
Isolated and Exhausted:
Attacking Operating Systems via Site Isolation in the Browser

Matthias Gierlings, Marcus Brinkmann, Jörg Schwenk
Ruhr University Bochum

Abstract
Site Isolation [12, 40] is a security architecture for browsers
to protect against side-channel and renderer exploits by sep-
arating content from different sites at the operating system
(OS) process level. By aligning web and OS security bound-
aries, Site Isolation promises to defend against these attack
classes systematically in a streamlined architecture. However,
Site Isolation is a large-scale architectural change that also
makes OS resources more accessible to web attackers, and
thus exposes web users to new risks at the OS level.

In this paper, we present the first systematic study of OS
resource exhaustion attacks based on Site Isolation, in the
web attacker model, in three steps: (1) first-level resources
directly accessible with Site Isolation; (2) second-level re-
sources whose direct use is protected by the browser sandbox;
(3) an advanced, real-world attack. For (1) we show how
to create a fork bomb, highlighting conceptual gaps in the
Site Isolation architecture. For (2) we show how to block all
UDP sockets in an OS, using a variety of advanced browser
features. For (3), we implement a fully working DNS Cache
Poisoning attack based on Site Isolation, building on (2) and
bypassing a major security feature of DNS. Our results show
that the interplay between modern browser features and older
OS features is increasingly problematic and needs further
research.

1 Introduction

Site Isolation [40] is a security architecture for browsers that
provides strong isolation for websites and thus mitigates risks
from JavaScript, in particular, remote code execution by sand-
box compromises [43] and microarchitectural side-channels
like Spectre [26]. These benefits are achieved by perform-
ing all rendering and script execution from different sites in
distinct processes, leveraging process security of the OS (Fig-
ure 1). Site Isolation is not without costs. The additional
processes required to implement Site Isolation obviously con-
sume system memory and CPU time. This overhead was

a.com/1

c.net b.org

a.com/2

b.org d.dm

b.orga.com/1c.net d.dm
Process Scheduler

a.com/2

Figure 1: Site Isolation optimizes how sites referenced within
web pages are mapped to OS processes (cf. Subsection 2.1).

minimized in Google Chrome through careful usage analysis
and complex optimizations [40].

Risks of Site Isolation. With Site Isolation, browsers now
share responsibility with the OS for the allocation of com-
puting and network resources. But in contrast to most local
applications, a browser can be remotely controlled by a web
attacker through the execution of malicious JavaScript code.
Thus a remote, off-path web attacker may interfere with the
local OS, using a browser with Site Isolation as intermediary.

Site Isolation was introduced to protect web applications
from attacks leveraging the underlying OS, and we think
that this goal has been achieved. Our work thus targets the
opposite direction to answer the following research question:

Does Site Isolation make operating systems more
vulnerable to web attacks?

Attacker Model. We use a weak attacker model, the web
attacker model [2, Sec. II B]. According to [2], web attackers
have no special network privileges – being off-path they can
not observe, modify or block traffic between other parties on
the Internet. However, web attackers can set up and control
their own server infrastructure and have “root access” [2] to
these servers. When choosing a provider that allows IP Spoof-
ing, attackers can use utility programs such as iptables to
configure spoofed IP addresses (cf. Subsection 6.1). Accord-
ing to [33], over a quarter of the ASes investigated allowed
IP spoofing on egress, and two-thirds on ingress. To start the

attack, the victim only needs to visit a web page hosted on
one of these servers.

In contrast to the (stronger) malware attacker, who can
directly access OS resources through native code, the web
attacker is only allowed to use standard browser APIs. So
more precisely, we ask the following research question:

Is a web attacker able to directly control OS re-
sources when Site Isolation is enabled, thereby by-
passing the current browser sandboxes?

This research excludes (trivial) attacks on the browser itself.
For example, we are interested in DoS attacks against the OS,
but not in DoS attacks against the browser process alone.

Bypassing Browser Sandboxes. Controlling OS resources
is fairly simple in the malware attacker model, but a web
attacker is restricted by the intentional security boundaries of
the browser sandbox. This sandbox limits access to resources
by consumption quotas (e.g. HTML Web Storage), asserting
implicit authorization (e.g. by a trusted event), or asking for
explicit consent (e.g. through popups). We show how to
overcome these obstacles for a web attacker in three steps:

1. First-Level Resources. We show how to use Site Isola-
tion to implement a fork bomb DoS attack in JavaScript that
circumvents browser watchdogs against simple DoS attacks
on CPU and memory. This is a direct consequence of Site Iso-
lation since extra processes are spawned for all sites included
in the browser window. However, we show how to optimize
this process by using IPv6 addresses as sites (Table 1, 1.).

2. Second-Level Resources. Second-level OS resources
are resources that can not be allocated directly through
JavaScript or web objects. In this work, we analyze UDP
network sockets. Single network sockets can be opened eas-
ily, e.g. by accessing a QUIC-enabled webserver, but through
techniques like multiplexing and timeouts, the browser sand-
box prevents the opening of extra sockets. Moreover, many
open sockets typically cause noisy network traffic and in-
crease the CPU load until the browser becomes unresponsive.
We use novel techniques exploiting WebRTC (Table 1, 2.–
5.) to circumvent these sandbox and performance restrictions.
Combined with the simplified method to spawn new processes,
this allows us to block all available UDP source ports on a
victim system.

3. Advanced Attack. We show how to use Site Isolation
and the attacks on first- and second-level resources to imple-
ment DEMONS, a Cache Poisoning attack against the OS
DNS resolver cache, in the web attacker model. We use the
fact that we have blocked all UDP ports, in combination with
the techniques from Table 1, 6.–8., to release a pair of UDP
ports and learn their port numbers, which must then be used
by the OS for DNS. Our off-path attacker is thus able to
circumvent UDP port randomization, a major DNS security
feature. We evaluate this attack twice: in a realistic Internet-

based setup with poor network quality, achieving a success
rate of 37%, and in a lab environment.

Known Attacks. Attacks on the OS in the web attacker
model are rare, as JavaScript is an interpreted language that
is strongly contained by the browser sandbox. The arguably
most severe attack is Rowhammer.js, which uses malicious
JavaScript to inject faults into neighboring system memory
cells at the hardware level, bypassing all OS and sandbox
memory access restrictions [17]. Another series of attacks
uses side-channels to leak private data from other processes
or the OS, such as memory deduplication [16], keystroke
interrupts [31], and memory caches [15, 38, 46]. These tech-
niques have in common that they do not attack the sandbox
mechanism, but instead target the machine hardware directly.

More common are attacks against the browser sandbox
itself, such as JIT spraying [14] or fuzzing [49]. After achiev-
ing native code execution within the sandbox process, the
attacker may escalate the attack to the OS in the malware at-
tacker model. One side-channel attack that leaks data from the
sandbox is an implementation of Spectre in JavaScript [44].

In 2008, Dan Kaminsky [24] showed that in the web at-
tacker model, DNS security can be broken by DNS Cache
Poisoning. UDP port randomization was implemented as
the only countermeasure against the Kaminski attack. Previ-
ous attacks defeating UDP port randomization relied on IP
fragmentation and timing side-channels [35, 45, 50]. These
attacks target intermediate devices like home routers or DNS
servers directly. Client-side DNS Cache Poisoning attacks
target end-user devices such as desktop computers and lap-
tops. They have been analyzed by Alharbi et al. [3], but only
in the stronger malware attacker model.

Main Insights. The main result of this paper is that with
novel browser features, the boundary between the browser
and the OS becomes weaker. Attacks that were previously
only known in the malware attacker model may now become
feasible in the web attacker model, allowing remote, off-path
web attackers to compromise the OS. Our research only re-
veals the tip of the iceberg and future work may show that the
mitigations introduced by browser vendors were insufficient.

1. Fork Bomb and UDP Port Blocking. Despite the opti-
mization efforts by Google, the site concept is still too fine-
grained and allows for effective DoS attacks, such as the fork
bomb. With Chrome and Edge, it was possible to use Site Iso-
lation and WebRTC to block all UDP ports in Windows with a
single visible browser window. The root cause is that each IP
(v4 or v6) address still counts as a separate site. The main dif-
ference between the tab process isolation introduced in 2009
and Site Isolation is that tab isolation limits OS resources
per visible window. At the same time, opening additional
windows through pop-ups was limited by introducing trusted
events. Thus, users were able to control the resource con-
sumption of web applications via the visible components of

Objective Malware Attacker Web Attacker Sec.

1. Create many processes Use standard OS API to fork processes. Creates sites using IPv6, bypassing SI process consolidation. new: 3.1
2. Allocate UDP Ports Use standard OS API to create sockets. Indirectly via WebRTC connections. new: 3.2
3. Keep Connections Alive Control socket lifetime over OS API. Use pending connections and data streams. new: 3.2
4. Avoid Network Traffic n/a Use local WebRTC connections. new: 3.2
5. Avoid DoS on CPU n/a Use stream demultiplexing and munging. new: 3.2
6. Find DNS Query Port Use standard OS API to observe ports. SDP offer analysis, and exhaust & single release. new: 5.1, A.1
7. Leak DNS Query Port Use standard OS API to leak over network. Use standard browser API to leak over network. well-known
8. Trigger DNS Request Use standard OS API to start DNS lookup. Indirectly via XMLHttpRequest. well-known

Table 1: DEMONS combines Site Isolation (SI) with eight additional browser techniques, six of these novel, to bypass the
sandbox. Together these techniques, which are accessible in the web attacker model, replace the local malware attacker in [3].

the browser. With Site Isolation, this is no longer the case.
We therefore propose, implement, and evaluate a concept to
limit resource consumption rooted in the visible components.

2. DNS Cache Poisoning. We show that a web attacker
can not only block all available UDP ports but also release
a single pair of known ports, defeating UDP port random-
ization. In response to our findings, Chrome and Edge now
limit the number of UDP ports that can be allocated globally
by the browser (i.e. across all windows and tabs) to 6000,
so that UDP port randomization remains effective at the OS
level. While this mitigates the DEMONS attack this may not
be sufficient in the future. When UDP port randomization
was introduced, the designers considered adding 16 bits of
randomness for the DNS resolver alone to reduce the suc-
cess probability of a web attacker to one in 232. However,
Windows only has 214 freely available UDP ports, shared
among all processes, resulting in a success probability of one
in 216+14 = 230. Our web attacker could control all but two of
these ports, with a success probability of one in 216+1 = 217.
Even with the global limit, we still could control slightly less
than 6000 ports, enhancing the success probability to one in
216 · (214− 6000) ≈ 229.34. This may still allow for future
attacks. As a lasting countermeasure, we think that a critical
re-evaluation of the OS socket API is necessary since the
current API is not designed to be used as an entropy source.

