
Every Signature is Broken: On the Insecurity of Microsoft Office’s OOXML
Signatures

Simon Rohlmann
Ruhr University Bochum

Vladislav Mladenov
Ruhr University Bochum

Christian Mainka
Ruhr University Bochum

Daniel Hirschberger
Ruhr University Bochum

Jörg Schwenk
Ruhr University Bochum

Abstract

Microsoft Office is one of the most widely used applica-
tions for office documents. For documents of prime impor-
tance, such as contracts and invoices, the content can be signed
to guarantee authenticity and integrity. Since 2019, security
researchers have uncovered attacks against the integrity pro-
tection in other office standards like PDF and ODF. Since
Microsoft Office documents rely on different specifications
and processing rules, the existing attacks are not applicable.

We are the first to provide an in-depth analysis of Office
Open XML (OOXML) Signatures, the Ecma/ISO standard
that all Microsoft Office applications use. Our analysis reveals
major discrepancies between the structure of office documents
and the way digital signatures are verified. These discrepan-
cies lead to serious security flaws in the specification and in
the implementation. As a result, we discovered five new attack
classes. Each attack allows attackers to modify the content in
signed documents, while the signatures are still displayed as
valid.

We tested the attacks against different Microsoft Office
versions on Windows and macOS, as well as against Only-
Office Desktop on Windows, macOS and Linux. All tested
Office versions are vulnerable. On macOS, we could reveal
a surprising result: although Microsoft Office indicates that
the document is protected by a signature, the signature is not
validated. The attacks’ impact is alarming: attackers can arbi-
trarily manipulate the displayed content of a signed document,
and victims are unable to detect the tampering. Even worse,
we present a universal signature forgery attack that allows the
attacker to create an arbitrary document and apply a signature
extracted from a different source, such as an ODF document
or a SAML token. For the victim, the document is displayed
as validly signed by a trusted entity.

We propose countermeasures to prevent such issues in the
future. During a coordinated disclosure, Microsoft acknowl-
edged and awarded our research with a bug bounty.

1 Introduction

Microsoft Office is one of the most important tools to man-
age word documents, presentations, and spreadsheets. For
Office 365 alone, there were nearly 300 million paying users
worldwide in 2021 [1]. Starting with Office 2007, all docu-
ments by default are stored as Office Open XML documents
(OOXML [2]).

OOXML Document Signatures. Similar to competing office
formats like PDF and ODF, Microsoft offers digital signatures
to protect their electronic documents, for instance, Word, Ex-
cel, and Powerpoint.

A digital signature is an electronic, encrypted,
stamp of authentication on digital information such
as email messages, macros, or electronic documents.
A signature confirms that the information originated
from the signer and has not been altered [3].

These strong security guarantees can be used to protect critical
office documents, such as contracts and invoices, against tam-
pering. The Office Open XML (OOXML) standard defines
how office documents are digitally signed, using a specific
variant of XML signatures [4]. OOXML digital signatures on
office documents are used, among others, by governmental
agencies like the Defense Counterintelligence and Security
Agency (DCSA) [5], the government of Canada [6], the Fed-
eral register [7], and by the Federal Identity, Credential, and
Access Management (FICAM) program [8].

Prior Work. In recent years, several academic publica-
tions [9–12] addressed the security of digital signatures on
office document formats like PDF and ODF, which are dif-
ferent from OOXML. These works identified several attacks
where the contents of the documents could be altered, but
the signature still was displayed as valid. However, these at-
tacks are not applicable to OOXML documents, since they
rely on the specific structure of the different data formats.
Similarly, Microsoft macro code can be digitally signed, but
a different data structure is used for this purpose. So recent

attacks on macro signatures, such as CVE-2020-0991 and
CVE-2020-0760, are not related to our work.

A Complex Container of Linked XML Structures. Both the
rendering flow and the signature verification flow of OOXML
documents are complex. Various files of the OOXML pack-
age and cross-references in multiple files are involved in the
rendering process. Besides the main document.xml there
is a relationship file specifying which other files should be
included during rendering. The names of these other files
suggest a specific use: For example, the file people.xml is
intended to store only the names of people who made com-
ments in a document. We discovered that such files could
also store any renderable content shown after opening the
document.

The signature verification flow uses the complex XML
signature standard with different types of references to signed
parts (URIs, IDs), and increases this complexity by adding
another layer of references to the hash tree of XML signatures.

Specification Flaws. We show that the complexity of the sig-
nature verification and on the rendering side, lead to vulnera-
bilities on the standards level which undermine the security
goals stated by Microsoft [3]. More precisely, we show that
the following three attack classes require fixes in the current
specifications.
Content Injection Attack (CIA) abuses the standard’s dis-

crepancy to place rendered content in files that should be
used for different purposes, for example, holding meta-
information.

Content Masking Attack (CMA) manipulates styling or font
information after a document is signed in such a way,
that different content is displayed.

Legacy Wrapping Attack (LWA) embeds a signature of a
legacy document (e.g., *.doc) into an OOXML docu-
ment.

All attacks are compliant with the standard while exploiting
edge-cases: some well-specified parts are not protected by the
signature since they are expected to be harmless. Our attacks
prove this assumption wrong.

Implementation Flaws. In addition, to the specification flaws,
we discovered two implementation flaws in all Microsoft
Office applications:
Universal Signature Forgery (USF) exploits serious flaw in

the verification logic allowing attacker to manipulate
any content of the document. From a single valid XML
signature token, taken from any other source (e.g., ODF,
SAML), arbitrary OOXML files can be constructed that
will be displayed as validly signed.

Malicious Repair Attack (MRA) abuses the repair function-
ality in Microsoft Office to hide harmless content and
present the malicious one. This is the only attack re-
quiring user interaction – the victim clicks on the repair
prompt.

Research Methodology. The security of office document sig-

natures depends on the interplay between the rendering flow,
and the signature validation flow: Only validly signed parts
of the document should be rendered. We studied the OOXML
standard (6730 pages) and systematized both the document
rendering flow and the signature validation flow. It turned out
that both flows are very complex. For instance, the signature
validation flow increases the complexity of the signature ver-
ification by adding an additional level of references to the
hash tree used by XML signatures. The rendering flow, on the
other side, sometimes recognizes partially signed documents
and sometimes it does not. We systematize the core insights
of the standard and describe them in Figure 1.

We carefully analyzed both flows for vulnerabilities. In
the rendering flow, we looked for content that can be added
after signing. We placed this content at different locations
in the OOXML package ensemble and tested if this content
was made visible by the rendering flow. For the signature
validation flow, we carefully analyzed the different reference
types. We identified structures within the OOXML package
ensemble which were only partially signed, and which could
be manipulated. These partly signed structures are fixed by the
OOXML standard, so we classified any attacks which could
be traced back to this root cause as standard-level attacks. We
also discovered implementation errors in Microsoft Office
and OnlyOffice. For macOS versions of Microsoft Office, we
were able to show that no signature validation is performed.
By combining these two analysis approaches, we were able
to discover the above-mentioned vulnerabilities.
Contributions. We make the following key contributions:

• We are the first to provide a systematic analysis of
OOXML signatures (Section 4). We extract and ana-
lyze systematically both the rendering and the signature
validation.

• We identify three major issues (Section 5): (1) OOXML
uses partial signatures. (2) The rendering flow does not
differ between signed and unsigned content. (3) The
cryptographic verification of the digital signatures is
complex and requires the correct validation of refer-
ences to multiple elements and files, transformations
of the signed content, hash computations, and public-key
operations.

• We built every issue into an attack class that manipulates
the displayed content of a signed OOXML document in
such a way, that a victim opening the document is unable
to detect the manipulation. In summary, we created more
than 470 attack vectors.

• We evaluate Microsoft Office on Windows and macOS
in different versions, as well as OnlyOffice Desktop on
Windows, macOS and Linux (Section 7). While all Win-
dows versions of Microsoft Office are entirely vulnerable
to each attack, the result for macOS is even worse. We

discovered that on macOS, it is sufficient to include a
sig1.xml without any content to force the application
to show a security banner stating that the document is
protected by a signature.

• We propose countermeasures (Section 8). We describe
one particular mitigation for each attack class that ad-
dresses the attack’s root cause.

We have created proof of concept (PoC) files for all at-
tacks described in this paper and made them available
at the following URL: https://github.com/RUB-NDS/
OOXML_Signature_Security

Coordinated Vulnerability Disclosure. We have reported all
vulnerabilities found during our investigations to Microsoft,
OnlyOffice, as well as to the responsible standardization com-
mittee ISO/IEC JTC 1/SC 34. The vulnerabilities have been
acknowledged by Microsoft. However, Microsoft has decided
that the vulnerabilities do not require immediate attention.
According to Microsoft, a potential fix in the future is not ex-
cluded. We have not received any feedback from OnlyOffice
as of October 4th, 2022.

2 The OOXML Document Format

The OOXML standard is divided into four parts, published in
the 5th edition in 2015-2021 by Ecma International [2], and
as ISO/IEC Standard 29500 in the 4th edition in 2015-2021
[13]. It relies on the Open Packaging Conventions (OPC),
for instance, multiple files are zipped in a container. In this
section, we explain the meaning of these files and describe
how digital signatures are applied.
Document Structure. Each OOXML document contains mul-
tiple files in a zipped package. The [Content_Types].xml

holds for the contained files of the OOXML the corre-
sponding content type and their relative path. The relation-
ship file contained in _rels/.rels contains the references
to the main document file word/documents.xml, and to the
properties files docProps/app.xml and docProps/core.xml.
The properties files contain, among other things, informa-
tion about the author, creation time, or the Office version.
The document’s content, which is presented once the doc-
ument is opened, is mainly stored in word/document.xml.
The word/_rels/document.xml.rels relationship file defines
a catalog with all further files. Thus, the application knows
which files are included and where to find them (see Figure 1).
The files word/styles.xml and word/fontTable.xml specify
different preferences, such as character spacing and fonts.
Rendering Process. The word/document.xml file contains the
displayed content of the document in a XML body element
and serves as the basis for the rendering process. During
the rendering process, other files of the OOXML package
can be included. For this, the word/document.xml contains ID
based references which must correspond to the entries within

Figure 1: The digital signature in OOXML is stored in an
Extensible Markup Language (XML) file. The starting point
of the verification flow is the Signature Value. All files are
implicitly protected by storing and verifying their digest val-
ues. The rendering flow processes first document.xml and
document.xml.rels to load all needed files.

the relationship file at word/_rels/document.xml.rels. The
files included in this way, for example word/styles.xml or
word/fontTables.xml, are thus integrated into the rendering
process in order to adjust the appearance of texts accordingly.
The files referenced like that, e.g., word/fontTables.xml, can
also include their own relationship files under word/_rels/,
which reference embedded fonts, for example.

Digital Signature. Figure 1 depicts the structure of the digital
signature of an OOXML document. Each signature is stored
in an XML file which contains six main areas: Package Info,
Office Info, Signature Properties, Signed Info, Signature Value,
and Key Info.

