
xTag: Mitigating Use-After-Free Vulnerabilities
via Software-Based Pointer Tagging on Intel x86-64

Lukas Bernhard∗, Michael Rodler†, Thorsten Holz‡, and Lucas Davi†
∗Ruhr University Bochum, Email:lukas.bernhard@rub.de

†University of Duisburg-Essen, Email: {michael.rodler, lucas.davi}@uni-due.de
‡ CISPA Helmholtz Center for Information Security, Email: holz@cispa.de

Abstract—Memory safety in complex applications imple-
mented in unsafe programming languages such as C/C++ is
still an unresolved problem in practice. Such applications
were often developed in an ad-hoc, security-ignorant fashion,
and thus they contain many types of security issues. Many
different types of defenses have been proposed in the past
to mitigate these problems, some of which are even widely
used in practice. However, advanced attacks are still able
to circumvent these defenses, and the arms race is not
(yet) over. On the defensive side, the most promising next
step is a tighter integration of the hardware and software
level: modern mitigation techniques are either accelerated
using hardware extensions or implemented in the hard-
ware by extensions of the instruction set architecture (ISA).
In particular, memory tagging, as proposed by ARM or
SPARC, promises to solve many issues for practical memory
safety. Unfortunately, Intel x86-64, which represents the most
important ISA for both the desktop and server domain,
lacks support for hardware-accelerated memory tagging, so
memory tagging is not considered practical for this platform.

In this paper, we present the design and implementation
of an efficient, software-only pointer tagging scheme for
Intel x86-64 based on a novel metadata embedding scheme.
The basic idea is to alias multiple virtual pages to one
physical page so that we can efficiently embed tag bits into
a pointer. Furthermore, we introduce several optimizations
that significantly reduce the performance impact of this
approach to memory tagging. Based on this scheme, we
propose a novel use-after-free mitigation scheme, called xTag,
that offers better performance and strong security properties
compared to state-of-the-art methods. We also show how
double-free vulnerabilities can be mitigated. Our approach
is highly compatible, allowing pointers to be passed back
and forth between instrumented and non-instrumented code
without losing metadata, and it is even compatible with
inline assembly. We conclude that building exploit mitigation
mechanisms on top of our memory tagging scheme is feasible
on Intel x86-64, as demonstrated by the effective prevention
of use-after-free bugs in the Firefox web browser.

Index Terms—memory safety, memory tagging, use-after-free

1. Introduction

Even after more than 20 years of research on memory
corruption vulnerabilities in applications implemented in
unsafe languages such as C/C++, it is still an open problem

how to efficiently and effectively mitigate these attacks in
complex software systems. While memory-safe systems
programming languages, such as Rust or Go, are starting
to become more popular, there is still a large number of
legacy codebases written in unsafe C/C++, such as web
browsers, high-performance server applications, and op-
erating system kernels. Therefore, developing innovative
and practical techniques to protect legacy C/C++ code
bases against memory corruption attacks remains a crucial
problem in practice.

Fortunately, due to the efforts of both academia and
industry, it has become much more difficult to exploit
memory errors in practice. Multiple exploit mitigation
techniques have been developed and deployed to produc-
tion systems, such as non-executable memory, stack ca-
naries [14], address-space layout randomization (ASLR),
and control-flow integrity (CFI) [1, 33, 41]. However,
these mitigations have forced attackers to resort to more
advanced code-reuse attacks or data-oriented attacks [44,
22, 25, 39]. As a result, the focus of mitigation research
has shifted to identifying and mitigating the root cause
of memory corruption so that entire classes of attack
vectors can be prevented. For example, various projects
now use hardened heap allocators to reduce the likelihood
of successful heap attacks [42, 40]. Although promising,
software-based mitigation schemes are typically consid-
ered too slow for production use. For example, Soft-
bound+CETS, one of the strongest software-based mem-
ory safety solutions for C, adds more than 100% runtime
overhead [36, 35]. As a result, many mitigation techniques
are nowadays accelerated using hardware extensions or
even fully implemented in hardware via extensions of
the instruction set architecture (ISA). For example, In-
tel is working on a hardware-based shadow stack called
Control-flow Enforcement Technology (CET) [48] and the
ARM v8.3 architecture introduces cryptographic pointer
authentication instructions [23].

One promising approach to improve memory safety
are general memory/pointer tagging instructions, which
can then be used to build exploit mitigation schemes.
Examples include ARM’s Top-byte Ignore (TBI) which
allows software to use up to the eight most significant
bits of a 64-bit pointer as a tag, and ARM’s Memory
Tagging Extensions (MTE), which allows 4-bit tags to
be assigned to each memory allocation. While TBI is
already available for 64-bit code in all Armv8 AArch64
processors, MTE will only be available in the future when
processors with support for the ARM v8.5 architecture
will become available. Another example is SPARC’s Ap-



plication Data Integrity (ADI) [46, 5], which also sup-
ports 4-bit tags. Recently, Intel announced Linear Address
Masking (LAM) [24], a similar feature to ARM’s Top-
Byte-Ignore, where address bits that are unused during
address translation are allowed to have arbitrary values
instead of being forced to be zero. Unfortunately, on
platforms that do not support such hardware extensions,
it is still an open question how to efficiently implement
these defenses. This is particularly relevant for the widely
used Intel x86-64 architecture, for which no CPUs with
hardware-tagging support are available at the moment,
thereby leaving the majority of desktop and server systems
unprotected.