Contributions. We make the following contributions:
1. We describe how Site Isolation in browsers can be ex-

ploited for novel resource exhaustion attacks against the
client OS by a web attacker (Section 3). We provide
an evaluation of these attacks and show that they can
be used to implement DoS attacks against the operating
system or the web browser (Section 4).

2. To show that possible attacks go beyond DoS, we im-
plement DEMONS, a DNS Cache Poisoning attack that
stealthily poisons the DNS cache of the Windows oper-
ating system, in the web attacker model. (Section 5). We
evaluate DEMONS on the Internet and in a lab setting
(Section 6). We show that under real-world conditions,
DEMONS has a success rate of 37%. In the lab, we
compare DEMONS to a malware-based attack, which
has a slightly better success rate.

3. We identify conceptual weaknesses in the Site Isola-
tion architecture and discuss countermeasures against
resource exhaustion attacks based on Site Isolation, as
well as mitigations to the DEMONS attack. Specifi-
cally, we develop, implement, and evaluate an efficient
mitigation to resource exhaustion attacks (Section 7).

Responsible Disclosure. We reported our findings to
Google, Microsoft, and Mozilla. Google assigned CVE-2020-
6557 and now limits the number of allocated UDP sockets
across all renderer processes. Microsoft also adopted this
solution in the Chromium-based Edge browser. Google has
also awarded a bug bounty to the authors for their findings.

Artifacts. All artifacts are available as Open Source.1

2 Background

2.1 Site Isolation
A decade ago, all major browsers abandoned the single pro-
cess paradigm and used separate processes for the rendering
of different browser windows and tabs. Content from differ-
ent sites however was still rendered in the same process, e.g.
when a cross-origin iframe was embedded in the webpage.

Site Isolation [40] improves content isolation based on
process separation significantly because a new process is
created for every site. For example, if a web page contains
a cross-site iframe, at least two processes are used for ren-
dering. The site concept is more coarse-grained than the
better-known web origin concept: To extract the site from a
web origin, only the protocol and the main domain are consid-
ered, subdomains and port numbers are omitted. For example,
https://a.com:4444 and https://b.a.com refer to dif-
ferent web origins but the same site. Sites referenced by IPv4
or IPv6 addresses instead of a domain name are considered
distinct sites rendered in separate processes.

Since each process induces overhead in the OS, Site Isola-
tion in Chrome has been optimized to reduce the total number
of processes (Figure 1) with process consolidation. Suppose

1 https://git.noc.rub.de/gierlmds/isolated-and-exhausted

https://git.noc.rub.de/gierlmds/isolated-and-exhausted

two windows (or tabs) are open in the browser, where the doc-
ument is loaded from the same site a.com. For each of these
windows, a separate process is started. Additional processes
are started for each iframe loaded from a different site; how-
ever, if the same site is loaded into iframes in two different
windows (e.g., site b.org in Figure 1), only a single process
is running which renders both iframes.

Site Isolation has been implemented by Google Chrome,
which recently also became the base for Microsoft Edge.
Mozilla rolled out their own Site Isolation implementation
with Firefox 94 [13].

2.2 Exhaustible OS Resources

The OS manages the resources of a computing device, such
as CPU time, main memory, and network sockets. Benign
applications like browsers should cooperate with the OS to
achieve a fair sharing of resources with other benign applica-
tions. Malware, on the other hand, may refuse cooperation
and may try to use or block as many OS resources as possible.

Processes. OS processes are commonly identified by their
globally unique process ID (PID), which on many systems
is a 32-bit integer. However, process creation is resource
intensive, so RAM and CPU will be overloaded long before
the system runs out of PIDs. A common attack on process-
related resources is a fork bomb [5], which is a program
that recursively spawns an exponentially growing number of
clones. The attacker’s goal is to overload the system to the
point where it becomes unresponsive, e.g. due to memory
page swapping or task scheduling latencies.

Network Sockets. A TCP or UDP network socket is ab-
stractly defined as a 4-tuple (IPdest, Portdest, IPsrc, Portsrc)
which identifies a network connection between two endpoints
after a packet is received. However, in practice, the creation
of operating system sockets through the Berkeley socket API
(used in Windows, macOS, and Linux) is a multi-step pro-
cess where often some parts of the 4-tuple are left undefined
until a packet is fully transferred. As a consequence, the OS
makes some simplifying assumptions. In particular, a source
port number is reserved independently of the destination IP
and port number. If one application allocates a socket for a
specific local port number, no other application can allocate
another socket for that port using the Berkeley socket inter-
face. This can lead to port number exhaustion because only a
small subset of possible 4-tuples is available to applications.

We note that TCP and UDP port numbers do not share
the same namespace, nor do IPv4 and IPv6. In some cases,
applications use dual-stack allocations to register IPv4 and
IPv6 port numbers at the same time. We mainly consider
UDP in this work, because it is an attractive target for packet
injection, while TCP connections are already protected at the
OS level by sequence numbers with a random start value.

System Ports, User Ports, and Ephemeral Ports. There
are 65536 ports for each combination of TCP/UDP with

IPv4/IPv6. Port numbers are grouped into three distinct use
cases [7]. System ports (0–1023) are associated with well-
known internet services (e.g., 53 for DNS). User ports (1024–
49151) may be statically assigned for custom applications.
Ephemeral ports (49152–65535) are used by clients for a sin-
gle connection, such as a DNS query. Usually, the OS picks an
arbitrary unallocated number from the ephemeral port range.
Once a port number is bound to a socket, it uniquely identifies
the socket over its lifetime. Actual port ranges can deviate
from the above standards. For example, Linux typically uses
32768–60999 for ephemeral ports.

2.3 Domain Name System (DNS)

DNS is used for name resolution, a query-response protocol
to translate domain names to IP addresses. We assume that
the web browser uses the DNS resolver of the OS, which is
configured with the IP address IPNS of a default name server.

This is how a domain is resolved: 1. If the cache contains
the IP address of the domain, it is returned. 2. Else, the
resolver creates a UDP socket S = (IPNS, 53, IPsrc, Portsrc),
where 53 is the default port for DNS, IPsrc is the resolver’s
external IP address, and Portsrc is a random ephemeral port
chosen by the OS for this connection. 3. The resolver sends a
query to the name server over S, including a random 16-bit
transaction ID (TXID). 4. The name server receives the query,
and sends a response including the TXID. 5. The resolver
receives the DNS response and verifies its content and the
TXID. If the response is valid, it is cached up to its time-to-
live (TTL), and the result is returned to the browser. 6. If
the response is invalid, the resolver discards it. In Windows,
the procedure is repeated from the first step up to five times,
after which an error is returned. In Linux and macOS, the
procedure is repeated from step 5 until a valid response is
received or a timeout occurs.

The queried name server can either return the (authoritative
or cached) result directly, recursively query another name
server or indicate in the result that the client should iteratively
query another name server.

DNS Cache Poisoning. In 2008, Dan Kaminsky [24] dis-
covered a DNS Cache Poisoning off-path attack on name
servers performing a recursive lookup to an authoritative
name server by brute-forcing the 16-bit TXID of the request
and sending a spoofed response with a malicious IP address.
If the attacker can guess the correct TXID before the answer of
the authoritative name server arrives, the victim name server
caches the malicious entry, i.e., its cache is now poisoned.
The primary mitigation for the Kaminsky attack is source port
randomization (SPR) [6]. The goal is to increase the entropy
of DNS queries, making it harder for an off-path attacker to
successfully spoof a DNS response. Other countermeasures,
such as 0x20 encoding [48], exclusive DNS over TCP [10], or
DNS over HTTPS [20], are not as widespread due to compat-
ibility concerns. Recently, different techniques to circumvent

SPR have been proposed: IP defragmentation [35, 45, 50] and
blocking client OS source ports [3].

3 Resource Exhaustion Attacks Based on Site
Isolation

Typically, benign applications only spawn a fixed number of
processes to cooperate with the OS. Web browsers are an
exception: they create a new process for each window or tab
that is opened. In theory, this enables web browsers to allocate
arbitrarily many resources, in practice, however, there is a
limit on the number of windows and tabs that can be opened
automatically by a malicious web application, and a trusted
event (e.g. a mouse click) is needed to get the permission to
open more. In contrast, if a user manually opens dozens of
windows, the OS or browser should not prevent that, as the
expressed intent of the user action implies authorization to
allocate these resources. In a user study from 2009 [11], the
maximum number of simultaneously open tabs was 42.

With Site Isolation, this simple relationship between win-
dows or tabs on the one hand and OS processes on the other
hand no longer holds. Instead, a web browser supporting Site
Isolation may now open several processes per window or tab
without user interaction. Major efforts have been made [40]
to limit resource use even with Site Isolation, but in this paper,
we show that these efforts can still be circumvented.

Furthermore, before Site Isolation, the browser maintained
control over the allocation of secondary resources, such as
network sockets allocated through WebRTC connections, by
limiting their number per process. As the number of pro-
cesses was bound, so was the number of secondary resource
allocations. However, with the ability of the web attacker to
allocate an arbitrary number of processes, limits on secondary
resources can also be overcome by exploiting a combination
of novel Site Isolation features, edge case configurations, and
implementation bugs. In this section, we present the general
ideas behind our evaluation. A detailed description can then
be found in Section 4.

3.1 First Level Resource Exhaustion: Fork
Bomb

Create Processes by Creating Sites. With Site Isolation,
a web-attacker has the ability to create an arbitrary number of
processes, despite the optimizations and sandbox restrictions
in the browser. This can be used to perform a browser-based
DoS attack that works similar to a fork bomb, but does not
require shell access. The root cause for this issue is that an
attacker can easily create many sites (Subsection 2.1) through
the use of distinct domain names or IP addresses, and each
site is rendered in a different process.

Attack Outline. An attacker hosts a malicious web-
page which is assigned a large number N of IP addresses

IP1, ..., IPN . The webpage (recursively) contains a total of N
iframes with the source attribute set to http://[IPi], for
i = 1, ...,N. The webpage itself contains one iframe with
its source attribute pointing to IP1, and each loaded iframe
contains two other iframes pointing to different IP addresses.
With Site Isolation, loading this web page creates N processes
on the victim system, leading to a fork bomb in the OS. In
our implementation (Subsection 4.1), we use IPv6 addresses.

Novelty. While it is possible to manually assign domain
names or IP addresses to a webserver, we implemented a
much faster method using non-local binds. Non-local binds
are an advanced feature of the Linux kernel IP stack that
allows the server to listen to many IP addresses without as-
signing them to the network interface one by one.

3.2 Second Level Resource Exhaustion: UDP
Port Exhaustion

Blocking UDP Ports via Browser APIs. We know about
two browser APIs that can be used to block UDP ports from
web pages: QUIC and WebRTC. Initial experiments with
QUIC were inefficient due to the high computational cost
associated with a large number of parallel QUIC handshakes.
Thus, we focused on WebRTC.