Package Info lists all protected files by referencing
their name and path. The signature always protects the
document.xml file. In addition, for each file referenced
in document.xml.rels, the hash value of the entire con-
tent is computed and stored. An important exception is
document.xml.rels itself since it is partially signed. Office
Info stores the application preferences, such as the used Of-
fice and Windows versions. Also, resolution preferences are
stored. Signature Properties defines metadata regarding the
signature generation like timestamps and used certificates.
Signed Info references the Package Info, Office Info, and Sig-
nature Properties. For each area, a digest value is computed.
Finally, all references are digitally signed. Signature Value
stores the digital signature computed over Signed Info. Key
Info refers to the keys used to sign the document. This area is
not signed so that attackers can manipulate it.

Verification Flow. The verification process of a signed docu-
ment begins with the Signature Value – the application cryp-

https://github.com/RUB-NDS/OOXML_Signature_Security
https://github.com/RUB-NDS/OOXML_Signature_Security

tographically verifies the correctness of the value, using the
public key extracted from Key Info. This step ensures that the
references and the corresponding digest values of Package
Info, Office Info, and Signature Properties have not been mod-
ified. Second, the application computes the digest values of
each reference and compares them with the stored digest val-
ues. A successful verification means that all three areas have
not been modified. Then, the hash values of all referenced
files in the Package Info are computed and compared. As a
result, the application verifies that the files have not been mod-
ified. Finally, the certificate’s trustworthiness that the Key Info
holds is validated. For instance, Microsoft Office relies on the
Windows Certificate Store for the PKI-based trust validation.

Partial signatures:
Name of the signer Date of signing

Valid signatures:
Name of the signer Date of signing

Recoverable error:
Name of the signer Date of signing

Invalid signatures:
Name of the signer Date of signing

UI Layer 2
UI Layer 3

1.

2.

3.

a)

c)

d)

b)

UI Layer 1
1.
2.
3.

SIGNATURES This document contains valid signatures.

SIGNATURES This document contains invalid signatures.

SIGNATURES This document contains recoverable signatures.

Signed Document
This document has been signed and marked as final. It should not
be edited. If anyone tampers with this document, the signatures
will become invalid.

Recoverable Signatures
One or more of the digital signatures in this document is
recoverable or could not be verified. A recoverable signature may
indicate that an error occurred when the document was signed.

Invalid Signatures
One or more of the digital signatures in this document is invalid or
could not be verified. An invalid signature may indicate that the
document has been modified since it was signed.

Figure 2: Representation of the possible signature states of
a signed OOXML document, within the User Interface (UI)
layers 1, 2, and 3 of Microsoft Office: (1) The signature is
valid and trusted, (2) the signature is valid but not trusted, and
(3) the signature is invalid.

UI Layer. To reflect the signature status of a document, Mi-
crosoft Office uses different UI layers (see Figure 2). The first
UI layer is shown as a banner directly when opening a signed
document. Here the signature status is indicated as 1. valid
(signature is valid and the certificate is trusted), 2. recover-
able (signature is valid, but the certificate is not trusted) or 3.
invalid (signature is invalid). UI layer 2 reflects the signature
status of UI layer 1 and contains detailed information about
the signature status. UI layer 3 contains information about
the signer and distinguishes between a) full and b) partial sig-
nature for a valid signed document. When Microsoft Office
signs a document, the signature status is displayed in UI layer
combination (1. a) despite the partial signature.

3 Attacker Model

In this section, we define a set of capabilities and rules that
attackers and victims follow during the attack execution. The
attacker creates a document using the given capabilities. Then,
the victim receives that document and opens it. Depending on

the attacker’s goal, the attack can succeed or fail.
Attacker Capabilities. In this section, we define two require-
ments. The attacker fulfills one of them to carry out the attacks
described in this paper.

Trustfully Signed Document (ô) The attacker has access
to a trustfully signed document. Such a document may be
publicly available on the Internet, for example, a signed law
document.

Signing Oracle (¨) In 2021, a new attacker model on
signed documents was introduced [10]. In this case, the at-
tacker has access to a signing oracle, similar to a chosen-
message attack. Thus, the attacker can choose – wholly or
partly – the document’s content to be signed. The victim
trusts that document’s signature. We assume that the mali-
cious payload must be invisible/not executed by the signing
oracle. Thus, the document appears to be legit. After signing,
the attacker reveals the malicious payload in a subsequent
document manipulation.
Attacker Goal: Data Manipulation (N). The attacker aims
to manipulate the content that the application renders. Since
a signature protects the document’s integrity, a desirable at-
tack goal is to change the content of the document without
invalidating the signature status. An attack is considered suc-
cessful if the signature displays as valid and trustworthy while
malicious content is rendered and shown to the victim.
Victim’s Behaviour. We assume that the victim expects to
open a document that is signed by a trusted authority. The
victim does not trust the document when warnings are thrown
regarding an invalid or untrusted signature. We exclude docu-
ments signed with untrusted keys since such documents throw
a warning after opening them.

4 Systematic Analysis

We divided our analysis in five phases. First, we analyzed the
OOXML standard in the 5th edition [2] and its implemen-
tation in different versions of Microsoft Office. Consequen-
tially, we studied the processing of documents in Microsoft
Office and documented edge-cases with potential security im-
pact. Based on our observations, we developed the attacks
described in this paper and evaluated them.
Phase 1: Security Issues in the OOXML Standard. In the
first phase, we analyzed the OOXML standard regarding the
implementation of signatures. We identified a severe issue
– the OOXML standard uses partial signatures that do not
protect the entire OOXML package [2, Part 2, p. 45] (see
Appendix A.1). More concrete, the relationship files, which
are responsible for referencing the files, contain unprotected
parts. The signature only protects individual strings, indexed
by unique IDs, but the relationship file as a whole remains
unsigned [2, Part 2, p. 50] (see Appendix A.1). This feature
allows attackers to include references to subsequently added
files after signing.

For individual files within the OOXML package, such as
styles.xml, the standard defines the root element of the re-
spective XML file. However, it is not forbidden to use el-
ements defined for other files, e.g., documents.xml. Thus,
the body element responsible for the rendered content can
be defined in other files besides documents.xml, such as
styles.xml. A distinction whether the inserted content is
signed or unsigned does not take place and is not distinguish-
able in any way.

Result: The creation and verification of digital signatures in
OOXML contradicts at least the security goal of full integrity
protection.

Phase 2: OOXML Signatures in Microsoft Office. In
Phase 2, we analyzed how Microsoft Office builds and signs
OOXML packages in practice. We could verify that Microsoft
Office supports the concept for partial signatures. For exam-
ple, the digital signature is computed over all files within
the word/ subdirectory as well as their reference in the rela-
tionship file. However, there are also files that are not part
of the signature. We identified that the file describing the
content types [Content_Types].xml of the package is un-
protected. There are additional unprotected properties files,
such as docProps/app.xml and docProps/core.xml contain-
ing, among other things, the creator of the document.

Result: Through the analysis in Phase 1 and 2, three pos-
sible points of attack could be identified: (1) manipulation
of existing but unsigned files, (2) manipulation of the signa-
ture file, and (3) manipulation by subsequently added files or
references.

Phase 3: Manipulation of Unsigned Files. We
analyzed how Microsoft Office reacts to changes
within the [Content_Types].xml, docProps/app.xml,
docProps/core.xml and the corresponding relationship files.
For this purpose, we changed the content type and reference
in the relationship file. We gradually added new content
to the property files that should either change the style
element of the OOXML or add new content to be rendered
in the document. As soon as the XML root element within
a properties file deviated from the content type or defined
reference, Microsoft Office considers the OOXML document
corrupt. Style elements or content inserted within the property
files were not actually displayed as document content with
any of the attack vectors. Only the meta information of the
document, such as creator, last modifier, and the associated
timestamps could be modified without invalidating the
signature. However, since these files are not included in the
signature calculation, this result was expected.

Result: In this analysis phase, 24 OOXML with different
attack vectors were created. We confirmed known threats on
the current version of the OOXML standard [14], but no new
attacks have been found.

Phase 4: Manipulation of the Signature File. A character-
istic for the signature file in OOXML packages is that the

files-to-be-signed and their reference strings are not directly
placed in Signed Info.

Figure 3: The signature flow generates multiple relations
between the protected content. If any of the relations is not
properly verified, attacks are possible.

Within Signed Info, a reference is given to Package Info. In
Package Info, the digest values of multiple files are stored and
compared during the signature verification. If the reference to
Package Info is missing, the rendered content of the OOXML
package is not protected by the signature. In our analysis, we
evaluated how Microsoft Office reacts if the referenced ele-
ment is missing. For this purpose, we took an XML signature
that has not been created with Microsoft Office. Thus, the
signature is valid, but it does not contain the reference. The
result is a novel attack variant on OOXML documents which
we introduce in Section 6.1.

In addition, we analyzed how Microsoft Office handles
signatures created with untrusted keys (Key Confusion [12,
15, 16]). We also evaluated the behavior in case of multiple
elements in Key Info. The attack’s idea is that one key could
be used to validate the signature (key/certificate controlled
by the attacker) and a second key to validate the signer’s
trustworthiness. For this attack, we considered different key
formats allowed in XML and different positions within Key
Info. We did not find any vulnerabilities for this attack class
for Microsoft Office.

XML Signature Wrapping (XSW) is another attack class on
XML signatures [12, 17, 18]. We used XSW and evaluated the
manipulation of objects referenced within the signature file.
We could not identify any vulnerabilities with this approach.

We checked signed OOXML documents also against fur-
ther known attacks on XML signatures: By simply removing
relevant parts of the signature (Signature Exclusion [18]), we
tested whether the processing of an XML signature is dis-
rupted by the verification logic and falsely displays a valid
signature.

We also analyzed attacks like Certificate Faking [12, 15]
which rely on an incorrect verification of the certificate trust-
worthiness. Thus, documents created by the attacker by using
untrusted keys are still displayed as trusted and valid to the
victim.

Another known attack on XML signatures is the Node
Splitting attack [19, 20] which confuses the XML parser. The
idea is to insert a comment or XML entity into a value so that
an implementation can split it into two parts. The rendering
logic could display different values than the content processed
by the verification logic.

We also examined possible attacks using HMAC trunca-

tion [21]. However, HMAC is not supported for OOXML
signatures.

For none of the attacks Signature Exclusion, Certificate
Faking, Node Splitting, HMAC Truncation we could find
vulnerabilities in signed OOXML documents.

Result: By failing to verify that the files in the OOXML
package are actually referenced in Signed Info, it is possible to
create universally usable valid signatures that do not provide
any integrity protection over the files contained in the pack-
age. A total of 211 OOXML documents with different test
vectors were generated in this phase. Known attacks on XML
signatures were adapted and tested on OOXML documents.

Phase 5: Manipulation Based on Partial Signatures. In
the fifth analysis phase, we investigated the support of partial
signatures in OOXML. First, we tested which manipulations
are possible based on an already signed OOXML document.
Since both the [Content_Types].xml file is not signed at all
and the relationship files are only partially signed, there is
always a possibility of adding more files to a signed OOXML
package. The main challenge is to force the application to
process and render the injected files. For instance, the in-
dividual files in the package must also be used within the
document.xml to be presented after opening the document. As
a result, we addressed two main questions:
(1) Do files exist that are rendered by opening the document,

but not referenced in document.xml?
(2) Can we exclude files referenced by document.xml from

the signature computation?
We found solutions to both questions resulting in two differ-
ent attacks classes which are described in Section 5.1 and
Section 5.2.

