(.), u′′

39(.)) + m0 + n0 + r75 + r76 → q′
120

u40(a2, b2, c1, d0) = a2c1b2 + a2c1d0 + a2b2d0
u′′

40(a2, b2, c1, d0) = 0
q121 = MUX(sel, u40(.), u′′

40(.)) + n0 + k1 + r76 + r77 → q′
121

u41(a2, b1, c1, d2) = a2c1b1 + a2c1d2 + a2b1d2 + c1d2
u′′

41(a2, b1, c1, d2) = 0
q122 = MUX(sel, u41(.), u′′

41(.)) + k1 + l1 + r77 + r78 → q′
122

u42(a2, b0, c0, d2) = a2c0b0 + a2c0d2 + a2b0d2 + c0d2
u′′

42(a2, b0, c0, d2) = 0
q123 = MUX(sel, u42(.), u′′

42(.)) + l1 + m1 + r78 + r79 → q′
123

u43(a2, b1, c0, d0) = a2c0b1 + a2c0d0 + a2b1d0 + d0
u′′

43(a2, b1, c0, d0) = 0
q124 = MUX(sel, u43(.), u′′

43(.)) + m1 + n1 + r79 + r80 → q′
124

u44(a2, b2, c0, d1) = a2c0b2 + a2c0d1 + a2b2d1
u′′

44(a2, b2, c0, d1) = 0
q125 = MUX(sel, u44(.), u′′

44(.)) + n1 + r80 + r54 → q′
125

150 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

D Result of Experimental Analyses on Our Midori and
SKINNY Implementations

0 2 4 6 8 10 12 14
Time [s]

P
ow

er

(a) A sample trace

0 2 4 6 8 10 12 14
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(b) 1st-order t-test

0 2 4 6 8 10 12 14
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(c) 2nd-order t-test

0 2 4 6 8 10 12 14
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(d) 3rd-order t-test

0 2 4 6 8 10 12 14
Time [s]

0

2

4

6

8

10

12

14

T
im

e
[

s]

1

2

3

4

t-
st

at
is

tic
s

(e) 2nd-order bivariate t-test (f) 3rd-order trivariate t-test

Figure 8: Experimental analysis of our masked Midori using 100 million traces.

A. Rezaei Shahmirzadi, S. Dhooghe, A. Moradi 151

0 4 8 12 16 20
Time [s]

P
ow

er

(a) A sample trace

0 4 8 12 16 20
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(b) 1st-order t-test

0 4 8 12 16 20
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(c) 2nd-order t-test

0 4 8 12 16 20
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(d) 3rd-order t-test

0 4 8 12 16 20
Time [s]

0

4

8

12

16

20

T
im

e
[

s]

1

2

3

4

t-
st

at
is

tic
s

(e) 2nd-order bivariate t-test (f) 3rd-order trivariate t-test

Figure 9: Experimental analysis of our masked Skinny using 100 million traces.

152 Low-Latency and Low-Randomness Second-Order Masked Cubic Functions

0 4 8 12 16 20
Time [s]

-50

0

50

t-
st

at
is

tic
s

Figure 10: Experimental analysis (1st-order t-test) of our masked Skinny while both
PRNG and initial sharing are off using 100 thousand traces, confirming the ability of our
setup to detect 1st-order leakages.

0 4 8 12 16 20
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(a) 1st-order t-test

0 4 8 12 16 20
Time [s]

-5

0

5
t-

st
at

is
tic

s

(b) 2nd-order t-test

Figure 11: Experimental analysis of our masked Skinny while only PRNG is off using
100 million traces, confirming the ability of our setup to detect 2nd-order leakages

	Introduction
	Our Contributions

	Preliminaries
	Notations
	The Glitch-Extended Probing Model
	Verification Tools
	Boolean Masking and Threshold Implementation
	Masking with d+1 Shares

	Masking Techniques
	Finding a Uniform Sharing
	Achieving First-Order Security
	Extension to Second-Order Security

	Case Studies
	Midori
	SKINNY
	PRINCE

	Experimental Analysis
	Discussions and Conclusions
	3-share Midori S-Box with 96-bit Fresh Masks
	3-share Skinny S-Box with 72-bit Fresh Masks
	3-share Prince S-Box/S-Box-1 with 108-bit Fresh Masks
	Result of Experimental Analyses on Our Midori and SKINNY Implementations