WebRTC. WebRTC is an open web platform for real-time
communication in telephony and video conferencing applica-
tions. Essentially, it gives websites access to audio and video
peripherals (camera, microphone), and provides an API to
stream the data from these devices to other endpoints support-
ing WebRTC using UDP or TCP. Metadata is exchanged using
the Session Description Protocol (SDP [18], see Figure 8 for
an example). The format is highly flexible and allows both
ends to negotiate the number and type of media channels (au-
dio, video, or data), possible communication endpoints (e.g.,
P2P, or use of a TURN server), and multiplexing options. In
our attack implementation, we exclusively use data channels
because video and audio channels require explicit permission
from the user and consume more resources, increasing the
footprint of the attack unnecessarily.

Local WebRTC in Offer State. Commonly, SDPs are ex-
changed between endpoints through a signaling service. Our
attacks solely rely on local endpoints and thus do not involve
a signaling service. Because we never complete any WebRTC
handshake, we also do not need a peer object. Instead, we
only create local WebRTC objects, put them into the offer
state so that they allocate some UDP ports in preparation
for the handshake, and then let the objects sit idle, keeping
only a reference to prevent garbage collection. From our
experiments, this is the most lightweight way to use Web-
RTC objects for port allocation, although other configurations
might also work.

WebRTC Objects Allocate an Even Number of Ports.
During the initial examination of individual WebRTC objects
with a single data channel, denoted by WebRTC[p] in Table 2,

we found that a single (non-multiplexed) data channel in a
WebRTC object allocates not one but two UDP ports: one for
interactive connectivity establishment using the ICE/STUN
protocol and one for data transfer using SCTP-over-DTLS.
ICE/STUN can not be disabled in the browser because it is
also used to verify communication consent (see section 4.2
in [41]) and thus serves as a security mechanism. In conse-
quence, WebRTC objects can not allocate ports individually
but only in pairs.

WebRTC Data Channels and Multiplexing. Chrome al-
locates a thread for every WebRTC object, causing a high load
with many WebRTC objects. Thus, we looked for ways to
reduce the number of WebRTC object creations for the same
number of allocated UDP ports.

Our measurement results in Table 2 document the effect of
adding multiple data channels to the same WebRTC object,
denoted by WebRTC[u]. Simply adding data channels did
not lead to more port allocations, because by default all data
channels are multiplexed over the same connection.

However, multiplexing can be disabled for WebRTC. A fea-
ture of the WebRTC programming interface allows JavaScript
to edit (or munge) the SDP generated by the browser locally
before offering it to the receiving end. Based on this insight
we made two modifications: First, we disabled multiplex-
ing by removing the BUNDLE=0 option [21] from the SDP.
Second, we added copies of the data channel with their own
unique identifiers mid (see Figure 8). We denote the resulting
WebRTC objects with WebRTC[m] in Table 2.

Attack outline. The attacker allocates many first level Web-
RTC objects until an error message indicates that the per-
process limit has been reached. Depending on the SDP, each
WebRTC object causes the allocation of two or more UDP
port numbers at the second level. Using Site Isolation, the
attacker can then scale up the attack by repeating it in multiple
processes, leading to resource exhaustion of the ephemeral
UDP port table in the OS.

Novelty. We describe new methods to stealthily block many
UDP ports via browser APIs. Our technique involves the
(mis-)use of WebRTC, using data streams to avoid detection,
pending connections to keep the ports blocked, and loopback
connections to avoid network traffic. Disabling multiplexing
through munging reduces load on the victim system while
simultaneously increasing the attack speed.

4 Evaluation of Resource Exhaustion Attacks

We evaluated the effect of Site Isolation on first and second-
level resource exhaustion attacks against Windows and Linux.
For Windows 10 (1909 Build 18363.815), we used the produc-
tion version of two popular web browsers, Google Chrome
(83.0.4103.106) and Microsoft Edge (83.0.478.45, based on
Chromium), as well as the development version of Firefox
(Nightly 86.01a) that implements an experimental prototype
for Site Isolation called Project Fission [12]. For Linux

(Kubuntu 18.04.5 LTS), we used Chromium (83.0.4103.106),
which is the Open Source version of Chrome, and Firefox
(Nightly 86.01a). Edge is not available for Linux, so we had
to exclude it from that platform. An overview of the results
can be found in Table 2. Yellow cells indicate settings where
intentional browser limits could be bypassed. Red cells with
strong borders indicate successful attacks (either fork bomb
or UDP port exhaustion).

4.1 Fork Bomb Evaluation
We measured the number of processes created while the
browser attempts to render the iframe tree until the browser
crashes, the OS becomes unresponsive, or no new processes
are created. Both Windows and Linux can use disk space as
virtual memory, which may change the number of processes
that can be created in a system. To evaluate this, we repeated
the measurement with “swap off” and “swap on”. Windows
dynamically calculates the swap size based on the disk size,
so we included two different disk configurations. On the
other hand, Kubuntu Linux uses a fixed 1 GB swap partition
by default. For every combination of (browser, OS, swap
configuration), the measurement was repeated five times, and
Table 2 shows the median number of created processes.

Without Site Isolation, only a small number of processes
were created, and we could not overload the browser or OS
for any of the tested browsers on Windows or Linux.

With Site Isolation enabled, we could reliably crash the
browser (�) or even – in more than half of the cases – make
the operating system unusable (F) (see Appendix C).

4.2 UDP Port Exhaustion Evaluation
Chrome and Edge without Site Isolation. The measured
results for Chrome were identical on Windows and Linux. Ev-
ery renderer process allows the creation of at most 500 Web-
RTC objects at the same time. With un-munged WebRTC[p]

or WebRTC[u] objects, we can allocate two UDP ports per
WebRTC object, of at most 1000 UDP ports per renderer pro-
cess (window or tab). Using a munged WebRTC[m] object,
we bypass this limit and allocate up to 3000 UDP ports per
renderer process.

Chrome and Edge with Site Isolation. Since we were
able to allocate 3000 ports per process, we expected that
this number can be multiplied by the number of site-based
processes. On Windows, this strategy succeeds in exhausting
the UDP ephemeral port range at the OS level completely (at
most one open port due to allocation in pairs), using any of
the WebRTC object variants (). On Linux, we also could
exceed the browser allocation limit for UDP ports using any
of the WebRTC variants, and allocate about 8000 UDP ports
() instead of 3000 (). However, at that point the browser
entered a failure state, where no more ports could be allocated
until the browser was restarted.

O
S

Browser Chrome3/Chromium4 Edge5 Firefox6

Sites Single Multiple Single Multiple Single Multiple
Site Isolation - off on - off on - off on

W
in

do
w

s2 Processes
swap large[a] 8 5 837 �F 7 5 822 F 10 7 876 �F

swap small[b] 8 5 522 �F 7 5 514 �F 10 7 457 �

swap off 8 5 275 �F 7 5 267 � 10 7 200 �

So
ck

et
s WebRTC[p]

WebRTC[u]

WebRTC[m] - - -

L
in

ux
1

Processes
swap on[c] 12 10 435 �F - - - 9 6 233 �

swap off 12 10 446 F - - - 9 6 271 �

So
ck

et
s WebRTC[p] - - -

WebRTC[u] - - -
WebRTC[m] - - - - - -

Allocation over intentional browser limits. Exploitable in a fork bomb or DEMONS attack.
� The browser crashes. F The operating system becomes unusable.
Ports blocked: ≤ 10% ≤ 25% ≤ 50% ≈ 100% (at most one open port due to allocation in pairs)
WebRTC objects: [p] with a single data channel, [u] with multiple data channels, [m] with munging.
OS versions: 1Windows 10 (1909 Build 18363.815), 2Kubuntu Linux 18.04.5 LTS (Kernel 5.4.0-62)
Swap configuration: [a]automatically managed (240 GB disk), [b]automatically managed (64 GB disk), [c] 1 GB swap partition.
Browser versions: 3Chrome 83.0.4103.106, 4Chromium 83.0.4103.0, 5Edge 83.0.478.45, 6Firefox Nightly 86.01a
Hardware configuration: Dell Latitude 5280, Intel Core i5 7200U, 8 GiB RAM, 240 GiB M.2 SATA SSD

Table 2: Site Isolation resource allocations in browsers and their adverse consequences. The columns show different browsers,
attack variants (single vs. multiple sites), and Site Isolation configurations (off/on). The rows describe the OS, resource type, and
variant. Table cells for processes show the maximum number of processes we could allocate, and a symbol indicating if crashes
of the browser and/or OS were observed (cf. Appendix C for details). Table cells for sockets describe the percentage of the UDP
sockets that could be allocated. For example, in Windows with a small swap space configuration, we observed that Firefox with
Site Isolation visiting the multi-site attack allocated 457 processes, and then crashed. As another example, in Windows with
Chrome, WebRTC[m] could be used to bypass browser limits for socket allocation even with a single-site attack, but Site Isolation
and a multi-site attack are required to allocate enough sockets for a DEMONS attack.

Firefox. In contrast to Chrome and Edge, Firefox validates
the munged SDP and rejects our two modifications with an
error message. This means we had to exclude WebRTC[m]

objects from our evaluation for Firefox.
As for the total number of WebRTC and UDP port alloca-

tions, Firefox globally limits the total number of allocated
UDP ports to 1000 across all browser processes, regardless
of Site Isolation. Thus with Firefox, UDP ports in the OS can
not be exhausted ().

5 Advanced Attack: DNS-Poisoning by Ex-
haustive Misappropriation of Network
Sockets (DEMONS)

DEMONS is a novel Cache Poisoning attack against the
DNS resolver of the client OS, in the web attacker model.
DEMONS disables UDP port randomization by blocking all
client-side UDP ports except two, and by informing the poi-
soner about these open ports (see Figure 2). Disabling UDP
port randomization was introduced by Alharbi et al. [3] in an
unprivileged malware attacker model. Table 1 summarizes
the difference between their work and ours.

DEMONS consists of two phases. In the setup phase,

source port randomization is disabled through second-level
resource exhaustion (3.2, 4.2). During the poisoning phase,
malicious entries are injected into the DNS resolver cache
of the victim’s client OS. Only the first phase is novel, the
second phase is similar to other DNS Cache Poisoning attacks,
such as [3, 24, 35]. We only evaluate Windows 10 as a client
OS in this work, and refer to [3] for how to treat differences
in Linux and macOS.

Architecture. The infrastructure required by the attacker
consists of the following components (see Figure 3):

1. Web Server: The web server hosts the malicious web
page that will be delivered to the victim’s browser.

2. Poisoner: A system that, upon receiving a signal from
the attacker’s web application, sends a large number of
spoofed DNS responses with randomly chosen TXIDs
to the victim. Optionally, multiple poisoners can run
simultaneously.

3. Malicious Server: The system whose IP address is in-
serted into the victim’s DNS cache under the target do-
main. After a successful attack, the malicious server can
impersonate the benign target server to the victim.