We have also identified a problematic feature related to
signed OOXML documents. In OOXML documents, graphics
can be used as external resources. Here, only the URL of the
graphic is stored in the document and automatically reloaded
when opened. The automatic reloading of the graphic can also
be observed in signed documents and can be used to change
the graphic within a signed document by replacing the image
stored under the URL.

In the last analysis step of the fifth phase, we looked at
the properties of Microsoft Office’s automatic repair feature.
This feature is used, for example, when a OOXML package
contains an unexpected file combination. This led to the at-
tacks described in Section 6.2. However, the limitation of this
attack class is that once repaired, documents cannot be saved
without changing the file structure and thus invalidating the
signature. Thus, they are only suitable for a one-time attack.

Result: A total of 252 attack vectors emerged in this analy-
sis phase, resulting in six novel attacks on OOXML signatures.
Most of the attacks exploit the OOXML’s support for partial
signatures and show that partial signing does not preserve the
integrity of a document.

Attack Vector Generation. A simple Word document signed

with Microsoft Office has at least two relationship files and
one file to describe the content type of the different files in
the OOXML package. This simple Word document contains a
total of 9 references with different types and IDs. In addition,
the [Content_Types].xml contains 3 default type definitions
and also a content type for each reference. There are different
possible combinations of the entries within these three files
which need to be tested. If the document is extended with
comments, footers, headers and footnotes, the entries in the
relationship files and [Content_Types].xml will be extended
accordingly. If graphics or fonts are embedded, even new rela-
tionship files with corresponding references to the document
are added. This resulted in the described multitude of test vec-
tors in the different analysis phases, which were created by
various permutations based on the following initial questions:
What happens if we ...

• exchange the entries between the relationship files?
• refer to files that do not exist?
• declare XML elements that do not match the XML

schema?
• define multiple entries with the same or different IDs?
• reuse XML elements?
• have different content types?
• combine any of the manipulation techniques?
The creation of the test vectors for the signature file attacks

also requires a large number of permutations to check the
vulnerability of the applications. For example, to carry out
XSW the variety arrangement of XML elements using the
same or different ID should be considered. With respect to
Key Confusion, the use of different X509 Data elements in
different order leads to the creation of multiple documents.
While most of the attack vectors were created manually, the
correct signing with an RSA or DSA key required the pro-
gramming of a tool written in C# by using the functions of
the System.Security.Cryptography namespace. In total, the
analysis phase produced over 430 attack vectors, which re-
sulted in 7 successful PoCs, which are described in detail in
Section 5 and Section 6.

5 Specification Attacks on OOXML

This section describes attacks that create documents which
are compliant to the OOXML specification. Thus, implemen-
tations that strictly implement the OOXML specification are
vulnerable. We use Word documents as the basis for the at-
tacks. Similar to Word, signatures are also applied to Excel
and PowerPoint documents. However, we stress that the files
within Excel and PowerPoint OOXML packages are different
from Word documents.

5.1 Content Injection Attack (CIA)
The goal of this attack is to manipulate a trustfully signed
OOXML document by adding arbitrary content to the doc-

ument while hiding the original content. It abuses a lack in
the OOXML specification allowing to add unsigned files and
reference these.

Attack Requirements ô. The attacker requires an OOXML
document signed by a trusted entity.

Manipulation Technique. The attack exploits the partial sig-
nature coverage of the relationship file document.xml.rels.
Thus, it is possible to subsequently add XML files to a signed
OOXML package and reference them correctly. Usually, these
added files do not influence the content of the document be-
cause they are not referenced in the document.xml file. How-
ever, this does not apply to people.xml since this file is pro-
cessed without prior referencing. Thus, arbitrary content can
be added and presented by opening the signed document. This
content includes, for example, text, text boxes, or graphics.
The attacker can use text boxes or graphics to cover the origi-
nal text and add arbitrary new content above it (see Figure 4).

Dear Team,

Please remember that for security
reasons we only use signed documents
in our company from now on.

Best regards, the Manager

remember that for secu
s we only use signed ddoocccuuuummmmeeennntts
companyy ffrroommmm nnnoooww on.

ar

ents
ow on.

ards, the Managerreggaar

urity

Figure 4: Content Injection Attack (CIA) attack on a signed
document of a trusted entity. The attacker uses the people.xml

file to subsequently modify the signed document and place
own content over the original content.

Manipulation Steps.
(1) The attacker requires an OOXML document validly

signed by a trusted entity.
(2) The attacker creates a people.xml file.
(3) In this file, the attacker places multiple text boxes with a

white background overlaying the original text and sets
up their positions in the document.

(4) The attacker adds the people.xml file into the word sub-
folder of the OOXML package.

(5) The attacker manipulates [Content_Types].xml and

adds a reference to the file people.xml. This manipu-
lation is permitted because [Content_Types].xml is not
signed.

(6) The attacker manipulates document.xml.rels by refer-
encing the malicious file people.xml. This manipulation
is also permitted because the relationship file is only
partially signed. With the support of partial signatures in
the specification, already signed elements cannot be tam-
pered, but new files can be added without invalidating
the signature.

(7) (Optional) Graphics referenced by people.xml should
be declared in people.xml.rels and placed in the
word/media folder.

Impact. After opening the document, the content injected by
the attacker is displayed. The applied signature of the trusted
entity is still successfully verified. The attacker, however, can
hide original content and overlay it with arbitrary text. It is
also possible for the attacker to increase the original page
count by injecting new content. Only the reduction of the
original number of pages is not possible.

5.2 Content Masking Attack (CMA)
The idea of content masking is similar to CIA: the attacker
includes unsigned malicious files after the document is signed.
In comparison to CIA, the requirements for content masking
attacks are different.

Figure 5: The attacker sends a harmless-looking document
to the signing oracle which does not contain references to
contained fonts and styles. As a result, the fonts and styles
will be not signed. After signing the attacker can arbitrarily
manipulate these files and change the text appearance of the
signed document.

Attack Requirements ¨. The attack requires a signing ora-
cle. The attacker creates a harmless-looking document that a
trusted entity signs. After signing, the attacker manipulates
the signed document and distributes it to the victim.
Manipulation Technique. First, the attacker creates a ma-
licious document that they want to sign. Then, the at-
tacker removes the references to fontTable.xml or style.xml
in the document.xml.rels. Since only referenced files in
document.xml.rels are protected by the signature, the at-
tacker can manipulate later all unsigned files.

In comparison to CIA, where the injection of the
people.xml is always possible, the attacker needs to prepare
the malicious document before it is signed. For example, text
areas in document.xml should refer to fonts or styles defined in
fontTable.xml or style.xml. Otherwise, the manipulations
will not affect the appearance of the corresponding text areas.

Font Injection Attack (FIA). For OOXML documents it
is possible to embed fonts. If fonts have been used that are
neither embedded nor present on the viewer’s system, an oper-
ating system font that is as similar as possible can be selected
automatically [2, Part 1, pp. 669-670]. An attacker can use
these features to mask content or display it differently. The
attacker creates custom fonts, for example, with the tool Font-
Forge1. The attacker must choose a different name from the
fonts available on the system (e.g., Arial1 instead of Arial).
Within the custom fonts, the attacker can remove the graphic
representation of individual letters to hide specific text pas-
sages. Within additional custom fonts, the attacker exchanges
letters with each other to change specific text passages. By
using multiple custom fonts for different text passages, the
attacker can create a document that displays the same con-
tent entirely differently depending on whether or not custom
fonts are embedded and referenced in the document. After
the document is created, the attacker removes the reference
to the embedded fonts and passes it to the signing oracle. The
attacker’s harmless content is rendered since the embedded
fonts are not referenced and the signing oracle does not have
the custom fonts installed. After signing, the attacker inserts
the reference to the custom fonts back into the document. This
insertion masks the content or renders it differently based on
the custom fonts.

Style Injection Attack (SIA). Similar to FIA, the attacker
uses a signing oracle to get a self-created Word document
signed without the reference to the styles.xml file. The at-
tacker can add the reference to the styles.xml back to the
relationship file without breaking the signature. By manipulat-
ing styles.xml, the appearance of individual elements of the
displayed content can vary. In this way, the attacker can, for
example, selectively hide or overlay individual text passages.

Impact. By adding content via the body element, new content
can also be injected via the styles.xml. In comparison to CIA,
the impact is lower since the attacker needs a signing oracle
for every manipulated document.

5.3 Legacy Wrapping Attack (LWA)

The goal of Legacy Wrapping Attack (LWA) is to use the sig-
nature of a Word document in the old binary file format (e.g.,
.doc) to display a valid signature to the victim over content
controlled by the attacker. The victim sees a valid signature of
a trusted entity while opening the signed document (.docx).

1https://fontforge.org

Attack Requirements ¨. The attack requires a signing or-
acle, which means that the attacker creates a malicious but
harmless-looking document that a trusted entity signs.

Manipulation Technique. This attack combines legacy doc-
ument formats with the modern XML signature. Legacy doc-
uments use the Compound File Binary format as a container
format [22]. When a Microsoft Office version that supports
XML-based signatures signs a legacy document, it creates
a new folder _xmlsignatures in the legacy document. This
folder contains a single file with a random number as the file
name. This signature file is identical to an sig1.xml file that
the modern OOXML format uses. The signature of a .doc

legacy document includes 1Table, [0x01]CompObj, Data, and
WordDocument. The byte before CompObj is a byte with the
value 1. Word requires that all files in OOXML documents
have a content type assigned in [Content_Types].xml Other-
wise, it considers the document corrupted and prompts for
repairing the document. Most non-printable ASCII characters,
including 0x01, cannot be used directly. The attacker can cus-
tomize the legacy document with a hex editor to work around
this limitation. By manipulating the 0x01 byte into a printable
character, for example, into A, the attacker keeps the structure
of the document intact.

Manipulation Steps.
(1) The attacker creates a legacy document (.doc) with con-

tent that the signing oracle will agree to.
(2) The attacker transforms the byte with value 0x01 before

CompObj into a printable byte (in this case A).
(3) The signing oracle signs the document.
(4) The attacker creates a new .docx document and chooses

the content arbitrarily.
(5) The attacker injects 1Table, ACompObj, Data, and

WordDocument into the root directory of the .docx pack-
age.

(6) The attacker sets the content types to
application/octet-stream in [Content_Types].xml.

(7) The attacker copies the _xmlsignatures from the signed
.doc document to the .docx package.

(8) The attacker renames the signature file in
_xmlsignatures (which has a file name consisting of a
random number) to sig1.xml.

(9) The attacker creates the _xmlsignatures/origin.sigs

and _xmlsignatures/_rels file for sig1.xml.
(10) The attacker adds the content types

for _xmlsignatures/origin.sigs and
_xmlsignatures/sig1.xml in [Content_Types].xml.