In this paper, we address this open challenge and show
that hardware extensions, such as ARM’s top-byte ignore
feature, are actually not required to implement efficient
mitigation techniques based on the idea of pointer tagging.
More specifically, we demonstrate that a purely software-
based pointer tagging solution can be efficiently imple-
mented on contemporary Intel x86-64 processors. Instead
of relying on specialized—and often not yet available—
hardware features, we show how the widely available
memory management unit (MMU) can be repurposed to
alias multiple virtual pages to one physical page, ensuring
that the same allocation is referenced regardless of the
embedded metadata. Note that although we implement
and evaluate software-based memory tagging on Intel x86-
64, the same approach can also be implemented on other
architectures with paging-based virtual memory.

Based on our software-based pointer tagging scheme,
we propose a practical use-after-free mitigation scheme,
called xTag, for the Intel x86-64 ISA. We focus on use-
after-free vulnerabilities because they represent one of the
most important bug classes in practice. A recent analysis
by Google Project Zero [56] showed that since 2018, out
of 45 zero-day vulnerabilities that were used “in the wild”,
14 are due to use-after-free bugs. The Chromium team
reports that 36% of all memory safety issues are due to
use-after-free [57]. Microsoft reports similar numbers for
a period from 2015 to 2019: 557 CVEs, or roughly 26%
of memory safety vulnerabilities at Microsoft, are due to
use-after-free [8]. As such, we believe that an efficient
mitigation will significantly improve software security.
Our mitigation scheme is based on the idea of embedding
a 4-bit tag into heap pointers, the same size used by ARM
MTE and SPARC ADI. On each memory access, we can
verify that the tag embedded into the pointer matches the
tag stored in a disjoint shadow memory region.

Note that embedding metadata into pointers has a long
tradition, ranging from fat pointers for bounds check-
ing [36, 4] over low-fat pointers [30, 18, 17] to em-
bedding cryptographic MACs [23, 32]. Our approach is
highly compatible (e.g., it even supports inline assembly),
it allows pointers to be passed back and forth between
instrumented and non-instrumented code without losing
metadata, and it induces a lower performance impact
compared to existing methods [2]. In contrast to low-fat
pointer techniques, our support for metadata invalidation
enables mitigation of spatial memory safety vulnerabilities
such as use-after-free; we also show how double-free
vulnerabilities can be efficiently detected. For our defense,
we propose several optimizations that significantly reduce
TLB pressure, remove redundant checks, and reduce mem-

ory overhead.
To demonstrate the practical viability of the proposed

approach, we implement a prototype based on the mimal-
loc allocator and the LLVM compiler framework. We mod-
ified the allocator to support our pointer metadata embed-
ding scheme. For the use-after-free detection scheme, we
implemented an instrumentation pass in the LLVM com-
piler framework. Our instrumentation utilizes the pointer
tagging scheme to retrieve metadata about the current state
of the reference object. Furthermore, we develop several
optimization techniques on the compiler level to reduce
the overhead induced by instrumentation. To demonstrate
the effectiveness of our approach, we instrument the Fire-
fox web browser with our defense and show in several
case studies that we can successfully detect and prevent
different bugs in such a complex, real-world application.
Furthermore, we show that our approach is more efficient
in terms of performance overhead compared to state-of-
the-art approaches in this area. On the SPEC CPU2017
benchmark, we achieve a significant reduction in geomean
runtime overhead. In particular, we reduce the relative
overhead for use-after-free mitigation by 25.2% compared
to the fastest competing approach. An extensive evalua-
tion of mitigation configurations, including different tag
sizes and selection strategies, highlights the impact on
TLB pressure and the resulting performance impact. The
evaluation shows that our mitigation is well suited for
high-throughput scenarios (i.e., allocation- and memory-
intensive scenarios).

Contributions To summarize, our contributions are:
1) We present the first efficient and practical scheme for

embedding an invalidatable metadata tag inside of
pointers using aliased page mappings. This approach
can be implemented on platforms without any kind of
hardware support, most importantly Intel x86-64, and
is even compatible to non-instrumented code such as
inline assembly.

2) Based on this scheme and several optimizations, we
present a use-after-free mitigation scheme based on
validating the pointer tag. Our prototype implemen-
tation can successfully prevent use-after-free vulner-
abilities in the Firefox web browser. In the SPEC
CPU2017 benchmark suite, we achieve a geomean
runtime overhead of 24.9%, a reduction of relative
overhead by 25.2% compared to the state-of-the-art
approach.

Code Availability To enable reproducibility of our re-
sults, the code of xTag is available at https://github.com/
rub-syssec/xTag under an open-source license.

2. Technical Background

We first review the basics of memory tagging, low-fat
pointers, and use-after-free vulnerabilities given that these
are important concepts that are necessary for understand-
ing the rest of this paper.

2.1. Memory Tagging and Low-Fat Pointers

Tagged memory has diverse applications for build-
ing secure systems, mitigations, and sanitizers [60, 54].

https://github.com/rub-syssec/xTag
https://github.com/rub-syssec/xTag


Memory tagging [13] can be used to facilitate a lock-and-
key mechanism that protects against temporal memory
safety violation as well as a subset of spatial violations.
The typical approach is as follows: Memory ranges are
assigned locks at the time of allocation. All mechanisms to
access memory are modified such that the correct key must
be provided alongside the pointer. Generally speaking, the
lock and key share the same value, which is referred to
as a tag. Any failure to provide the correct tag triggers an
exception, usually leading to program termination.