Client OS

ResolverBrowser
call

return

Cache

Default NS

Resolver

Cache

Query(txid, p0)

Response(txid, p0)

Response(txidn, p0)
...Response(txid1, p0)

DEMONSDeliver attack website
Report unused UDP port p0, trigger DNS Query

Figure 2: Resolution of www.example.com and the off-path
DEMONS attacker sending responses to the victim.

Victim

Browser
216–1 WebRTC sockets

OS DNS-Resolver

DEMONS

DNS query for
“bank.com”

DNSResponse1

http://evil.org

DNSResponse2

DNSResponsen

...

Poisoner
DNSResponsei

(IPM, pQRY, idTX, bank.com)

WebSocket

XMLHttpRequest

Cache entry
for “bank.com” after
successful attack

Webserver
(www.evil.org)

Malicious Server
IPM = 2008::db8:1

pQRY

Figure 3: Architecture of the DEMONS attacker.

Limitations. DEMONS requires the attacker to imperson-
ate a benign default name server by spoofing the source IP
address in forged DNS responses. This is easy for an at-
tacker to achieve because many providers do not filter IP
spoofing [33]. However, private IP addresses are not internet-
routable, therefore the position of the attacker’s poisoner
relative to the victim’s default name server determines the
feasibility of DEMONS. We distinguish three cases:

1. The attacker’s poisoner and the victim’s name server are
located in the same local network.

2. The attacker’s poisoner and the victim’s name server are
not located in the same local network.

(a) The victim’s name server has a public IP address.
(b) The victim’s name server has a private IP address.

IP spoofing is feasible in cases 1 and 2(a). Case 1 is a typical
public network scenario; the attacker and victim both use
the same public network (e.g. in cafes, airports, libraries,
schools, etc.). Case 2(a) occurs in large business and cloud
scenarios or in cases where home users use a public name
server. Case 2(b) is the default for most home users connected
to the internet via a home router. Home routers typically run
a local name server which is advertised to all attached devices
via DHCP. If users choose to change this default behavior,
e.g., to defend against [50], or to bypass provider DNS-level
filtering, they transition to case 2(a) and become vulnerable
to DEMONS.

Impact. DEMONS allows for the attacker to gain control
over the network communication of any process in the OS that
relies on DNS security. While most web applications today
rely on TLS for security, this is not true for all applications in
general. For example, by rerouting the Network Time Proto-
col (NTP [36]), the attacker can get control over the system
time, potentially influencing certificate validation or license
management. Other examples are email protocols such as
SMTP [25], IMAP [9], and POP3 [47], as well as the file
transfer protocol FTP [39], used for anything from firmware
updates to transferring sensitive business documents. Al-
though these protocols can be protected by TLS, they are often
used completely unsecured. Also, some software repositories
use HTTP rather than HTTPS for automatic download [28].
In all these cases, client-side DNS Cache Poisoning can give
the attacker access to a wide range of attacks on data privacy
and system integrity.

5.1 Setup Phase

Source port randomization in DNS depends on free ephemeral
UDP ports. With an increasing number of allocated UDP
ports, this pool shrinks and eventually runs empty, effectively
reducing the randomness in DNS queries back to the 16 bits
provided by the TXID. However, at least one UDP port
must remain unallocated, or no DNS query can be sent and
poisoning is not possible. So, the goal of the web attacker
during the setup phase is to force the browser to allocate all
but one or a small number of known UDP ephemeral ports.
This requires two steps:

1. Exhaustion: The attacker allocates (almost) all available
ports by creating a sufficient number of port-allocating
browser objects, e.g. WebRTC connections. This pro-
cess is finished when error messages indicate resource
exhaustion, or when so many objects were created that
they would surely consume at least the maximum num-
ber of ephemeral ports available in the OS, in the event
that no error messages are seen (silent failure).

2. Single release: The attacker destroys a single object,
thereby releasing one (or a small number) of ports back
into the OS pool. The attacker must be able to determine
the port numbers that were associated with the object,
either directly with JavaScript, or, in the case of a remote
connection, by observing the destruction at the remote
end controlled by the attacker.

At this point, the OS has one or few free UDP source
ports available, and the attacker knows their numbers. In case
the port numbers were read out by the attacker script in the
victim’s browser, they can now be leaked to the poisoner in
preparation of the poisoning phase, e.g. through a WebSocket
or an HTTP request to the attacker’s webserver. If the port
numbers were observed at the remote end of a connection,
the observing service has to leak them to the poisoner instead.
See Subsection A.1 and Subsection A.2 for details about the

setup phase in our implementation of the DEMONS attack.
We will now describe in detail how the OS resource exhaus-

tion attacks based on Site Isolation can be used to implement
an efficient setup phase for the DEMONS attack. The attack
starts with a victim’s web browser loading the attacker’s web-
site and executing the included malicious JavaScript code (see
Figure 4). This script performs two tasks:

1. Establish a WebSocket for bi-directional communication
with the poisoner. This is used to leak the possible DNS
query ports at the end of the setup phase.

2. Allocate almost all ephemeral UDP ports by the “ex-
haustion” and “single release” technique, using a large
number of WebRTC objects (cf. Subsection 3.2).

Reserving UDP Ports for Later Release. To follow the
“exhaust” and “single release” approach of the setup phase,
the attacker first creates a local WebRTC object RTC0 with a
single data channel. As explained in Subsection 3.2, this will
allocate two UDP ports (STUN0,DTLS0) and reserve them
for later release. Note that in Windows almost certainly these
port numbers are allocated consecutively, so we can assume
that STUN0 = DTLS0−1.

 attack.js
https://evil.com

ifrm
1
= addIframe([IPAddr

1
]:[Port

1
])

attack.js

ifrm
2
... ifrm

m-1

Poisoner Attacker
Webserver

Victim

ifr
m

1

attack.js

ifr
m

m

p
QRY

= con(m,n).port()
con(m,n).close()

WebSocket.send(p
QRY

)

...

con(1,i) = UDP.connect(
localhost)

i =
 0

...
n

...

con(m,i) = UDP.connect(
localhost)

i =
 0

...
n

Figure 4: The Setup Phase blocks open ports on the victim’s
system.

Exhausting All Ephemeral UDP Source Ports. Combin-
ing munged WebRTC objects and Site Isolation, the attacker
can allocate enough UDP ports to exhaust the entire UDP
ephemeral port pool of the OS. Under Windows 10, six sites,
each creating one WebRTC object with up to 1500 data chan-
nels, are sufficient to achieve port exhaustion. The setup
phase takes a while to complete, which allows for a race
condition where some UDP ports were allocated before and
released during the setup phase by some unrelated process.
To safeguard against this, we finish the exhaustion step by
quickly allocating a small number of simple WebRTC objects
RTCn, RTCn-1, RTCn-2, . . ., each consuming up to two ports.

Releasing Two UDP Source Ports. The attacker must now
release at least one UDP port back into the OS pool. Other-

wise, the DNS resolver embedded in the OS would not be able
to send any more DNS queries, and the attack would result in
DoS instead of a successful DNS Cache Poisoning. This is
why the attacker created the RTC0 object before starting the
port exhaustion process. The attacker now determines DTLS0
from RTC0 (cf. Subsection A.1 in the appendix) and leaks
the port number to the poisoner via the WebSocket created in
the setup phase. Finally, the attacker closes RTC0, releasing
both STUN0 and DTLS0 back into the OS pool.

The Case of an Odd Number of Free Ports. If the OS has
an odd number of free UDP ephemeral ports at the beginning
of the setup phase, the exhaustion phase will be incomplete
because only an even number of ports can be allocated by the
attacker with WebRTC objects. Thus, one more port LAST
will be left unallocated in addition to STUN0 and DTLS0. We
found experimentally that most of the time this is the port
just before STUN0, likely an artifact of the mostly sequential
UDP port allocation strategy in Windows. Usually, the attack
starts at a point in time where the port just before STUN0 is
unallocated, which is LAST := STUN0− 1. Thus, the poi-
soner has to consider the three ports LAST, STUN0, DTLS0
for potential use by the DNS resolver.

Finding the DNS Query Port. Under ideal conditions,
there would only be one free UDP ephemeral port usable
by the OS resolver, known to the attacker. However, due to
the use of WebRTC objects, we are left with either two or
three possible source ports after the setup phase, depending
on the number of free ports (even or odd) before the attack.
To maximize our success rate, we send each spoofed response
in the poisoning phase a total of three times, once to DTLS0,
STUN0 := DTLS0− 1 and LAST := DTLS0− 2 each. Be-
cause packets sent to the wrong source port are silently dis-
carded by the OS, the only impact of this change is that we
need three times the bandwidth to perform the attack than in
the case of a single free port.

5.2 Poisoning Phase

The poisoner receives the leaked DNS query port from the
malicious JavaScript code over the WebSocket, and waits for
the signal that the JavaScript code is about to trigger a DNS
query for the target domain by the DNS resolver embedded
into the victim’s OS. The poisoner then proceeds to the
poisoning phase (see Figure 5), which is similar to that of
other DNS Cache Poisoning attacks [3,24,35]. For clarity and
completeness, we include here a description of the poisoning
phase as implemented and evaluated in our attack prototype.

1. Burst of Spoofed Responses: On activation, the Poi-
soner sends a burst of spoofed DNS responses. Every such
response within a burst has a fresh, randomly chosen TXID
and resolves the chosen target domain to the IP address of
the malicious server. It is important to note that the first
spoofed DNS responses arrive early, i.e., before the matching
DNS query is generated. These will be considered unsolicited

and dropped by the victim’s DNS resolver. This maximizes
the chance that the malicious response arrives first and the
authentic response is never processed by the victim.

2. Triggering a DNS Request: Once a stream of spoofed
responses is established, the attacker forces the victim to
issue a query matching the target domain in the query section
of the spoofed responses that are already in transit. The
JavaScript that is still running in the victim’s browser as part
of the malicious website generates an XMLHttpRequest to a
resource hosted on the chosen target domain, e.g., bank.com.
The sole purpose of this request is to trigger a DNS query to
the target domain, which the browser must resolve before the
XMLHttpRequest can be sent.

From the moment this lookup is initiated, all spoofed re-
sponses that are in transit towards the victim become poten-
tially valid because now there exists a query matching the
target domain in the query section of the spoofed DNS re-
sponses. The only remaining property that can prevent the
victim from accepting a potentially valid response is a mis-
matching TXID.

3. DNS Query Retransmissions: At this point, it is impor-
tant to understand how the victim system deals with TXID
mismatches because the attacker can not expect to guess the
correct TXID right away. In accordance with [3], we observed
during our experiment that incoming spoofed responses with
mismatching TXIDs trigger an immediate DNS query retrans-
mission (see Figure 5). A retransmission is a DNS query
that is sent out repeatedly to a DNS server in an attempt to
retry a previously failed DNS lookup. This retransmission is
repeated up to four times for a single DNS query before the
resolver aborts the name resolution with an error. Because the
attacker maintains a steady stream of spoofed responses with
the burst technique, every retransmission attempt is almost
immediately answered with a spoofed response, long before
the authentic name server even receives the retransmission.