(11) The attacker adds a digital signature relationship to
_rels/.rels.

Impact. This attack takes advantage of legacy documents
(.doc) that are differently structured in comparison to
OOXML documents. When a legacy document is signed with
a newer version of Microsoft Office, an XML signature is cre-
ated that is compatible with the XML signatures of OOXML

documents. By obtaining an OOXML signature over a legacy
document, it is possible to insert the legacy document and
signature into any OOXML document to obtain a universally
valid signature. This document displays a valid signature of
a trusted entity to the victim when opening the manipulated
document while allowing the attacker to choose the content
arbitrarily.

6 Implementation Attacks on OOXML Office
Applications

This section describes attacks whose success depends on
underlying peculiarities of individual implementations, for in-
stance, Microsoft Office. These quirks can result from crypto-
graphic implementation bugs (Section 6.1) or implementation
features, such as document repair (Section 6.2).

6.1 Universal Signature Forgery (USF)

The attacker’s goal with Universal Signature Forgery (USF)
is creating a signed OOXML document with arbitrary content.
Once the victim opens the document, the application displays
a valid signature belonging to a trusted entity.

Figure 6: The attacker places a trustfully signed XML content
and reference it in Signed Info. Only this content will be
verified. Thus, the integrity verification of all files within the
package is skipped.

Attack Requirements. We assume that the attacker possesses
a valid XML signature of a trusted entity. The attacker could
extract a suitable XML signature from any other application
that uses XML Signatures, such as signed OpenDocument
Format (ODF) documents or SAML authentication tokens.
This requirement differs to other attacks. The attacker neither
needs a trustfully signed document ô nor a signing oracle
¨. They only need an XML Signature from any other source
that the victim trusts.

Manipulation Technique. The attacker creates a self-signed
OOXML document with arbitrary content. However, instead
of referencing the Signature Properties, Package and Office
Info, the attacker pastes a valid XML signature and the signed
content extracted from a different data format than OOXML,
for example, SAML.

The cryptographic signature verification processes the
Signed Info which does not reference the Package Info. Thus,
the attacker can change all digest values to correspond to the
modified content.
Manipulation Steps.
(1) The attacker creates a self-signed OOXML document

with arbitrary content. The self-signing process is only
used to let the application automatically create the cor-
rect references and hash values in Package Info.

(2) The attacker extracts the signature file from the OOXML
package.

(3) The attacker replaces the Signed Info, Signature Value,
and Key Info with a valid XML signature of a trusted
entity. For example, from a signed ODF document. If the
new Signed Info element contains references to internal
objects within the XML signature, these must also be
included.

(4) The attacker adds the thus manipulated signature file
back to the OOXML package.

Impact. If the victim opens the attacker-manipulated
OOXML document, the office application verifies the stored
digest values in Package Info against the existing files. Since
these hash values match the content created by the attacker,
this check is successful. Since Signed Info is taken from a
valid XML signature of a trusted entity, this validation is also
successful. Thus, the application presents a valid signature
over the document to the victim. The certificate’s trusted en-
tity contained in Key Info is shown as the signer.

6.2 Malicious Repair Attack (MRA)
These attacks abuse Microsoft Office’s repair feature to spoof
a trusted entity’s signature over attacker-controlled content in
automatically created temporary documents.
Attack Requirements ô. The attacker needs an OOXML
document signed by a trusted entity.
Manipulation Technique. This attack abuses the fact that
only the relationships present at the signing time are signed.
Thus, it is possible to add more relationships while preserving
the signature. This allows an attacker to create documents
containing signed but not rendered files.
Duplicate Document Attack (DDA). For this attack, the at-
tacker, obtains a validly signed OOXML document from a
trusted entity. Then, the attacker prepares a new OOXML
document which should be displayed instead. The attacker
renames all files in the new document such that they do not
collide with the default names. Finally, the attacker adds the

files of the newly created OOXML package to the signed
document and inserts the corresponding references to the
[Content_Types].xml. The attacker also adds a new relation-
ship with the target of the new document.xml. This is allowed
since the relationship file is only partially signed. The attacker
copies the document.xml.rels file from the attacker’s docu-
ment and renames it so that the name of the relationship file
matches the renamed document.xml.
Evil Type Attack (ETA). The attacker uses a signed Excel or
PowerPoint document to inject the contents of a Word package
into it. Using Microsoft Office’s automatic repair feature, the
victim is displayed the content of the Word package while the
signature is calculated over the original Excel or PowerPoint
document and thus remains valid.

To execute the attack, the attacker obtains a valid signed Ex-
cel or PowerPoint document from a trusted entity. The attacker
creates a Word document whose content is freely definable.
Then, the attacker copies the Word-related files into the signed
Excel or PowerPoint document. The attacker copies the con-
tent types of Word-related files into the [Content_Types].xml

of the signed document. The attacker inserts the references of
the Word package files into the relationship file of the signed
Excel or PowerPoint document. Finally, the attacker changes
the file extension to .docx

Impact. When the victim opens the manipulated document,
Microsoft Office prompts to repair the file. Through the auto-
mated repair process, Microsoft Office creates a new tempo-
rary document. The repair occurs because of the duplicate file
structure contained in the document. After the repair process,
the application displays only the content chosen by the at-
tacker. However, the signature verification is performed over
the content of the original document. Thus, a valid signature
of a trusted entity is displayed to the victim.
Limitation. A limitation of the attack exists as soon as the
victim saves the document repaired by Microsoft Office. In
this case, only the content chosen by the attacker is saved,
while the signature is kept over the original content. This
results in an invalid signature when the signed document is
reopened.

7 Evaluation

We evaluated our attacks against all versions of Microsoft
Office and OnlyOffice Desktop which are still in the product
lifecycle. For Microsoft Office, this includes the Windows
versions 2013, 2016, 2019, 2021, 365, as well as Microsoft
Office 2019, 2021, 365 for macOS. For OnlyOffice Desktop,
this includes the 7.1 versions on Windows, macOS, and Linux.
In this section, we describe the test environment and the re-
sults of our evaluation. Table 1 provides a summary of the
results.
Test Environment. We divided our test environment into
three system landscapes of Virtual Machines (VMs) based

on Windows 10 and Ubuntu 22.04.1, as well as a hardware
environment based on macOS Monterey. The signing oracle
relies on a VM with Microsoft Office 2019 installed, which
is configured with a private key and public certificate. The
attacker’s system deploys Microsoft Office version 2019 in a
VM and does not have access to the signer’s private key. The
victim’s systems consist of different VMs, each of which has
one of the examined Microsoft Office or OnlyOffice Desk-
top versions installed and trusts the public certificate of the
signing system. Furthermore, the victim system also relies
on a hardware environment with macOS incl. the examined
versions of Microsoft Office and OnlyOffice Desktop.

Excluded Applications. During our analysis, we analyzed
other popular office applications such as Google Workspace,
LibreOffice, OpenOffice, Collabora Office, NeoOffice and
the Digital Signature Services (DSS). Google Workspace,
OpenOffice, NeoOffice and DSS were excluded from the eval-
uation due to a lack of native support for OOXML signatures.
LibreOffice and Collabora Office recognize signed OOXML
documents, but even for validly signed OOXML documents a
warning is thrown that the signature has problems. This is due
to the default handling of partial signatures in LibreOffice.
This makes it impossible to evaluate the attacks, since there
is no status of a valid signature for signed OOXML docu-
ments in these applications. For this reason, LibreOffice and
Collabora Office were also excluded from the evaluation.

Microsoft Office for Windows. When evaluating the attacks
described in Section 5 and Section 6, we did not find any dif-
ference in the processing of signatures between the tested Win-
dows versions of Microsoft Office, so the evaluation showed
a consistent result. To determine the success of an attack, we
evaluated the different UI layers of Microsoft Office for each
attack vector. Here, the attack must result in the signature
state of a valid trusted signature (1. a) or (1. b) (see Figure 2).
In both signature states, UI layers 1 and 2 are identical. The
victim is displayed the following message under UI layer 2:

"This document has been signed and marked as final. It
should not be edited. If anyone tampers with this document,
the signatures will become invalid."

UI layer 3 indicates a partial signature in combination with
(1. b), but the victim has no way to investigate which parts of
the document the partial signature refers to.

CIA: This attack allows attacker-controlled content to be
added to the signed document. However, it is not possible to
remove the existing content without invalidating the signature.
We solved this limitation by using text boxes and graphics to
place new content over the original one. When the document
is opened, a valid trusted signature is displayed in the UI layer
combination (1. b). For the victim, only the attacker’s content
is visible due to the overlay. A limitation exists if the entire
content is selected and copied by using CTRL+A / CTRL+C. This
would copy the entire content, including the original content
of the document.

Microsoft
Office Build

Specification Flaws Implementation Flaws
CIA Content Masking

Attack
Legacy

Wrapping
USF Malicious Repair

Attack
Font Inj. Style Inj. Dup.

Doc
Evil
Type

ô ¨ ¨ ¨ ô ô ô

W
in

do
w

s

2013 15.0.5423.1000 q q q q q

2016 16.0.5278.1000 q q q q q

2019 16.0.10386.20017 q q q q q

2021 16.0.14332.20303 q q q q q

365 16.0.15028.20248 q q q q q

m
ac

O
S 2019 16.61.22050700 q. Direct content manipluation without any detection

2021 16.61.22050700 q. Direct content manipluation without any detection
365 16.61.22050700 q. Direct content manipluation without any detection

OnlyOffice
Desktop

Windows 7.1.1.57 q ¥ q ¥ q q

macOS 7.1.1 (533) q ¥ q ¥ q q

Linux 7.1.1.57 q ¥ q ¥ q q

Legend ¥: Not Vulnerable q: Vulnerable : Limited Vulnerability

Table 1: All Microsoft Office Variants in Windows are vulnerable to signature forgery attacks. For USF, Microsoft Office shows
valid signatures and for the remaining attacks valid partial signature (cf. Figure 2) when the victim opens the manipulated
documents. Only the Malicious Repair Attacks (MRAs) require user interaction to repair the signed document so that we count
the applications limited vulnerable. macOS does not verify the signature at all so that attackers can simply change the content in
document.xml – Microsoft Office on macOS always displays that the document is protected by a signature. OnlyOffice is fully
vulnerable to the CIA, LWA and Malicious Repair attacks. The Style Injection attack allows hiding content under OnlyOffice,
new content cannot be added, thus OnlyOffice is only limited vulnerable here.

CMA: In this attack class, a part or the entire content of
the document controlled by the attacker can be changed in its
presentation using style elements or prepared custom fonts.
When opened, Microsoft Office only displayed the attacker’s
intended content to the victim, while the signature state re-
mains valid and trusted in the UI layer combination (1. b).
Content Masking Attack (CMA) has the same limitation as
CIA: CTRL+A / CTRL+C can reveal the original content.

LWA: When opening a signed document based on LWA, the
attacker-controlled content is displayed while the signature
is considered valid and trusted, in the combination UI layer
(1. b), by Microsoft Office. The original signed content of the
document based on the old binary format is not visible.