This scheme can protect against spatial security vio-
lations when the tag of an out-of-bounds pointer does not
match the tag required to access the memory location. For
example, two adjacent arrays a1 and a2 are assigned dis-
tinct tags t1 and t2, respectively. Due to an out-of-bounds
error, a1 is indexed such that the address corresponds to
a2. As the memory access provides t1 instead of t2, the
violation can be successfully detected. However, not all
spatial safety violations are mitigated: an array within a
struct might overflow into an adjacent field. Since all fields
in the struct are part of the same allocation, they share the
same tag and do not violate the memory tagging policy.
Temporal safety violations are mitigated by assigning a
new tag when memory is freed. Suppose a1 is freed, which
implies that the memory region’s tag is changed from t1
to t1’. All pointers to a1 currently held in local variables
or stored in memory are invalided as they are still bound
to the tag t1.

Hardware implementations of memory tagging exist
on only a few architectures, i.e., they are already available
on SPARC via ADI and will be available in the future
in the ARM 8.5 architecture through the combination
of ARM’s Top-byte Ignore (TBI) and Memory Tagging
Extensions (MET). Retrofitting memory tagging to estab-
lished architectures poses a significant challenge as the
corresponding tag must be stored alongside each pointer.
Modifying the pointer size breaks the ABI and requires
significant changes to handwritten assembly code. Instead,
the SPARC and ARM architecture embed tags into the
native pointer representation. Both platforms dedicate a
range of pointer bits to store the tag. This range is ignored
by the MMU during address translation and is instead used
to store tags.

Current Intel x86-64 processors neither offer a hard-
ware implementation of memory tagging nor an address
mode that ignores a range of pointer bits. While the
verification could be implemented in software, efficiently
storing tags without breaking the ABI (e.g., support for
non-instrumented libraries and the system call interface)
remains an open challenge that we address in this work.
Furthermore, we also need to ensure backward compati-
bility, e.g., usage of inline assembly.

Low-fat pointers [30, 18, 17] were proposed as an
approach for encoding metadata bits into the machine
representation of pointers. Existing designs encode static
information by placing allocations into specific heap re-
gions (e.g., grouping all allocations of a specific size).
As low-fat pointers can be dereferenced natively, they
achieve compatibility with uninstrumented code. Extract-
ing the heap region from a pointer allows to derive the
allocation boundaries corresponding to a pointer. Taking
advantage of this metadata, existing mitigation schemes
protect against out-of-bound memory accesses. Unfortu-

uint32_t *p, *q;
char* u;
p = malloc(8); // allocates uint32_t[2]
q = p + 1; // q references second uint32_t
// [...]
free(p);
u = malloc(8); // likely(u == p)
// [...]

*q = 21; // UAF bug: Access modifies unrelated
// object u in memory leading to
// memory corruption

Listing 1: Example of a use-after-free bug (a temporal memory
safety violation).

nately, none of the existing schemes allow for an invalida-
tion capability, i.e., encoded metadata remains valid even
after freeing an allocation. Therefore, they are unable to
mitigate spatial memory safety vulnerabilities such as use-
after-free attacks.

2.2. Use-After-Free Vulnerabilities

The C/C++ programming languages leave most of the
responsibilities for memory management to the program-
mer. Memory objects, whose lifetime is not bound to a
stack frame, are typically allocated in the heap region.
The management of the memory within the heap region
is typically performed by a standard allocator library. For
example, the C standard library provides the malloc and
free functions to allocate and deallocate memory objects,
respectively. When to allocate and deallocate an object
is in the hands of the programmer calling the allocator
APIs. As a consequence, there are many types of errors
related to memory management on the heap. Not releasing
memory that is no longer referenced leads to inconvenient
memory leaks. More critically, freeing a memory object
twice—a so called double-free vulnerability—can corrupt
an allocator’s internal state, potentially leading to further
memory corruption.

Furthermore, one of the most critical bugs is the use-
after-free condition, where the program uses a dangling
pointer to access an already freed object. Listing 1 shows
an example of a use-after-free bug: the two pointers p and
q reference the same memory object. After the object is
freed via the pointer p, the q pointer becomes dangling.
To corrupt memory of the application, an attacker must
ensure that another object is allocated at the same address
as the previous allocation. In this case, the u pointer
references such an unrelated object. Using the dangling
q pointer leads to access to the u object instead of the
actual intended object.

3. Design

In this section, we introduce our metadata embedding
scheme for pointers on the Intel x86-64 ISA (i.e., on
an ISA without hardware support for pointer tagging).
We embed metadata in heap pointers, while maintaining
compatibility with inline assembler code and other non-
instrumented code. Based on this design, we present an
efficient UAF mitigation method. Our UAF mitigation
leverages the metadata embedding to provide a proba-
bilistic defense against temporal safety violations, namely



Compiler (LLVM)

C/C++

mtmalloc

Compile Time Run Time

Instrumented
Binary

Heap Allocations

Shadow Memory

Allocation

Aliased Alloc

Instrumentation
PassPGO

Aliased Alloc

manages

...
UAF Check

Figure 1: Schematic overview of xTag’s architecture.

use-after-free of heap-allocated data. Figure 1 shows the
overall architecture of our system and the prototype im-
plementation called xTag.