4. Blocking the Correct DNS Response: After four re-
transmissions, the active query is invalidated and responses
will no longer be accepted, even if their TXID would match
the ID of the original query. This includes the answer of the
benign server, which will also be rejected. Even though the
retransmission-limit interferes with the attacker’s ability to
brute force a large amount of TXIDs in a short time, the net
effect is advantageous because with a high likelihood it also
prevents the authentic name server from placing the correct
record in the client’s cache.

5. Rinse and Repeat: To obtain more guesses, the attacker
only needs to repeat the poisoning phase by sending another
burst of spoofed DNS responses and triggering another DNS
query shortly after. Once the TXID of one of the spoofed
responses matches the ID used in the victim’s DNS query,
the attacker observes the incoming XMLHttpRequest on the
malicious server and can end the poisoning phase.

PoisonerBenign DNS Victim

M
al

ic
io

us
 D

N
S

R

es
po

ns
e

B
ur

st

websocket.send(DNSQueryPort)

XMLHttpRequest(“bank.com”)

DNSQuery(“bank.com”)
DNSQueryRetransmission
DNSQueryRetransmission
DNSQueryRetransmission
DNSQueryRetransmission

Retransmission limit
DNSResponse(“bank.com”)

dr
op

Figure 5: DNS retransmissions in Windows during the poi-
soning phase.

Attack Duration Spoofing Burst Success Rate
Min Mean Max #Responses �Duration

DEMONS (Internet) 15 s 214 s 1162 s 2550 695 ms 37%
DEMONS (Lab) 32 s 243 s 517 s 525 63 ms 36%
Malware (Lab) 5 s 333 s 1586 s 525 50 ms 57%

Table 3: Performance of the web-based DEMONS attack in
an Internet setting, in the lab, and in comparison to a malware
attacker. The number of responses in a spoofing burst was set
in advance.

6 Evaluation of DEMONS

We evaluated DEMONS twice: (1) In an internet setting,
using a hosting service that allowed IP spoofing, but also pro-
vided an unstable network connection. The results exemplify
the possible success rate of a real-world attacker, who may
also have to cope with such unstable connections. (2) In a
closed lab environment. Here we had optimal control over the
network, and our results can be reproduced. For comparison,
we also used the lab environment for an unprivileged mal-
ware attacker as described by [3], substituting the setup phase
of the DEMONS attacker with that of a malware attacker,
while preserving all other aspects of the experiment. Table 3
summarizes all three evaluations.

6.1 Setup of Internet Evaluation
Attacker Setup. We deployed the DEMONS infrastructure
(Webserver, Poisoner, Malicious Server, see Figure 3) at an
internet hosting provider in Moscow that allowed IP spoofing
(April 2021). For these servers, we measured an upstream
bandwidth that fluctuated between 1 and 200 MBit/s, aver-
age latencies of 70 ms (with outliers up to 200 ms), and
intermittent episodes of packet loss of up to 20%. Although
these conditions were far from ideal, we could implement
the DEMONS attack in this setting with a significant success
rate.

We adapted DEMONS to these network conditions as fol-
lows: To compensate for the overall latency, we inserted a
65 ms delay between the attack start signal sent to the Poison-
ers and the first XMLHttpRequest triggered by the malicious
JavaScript. The latency jitter and packet loss were mostly
compensated by distributing the poisoner across three differ-

ent servers. In addition, we increased the burst size from 105
to 850 spoofed DNS responses per poisoner (for a total of
2550 DNS responses per burst). Longer bursts improve the
success rate at the cost of a large drop in attack performance.
To counteract this performance loss we increased the number
of XMLHttpRequests per burst from 1 to 24 (for a total of
120 DNS queries), with a 3 ms delay in-between.

Victim Setup. The victim machine is a Windows 10 VM
running on a desktop computer2 in the home network of one
of the authors. The victim host was connected to a home
router via ethernet cable. The internet connection is an end-
user DSL connection providing roughly 27 Mbit/s upstream
and 80 Mbit/s downstream. The Google resolver (8.8.8.8)
was configured as the default DNS server in the client OS.

Stealthiness. During the attack, we observed an average
network traffic of roughly 3-4 MBit/s on the victim machine.
The internet connection of our victim was utilized normally
during the attack and did not show any reduction in service
quality during typical home office tasks, browsing, telephony,
and video streaming. A victim is unlikely to notice a running
DEMONS attack unless the network traffic is actively moni-
tored for suspicious activity. During the poisoning phase the
CPU load stayed well below 20%, and only during the setup
phase, which took 15 s, did CPU utilization spike up to 100%
due to the overhead caused by creating WebRTC objects.

6.2 Results of Internet Evaluation
Table 3 summarizes the results for both DEMONS experi-
ments. Over a course of 24 hours, we ran the DEMONS
experiment a total of 351 times. We recorded 131 (37%)
successful DNS cache poisonings. The experiment failed
219 (62%) times because the authentic DNS server managed
to respond to a DNS query before it was invalidated by the
Poisoner. The experiment was aborted one time because it
did not produce a result before the limit of 2000 bursts was
reached.

6.3 Setup of Lab Evaluation
For our lab setup, we used three Dell Optiplex 9603 desktop
computers connected via a GBit-Ethernet-Switch4. The first
computer took the role of the victim, running Google Chrome
on a stock installation of Windows 105. The second system
acted as benign DNS Server. The third system was configured
as a router simulating infrastructure between the victim’s and
the attacker’s ISP and the benign DNS server. A Thinkpad

2 Oracle Virtual Box 6 VM with 4 cores, 8 GiB RAM on Intel Core i7 3770k,
32 GiB RAM host.

3 Intel Core2Quad Q9400, 4 GiB RAM, Intel 82567LM-3 Gigabit NIC
4 D-Link DGS-108 Gigabit ethernet switch
5 Chrome 83.0.4103.106 on Windows 10 (1909 Build 18363.815)

T480s ran the attacker’s web server, poisoner, and a script to
monitor and log the experiment results. To simulate realistic
network conditions we used traffic control to set the latency to
1 ms and limit the attacker’s bandwidth to a maximum of 20
Mbit/s. Since the lab setup provides a much more consistent
connection than the internet setup, we used only one poisoner
and a smaller burst size of 525 responses.

6.4 Results of Lab Evaluation

Out of a total of 133 experiments in the lab setup the
DEMONS attack succeeded 48 times (36%) and failed 85
times (64%).

To compare DEMONS in the web attacker model with
a malware attacker as described in [3], we implemented a
collaborative, unprivileged malware attacker in Python. The
setup phase of the malware simply allocates all UDP sockets
in the system, except one, and leaks the remaining port to the
attacker over the network (see Table 1). We used this setup
phase in situ as a replacement for the victim browser in the
DEMONS lab evaluation, keeping the network configuration
and all other aspects of the attacker the same. Out of a total of
125 experiments in the lab setup the malware attack succeeded
71 times (57%) and failed 54 times (43%).

6.5 Discussion

Comparing DEMONS and the malware attacker, we see that
the minimum attack duration is smaller for the malware at-
tacker due to the faster setup phase. The DEMONS setup
phase has more overhead caused by the relatively slow cre-
ation of WebRTC objects in the browser. Despite the faster
setup phase, the mean and maximum attack duration is longer
for the malware attacker compared to DEMONS because the
malware attacker can sustain the poisoning phase for longer
periods. This results in both higher total run times and a
higher overall success rate for the malware attacker.

Overall, the DEMONS attacker has a 21% lower success
rate than the malware attacker. We suspect that this is partly
because of the jitter in the timing of the DNS queries triggered
from JavaScript, compared to the malware attacker written
in Python, and partly due to the additional DNS and other
activity in the system from running the browser itself.

We note that in our experimental setup, we count a poi-
soning attempt as a failure when the benign DNS response
is accepted by the victim once. In contrast, the evaluation
of [3] is based on a DNS entry with a time-to-live (TTL) of
30 s and an attacker who retries the attack after that time, lead-
ing to almost perfect success rates overall. We make no such
assumption about the TTL used by the benign DNS response.

7 Mitigations

7.1 Mitigating the Fork Bomb
The Google Chrome Team did not consider the fork bomb
attack to be a security vulnerability and did not implement any
countermeasures. This leaves all browsers based on Chrome
susceptible to Site Isolation-based attacks like the fork bomb.
In this section, we give some suggestions on how Site Isola-
tion can be improved to prevent the fork bomb attack.

Applying OS Resource Limits. On Linux, cgroups can be
used to limit the available resources for single applications
– e.g. web browsers – in the OS (other systems offer similar
functionality). So by e.g. limiting the number of processes
available to Site Isolation-enabled browsers, we can prevent
a DoS attack on the OS. At the same time, however, DoS
attacks on the browser itself will become easier – the limit
assigned by cgroups can be exhausted by multiple tabs, or by
a single tab as in the Site Isolation-based fork bomb attack.

Browser Process Consolidation for IP Addresses. In Site
Isolation, process consolidation [40, section 4.1.1] is used to
reduce the overall number of processes: If two tabs include
the same site in two different iframes, only one process is
launched for this site. A browser could apply process consoli-
dation also to IPv6 address blocks, such that all IP addresses
from one block count as a single origin. However, if these
blocks are too big, they can be used to circumvent Site Isola-
tion – if an attacker manages to rent a single IP address in the
same address block as an IP address used to access a target
website, they may get access to the target website’s process
in the victim browser.

7.2 Our Solution: Limit Processes by Visible
Windows and Tabs

We implemented and evaluated the following countermeasure
to the fork bomb attack in the browser: Each window/tab is
assigned a limit L of processes. Each time the user opens
a new window/tab wi, the browser initializes a local limit
Li := L and tracks the use of resources for wi in a variable
Ci. As long as Ci ≤ Li, page loading proceeds normally. If
the maximum number Li of processes is reached, the browser
interrupts page processing with an alert message, offering the
user to increase Li by some fixed value ∆L . Our solution
does not require special OS interfaces.

We evaluated the Tranco6 [27] Top 1000 web pages and
measured the number of processes created for each of these
pages. We found that the maximum number of processes
created by a single page from this set was 19. Including
some additional headroom, we set L = 30. With this limit, an
6 We use the Tranco list generated on 29 March 2022 (https://tranco-
list.eu/list/254Y9)

attacker must open at least 7 tabs to trigger a browser crash,
and at least 10 tabs to render the OS unusable (Table 2).

We implemented the described modification in Chromium
101.0.4951.647. The resulting patch is available as part of our
artifacts1 and was submitted to the Chromium and Firefox
developers.

For an additional False Positive evaluation, we sorted the
Tranco Top 1000 according to the number of processes created
for each website. Opening the top 50 web pages from the
reordered list in 50 tabs lead to 171 processes running in the
OS, which was well below the threshold for DoS attacks we
identified in Table 2.