USF: In this attack, the attacker controls the complete doc-
ument content of the OOXML package. When the document
is opened, there is no indication of tampering and the UI layer
combination (1. a) is displayed. As a signer, the original issuer
of the XML signature is displayed to the victim, even if the
signature does not protect the document content in any way.

Repair attacks: This attack class requires user interaction to
start the automated repair process. After the repair, Microsoft

Office displays the attacker’s injected document content to the
victim while the signature status of a trusted valid signature is
displayed in UI layer combination (1. b). The valid signature
status is preserved only for the temporary repaired document
and is invalidated by saving the document. Thus, we classify
these attacks as limited.

Microsoft Office for macOS. We evaluated the macOS vari-
ants of Microsoft Office and expected to find the same results
as for Windows. To our surprise, we were proved wrong:
macOS does not correctly validate signatures at all. We
used versions 2019, 2021 and 365, each with build number
16.61.22050700. If a validly signed unmanipulated OOXML
document is opened under macOS, the UI layers of the Win-
dows variants described in Figure 2 differ. UI layer 1 shows
that the document is protected by a signature (see Figure 7).
Microsoft Office also displays an icon of a signed document
at the bottom of the application with the following tooltip:

"This document contains signatures."
Further UI layers, which display, for example, the signer

or the signing date, do not exist in the macOS versions of
Microsoft Office. Still, the document is locked for editing by

Figure 7: When opening an attacker-manipulated signed doc-
ument under macOS, the UI layer 1 shows that the document
is protected with a signature, even if the signature file has no
content.

the graphical user interface and displayed in a read-only state.
The hints of a protected document indicate that Microsoft
Office cryptographically verifies the document’s signature.
However, a direct manipulation of the signed content within
the document.xml file of the OOXML package showed that
tampering is not detected. The signature hint messages re-
main identical. In the next step, we removed all the content
from the signature file sig1.xml. This removal showed that
Microsoft Office under macOS displays the same indication
of a signed document, even though there is no longer any
signature-relevant information in the signature file. Manipula-
tion of signed OOXML documents under the macOS variants
of Microsoft Office is thus trivial and does not require any
particular attack vectors as presented for the Windows vari-
ants.

OnlyOffice Desktop. For the evaluation of OnlyOffice, we
analyzed the versions on Windows, Linux and macOS. We
obtained the same results for all versions. OnlyOffice uses
only one UI layer for the validation status of signatures. This
UI layer is similar to the UI layer 3 of Microsoft Office (see
Figure 2). Here, the signer of the document as well as the
status of the signature valid (see Figure 2 → (a)) or invalid (see
Figure 2 → (d)) is displayed to the user. Only attacks resulting
in a valid signature status are classified as vulnerable.

CIA: For OnlyOffice, the attack was slightly improved and
allows attackers not only to add new content to a signed docu-
ment, but also to completely remove the old content from the
document view. For this purpose, the malicious people.xml

file is defined as a second main document in _rels/.rels

with Id0. Due to the lower ID in contrast to the document.xml,
the malicious people.xml is chosen as the main document by
OnlyOffice. Thus, only the content of people.xml is displayed
and the originally signed content is hidden. The attack thus ex-
ploits the possibility given by the specification to manipulate
the relationship file subsequently, as well as an implementa-
tion flaw of OnlyOffice that allows two correctly referenced
main documents in one OOXML package. Only the malicious
content is displayed to the victim, while the signature remains
valid.

CMA: OnlyOffice does not support embedded fonts and
thus is not vulnerable to the FIA. SIA can be used under On-
lyOffice to subsequently hide predefined content by applying
style elements. Since OnlyOffice processes content such as
text or graphics only within the main document, the attack

cannot be used to inject new content. Thus, OnlyOffice has
limited vulnerability to this attack.

LWA: When the manipulated document is opened, a valid
signature is displayed to the victim. The content controlled by
the attacker is displayed, while the originally signed content
remains completely hidden.

USF: During the signature validation OnlyOffice checks if
the Signed Info element contains a reference to the Package
Info element. This makes OnlyOffice not vulnerable to this
attack.

Repair attacks: Unlike Microsoft Office, OnlyOffice does
not display a repair prompt. The malicious content is dis-
played directly and the signature remains valid for both attack
variants. Thus, OnlyOffice is vulnerable to this attack class.
Additional Findings. We additionally tested all versions of
OnlyOffice Desktop and Microsoft Office (Windows) listed
in Table 1 against known attacks on XML signatures (see Ta-
ble 2). Since Microsoft Office does not perform any signature
verification on macOS, no special attack vectors are necessary.
While evaluating the known XML signature attacks under On-
lyOffice and the Windows versions of Microsoft Office, we
could not identify any vulnerabilities in this regard. However,
in the course of our evaluation, we were able to identify a
feature in Microsoft Office that can also be used for signed
OOXML documents, which is problematic with regard to
the integrity of the document. Graphics can be added to the
document as external resources through a URL. When the doc-
ument is opened, the graphic is automatically reloaded. Since
only the URL is signed when signing the OOXML document,
an attacker can change the image displayed in the document
by replacing the graphic stored under the URL. The signature
remains valid, even if the displayed content of the document
differs. OnlyOffice does not support graphics dynamically
reloaded via URL and is therefore not vulnerable.

Attack MS Office (Win) OnlyOffice
2013-2021, 365 Desktop

External Resources [23, 24] q ¥
Signature Exclusion [18] ¥ ¥
Certificate Faking [15] ¥ ¥
Node Splitting [19, 20] ¥ ¥
Key Confusion [25, 26] ¥ ¥
HMAC Truncation [21] ¥ ¥
Signature Wrapping [17, 18] ¥ ¥

Legend ¥: Not Vulnerable q: Vulnerable : Limited
Vulnerability

Table 2: Additonal Findings: No vulnerabilities were found
for known XML signature attacks for all versions of Only-
Office and Microsoft Office (Windows). External resources
that contain graphics via a URL can be replaced on Microsoft
Office (Windows) after signing without invalidating the sig-
nature.

8 Countermeasures

We divided the attacks into specification flaws and implemen-
tation flaws. Various countermeasures are conceivable here
and will be discussed below.

Specification Flaws. The CIA, CMA and LWA attacks exploit
the fact that the standard supports partial signatures. The
main problem comes from the relationship files, which are
not signed as a whole, but only the included references during
the signing flow. By adding additional files and including
their correct references, the rendered content of the signed
document can be modified. This also takes advantage of the
fact that the standard does not restrict rendered content to the
main part document.xml. This means that content from other
files, such as style.xml or people.xml, can also be used to
inject visible content.

From a security point of view, the question arises why
rendered content should be modifiable at all after signing.
Therefore, the standard should exclude the variant of partial
signature support and at least include the relationship files
completely in the signature calculation to prevent referenc-
ing of files added afterwards. Accordingly, the XML schema
files should be used more restrictive. Thus, unsigned files
could not place content over the original content defined in
document.xml

Implementation Flaws. USF forms a very powerful attack,
since the attacker controls the entire content of the signed
document without any restrictions. The problem here is the
lack of verification that the Package Info, which contains
all the references and hash values for the files within the
OOXML package, is actually referenced within the Signed
Info element. If the referencing is missing, the attacker can
arbitrarily choose the content of the document by simply
generating the hash values over the files without performing
any signature computation. The effective countermeasure is
a mandatory check for the presence of this reference in the
Signed Info element.

The MRA exploits the flexibility of office applications in
processing of supposedly damaged documents. Here, it would
be conceivable to dispense with the repair of signed docu-
ments at all or, alternatively, to have the signature check per-
formed before the repair attempt. In the case of the preceding
signature check, the subsequently inserted files would lead to
an invalid signature evaluation.

9 Related Work

In this section we systematize the related work and highlight
the contributions of our paper. Additionally, we summarize
the prior work paving the road for the attacks described in
this paper in Table 3.

Attacker’s Capabilities and Targets. In addition to the ca-
pabilities and targets described in Section 3, there are further

Technique Cap. Target Applicability
PDF ODF OOXML

Untrusted Keys N, � [23] [12, 27, 28] ✗

Unsigned Content Inj. ô N, � [9, 11] [14, 29] [28–30]
Signature Wrapping ô N [9] [12] ✗

Shadow Attacks ¨ N, � [10] [12] ✗

Capabilities Target
 Public Knowledge N Data Manipulation
ô Trustfully Signed Document � Code Execution
¨ Signing Oracle

Table 3: Our analysis on the related work reveals a gap in the
prior work on OOXML documents. There is no related work
to three of four attack techniques. The attacks targeting the
unsigned content injection shows only how to manipulate the
metadata of signed documents.

possible attacker models described in previous research.
Capability: Public Knowledge (). The attacker has only

access to publicly available data. This public knowledge in-
cludes, inter alia, the specification of a document format (e.g.,
OOXML) and corresponding sub-specifications (e.g., XML).
The attacker could create cryptographic keys, for example, to
sign the document, but the victim does not trust these keys.
Similarly, the attacker knows which public keys the victim
trusts. Nevertheless, the attacker does not have any private
keys that the victim trusts.

Target: Code Execution (�). The attacker can run arbi-
trary code on the victim’s computer. Usually, this target is
commonly used in malicious documents exploiting insecure
features [31] or implementation bugs. In the years 2006 to
2022, several researches focusing on ODF security have been
published [12, 14, 28, 29, 32, 33]. The authors analyzed the se-
curity of OpenOffice.org respectively OOXML and proposed
different attack and obfuscation techniques to stealthy execute
malicious code. The authors highlighted security issues in the
design of ODF and also problems with digital signatures. In
2015, Lax et al. documented potential security topics related
to digitally signed documents [24]. The authors concentrated
on issues related to the signature generation process, signed
documents containing dynamic content, and polymorphic doc-
uments similar to [34]. Recently, a research group discovered
several possibilities to execute malicious code by spoofing
signed PDF and ODF documents [10–12].

Beyond attacks spoofing document’s content, several re-
searchers discovered possibilities to inject malicious macros
and mask them as a signed content [35–41]. Due to diversi-
ties between signing document’s content and macro code in
OOXML, we concentrate in this paper on attacks spoofing
the document’s content.

Attack Techniques. Attack techniques are the glue between
the attacker’s capabilities and the attacker’s targets. They
represent the concrete approach of how the attacker carries
out a specific attack. While studying the related work, we

extracted the different attacks, systematized, and categorized
them in the following categories.

Untrusted Keys. In 2002, Kain et al. described possible
risks related to digitally signed documents like Microsoft
Word, Microsoft Excel, or PDF. The core of the described
issues lies in PKI problems, dynamic content loaded from a
website, and code execution by supported programming lan-
guages within documents [23]. In 2007, Kasinath and Arm-
strong discusses the PKI applicability on digitally signed and
encrypted ODF documents [27]. In 2022, Rohlmann et al.
systematically analyzed the ODF specification and discovered,
among other attacks, the possibility to sign ODF documents
with untrusted keys that are successfully verified without any
warnings.