Our system takes as input the source code (C/C++) of an
application. In our prototype implementation, we use the
LLVM compiler framework to insert use-after-free checks
into the compiled binary based on the metadata stored in
the pointer and the shadow memory (see Section 3.2).
Note that xTag requires access to the source code for in-
serting these use-after-free checks, and that closed-source
applications cannot be protected by parties other than the
vendor. We do not believe that this will hinder adoption,
as this drawback also applies to many widely deployed
mitigations, such as e.g., LLVM’s CFI or stack cookies.
We use profile-guided optimizations (PGO) provided by
the LLVM compiler framework to reduce branching in
emitted use-after-free checks (see Section 3.3). The in-
strumented binary is linked to a memory allocator, called
mtmalloc, in our system. Our custom memory allocator
manages both the shadow memory, where the memory
tags are stored, and the heap allocations, which require
multiple aliased virtual memory mappings due to metadata
embedded into the pointer (see Section 3.1).

3.1. Metadata Embedding Scheme

We design a generic allocator mtmalloc that supports
an efficient software implementation of metadata em-
bedding in pointers for the x86-64 ISA. We then show
how to build a UAF mitigation on top of this alloca-
tor. Note that our embedding scheme is not limited to
use-after-free mitigations in its applications. Any defense
mechanism that relies on a metadata embedding scheme
(e.g., CSP [29] and further security applications [53]) is
supported and can benefit from our software-based pointer
tagging technique. As a proof-of-concept, we also demon-
strate how double-free vulnerabilities can be mitigated.
Broadly speaking, we reserve a predefined range of bits to
store metadata inside a pointer. From a CPU’s perspective,
the embedded metadata bits correspond to changes of
the virtual address. Hence, to preserve compatibility with
non-instrumented code, we need to ensure that pointers
reference the same allocation regardless of the embedded
metadata bits. As such, we propose a technique that maps
distinct pointers to the same allocation. To do so, we map
the physical memory backing an allocation to multiple
virtual addresses. In particular, distinct pointers map to the
same physical memory if and only if the pointers differ
only in the embedded metadata bits. Consequently, the

63 48

0
47 38

Prefix
37 34

M
33 0

Suffix

Figure 2: Heap pointer format in our embedding scheme for a
canonical 64 bit pointer with 4 bit embedded metadata (desig-
nated as M ).

same physical memory corresponding to an allocation is
referenced regardless of the embedded metadata bits. At
the same time, this ensures that non-instrumented code
can still dereference the pointer.

We propose a scheme that defines a format for heap
pointers that reserves space for metadata bits. While the
general approach can be extended to stack pointers and
global variables, our design focuses on heap pointers as we
aim at constructing a use-after-free defense focusing on
heap-allocated objects (see Section 3.2). Figure 2 shows
the format of heap pointers in an x86-64 address space.
The first part of the pointer is set to 0 to conform to
canonical address requirements in current x86-64 imple-
mentations. We use a pointer prefix to quickly distinguish
between tagged heap pointers and other untagged pointers.
Then we use 4 bit for storing metadata inside of the
pointer (M in Figure 2). We chose 4 bit since this tag
size offers good performance characteristics (see our eval-
uation in Section 5), while still offering good protection
(see a discussion in Section 7). Furthermore, this is in line
with hardware-backed tagging solutions like SPARC ADI
and ARM MTE, which also use 4 bit tags.

As we focus on heap pointers, only a subset of pointers
will be embedding metadata. Hence, further instrumen-
tation is required to distinguish between pointers with
and without metadata. We reserve a virtual memory range
that spans 238 bytes during initialization, so that no other
memory mapping falls into the same range. It is easy
to recognize a heap pointer in our scheme because all
heap allocations have the same fixed pointer prefix if
and only if they are managed by mtmalloc. Coexisting
heap allocators might allocate memory areas with different
prefixes, but mtmalloc enforces a common prefix for all
heap allocations.

In our proposed scheme, bits 37 to 34 (i.e., 4 bits)
are designated as metadata bits. Note that the number
of metadata bits can be adjusted, and we evaluate in
Section 5 the performance impact of this parameter. By
default, pointers returned by our allocator always have
these metadata bits set to 0. The application is then free
to use the metadata bits in the pointer, i.e., for implement-
ing mitigation schemes. This leaves bits 33 to 0 at the



Virtual Memory Physical Memory
63 48

0
47 38

Prefix
37

0
36

0
35

0
34

0
33 0

P

63 48

0
47 38

Prefix
37

0
36

0
35

0
34

1
33 0

P

63 48

0
47 38

Prefix
37

0
36

0
35

1
34

0
33 0

P
Single
Page

...
63 48

0
47 38

Prefix
37

1
36

1
35

1
34

1
33 0

P

1

2

Figure 3: Various metadata embeddings that all map to the
same physical page. The allocator maps virtual memory for all
possible metadata embeddings to ensure every pointer can still
be dereferenced, regardless of embedded metadata.

discretion of the allocation algorithm. Upon an allocation
request, the allocator searches for a free slice of virtual
memory within this range. The allocation algorithm is
independent of our pointer format and is therefore not
specified any further.