To verify that the changes introduced by our patch do not
measurably impact the browser’s performance we recorded
the page load times of the Tranco Top 5 websites using the
profiling tools integrated into Chromium. We found no sig-
nificant difference in performance.

We also verified the effectiveness of our patch by opening
the Tranco Top 50 pages together with our Site Isolation-
fork-bomb attack page in Chromium Site Isolation-patched.
The attack page was interrupted after creating 30 sites and
both Chromium Site Isolation-patched and the OS (Kubuntu
18.04 LTS) stayed stable. Repeating the experiment with an
unpatched Chrome led to an OS freeze. In contrast to our
malicious attacker website, none of the benign websites trig-
gered the Site Isolation-process-limit dialog. This indicates
that our patch is unlikely to impact user experience with false
positive warnings.

7.3 Mitigating UDP Port Exhaustion

Google Chrome. The Google Chrome Team considered
DEMONS to be a security vulnerability. As DEMONS is a
complex attack, it is easy to mitigate by removing any of its
preconditions for success. In the case of Chrome, the devel-
opers implemented a configurable global limit of 6000 UDP
sockets across the whole browser instance. We re-evaluated
Chrome with this countermeasure and confirmed that this
limit is now effectively enforced (see Table 2 in the appendix
for detailed results). This aligns the behavior of Chromium-
based browsers with that of Firefox, which already has a
global limit of 1000 ports. We note that for both browsers the
global limit is high enough to reduce the number of available
ephemeral ports for DNS queries significantly, reducing the
effectiveness of source port randomization as a countermea-
sure to the Kaminsky attack.

Redesigning Network Sockets in the OS. The root cause
behind DNS Cache Poisoning attacks using UDP port ex-
haustion is that the pool of ephemeral ports must be shared
among all IP addresses. However, in calculations regarding
the effectiveness of source port randomization, it is commonly

7 commit 7f19001c12cf2eee0b7ddd213a40c1652086c9da

https://tranco-list.eu/list/254Y9
https://tranco-list.eu/list/254Y9

assumed that for each destination IP address the full range
of available ephemeral UDP source ports would be avail-
able [24, 35, 45]. This mismatch between abstract network
sockets and actual OS sockets created through the Berkeley
socket API creates an attack surface where unrelated subsys-
tems using UDP can interfere with each other. Unfortunately,
changing the socket API would require a complete redesign
of the network stack and its use in applications.

7.4 Mitigating DNS Cache Poisoning Attacks

DNS-over-HTTPS (DoH). DEMONS DNS Cache Poison-
ing can be mitigated by using DoH but only for those web
applications running in a browser that uses DoH. Browsers
with DoH can still be used as attack vectors to block UDP
ports of the OS using the techniques described in this paper.
Thus, source port randomization can still be disabled for ap-
plications relying on classical DNS. However, for a complete
attack setup, the attacker now must control two applications:
One for blocking UDP ports and releasing a single port (e.g.,
the browser), and one for sending a DNS request that shall be
poisoned. A bigger obstacle is the limited support for DoH.
Currently, only Mozilla supports DoH in the default config-
uration, and only in certain countries. None of our tested
browsers used DoH in its default configuration. Moreover, a
downgrade attack from DoH to classical DNS-over-UDP has
been discovered recently [22].

Other Solutions. As a straightforward approach to mitigate
DNS Cache Poisoning, the size of the DNS TXID could
be extended, rendering source port randomization irrelevant.
However, no standardization activities in this direction are
known. This may be due to the now 24-year struggle to deploy
DNSSEC [1, 4]. DNSSEC would solve the problem, yet a
complete mitigation can only be achieved if all domains use
DNSSEC, or if an application can determine which domains
are secured and which are not. Additionally, OS resolvers
would have to verify the DNSSEC signature chain.

8 Related Work

Site Isolation was developed by Google for the Chrome web
browser, and is described by Reis, Moshchuk, and Oskov
in [40]. Before, process isolation has been used to isolate
different windows at the OS level to protect against remote
code execution vulnerabilities in the renderer of the browser.
As shown in [23, 43], the misalignment between web origin
and browser boundaries could be exploited by a web attacker
to target the local OS. The urgency for Site Isolation was
increased by the publication of the Spectre [26] and Melt-
down [32] side-channel attacks.

Just-in-time (JIT) compilation of JavaScript provided many
examples of attacks on local processes [14,29,30,34]. Before

that, drive-by-downloads could be used to install malware on
the local OS [8,42]. Other attacks target the victim’s machine
hardware itself [15–17, 31, 38, 44, 46].

The concept of a fork bomb is comprehensively described
by Berlot and Sang [5]. Fork bombs can be difficult to detect
and mitigate. Nakagawa and Oikawa [37] suggest a quaran-
tine procedure to reduce harm to honest processes in case of
False Positives detection, but in practice, the best strategy is to
limit and control the number of processes by careful applica-
tion design, in particular in the case of sandbox environments
running untrusted code [40].

The idea to allocate most of the UDP socket table to dis-
able port randomization and thus re-enable past DNS Cache
Poisoning attacks [24] was first described by Alharbi et al. [3],
who carefully analyzed the performance of the attack on Win-
dows, Linux, and macOS under realistic network latencies.
The actual port exhaustion in their attack is achieved using
a collaborative, unprivileged malware. Although [3] conjec-
ture that the browser can be used instead of malware, to our
knowledge no such port exhaustion in the web attacker model
was known prior to Site Isolation and our work.

Other recent DNS Cache Poisoning attacks on various net-
work devices have also bypassed UDP port randomization.
Shulman and Waidner [45] use IP fragmentation to inject
spoofed DNS responses. Man et al. [35] build a side-channel
from a complex combination of ICMP error messages on
UDP open port queries and ICMP limits, to detect open UDP
ports at resolvers, which are then used in spoofed DNS re-
sponses. Zheng et al. [50] use oversized DNS resources at an
attacker-controlled DNS server to enforce splitting of the DNS
response into two UDP packets, where only the first packet
contains the random TXID, and the second UDP packet is
spoofed by the attacker who only has to guess the correct
UDP port. As a limitation, the attacker must be in the same
(W)LAN as the victim.

9 Conclusion and Future Work

Site Isolation is an important security architecture to protect
against side channel and renderer exploits. Our work aims at
improving Site Isolation, not at diminishing it.

While the sophisticated DEMONS attack could be suc-
cessfully mitigated by introducing a global limit on the web
browser’s UDP ports, the fork bomb attack is still a threat.
It may be surprising to some that even very old attacks such
as fork bombs and other resource exhaustion attacks are still
effective against current operating systems, and that browsers
are fulfilling an important role in protecting users against such
threats. In fact, for years now browsers have provided a safe
and reliable environment for users to run untrusted, even ma-
licious code, arguably a safer and more reliable environment
than the operating system itself.

In this context, the flaws we found in Site Isolation are an
unfortunate regression. We note with some concern that as

browsers are evolving to meet the ever-increasing demands of
web application developers, more and more resources of the
OS will be available more or less directly to web attackers.
This includes network sockets as well as hardware resources
such as arbitrary USB devices. We hope that our work high-
lights the emergent risks of this trend.

Future Work. Our findings were limited to common web
browsers but could be extended to other browsers, browser
extensions, and native applications built with an embedded
browser framework, such as Electron.8 Another class of tar-
gets could be headless browsers running on servers for web
crawlers or to create preview images of links for messenger
apps. We did not evaluate all possible browser features for
Site Isolation based resource exhaustion. In particular, UDP
socket allocation may be possible using the QUIC protocol.
Also, exhaustion of graphic card resources through WebGL
and other rendering APIs could be considered.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strat-
egy - EXC 2092 CASA - 390781972.

References

[1] D. E. 3rd and C. Kaufman, “Domain Name
System Security Extensions,” RFC 2065 (Proposed
Standard), Internet Engineering Task Force, Jan.
1997, obsoleted by RFC 2535. [Online]. Available:
http://www.ietf.org/rfc/rfc2065.txt

[2] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell, and
D. Song, “Towards a formal foundation of web security,”
in CSF 2010: IEEE 23st Computer Security Foundations
Symposium, A. Myers and M. Backes, Eds. IEEE
Computer Society Press, 2010, pp. 290–304.

[3] F. Alharbi, J. Chang, Y. Zhou, F. Qian, Z. Qian, and
N. Abu-Ghazaleh, “Collaborative Client-Side DNS
Cache Poisoning Attack,” in IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications, 2019,
pp. 1153–1161.

[4] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose, “DNS Security Introduction and Requirements,”
RFC 4033 (Proposed Standard), Internet Engineering
Task Force, Mar. 2005, updated by RFCs 6014, 6840.
[Online]. Available: http://www.ietf.org/rfc/rfc4033.txt

[5] M. Berlot and J. Sang, “Dealing with process
overload attacks in unix,” Information Security

8 https://www.electronjs.org/

Journal: A Global Perspective, vol. 17, no. 1,
pp. 33–44, mar 2008. [Online]. Available: https:
//doi.org/10.1080%2F19393550801929547

[6] C. C. Center, “Vulnerability Note VU#800113:
Multiple DNS implementations vulnerable to
cache poisoning,” 2008. [Online]. Available:
https://www.kb.cert.org/vuls/id/800113

[7] M. Cotton, L. Eggert, J. Touch, M. Westerlund, and
S. Cheshire, “Internet Assigned Numbers Authority
(IANA) Procedures for the Management of the
Service Name and Transport Protocol Port Number
Registry,” RFC 6335 (Best Current Practice), Internet
Engineering Task Force, Aug. 2011. [Online].
Available: http://www.ietf.org/rfc/rfc6335.txt

[8] M. Cova, C. Kruegel, and G. Vigna, “Detection and
analysis of drive-by-download attacks and malicious
javascript code,” in Proceedings of the 19th interna-
tional conference on World wide web, 2010, pp. 281–
290.

[9] M. Crispin, “INTERNET MESSAGE ACCESS PRO-
TOCOL - VERSION 4rev1,” RFC 3501 (Proposed
Standard), Internet Engineering Task Force, Mar.
2003, updated by RFCs 4466, 4469, 4551, 5032,
5182, 5738, 6186, 6858. [Online]. Available:
http://www.ietf.org/rfc/rfc3501.txt

[10] J. Dickinson, S. Dickinson, R. Bellis, A. Mankin, and
D. Wessels, “Dns transport over tcp - implementation
requirements,” Internet Requests for Comments, RFC
Editor, RFC 7766, March 2016.