Unsigned Content Injection. This technique summarizes
attacks appending or injecting new content after the document
is being signed. The injection is made outside the signed area.
Thus, the cryptographic signature value remains valid while
malicious content is rendered after opening the document. In
the recent years multiple attacks on PDFs were reported [9,
11]. In 2022, Rohlmann et al. applied similar attacks on ODF
documents without any success [12]. The reason for the re-
sults was the strict signature validation detecting files added
after signing the document. In 2007, a CVE abusing partial
signatures in OOXML documents was reported [30]. The
authors discovered that the metadata of a signed OOXML
document is not protected and thus can be changed by attack-
ers. Additional analysis regarding potential risks in OOXML
documents have been provided by Pöhls and Westphal and
Filiol [28, 29]. We extended the attack ideas and applied them
on the current OOXML specification. The Content Injection
Attack, Duplicate Document Attack, and Evil Type Attack
rely on the concepts of this attack technique.

Shadow Attacks. In 2021, a new attacker model applied on
PDF documents was introduced [10]. One year later, the same
attacker models was applied on ODF documents without any
success [12]. We are the first, adapting this attacker model on
OOXML and succesfully discovering new attacks – Font In-
jection Attack, Style Injection Attack, and Legacy Wrapping
Attack.

Signature Wrapping. The general concept of wrapping at-
tacks has been applied to XML-based messages before – the
attack allows the relocation of the hashed part of a document
and the injection of malicious content. In 2005, McIntosh
and Austel described an XML rewriting attack on SOAP web
services [17]. Somorovsky et al. extendend the attack and
adapted it on authentication protocols [18]. With respect to
documents, Mladenov et al. discovered possibility to carry
out the attack on signed PDF documents [9]. Two years later,
Rohlmann et al. successfully applied the attack on ODF doc-
uments [12]. To the best of our knowledge, we are the first
evaluating the attack on OOXML. Our study revealed the Uni-
versal Signature Forgery based on the concept of wrapping
attacks.

10 Discussion and Future Research

Status Quo. Through our research, we could discover po-
tential security issues abusing partial signatures given by the
standard. We prove the applicability of our attacks with a
practical evaluation bypassing the integrity verification of
all implementations. We extended our research by develop-
ing new attacks targeting implementation errors and testing
known attacks on XML signatures. We discovered several
critical implementation errors abusing lack in the OOXML
signature verification. Luckily, the developers learned from
previous vulnerabilities focusing explicitly on XML signa-
tures and addressed the risks properly, see Table 2.

Flawed Specifications. It is surprising that security research
focusing on older OOXML specifications and clearly describ-
ing risks related to partial signatures have been ignored for
decades. The result is devastating. We extended the existing
concepts and systematically prove the flaws in the current
OOXML specification and implementations.

Considering other document formats such as PDF, we
showed that partially signed documents decrease the secu-
rity of the integrity protection while increasing the attack
surface. Thus, it is questionable whether the integrity of the
content of a signed document can ever be guaranteed if the
standard flexibly supports partial signatures. Therefore, stan-
dards should follow a stricter signature policy and exclude
partial signatures. We are encouraged in our view by the ODF
standard, which enforces full signature coverage except for
the signature file and the external-data directory [42, Part
3, p. 98]. Thus, attackers rely only on implementation errors
which can be fixed.

Automated Analysis. Currently, there is no automated ap-
proach to analyze, create and evaluate the security of digitally
signed documents. In a long-term, the community needs a
more sustainable approach to generate and test attack vectors.

Formal Model. In 2007, [14] described a graph based model
depicting the changes on a document [14]. This model seems
a good starting point for the formalization of document’s
states and changes. Another formal model was introduced
for PDF documents in 2021 [43]. Based on a formal model,
expected states and deviations can be documented and later
evaluated. Also manipulations and unwanted behaviour can
be modelled. Currently, state machine learning is applied on
cryptographic protocols to evaluate the security [44]. Similar
approach could be applicable on documents, too.

Tool-support. Currently, there is no tool automating the gen-
eration of document-based attacks and evaluating the results.
There exist only isolated solutions solving one explicit prob-
lem in one specific document format. A suitable starting point
for a generic Document Attacker-tool could rely on the simi-
larities between ODF and OOXML. An automated tool could
automatically learn the document’s structure, transfer it in a
model and adapt all known attacks on this model. Thus, all

XML-based document formats, such as ODF, OOXML, 3MF,
and CAD, could be covered automatically for each known
attack.
Cryptographic Attacker Models. The standard crypto-
graphic security assumption for digital signature schemes
is EUF-CMA [45]. Here the attacker is allowed to choose a
sequence of messages that will be signed, and they succeed
if they can compute a valid signature for some arbitrary mes-
sage m not in this sequence. A valid signature s for a given
message m is defined as satisfying Sig.Vrf(pk,m,s) = T RUE,
where pk is the public signature verification key. This crypto-
graphic security assumption roughly matches our Signature
Oracle (see Section 3) based attacks. Our attacks on Trustfully
Signed Documents (see Section 3) do not require the attacker
to be able to choose the messages, it is sufficient if they know
a signed message. Thus, the attacker model closest to these
attacks is EUF-KMA [46]. Still, our attacks break neither
security assumption: In both cases, the term message refers
to the byte string that is actually hashed – we do not modify
this byte string, but add additional bytes that are not hashed.

A formal model for our attacks – and, in fact, for all UI-
based signature verification applications (S/MIME, OpenPGP,
PDF, ...) – would have to replace the cryptographic func-
tion Sig.Vrf() with a more complex construct View.Sig.Vrf().
This new function must take into account how the message
itself and the result of the signature validation are displayed
in the UI at different UI levels. Such a formal model would
certainly be helpful in understanding UI-based verification of
digital signatures.

Acknowledgment

Simon Rohlmann was supported by the German Federal Min-
istry for Economic Affairs and Climate Action (BMWK)
project “Industrie 4.0 Recht-Testbed” (13I40V002C). This re-
search was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Ex-
cellence Strategy - EXC 2092 CASA - 390781972.

References

[1] Microsoft Corporation. “Transcript: Microsoft FY21
Third Quarter Earnings Conference Call.” (2021), [On-
line]. Available: https : / / view . officeapps .
live . com / op / view . aspx ? src = https : / /
c . s - microsoft . com / en - us / CMSFiles /
TranscriptFY21Q3 . docx ? version = 5000c435 -
108f-a064-0035-be555b8a57ff.

[2] Ecma International, ECMA-376, Office Open XML file
formats, 5th edition (Part 1-4), 2015-2021. [Online].
Available: https : / / www . ecma - international .
org/publications-and-standards/standards/
ecma-376/.

[3] Microsoft Corporation. “Digital signatures and cer-
tificates.” (2022), [Online]. Available: https : / /
support . microsoft . com / en - us / office /
digital - signatures - and - certificates -
8186cd15-e7ac-4a16-8597-22bd163e8e96.

[4] XML-Signature Syntax and Processing, Feb. 2002. [On-
line]. Available: https://www.w3.org/TR/2002/
REC-xmldsig-core-20020212/.

[5] Defense Counterintelligence and Security Agency.
“Signed Document by the Defense Counterintelligence
and Security Agency.” (2021), [Online]. Available:
https://www.dcsa.mil/Portals/91/Documents/
IS/DCII/Documentation/Agency_Request_Form_
DCII_TEMPLATE_Aug2021.docm.

[6] Government of Canada. “E-Signature Options 2020-
04.” (2020), [Online]. Available: https : / / wiki .
gccollab . ca / E - Signatures _ in _ the _ GC / E -
Signature_Options_Blog_2020-04.

[7] Office of the Federal Register’s (OFR). “Federal
Register Document Submission Portal.” (), [Online].
Available: https : / / webportal . fedreg . gov /
(S(i0ruumi41rz5ao2ftsvkqof2)) / resources /
howtosubmit.pdf.

[8] The Federal Identity, Credential, and Access Manage-
ment (FICAM) program. “Digitally Sign a Microsoft
Word Document.” (), [Online]. Available: https :
/ / playbooks . idmanagement . gov / playbooks /
signword/.

[9] V. Mladenov, C. Mainka, K. Meyer zu Selhausen, M.
Grothe, and J. Schwenk, “1 Trillion Dollar Refund:
How To Spoof PDF Signatures,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, New York, NY, USA: ACM,
Nov. 2019, pp. 1–14, ISBN: 9781450367479. DOI: 10.
1145/3319535.3339812. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3319535.3339812.

[10] C. Mainka, V. Mladenov, and S. Rohlmann, “Shadow
Attacks: Hiding and Replacing Content in Signed
PDFs,” in Proceedings 2021 Network and Distributed
System Security Symposium, Reston, VA: Internet So-
ciety, 2021, ISBN: 1-891562-66-5. DOI: 10.14722/
ndss.2021.24117. [Online]. Available: https://
www.ndss-symposium.org/ndss-paper/shadow-
attacks-hiding-and-replacing-content-in-
signed-pdfs/.

[11] S. Rohlmann, V. Mladenov, C. Mainka, and J. Schwenk,
“Breaking the Specification: PDF Certification,” in
2021 IEEE Symposium on Security and Privacy (SP),
IEEE, May 2021, pp. 1485–1501, ISBN: 978-1-7281-
8934-5. DOI: 10.1109/SP40001.2021.00110. [On-
line]. Available: https://ieeexplore.ieee.org/
document/9519390/.