Efficiently implementing a pointer tagging scheme
with aliased virtual page mappings is highly challenging
for multiple reasons. First, the page tables of the process
grow as they need to store multiple entries. Second, the in-
creased number of system calls imposes additional context
switch overhead. Third, and most importantly, the CPU’s
caching mechanisms are impacted. Primarily, the pressure
is increased on the Translation Lookaside Buffer (TLB),
which caches virtual to physical address translation. In
Section 5, we present an evaluation of these effects. In
Section 3.3, we describe how we tackle these challenges
by introducing several new optimization techniques.

To illustrate our approach, Figure 3 shows such an
allocation with an empty tag of 0000 at À. According
to the defined pointer format, 4 bits are available for
metadata usage. Changing these bits influences the virtual
address used during memory accesses. As an example,
the application might embed the bit pattern 0001 into the
metadata field, which results in the pointer depicted at Á
in Figure 3. As memory accesses via this pointer must
resolve to the same allocation, we have to ensure that
the virtual address maps to the same physical address.
This property is constructed by mapping the virtual page
at À to the same physical address as virtual page at Á.
As a result, the two addresses can be used equivalently,
facilitating an arbitrary bit pattern in the 4 metadata bits.
As a consequence, mtmalloc needs to map the physical
address 24 = 16 times. This induces additional overhead
by requiring more system calls and larger page tables,
and decreases the effectiveness of the CPU’s caching
mechanisms. However, our experiments show that most
of these effects are either negligible (see Section 5) or
can be reduced with new optimizations (see Section 3.3).

Note that the presence of embedded metadata is fully
transparent to the application code. Due to the aliased vir-
tual memory mappings, pointers with any embedded meta-
data are also regular pointers and can be dereferenced.
This is a significant and important advantage when dealing
with code that is not instrumented. In prior work, point-
ers containing metadata had to be converted to regular

pointers and back at each boundary to non-instrumented
code. This includes the usage of inline assembly, non-
instrumented libraries, or the system call interface. In con-
trast, our metadata scheme is highly compatible, allowing
pointers to be passed back and forth between instrumented
and non-instrumented code without losing the metadata.
This allows our scheme to work with complex targets,
such as web browsers, that use multiple source languages,
complex runtimes, legacy code, and are highly optimized.

3.2. Use-after-free Mitigation Scheme

Based on our software-based pointer tagging method,
we introduce a use-after-free mitigation scheme that uses
the metadata bits to mitigate this type of vulnerabilities.

Threat Model In the remainder of this paper, we assume
the following threat model for our mitigation scheme: the
adversary knows of at least one use-after-free vulnerability
in a given vulnerable program. This vulnerability allows
the adversary to force the program to read from or write to
a dangling pointer; this operation accesses a deallocated
memory object that potentially overlaps with one (or
more) other memory objects. Use-after-free vulnerabilities
represent a temporal memory safety violation that is most
commonly associated with heap-allocated data. While it is
possible to encounter such conditions with stack-allocated
data (i.e., use-after-return), current data [56, 8] suggests
that the vast majority of known use-after-free vulnera-
bilities are heap-based. Furthermore, to cover use-after-
return, the compiler can simply transform stack allocations
to heap allocations to be covered by xTag’s protection.
As such, we focus solely on heap-based use-after-free
vulnerabilities in this work.

We also assume that orthogonal defenses against spa-
tial memory safety issues are in place [4, 30, 28, 18].
However, to bypass xTag’s protection using a spatial
memory error, the attacker would need an arbitrary write
primitive to corrupt xTag’s shadow memory. In this case,
bypassing xTag is probably not necessary anymore, as the
attacker can essentially corrupt the whole address space
already.

Mitigation Scheme Building on the metadata embed-
ding scheme, we design a probabilistic exploit mitigation
targeting use-after-free bugs. Similar to prior work on
use-after-free detection, we utilize a lock-and-key-style
mechanism [35] to detect use-after-free conditions. More
specifically, we assign a randomly chosen 4-bit value
(called tag further on) to every heap allocation. This tag is
embedded in the pointer returned by the allocation func-
tion and is additionally stored in a shadow memory region.
When memory is accessed via a pointer, the embedded tag
is compared to the corresponding tag stored in the shadow
memory region. Any mismatch is considered a use-after-
free and terminates program execution.

Prior work on use-after-free mitigations has used a
similar type of mitigation [35, 15]. However, these earlier
approaches have difficulties to store the reference value.
Typically, fat pointers are used, which break compatibility
with non-instrumented code, such as inline assembly. Be-
cause of this incompatibility, they have not been widely
used in practice. Low-fat pointer schemes [30, 18, 17]
improve compatibility, but do not allow neither updating



nor invalidating of embedded metadata. As further ex-
plained in Section 8, it is precisely this limitation that
precludes a use-after-free mitigation scheme base on low-
fat pointers. In contrast, our pointer embedding scheme
allows us to handle scenarios where a pointer is passed
to non-instrumented code, which returns the pointer back
to instrumented code. In this case, the returned pointer
still contains the same embedded metadata tag, and the
instrumented code can again check for use-after-free. As a
result, our use-after-free mitigation scheme can be enabled
in many software projects, even when various program-
ming languages, runtimes, and inline assembly code are
used. In this respect, our mitigation scheme is similar
to use-after-free mitigations that were proposed for the
ARM architecture with hardware support for memory tag-
ging [46]. Note that the Intel x86-64 ISA does not support
such methods. In contrast, our proposed scheme can be
applied to complex code bases on commodity hardware.
For example, we were able to successfully instrument the
C++ part of the Firefox web browser.