[11] P. Dubroy and R. Balakrishnan, “A study of
tabbed browsing among mozilla firefox users,” in
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’10.
New York, NY, USA: Association for Computing
Machinery, 2010, p. 673–682. [Online]. Available:
https://doi.org/10.1145/1753326.1753426

[12] M. Foundation, “Mozilla firefox - projekt fission,”
2020. [Online]. Available: https://wiki.mozilla.org/
Project_Fission

[13] ——, “Firefox 94.0, see all new features, updates
and fixes,” 2021. [Online]. Available: https://
www.mozilla.org/en-US/firefox/94.0/releasenotes/

[14] R. Gawlik and T. Holz, “Sok: Make jit-spray
great again,” in 12th USENIX Workshop on
Offensive Technologies (WOOT 18). Baltimore,
MD: USENIX Association, Aug. 2018. [Online].
Available: https://www.usenix.org/conference/woot18/
presentation/gawlik

http://www.ietf.org/rfc/rfc2065.txt
http://www.ietf.org/rfc/rfc4033.txt
https://doi.org/10.1080%2F19393550801929547
https://doi.org/10.1080%2F19393550801929547
https://www.kb.cert.org/vuls/id/800113
http://www.ietf.org/rfc/rfc6335.txt
http://www.ietf.org/rfc/rfc3501.txt
https://doi.org/10.1145/1753326.1753426
https://wiki.mozilla.org/Project_Fission
https://wiki.mozilla.org/Project_Fission
https://www.mozilla.org/en-US/firefox/94.0/releasenotes/
https://www.mozilla.org/en-US/firefox/94.0/releasenotes/
https://www.usenix.org/conference/woot18/presentation/gawlik
https://www.usenix.org/conference/woot18/presentation/gawlik

[15] D. Genkin, L. Pachmanov, E. Tromer, and Y. Yarom,
“Drive-by key-extraction cache attacks from portable
code,” in Applied Cryptography and Network Security,
B. Preneel and F. Vercauteren, Eds. Cham: Springer
International Publishing, 2018, pp. 83–102.

[16] D. Gruss, D. Bidner, and S. Mangard, “Practical memory
deduplication attacks in sandboxed javascript,” in Com-
puter Security – ESORICS 2015, G. Pernul, P. Y A Ryan,
and E. Weippl, Eds. Cham: Springer International Pub-
lishing, 2015, pp. 108–122.

[17] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js:
A remote software-induced fault attack in javascript,” in
Proceedings of the 13th International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721, ser. DIMVA 2016.
Berlin, Heidelberg: Springer-Verlag, 2016, p. 300–321.
[Online]. Available: https://doi.org/10.1007/978-3-319-
40667-1_15

[18] M. Handley, V. Jacobson, and C. Perkins, “SDP:
Session Description Protocol,” RFC 4566 (Proposed
Standard), Internet Engineering Task Force, Jul. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4566.txt

[19] I. Hickson et al. (2019) WebRTC 1.0: Real-
time Communication Between Browsers. W3C
and Google Inc. and Apple Computer Inc. and
Mozilla Foundation and Opera Software ASA. [On-
line]. Available: https://www.w3.org/TR/webrtc/#dom-
peerconnection-localdescription

[20] P. Hoffman and P. McManus, “DNS Queries over
HTTPS (DoH),” Internet Requests for Comments, RFC
Editor, RFC 8484, October 2018.

[21] C. Holmberg, H. Alvestrand, and C. Jennings,
“Negotiating Media Multiplexing Using the Ses-
sion Description Protocol (SDP),” Working Draft,
IETF Secretariat, Internet-Draft draft-ietf-mmusic-
sdp-bundle-negotiation-54, December 2018. [Online].
Available: http://www.ietf.org/internet-drafts/draft-ietf-
mmusic-sdp-bundle-negotiation-54.txt

[22] Q. Huang, D. Chang, and Z. Li, “A comprehensive
study of DNS-over-HTTPS downgrade attack,” in 10th
USENIX Workshop on Free and Open Communications
on the Internet (FOCI 20), 2020.

[23] Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and
Z. Liang, “"The Web/Local" Boundary Is Fuzzy: A
Security Study of Chrome’s Process-based Sandboxing,”
in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp.
791–804.

[24] D. Kaminsky, “Black ops 2008: It’s the end of the cache
as we know it,” Black Hat USA, vol. 2, 2008.

[25] J. Klensin, “Simple Mail Transfer Protocol,” RFC 5321
(Draft Standard), Internet Engineering Task Force, Oct.
2008, updated by RFC 7504. [Online]. Available:
http://www.ietf.org/rfc/rfc5321.txt

[26] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre At-
tacks: Exploiting Speculative Execution,” in 40th IEEE
Symposium on Security and Privacy (S&P’19), 2019.

[27] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczyński, and W. Joosen, “Tranco: A research-
oriented top sites ranking hardened against manipula-
tion,” in Proceedings of the 26th Annual Network and
Distributed System Security Symposium, ser. NDSS
2019, Feb. 2019.

[28] J. Leitschuh, “Want to take over the Java ecosystem?
All you need is a MITM!” 2019. [Online]. Available:
https://medium.com/bugbountywriteup/want-to-take-
over-the-java-ecosystem-all-you-need-is-a-mitm-
1fc329d898fb

[29] W. Lian, H. Shacham, and S. Savage, “Too lejit to quit:
Extending jit spraying to arm.” in NDSS. Citeseer,
2015.

[30] ——, “A call to arms: Understanding the costs and
benefits of jit spraying mitigations.” in NDSS, 2017.

[31] M. Lipp, D. Gruss, M. Schwarz, D. Bidner, C. Maurice,
and S. Mangard, “Practical keystroke timing attacks in
sandboxed javascript,” in Computer Security – ESORICS
2017, S. N. Foley, D. Gollmann, and E. Snekkenes, Eds.
Cham: Springer International Publishing, 2017, pp. 191–
209.

[32] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg, “Meltdown: Reading Ker-
nel Memory from User Space,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018.

[33] M. J. Luckie, R. Beverly, R. Koga, K. Keys, J. A. Kroll,
and k claffy, “Network hygiene, incentives, and reg-
ulation: Deployment of source address validation in
the internet,” in ACM CCS 2019: 26th Conference on
Computer and Communications Security, L. Cavallaro,
J. Kinder, X. Wang, and J. Katz, Eds. ACM Press, Nov.
2019, pp. 465–480.

[34] G. Maisuradze, M. Backes, and C. Rossow, “Dachshund:
digging for and securing against (non-) blinded con-
stants in jit code,” in Symposium on Network and Dis-
tributed System Security (NDSS), 2017.

https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
http://www.ietf.org/rfc/rfc4566.txt
https://www.w3.org/TR/webrtc/#dom-peerconnection-localdescription
https://www.w3.org/TR/webrtc/#dom-peerconnection-localdescription
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-sdp-bundle-negotiation-54.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-sdp-bundle-negotiation-54.txt
http://www.ietf.org/rfc/rfc5321.txt
https://medium.com/bugbountywriteup/want-to-take-over-the-java-ecosystem-all-you-need-is-a-mitm-1fc329d898fb
https://medium.com/bugbountywriteup/want-to-take-over-the-java-ecosystem-all-you-need-is-a-mitm-1fc329d898fb
https://medium.com/bugbountywriteup/want-to-take-over-the-java-ecosystem-all-you-need-is-a-mitm-1fc329d898fb

[35] K. Man, Z. Qian, Z. Wang, X. Zheng, Y. Huang,
and H. Duan, “Dns cache poisoning attack reloaded:
Revolutions with side channels,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’20. New York,
NY, USA: Association for Computing Machinery,
2020, p. 1337–1350. [Online]. Available: https:
//doi.org/10.1145/3372297.3417280

[36] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network
Time Protocol Version 4: Protocol and Algorithms
Specification,” RFC 5905 (Proposed Standard), Internet
Engineering Task Force, Jun. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc5905.txt

[37] G. Nakagawa and S. Oikawa, “Fork bomb attack miti-
gation by process resource quarantine,” in 2016 Fourth
International Symposium on Computing and Network-
ing (CANDAR). IEEE, nov 2016. [Online]. Available:
https://doi.org/10.1109%2Fcandar.2016.0124

[38] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and
A. D. Keromytis, “The spy in the sandbox: Practical
cache attacks in javascript and their implications,” in
Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS
’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 1406–1418. [Online]. Available:
https://doi.org/10.1145/2810103.2813708

[39] J. Postel and J. Reynolds, “File Transfer Protocol,” RFC
959 (INTERNET STANDARD), Internet Engineering
Task Force, Oct. 1985, updated by RFCs 2228,
2640, 2773, 3659, 5797, 7151. [Online]. Available:
http://www.ietf.org/rfc/rfc959.txt

[40] C. Reis, A. Moshchuk, and N. Oskov, “Site Iso-
lation: Process Separation for Web Sites within
the Browser,” in 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 1661–1678. [On-
line]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/reis

[41] E. Rescorla, “Security considerations for webrtc,”
Working Draft, IETF Secretariat, Internet-Draft
draft-ietf-rtcweb-security-12, July 2019. [Online].
Available: http://www.ietf.org/internet-drafts/draft-ietf-
rtcweb-security-12.txt

[42] K. Rieck, T. Krueger, and A. Dewald, “Cujo: efficient
detection and prevention of drive-by-download attacks,”
in Proceedings of the 26th Annual Computer Security
Applications Conference, 2010, pp. 31–39.

[43] R. Rogowski, M. Morton, F. Li, F. Monrose, K. Z. Snow,
and M. Polychronakis, “Revisiting browser security in

the modern era: New data-only attacks and defenses,”
in 2017 IEEE European Symposium on Security and
Privacy (EuroS P), 2017, pp. 366–381.

[44] S. Röttger and A. Janc, “A spectre proof-of-
concept for a spectre-proof web,” 2021. [Online].
Available: https://security.googleblog.com/2021/03/a-
spectre-proof-of-concept-for-spectre.html

[45] H. Shulman and M. Waidner, “Fragmentation consid-
ered leaking: Port inference for dns poisoning,” in Ap-
plied Cryptography and Network Security, I. Boureanu,
P. Owesarski, and S. Vaudenay, Eds. Cham: Springer
International Publishing, 2014, pp. 531–548.