https://view.officeapps.live.com/op/view.aspx?src=https://c.s-microsoft.com/en-us/CMSFiles/TranscriptFY21Q3.docx?version=5000c435-108f-a064-0035-be555b8a57ff
https://view.officeapps.live.com/op/view.aspx?src=https://c.s-microsoft.com/en-us/CMSFiles/TranscriptFY21Q3.docx?version=5000c435-108f-a064-0035-be555b8a57ff
https://view.officeapps.live.com/op/view.aspx?src=https://c.s-microsoft.com/en-us/CMSFiles/TranscriptFY21Q3.docx?version=5000c435-108f-a064-0035-be555b8a57ff
https://view.officeapps.live.com/op/view.aspx?src=https://c.s-microsoft.com/en-us/CMSFiles/TranscriptFY21Q3.docx?version=5000c435-108f-a064-0035-be555b8a57ff
https://view.officeapps.live.com/op/view.aspx?src=https://c.s-microsoft.com/en-us/CMSFiles/TranscriptFY21Q3.docx?version=5000c435-108f-a064-0035-be555b8a57ff
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/
https://support.microsoft.com/en-us/office/digital-signatures-and-certificates-8186cd15-e7ac-4a16-8597-22bd163e8e96
https://support.microsoft.com/en-us/office/digital-signatures-and-certificates-8186cd15-e7ac-4a16-8597-22bd163e8e96
https://support.microsoft.com/en-us/office/digital-signatures-and-certificates-8186cd15-e7ac-4a16-8597-22bd163e8e96
https://support.microsoft.com/en-us/office/digital-signatures-and-certificates-8186cd15-e7ac-4a16-8597-22bd163e8e96
https://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
https://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
https://www.dcsa.mil/Portals/91/Documents/IS/DCII/Documentation/Agency_Request_Form_DCII_TEMPLATE_Aug2021.docm
https://www.dcsa.mil/Portals/91/Documents/IS/DCII/Documentation/Agency_Request_Form_DCII_TEMPLATE_Aug2021.docm
https://www.dcsa.mil/Portals/91/Documents/IS/DCII/Documentation/Agency_Request_Form_DCII_TEMPLATE_Aug2021.docm
https://wiki.gccollab.ca/E-Signatures_in_the_GC/E-Signature_Options_Blog_2020-04
https://wiki.gccollab.ca/E-Signatures_in_the_GC/E-Signature_Options_Blog_2020-04
https://wiki.gccollab.ca/E-Signatures_in_the_GC/E-Signature_Options_Blog_2020-04
https://webportal.fedreg.gov/(S(i0ruumi41rz5ao2ftsvkqof2))/resources/howtosubmit.pdf
https://webportal.fedreg.gov/(S(i0ruumi41rz5ao2ftsvkqof2))/resources/howtosubmit.pdf
https://webportal.fedreg.gov/(S(i0ruumi41rz5ao2ftsvkqof2))/resources/howtosubmit.pdf
https://playbooks.idmanagement.gov/playbooks/signword/
https://playbooks.idmanagement.gov/playbooks/signword/
https://playbooks.idmanagement.gov/playbooks/signword/
https://doi.org/10.1145/3319535.3339812
https://doi.org/10.1145/3319535.3339812
https://dl.acm.org/doi/10.1145/3319535.3339812
https://dl.acm.org/doi/10.1145/3319535.3339812
https://doi.org/10.14722/ndss.2021.24117
https://doi.org/10.14722/ndss.2021.24117
https://www.ndss-symposium.org/ndss-paper/shadow-attacks-hiding-and-replacing-content-in-signed-pdfs/
https://www.ndss-symposium.org/ndss-paper/shadow-attacks-hiding-and-replacing-content-in-signed-pdfs/
https://www.ndss-symposium.org/ndss-paper/shadow-attacks-hiding-and-replacing-content-in-signed-pdfs/
https://www.ndss-symposium.org/ndss-paper/shadow-attacks-hiding-and-replacing-content-in-signed-pdfs/
https://doi.org/10.1109/SP40001.2021.00110
https://ieeexplore.ieee.org/document/9519390/
https://ieeexplore.ieee.org/document/9519390/

[12] S. Rohlmann, C. Mainka, V. Mladenov, and J. Schwenk,
“Oops... Code Execution and Content Spoofing:
The First Comprehensive Analysis of OpenDocu-
ment Signatures,” in 31st USENIX Security Sympo-
sium (USENIX’22), Ruhr University Bochum, Boston,
MA, 2022. [Online]. Available: https : / / www .
usenix . org / conference / usenixsecurity22 /
presentation/rohlmann.

[13] International Organization for Standardization (ISO),
ISO/IEC 29500, Document description and processing
languages — Office Open XML file formats, 4th edition
(Part 1-4), 2015-2021.

[14] E. Filiol and J.-P. Fizaine, “OpenOffice security and vi-
ral risk – part one,” in Virus Bulletin Journal, Sep. 2007.
[Online]. Available: https://www.virusbulletin.
com / virusbulletin / 2007 / 09 / openoffice -
security-and-viral-risk-part-one.

[15] C. Mainka, V. Mladenov, F. Feldmann, J. Krautwald,
and J. Schwenk, “Your Software at My Service: Secu-
rity Analysis of SaaS Single Sign-on Solutions in the
Cloud,” in Proceedings of the 6th Edition of the ACM
Workshop on Cloud Computing Security, Oct. 2014.
[Online]. Available: https://dl.acm.org/doi/10.
1145/2664168.2664172.

[16] A. Munoz and O. Mirosh, SSO Wars: The Token
Menace, 2019. [Online]. Available: https://www.
blackhat . com / us - 19 / briefings / schedule /
index . html # sso - wars - the - token - menace -
15092.

[17] M. McIntosh and P. Austel, “XML Signature Element
Wrapping Attacks and Countermeasures,” in Proceed-
ings of the 2005 Workshop on Secure Web Services,
ser. SWS ’05, Fairfax, VA, USA: Association for Com-
puting Machinery, 2005, pp. 20–27, ISBN: 1595932348.
DOI: 10.1145/1103022.1103026. [Online]. Avail-
able: https : / / doi . org / 10 . 1145 / 1103022 .
1103026.

[18] J. Somorovsky, A. Mayer, J. Schwenk, M. Kampmann,
and M. Jensen, “On Breaking SAML: Be Whoever
You Want to Be,” in 21st USENIX Security Symposium,
Bellevue, WA, Aug. 2012. [Online]. Available: https:
//www.usenix.org/system/files/conference/
usenixsecurity12/sec12-final91.pdf.

[19] K. Ludwig, “Identity Theft: Attacks on SSO Systems,”
in BlackHat USA, Aug. 2018. [Online]. Available:
https://i.blackhat.com/us-18/Thu-August-
9/us-18-Ludwig-Identity-Theft-Attacks-On-
SSO-Systems.pdf.

[20] RedTeam Pentesting GmbH. “Truncation of SAML
Attributes in Shibboleth 2.” (2017), [Online]. Avail-
able: https://www.redteam-pentesting.de/de/
advisories/rt-sa-2017-013/-truncation-of-
saml-attributes-in-shibboleth-2.

[21] “XML Signature HMAC Truncation Authentication
Bypass Vulnerability.” (2009), [Online]. Available:
https://www.kb.cert.org/vuls/id/466161.

[22] M. Corporation, [MS-CFB]: Compound File Binary
File Format, 2021. [Online]. Available: https : / /
winprotocoldoc . blob . core . windows . net /
productionwindowsarchives / MS - CFB / %5bMS -
CFB%5d.pdf.

[23] K. Kain, S. W. Smith, and R. Asokan, “Digital signa-
tures and electronic documents: A cautionary tale,”
in Advanced communications and multimedia secu-
rity, Springer, 2002, pp. 293–307. [Online]. Available:
http://www.ists.dartmouth.edu/library/74.
pdf.

[24] G. Lax, F. Buccafurri, and G. Caminiti, “Digital docu-
ment signing: Vulnerabilities and solutions,” Informa-
tion Security Journal: A Global Perspective, vol. 24,
no. 1-3, pp. 1–14, 2015.

[25] T. McLean, Blog post: Critical vulnerabilities in JSON
Web Token libraries, 2015. [Online]. Available: https:
//www.chosenplaintext.ca/2015/03/31/jwt-
algorithm-confusion.html.

[26] M. Heiderich et al., Pentest & Audit-Report Simple-
SAMLphp 11.2017, 2017. [Online]. Available: https:
//cure53.de/pentest-report_simplesamlphp.
pdf.

[27] G. Kasinath and L. Armstrong, “Analysis of PKI as a
Means of Securing ODF Documents,” in Proceedings
of 5th Australian Information Security Management
Conference, Perth, Jan. 1, 2007. [Online]. Available:
https://ro.ecu.edu.au/ecuworks/4951.

[28] E. Filiol, “OpenOffice v3.x Security Design Weak-
nesses,” in Black Hat Europe, Apr. 2009. [Online].
Available: https : / / www . blackhat . com /
presentations / bh - europe - 09 / Filiol _
Fizaine/BlackHat-Europe-09-Filiol-Fizaine-
OpenOffice-Weaknesses-slides.pdf.

[29] H. C. Pöhls and L. Westphal, “Die "Untiefen" der
neuen XML-basierten Dokumentenformate,” in 15.
DFN CERT Workshop Sicherheit in vernetzten Sys-
temen, 2008. [Online]. Available: http://henrich.
poehls.com/papers/2008_Poehls_Westphal_
2008 _ DFN - CERT - WS _ Untiefen _ der _ XML -
Dokumentenformate.pdf.

https://www.usenix.org/conference/usenixsecurity22/presentation/rohlmann
https://www.usenix.org/conference/usenixsecurity22/presentation/rohlmann
https://www.usenix.org/conference/usenixsecurity22/presentation/rohlmann
https://www.virusbulletin.com/virusbulletin/2007/09/openoffice-security-and-viral-risk-part-one
https://www.virusbulletin.com/virusbulletin/2007/09/openoffice-security-and-viral-risk-part-one
https://www.virusbulletin.com/virusbulletin/2007/09/openoffice-security-and-viral-risk-part-one
https://dl.acm.org/doi/10.1145/2664168.2664172
https://dl.acm.org/doi/10.1145/2664168.2664172
https://www.blackhat.com/us-19/briefings/schedule/index.html#sso-wars-the-token-menace-15092
https://www.blackhat.com/us-19/briefings/schedule/index.html#sso-wars-the-token-menace-15092
https://www.blackhat.com/us-19/briefings/schedule/index.html#sso-wars-the-token-menace-15092
https://www.blackhat.com/us-19/briefings/schedule/index.html#sso-wars-the-token-menace-15092
https://doi.org/10.1145/1103022.1103026
https://doi.org/10.1145/1103022.1103026
https://doi.org/10.1145/1103022.1103026
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final91.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final91.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final91.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Ludwig-Identity-Theft-Attacks-On-SSO-Systems.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Ludwig-Identity-Theft-Attacks-On-SSO-Systems.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Ludwig-Identity-Theft-Attacks-On-SSO-Systems.pdf
https://www.redteam-pentesting.de/de/advisories/rt-sa-2017-013/-truncation-of-saml-attributes-in-shibboleth-2
https://www.redteam-pentesting.de/de/advisories/rt-sa-2017-013/-truncation-of-saml-attributes-in-shibboleth-2
https://www.redteam-pentesting.de/de/advisories/rt-sa-2017-013/-truncation-of-saml-attributes-in-shibboleth-2
https://www.kb.cert.org/vuls/id/466161
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-CFB/%5bMS-CFB%5d.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-CFB/%5bMS-CFB%5d.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-CFB/%5bMS-CFB%5d.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-CFB/%5bMS-CFB%5d.pdf
http://www.ists.dartmouth.edu/library/74.pdf
http://www.ists.dartmouth.edu/library/74.pdf
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html
https://www.chosenplaintext.ca/2015/03/31/jwt-algorithm-confusion.html
https://cure53.de/pentest-report_simplesamlphp.pdf
https://cure53.de/pentest-report_simplesamlphp.pdf
https://cure53.de/pentest-report_simplesamlphp.pdf
https://ro.ecu.edu.au/ecuworks/4951
https://www.blackhat.com/presentations/bh-europe-09/Filiol_Fizaine/BlackHat-Europe-09-Filiol-Fizaine-OpenOffice-Weaknesses-slides.pdf
https://www.blackhat.com/presentations/bh-europe-09/Filiol_Fizaine/BlackHat-Europe-09-Filiol-Fizaine-OpenOffice-Weaknesses-slides.pdf
https://www.blackhat.com/presentations/bh-europe-09/Filiol_Fizaine/BlackHat-Europe-09-Filiol-Fizaine-OpenOffice-Weaknesses-slides.pdf
https://www.blackhat.com/presentations/bh-europe-09/Filiol_Fizaine/BlackHat-Europe-09-Filiol-Fizaine-OpenOffice-Weaknesses-slides.pdf
http://henrich.poehls.com/papers/2008_Poehls_Westphal_2008_DFN-CERT-WS_Untiefen_der_XML-Dokumentenformate.pdf
http://henrich.poehls.com/papers/2008_Poehls_Westphal_2008_DFN-CERT-WS_Untiefen_der_XML-Dokumentenformate.pdf
http://henrich.poehls.com/papers/2008_Poehls_Westphal_2008_DFN-CERT-WS_Untiefen_der_XML-Dokumentenformate.pdf
http://henrich.poehls.com/papers/2008_Poehls_Westphal_2008_DFN-CERT-WS_Untiefen_der_XML-Dokumentenformate.pdf

[30] H. Poehls, D. Tran, F. Petersen, and F. Pscheid,
MS Office 2007: Digital Signature does not protect
Meta-Data, 2007. [Online]. Available: https : / /
cxsecurity.com/issue/WLB-2007120035.