For each allocation, we generate a tag that is embed-
ded in the pointer returned by allocation functions (e.g.
malloc and new). Additionally, we assign the same tag
to the memory range corresponding to the allocation. The
memory tags are stored disjointly inside a shadow memory
region. The granularity of our heap tagging is 16 bytes,
i.e., 16 bytes of heap memory map to 1 byte of shadow
memory. This implies a minimum allocation granularity
of 16 bytes, otherwise memory ranges corresponding to
distinct allocation might share the same shadow memory
entry. While this is not the most memory-efficient alloca-
tion granularity, our allocator does not impose unreason-
able overheads. First, typical heap allocations are larger
than 16 bytes (the size of two pointers). Second, high-
performance heap allocators already align memory to 8 or
16 byte granularity to better utilize caching mechanisms
of the CPU. In Section 5, we analyze the performance of
our scheme in detail.

We chose the shadow memory scheme to efficiently
implement the runtime checks. Every pointer into an
allocation has a trivial linear mapping to shadow memory.
This means that during tag lookup, there is no need to
find the base address of the allocation via an expensive
traversal operation. The downside of this shadow memory
scheme is that memory usage of the shadow memory
grows with the number of bytes allocated. As such, the
memory overhead of the shadow memory amounts to
roughly 6% for all heap allocations. This is in line with
other works that utilize memory tagging [46] and is lower
than the memory overhead induced by other recent use-
after-free defenses (e.g., 15% in MarkUs [2] and 61.5% in
Oscar [15]). We present a full measurement of the memory
overhead in Section 5.

We instrument all pointer usages to check whether the
tag embedded in the pointer and the tag stored in shadow
memory have the same value. Listing 2 shows our pointer
usage instrumentation in pseudo-C code. Since pointers to
stack and globals are not tagged at all, we can skip further
checks on these pointers. This is possible by verifying that
the pointer starts with the heap prefix, as shown in line
1 in Listing 2. For heap pointers containing embedded
metadata, extraction of the tags boils down to a shift
operation followed by a logical and operation (line 2). The

// verify we have a heap pointer
if ((pointer ˆ heap_prefix) >> 38 == 0) {
// extract tag from pointer
tag = (pointer >> 34) & 0xf;
// retrieve tag byte from shadow memory
heap_offset = pointer & 0x3ffffffff;
shadow_tag = shadow_memory[heap_offset / 16];
if (tag != shadow_tag) { // validate tag

__report_uaf();
}

}

Listing 2: Pseudo-C that shows the memory tag lookup and
reporting.

lookup of a tag in shadow memory starts with computing
the offset for the heap base. As there is a linear mapping
between heap and shadow memory, we can simply use the
offset to the heap base to perform the lookup into shadow
memory. This offset is divided by 16 to account for the
tagging granularity.

Extension: Double-Free Detection Double-free bugs are
a related temporal memory safety issue where the attacker
corrupts the allocators internal state by abusing a deal-
location of an already deallocated memory object. More
specifically, the free list of the allocator contains the same
pointer twice, which leads to the allocator returning the
same address for different calls to malloc or new. Similar
to use-after-free bugs, there are now two semantically
different pointers that refer to the same memory location.
However, in contrast to use-after-free, such double-free
bugs can be mitigated in the allocator itself (i.e., no
instrumentation is necessary).

We extend xTag, more specifically our allocator mt-
malloc, to detect and prevent double-free bugs using mem-
ory tags. Once an allocation is returned to the allocator
(e.g., free or delete), mtmalloc performs an additional
check that verifies that the pointer-embedded tag matches
the tag stored in shadow memory. A tag mismatch indi-
cates a double-free issue, hence we terminate execution.
To ensure that subsequent attempts to free the allocation
again are detected deterministically, we override the first
corresponding tag in shadow memory. This is sufficient to
detect double-free bugs because a call to free receives a
pointer to the beginning of the allocation as an argument.
Enabling the double-free mitigation did not have any
measurable runtime or memory overhead compared to the
xTag version without the double-free mitigation.

3.3. Design Optimizations

Allocator modifications and runtime instrumentation
both degrade the performance of the system, optimizing
either aspect reduces the overall overhead. The allocator
induced overhead stems primarily from two effects. First,
mapping memory multiple times increases the number of
system calls to establish the mapping in the first place.
Second, the pressure on the translation lookaside buffer
(TLB), a memory cache that is used to reduce the time
taken to access a memory location, increases and this can
significantly affect the performance.

Our instrumentation inserts runtime verification
checks which consume both computing cycles and mem-
ory bandwidth. A single check consists of only a short se-



quence of assembly instructions (see Listing 5 on page 9).
As such, the primary optimization possibility is to re-
duce the number of runtime checks. Hence, we introduce
several methods that leverage information provided by
the compiler to reduce the number of necessary runtime
checks while instrumenting the target program.