[46] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin,
Y. Oren, and Y. Yarom, “Prime+probe 1, javascript 0:
Overcoming browser-based side-channel defenses,” in
30th USENIX Security Symposium (USENIX Security
21). USENIX Association, Aug. 2021, pp. 2863–
2880. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/shusterman

[47] R. Siemborski and A. Menon-Sen, “The Post
Office Protocol (POP3) Simple Authentication and
Security Layer (SASL) Authentication Mechanism,”
RFC 5034 (Proposed Standard), Internet Engineering
Task Force, Jul. 2007. [Online]. Available: http:
//www.ietf.org/rfc/rfc5034.txt

[48] P. Vixie and D. Dagon, “Use of bit 0x20 in dns labels to
improve transaction identity,” Working Draft, IETF Sec-
retariat, Internet-Draft draft-vixie-dnsext-dns0x20-00,
March 2008. [Online]. Available: https://www.ietf.org/
archive/id/draft-vixie-dnsext-dns0x20-00.txt

[49] W. Xu, S. Park, and T. Kim, “Freedom: Engineering
a state-of-the-art dom fuzzer,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’20. New York,
NY, USA: Association for Computing Machinery,
2020, p. 971–986. [Online]. Available: https:
//doi.org/10.1145/3372297.3423340

[50] X. Zheng, C. Lu, J. Peng, Q. Yang, D. Zhou, B. Liu,
K. Man, S. Hao, H. Duan, and Z. Qian, “Poison Over
Troubled Forwarders: A Cache Poisoning Attack Target-
ing DNS Forwarding Devices,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020.

https://doi.org/10.1145/3372297.3417280
https://doi.org/10.1145/3372297.3417280
http://www.ietf.org/rfc/rfc5905.txt
https://doi.org/10.1109%2Fcandar.2016.0124
https://doi.org/10.1145/2810103.2813708
http://www.ietf.org/rfc/rfc959.txt
https://www.usenix.org/conference/usenixsecurity19/presentation/reis
https://www.usenix.org/conference/usenixsecurity19/presentation/reis
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-security-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-rtcweb-security-12.txt
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://www.usenix.org/conference/usenixsecurity21/presentation/shusterman
https://www.usenix.org/conference/usenixsecurity21/presentation/shusterman
http://www.ietf.org/rfc/rfc5034.txt
http://www.ietf.org/rfc/rfc5034.txt
https://www.ietf.org/archive/id/draft-vixie-dnsext-dns0x20-00.txt
https://www.ietf.org/archive/id/draft-vixie-dnsext-dns0x20-00.txt
https://doi.org/10.1145/3372297.3423340
https://doi.org/10.1145/3372297.3423340

A DEMONS Implementation Details

A.1 Tracking the port numbers used by Web-
RTC Objects

The RTCPeerConnection (RTCPC), which is
part of the JavaScript WebRTC API, has an
onconnectionstatechange property. Any custom
event handler function assigned to this property is called upon
state change of the RTCPC. Furthermore, the RTCPC has a
localDescription property that describes the session for
connections local endpoint [19]. Among other information
this session description contains the port number proposed
during the connection negotiation. The malicious JavaScript
attaches the custom event handler shown in Figure 6 to
every RTCPC it establishes. Once the event fires for any
connection the handler passes the local session description
to the getPort function shown in Figure 7. The function
getPort extracts the UDP port from the string representation
of the session description associated with the connection
that triggered the event. At the end of the Setup Phase the
malicious JavaScript closes one of the established RTCPCs
and sends the port stored for this connection to the Poisoner
using a WebSocket.

1function onConnectionStateChange(ev, cnContainer,
↪→ cnIndex, cnType, eventHandler) {

2// store local description ports
3if(cnType == "LCON") {
4// Get handler for the n-th RTCPC
5cn = cnContainer.connections.local[cnIndex];
6// Extract and store local port for the n-

↪→ th
7// RTCPC
8cnContainer.ports.local[cnIndex] = getPort(cn);
9if(eventHandler != null) {
10eventHandler(cn, cnContainer.ports.local[cnIndex

↪→]);
11}
12}
13// store remote description ports
14...
15}

Figure 6: Intercepting WebRTC connection state changes

1function getPort(rtcpc) {
2sdp = rtcpc.localDescription.sdp.split("\n");
3cand = sdp.filter(i => i.startsWith("a=candidate"))

↪→ ;
4return cand[0].split(/\s+/)[5];
5}

Figure 7: Retrieving the UDP port from a session description

A.2 Modifying the SDP
Adding multiple copies of the same data channel with dif-
ferent unique identifiers (mid in Figure 8) allows for the
reservation of multiple UDP ports with a single RTCPeer-
Connection. This significantly reduces the CPU overhead
compared to using multiple RTCPeerConnections with only a
single data channel. We achieve this by using SDP munging,
where the SDP offer is manipulated outside of the WebRTC
implementation (see Figure 9).

1 v=0
2 o=- 6271792437987180154 2 IN IP4 127.0.0.1
3 s=-
4 t=0 0
5 a=group:BUNDLE 0
6 m=application 9 UDP/DTLS/SCTP webrtc-datachannel
7 c=IN IP4 0.0.0.0
8 a=mid:0
9 +m=application 9 UDP/DTLS/SCTP webrtc-datachannel

10 +c=IN IP4 0.0.0.0
11 +a=mid:1
12 +m=application 9 UDP/DTLS/SCTP webrtc-datachannel
13 +c=IN IP4 0.0.0.0
14 +a=mid:2
15 ...

Figure 8: SDP offer manipulation (excerpt). The attacker
inserts a copy of lines 6–8 once per extra media channel to be
allocated, consuming two more UDP ports each time.

1function mungeChannels(offer, mungeChannelCount, offs
↪→) {

2const midx = offer.sdp.indexOf("m=");
3const mdef = offer.sdp.substr(midx);
4let sdp = offer.sdp;
5for(let i=0; i < mungeChannelCount; i++) {
6sdp += mdef.replace(/mid:\d+/, "mid:" + (
710 + mungeChannelCount * offs + i));
8}
9offer.sdp = sdp;
10return offer;
11}

Figure 9: SDP offer manipulation program code.

B Evaluation Results of the DEMONS Mitigations deployed in Chrome/Chromium and Edge
O

S

Browser Chrome1/Chromium2 Edge3 Firefox4

Sites Single-Site Multi-Site Single-Site Multi-Site Single-Site Multi-Site
Site Isolation - off on - off on - off on

W
in

do
w

s Processes 8 6 311�F 9 7 306�F 10 7 215�

So
ck

et
s

UDP v4/v6
WebRTC[p] 1000/500 1000/500 5996/2998 1000/500 1000/500 5996/2998 0/999 0/998 0/999
WebRTC[u] 1000/500 1000/500 5996/2998 1000/500 1000/500 5996/2998 0/998 0/999 1/999
WebRTC[m] 3001/1500 3001/1500 5997/2996 3001/1500 3000/500 5996/2997 - - -

L
in

ux

Processes 11 9 460F - - - 6 6 224�

So
ck

et
s

UDP v4/v6
WebRTC[p] 1000/500 1000/500 6000/3000 - - - 1000/998 999/998 999/998
WebRTC[u] 1000/500 1000/500 6000/3000 - - - 999/998 999/998 999/998
WebRTC[m] 3000/1500 3001/1500 6000/2999 - - - - - -

[p] WebRTC objects with a single data channel. [u] WebRTC objects with multiple data channels. [m] WebRTC objects with munging.
1Chrome v89.0.4389.114 on Windows 10; 2Chromium v89.0.4389.90 on Kubuntu Linux 18.04 LTS;
3Edge (Chromium based) v89.0.774.75; 4Firefox Nightly 89.0a1 2021-04-11 experimental Site Isolation enabled
� Browser Crash; F Operating system unusable
Note: Chrome/Chromium allocate one UDP port in each WebRTC channel in dual-stack mode, causing an extra allocation in IPv6. Firefox allocates all UDP ports
IPv6 only, but in Linux, they are mapped to IPv4 by the OS. Therefore entries like 1000/500 refer to the number of IPv4/IPv6 ports blocked, resp.

Table 4: Re-evaluation of Resource Exhaustion Attacks based on Site Isolation with DEMONS mitigations deployed in
Chrome/Chromium and Edge.

C Site Isolation-Based Fork Bomb Details

Observed behavior
±1 q 2

¹3 º4 ¹5 º4 Î6

�

The Browser became unresponsive to user interactions. • • • •
The browser window closed without notification. • • •
The browser showed a crash report dialog. • •
Moving the browser window caused artifacts, the desktop was not redrawn properly. •
The browser window became transparent and could not be dragged, shortly after clicking the window the browser
automatically closed and restarted without notification. •

The screen turned black for a short time, then the browser crashed with a dialog titled „chrome.exe – Application
Error“, message text: „The application was“. After closing the message another error message with the same title
appeared, message text: „The exception unknown software exception (0xe0000008) occurred in the application
at location 0x00007FFC8111A799.“

•

The browser became unresponsive. The OS displayed a dialog titled „WerFault.exe – Application Error“, message
text: „The application was unable to start correctly (0xc000012d). Click OK to close the application. After
confirming the dialog by pressing the "OK" button the browser window remained open and unresponsive.

•

The screen turned black for a short time, then the browser crashed with a dialog titled „msedge.exe – Application
Error“, message text: „The exception unknown software exception (0xe0000008) occurred in the application at
location 0x00007FF9E242A799.“. After confirming the dialog a white unresponsive browser window stayed
open.

•

The browser crashed with a dialog titled „firefox.exe – Application Error“, message text: „The excep-
tion Breakpoint A breakpoint has been reached. (0x80000003) occurred in the application at location
0x00007FF9DB4C0955. Click on OK to terminate the program“.

•

F

The OS froze. • • •
The screen turned black. • •
The screen was no longer redrawn properly. • •

OS versions: 1Kubuntu Linux 18.04.5 LTS (Kernel 5.4.0-62), 2Windows 10 (1909 Build 18363.815)
Browser versions: 3Chromium 83.0.4103.0, 4Firefox Nightly 86.01a, 5Chrome 83.0.4103.106, 6Edge 83.0.478.45
Hardware configuration: Dell Latitude 5280, Intel Core i5 7200U, 8 GiB RAM, 240 GiB M.2 SATA

Table 5: During our evaluation of the fork bomb we observed effects that affected browsers and operating systems. This table
provides a detailed description of behavior we classified as "browser crash (�)" and "OS unusable (F)".

	Introduction
	Background
	Site Isolation
	Exhaustible OS Resources
	Domain Name System (DNS)

	Resource Exhaustion Attacks Based on Site Isolation
	First Level Resource Exhaustion: Fork Bomb
	Second Level Resource Exhaustion: UDP Port Exhaustion

	Evaluation of Resource Exhaustion Attacks
	Fork Bomb Evaluation
	UDP Port Exhaustion Evaluation

	Advanced Attack: DNS-Poisoning by Exhaustive Misappropriation of Network Sockets (DEMONS)
	Setup Phase
	Poisoning Phase

	Evaluation of DEMONS
	Setup of Internet Evaluation
	Results of Internet Evaluation
	Setup of Lab Evaluation
	Results of Lab Evaluation
	Discussion

	Mitigations
	Mitigating the Fork Bomb
	Our Solution: Limit Processes by Visible Windows and Tabs
	Mitigating UDP Port Exhaustion
	Mitigating DNS Cache Poisoning Attacks

	Related Work
	Conclusion and Future Work
	DEMONS Implementation Details
	Tracking the port numbers used by WebRTC Objects
	Modifying the SDP

	Evaluation Results of the DEMONS Mitigations deployed in Chrome/Chromium and Edge
	Site Isolation-Based Fork Bomb Details