[31] J. Müller, D. Noss, C. Mainka, V. Mladenov, and J.
Schwenk, “Processing Dangerous Paths – On Secu-
rity and Privacy of the Portable Document Format,”
in Proceedings 2021 Network and Distributed System
Security Symposium, Internet Society, 2021, ISBN: 1-
891562-66-5. DOI: 10.14722/ndss.2021.23109.
[Online]. Available: https://www.ndss-symposium.
org / wp - content / uploads / ndss2021 _ 1B - 2 _
23109_paper.pdf.

[32] D. de Drézigué, J.-P. Fizaine, and N. Hansma, “In-
depth analysis of the viral threats with OpenOffice.org
documents,” in Journal in Computer Virology, vol. 2,
Dec. 2006, pp. 187–210. DOI: 10.1007/s11416-006-
0020-2. [Online]. Available: https://doi.org/10.
1007/s11416-006-0020-2.

[33] P. Lagadec, “OpenDocument and Open XML secu-
rity (OpenOffice.org and MS Office 2007),” in Journal
in Computer Virology, vol. 4, May 2008, pp. 115–125.
DOI: 10.1007/s11416-007-0060-2. [Online]. Avail-
able: https://doi.org/10.1007/s11416-007-
0060-2.

[34] D.-S. Popescu, “Hiding Malicious Content in PDF Doc-
uments,” CoRR, vol. abs/1201.0, 2012. arXiv: 1201.
0397. [Online]. Available: http://arxiv.org/abs/
1201.0397.

[35] V. Bontche. “pcodedmp.py - A VBA p-code disassem-
bler.” (2019), [Online]. Available: https://github.
com/bontchev/pcodedmp.

[36] H. Ogden, K. Sayre, and C. Roberts, “VBA Stomping
Advanced Malicious Document Techniques,” in Der-
byCon, 2018. [Online]. Available: https://github.
com / clr2of8 / Presentations / blob / master /
DerbyCon2018-VBAstomp-Final-WalmartRedact.
pdf.

[37] P. Ceelen and S. Hegt, “MS OFFICE FILE FOR-
MAT SORCERY,” in Troopers, 2019. [Online]. Avail-
able: https : / / github . com / outflanknl /
Presentations/blob/master/Troopers19_MS_
Office_file_format_sorcery.pdf.

[38] K. Sayre and C. Roberts, “Advanced Malware VBA
Stomping,” in Sp4rkCon, 2019. [Online]. Available:
https://github.com/clr2of8/Presentations/
blob/master/Sp4rkCon2019-VBAstomp.pdf.

[39] Didier Stevens. “Tampering with Digitally Signed
VBA Projects.” (), [Online]. Available: https : / /
blog.nviso.eu/2020/06/04/tampering-with-
digitally-signed-vba-projects/.

[40] Yu Kaijun. “Upgrade signed Office VBA macro
projects to V3 signature.” (2021), [Online]. Available:
https : / / developer . microsoft . com / en - us /
sharepoint / blogs / upgrade - signed - office -
vba-macro-projects-to-v3-signature/.

[41] P. Lagadec and P. Lagadecl, “Advanced VBA Macros
Attack & Defence,” in Black Hat Europe, 2019. [On-
line]. Available: https://www.decalage.info/
files/eu-19-Lagadec-Advanced-VBA-Macros-
Attack-And-Defence.pdf.

[42] OASIS Open, Open Document Format for Office Ap-
plications (OpenDocument) Version 1.3, Apr. 2021.
[Online]. Available: https://docs.oasis-open.
org/office/OpenDocument/v1.3/.

[43] P. Wyatt, “Demystifying pdf through a machine-
readable definition,” in LangSec Workshop at IEEE
Security & Privacy, 2021. [Online]. Available: https:
/ / github . com / pdf - association / arlington -
pdf-model.

[44] P. Fiterau-Brostean, B. Jonsson, R. Merget, J. de Ruiter,
K. Sagonas, and J. Somorovsky, “Analysis of DTLS
implementations using protocol state fuzzing,” in
29th USENIX Security Symposium (USENIX Secu-
rity 20), USENIX Association, Aug. 2020, pp. 2523–
2540, ISBN: 978-1-939133-17-5. [Online]. Available:
https : / / www . usenix . org / conference /
usenixsecurity20 / presentation / fiterau -
brostean.

[45] M. Green. “EUF-CMA and SUF-CMA.”
(2018), [Online]. Available: https : / / blog .
cryptographyengineering.com/euf- cma- and-
suf-cma/.

[46] S. Goldwasser, S. Micali, and R. L. Rivest, “A digi-
tal signature scheme secure against adaptive chosen-
message attacks,” SIAM Journal on computing, vol. 17,
no. 2, pp. 281–308, 1988.

A Appendix

A.1 Partial Signatures in the OOXML Stan-
dard

In this paper, we claim that three attack classes are based on a
standardized feature of OOXML, namely on the fact that the
relationship files are only partially signed. In the following,
we cite the relevant parts of the OOXML standard which
substantiate our claim.
Mutability as a Design Goal. Section 10.3 of the standard
describes mutability as a design goal of OOXML.

10.3 Choosing content to sign [2, Part 2, p. 45]
It is assumed that there is a signature policy to de-
termine which parts and relationships to sign. This

https://cxsecurity.com/issue/WLB-2007120035
https://cxsecurity.com/issue/WLB-2007120035
https://doi.org/10.14722/ndss.2021.23109
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1B-2_23109_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1B-2_23109_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1B-2_23109_paper.pdf
https://doi.org/10.1007/s11416-006-0020-2
https://doi.org/10.1007/s11416-006-0020-2
https://doi.org/10.1007/s11416-006-0020-2
https://doi.org/10.1007/s11416-006-0020-2
https://doi.org/10.1007/s11416-007-0060-2
https://doi.org/10.1007/s11416-007-0060-2
https://doi.org/10.1007/s11416-007-0060-2
https://arxiv.org/abs/1201.0397
https://arxiv.org/abs/1201.0397
http://arxiv.org/abs/1201.0397
http://arxiv.org/abs/1201.0397
https://github.com/bontchev/pcodedmp
https://github.com/bontchev/pcodedmp
https://github.com/clr2of8/Presentations/blob/master/DerbyCon2018-VBAstomp-Final-WalmartRedact.pdf
https://github.com/clr2of8/Presentations/blob/master/DerbyCon2018-VBAstomp-Final-WalmartRedact.pdf
https://github.com/clr2of8/Presentations/blob/master/DerbyCon2018-VBAstomp-Final-WalmartRedact.pdf
https://github.com/clr2of8/Presentations/blob/master/DerbyCon2018-VBAstomp-Final-WalmartRedact.pdf
https://github.com/outflanknl/Presentations/blob/master/Troopers19_MS_Office_file_format_sorcery.pdf
https://github.com/outflanknl/Presentations/blob/master/Troopers19_MS_Office_file_format_sorcery.pdf
https://github.com/outflanknl/Presentations/blob/master/Troopers19_MS_Office_file_format_sorcery.pdf
https://github.com/clr2of8/Presentations/blob/master/Sp4rkCon2019-VBAstomp.pdf
https://github.com/clr2of8/Presentations/blob/master/Sp4rkCon2019-VBAstomp.pdf
https://blog.nviso.eu/2020/06/04/tampering-with-digitally-signed-vba-projects/
https://blog.nviso.eu/2020/06/04/tampering-with-digitally-signed-vba-projects/
https://blog.nviso.eu/2020/06/04/tampering-with-digitally-signed-vba-projects/
https://developer.microsoft.com/en-us/sharepoint/blogs/upgrade-signed-office-vba-macro-projects-to-v3-signature/
https://developer.microsoft.com/en-us/sharepoint/blogs/upgrade-signed-office-vba-macro-projects-to-v3-signature/
https://developer.microsoft.com/en-us/sharepoint/blogs/upgrade-signed-office-vba-macro-projects-to-v3-signature/
https://www.decalage.info/files/eu-19-Lagadec-Advanced-VBA-Macros-Attack-And-Defence.pdf
https://www.decalage.info/files/eu-19-Lagadec-Advanced-VBA-Macros-Attack-And-Defence.pdf
https://www.decalage.info/files/eu-19-Lagadec-Advanced-VBA-Macros-Attack-And-Defence.pdf
https://docs.oasis-open.org/office/OpenDocument/v1.3/
https://docs.oasis-open.org/office/OpenDocument/v1.3/
https://github.com/pdf-association/arlington-pdf-model
https://github.com/pdf-association/arlington-pdf-model
https://github.com/pdf-association/arlington-pdf-model
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://blog.cryptographyengineering.com/euf-cma-and-suf-cma/
https://blog.cryptographyengineering.com/euf-cma-and-suf-cma/
https://blog.cryptographyengineering.com/euf-cma-and-suf-cma/

clause provides flexibility in defining the content to
be signed, thus allowing other content to be muta-
ble. [...]

For this purpose, the standard requires only the reference el-
ements within a relationship file to be signed. The relationship
file is only partially signed and thus enables the subsequent
addition of reference elements.
Referencing Elements from the Relationships Files. The
OOXML standard explicitly states how elements or groups
of elements in the relationships file should be selected. This
leaves no room of other types of referencing, for example the
entire file.

10.5.9 RelationshipReference element [2,
Part 2, p. 50]

The RelationshipReference element specifies
which Relationship element is signed, and shall
only occur as a child element of a Transform

element representing a Relationships transform
(10.5.8.2). This element is OPC-specific.

Attributes Description

SourceId The value of the Id at-
tribute of the referenced
Relationships element
within the given Relationships
part. This attribute is required.
The range of values for this
attribute shall be as defined
by the xsd:string simple
type of W3C XML Schema
Datatypes.

As a second method, groups of elements can be selected
based on their ContentType. Both referencing methods pro-
tect existing content against manipulation, but do not protect
against inserting unsigned files to the OOXML document.

	Introduction
	The OOXML Document Format
	Attacker Model
	Systematic Analysis
	Specification Attacks on OOXML
	cia
	cma
	lwa

	Implementation Attacks on OOXML Office Applications
	usf
	mra

	Evaluation
	Countermeasures
	Related Work
	Discussion and Future Research
	Appendix
	Partial Signatures in the ooxml Standard