3.3.1. Reducing TLB Pressure. Section 3.2 introduced
a random selection of tags for the sake of simplifying
the description. Hence, allocations adjacent on a physical
page tend to be placed on distinct virtual pages. Accessing
a single allocation establishes a TLB entry caching the
translation from the virtual page to the corresponding
physical page. However, the cache entry is unlikely to
speed-up access to an allocation belonging to the same
physical memory as the virtual page differs with high
likelihood due to different embedded metadata. Therefore,
iterating over multiple allocations has a high probability to
trigger multiple page-walks in order to establish the TLB
entries, even if the allocations are placed right next to
each other in physical memory. As a result, the increased
number of page-walks slows down execution. In addition,
the TLB cache is limited in size and establishing a new
entry might evict an entry needed in the near future. As
shown in our performance evaluation in Section 5, the
increased TLB pressure results in a workload-dependent
slowdown.

We reduce the TLB pressure with two orthogonal
optimizations. First, we implement huge page support.
Huge pages increase the size of a virtual-to-physical page
mapping from 4 kB to 2MB. As a result, the same number
of TLB entries cache the translation of a larger span
of virtual addresses to physical addresses. Second, the
assignment of tags to allocations can be optimized in
order to reduce TLB pressure, which in turn improves
performance. The key idea here is to keep assigning
the same tag to allocations on the same page as long
as memory on this very page is not reused. When the
allocator selects a new page for fulfilling allocations, a
random tag is generated for the page and all allocations
from this page are tagged with the same value. Hence,
initially all allocations share the same virtual page and
therefore require just a single TLB entry. However, to
not compromise the security properties of our mitigation
scheme, memory returned to the allocator cannot simply
reuse the same tag. Otherwise, the optimization would
become susceptible to Heap Feng Shui [55]. Instead, the
allocator tracks allocations released by the application in a
separate set. Only if a virtual page is filled with allocations
and can no longer serve new allocations, we randomly
generate a new fresh tag for this page. The separately
tracked set of freed allocations is now made available
to new allocations again. All further memory allocations
receive the newly assigned tag. Thus, memory reused by
the allocator always contains a random tag, while still
aiming to reduce the diversity of tags for better TLB
caching.

Note that the runtime validation of tags always com-
pares the tag embedded in the pointer with the tag stored
in shadow memory. Even if the allocator re-randomized
the tag for new allocations within a page, the currently
existing pointers and allocations remain valid. We refer to
this optimization as generational tag assignment. The pos-

int f(int* x, int* y) {
int result = *x;
// might override *x if pointers alias

*y = 0;
// must re-read *x due to previous write
result += *x;
return result;

}

Listing 3: Pseudo-C showing multiple accesses via the same
pointer.

itive effect of this optimization becomes apparent during
the evaluation in Section 5.

3.4. Optimizing Instrumentation

When considering temporal safety violations, we can
often deduce that certain program paths do not affect
temporal safety properties. For example, a program path
that does not free memory cannot invalidate use-after-free
checks. As such, we can often remove redundant checks
in our instrumentation. A discussion of this optimization’s
security implications is deferred to Section 7.

Repeated Accesses via Same Pointer Multiple memory
accesses via the same pointer are validated just once if the
allocation cannot be freed in between. Consider the code
snippet in Listing 3. The code starts with dereferencing
pointer x. Shortly afterwards, the very same pointer is
dereferenced again. The compiler must emit a second load,
as the interleaving write via y might change *x. Assuming
our runtime validation verifies x during the first load, the
validity must hold for the second load. We derive this
property by analyzing code paths between memory ac-
cesses via the same pointer. Under the condition that none
of the paths between two accesses might free memory, a
later check can be omitted. This optimization is applicable
only if the former access dominates the latter, i.e., we can
prove statically that the former access must have been
executed before the latter memory access. Otherwise, a
path might reach the latter access without passing through
a runtime verification. Again, discussion of this optimiza-
tion’s security implications is deferred to Section 7.

Partially-Aliasing Pointers Two pointers referring to
the same allocation at distinct offsets into the allocation
are called partially-aliasing. E.g., pointers to different
fields of a struct refer to same allocation but point to
distinct addresses. Because allocations cannot be partially
freed, validating a single pointer implicitly validates all
partially-aliasing pointers as well precisely because they
point into the very same allocation. Consequently, we can
omit checking a memory accesses via pointer P if (1) a
partially-aliasing pointer Pa is verified in a code path
dominating the access in question, and (2) no memory
is freed between the validation of Pa and the memory
access via P .

As an example, consider the code in Listing 4. Setting
the two member variables x and y accesses memory via
two distinct pointers. The pointers partially alias each
other as they must belong to the same allocation. In
addition, the first memory access dominates the second



typedef struct { int x; int y; } S;
S* s = malloc(sizeof(S));
s->x = 0;
s->y = 1;

Listing 4: Pseudo-C showing two memory writes. The accessed
memory locations are partially-aliasing as they must belong to
the same allocation.

(i.e., must happen before) and memory cannot be freed
between the accesses. This implies that verifying the first
pointer implicitly ensures that the second pointer is not
dangling.

Validating in the Caller When considering small helper
functions that do not free memory, we can sometimes
move runtime checks out of the function. For example,
consider a simple comparison function between two mem-
ory objects such as an implementation of the C++ equality
operator. This small helper function does not change
temporal memory safety properties and only accesses two
memory objects. We can now introduce the assumption
that all pointers passed to this function are already safe
and completely eliminate the checks from the function.
However, now any caller of the function must perform
the use-after-free checks on behalf of the callee. At first,
this does not reduce the number of necessary checks, but
if we consider passing a pointer to a callee function as
a pointer access, we can often eliminate these checks as
part of our repeated access via same pointer optimization.

4. Implementation

Our prototype implementation of xTag consists of two
major components:

1) mtmalloc, a memory allocator managing the memory
tags and aliased allocations and

2) a LLVM compiler pass that leverages profile-guided
optimization (PGO) to efficiently instrument the
code.

We implemented the proposed allocator design on top
of mimalloc v1.6.1, a high-quality and high-performance
allocator developed at Microsoft [19]. While the origi-
nal mimalloc supports all major operating systems, i.e.,
Windows, Linux, and OS X, our modifications target the
Linux kernel to demonstrate the feasibility of the ap-
proach. Our prototype relies on the Linux kernel memory
management API to map physical memory multiple times
with the mmap flag MAP_SHARED. This flag is intended
to facilitate user-mode shared memory between multiple
processes, both reading and writing to the same physical
memory. However, it also allows mapping the same phys-
ical memory multiple times into a single process. Due to
mimalloc’s support for Windows and OS X, we expect
modest porting efforts to support other operating systems.
Both of these operating systems support mapping physical
memory multiple times either via MAP_SHARED on OS
X or MapViewOfFileEx on Windows.

Our allocator exports two global variables,
heap_start and shadow_base. The symbol
heap_start provides the start of a 16GB memory
region which holds all dynamic memory allocations.
This allows our instrumentation to distinguish whether
a specific pointer is within the heap region. Note that

the current heap size of 16GB is an implementation
detail and can be increased to support memory-intensive
applications. Differentiation is necessary as non-heap
pointers lack a tag and consequently they are exempt
from runtime validation. Mapping heap pointers to the
corresponding shadow memory region mandates the base
address of said region, provided from the allocator via
the symbol shadow_base. Runtime instrumentation
relies on the two symbols, while verifying if the
embedded tag matches the reference value in shadow
memory. The instrumentation is emitted by our link-time
optimization (LTO) pass for LLVM version 10 consisting
of approximately 3k lines of code. We release both
our allocator and instrumentation passes such that our
results can be reproduced. The repository is available at
https://github.com/rub-syssec/xTag.

Assembly Sequence for Validation As our mitigation
needs to check a significant amount of pointers at runtime,
efficient implementation is vital for a small performance
penalty. While Listing 2 in Section 3.2 shows pseudo-
code for validation, Listing 5 shows the actual assembly
code emitted by our compiler pass. We start with a rorx
instruction which rotates the bits in ptr such that the
tag is stored in cl. Furthermore, the 30 leftmost bits
of rcx now hold the offset into shadow memory. We
commence with extracting this offset into rax with a
shrx instruction. Note that shadow_base is a global
variable, exported by our allocator. It holds the shadow
memory base address. In addition, this base address is
aligned such that the lowest byte is precisely the constant
we need for shrx such that the offset is stored in rax.
The subsequent cmp instruction compares the extracted
tag in cl with the counterpart in shadow memory. Assum-
ing the tags match, we resume regular program execution.
Any mismatch not yet substantiates a usage of a dangling
pointer. Instead, we have to fallback on a check whether
ptr is a heap pointer in the first place. This check is
implemented by comparing the prefix bits of ptr with the
global variable heap_start, exported by the allocator.
A different prefix means the pointer is not managed by
our allocator (e.g., located on the stack or in the .bss
section). We allow program execution to proceed since
we do not need to check this pointer. Leveraging PGO
information, we can invert the branch condition if training
data suggests a single check mostly validates non-heap
pointers. In this case, a prefix comparison proceeds the
tag validation which is moved to the fallback branch.

Assume a specific code location mostly validates non-
heap pointers. Failing tag validation (and subsequent fall-
back code) is unnecessarily expensive. Instead, reordering
tag validation and fallback code is more efficient. As
determining the better ordering at compile-time is difficult,
we leverage profile-driven feedback instead. Assuming
the profiling workload is representative, we pick a code
sequence minimizing runtime overhead in production.

Handling the Fork System Call Our prototype imple-
mentation relies on using mmap with the MAP_SHARED
flag to map the same physical page to different virtual
addresses. The current Linux kernel does not support
mapping process-private pages multiple times into the
address space. As a consequence, our allocator changes
the semantics of the fork system call. Since shared pages

https://github.com/rub-syssec/xTag


rorx rcx, ptr, 34 // extract tag to cl
shrx rax, rcx, shadow_base // map ptr to shadow
cmp cl, [shadow_base + rax]
jnz .fallback_check // might be non-heap
fallback_succ:
...
fallback_check:
xor ptr, heap_start
shr ptr, 38 // iff heap: result is 0
jnz .fallback_succ // jumps if non-heap ptr
ud2 // crash

Listing 5: x86-64 assembly sequence runtime validation of point-
ers. Tags are 4 bits in size applied with a granularity of 16 bytes.
The maximum heap size is configured to 234 bytes (16GB).

are also shared between parent and child after a fork, all
heap-allocated data is shared between parent and child in
our current prototype. This is a limitation of the memory
management APIs of the Linux kernel. However, prior
work has shown that this can be handled in userspace by
instrumenting the fork system call [15]. Here, the process
manually creates copies of the shared pages while forking
such that parent and child have different physical pages
backing the heap allocations. Alternatively, the kernel
could be modified to provide an API supporting aliased
non-shared page mappings efficiently. Both approaches
are straightforward to adopt in our prototype. For the
evaluation, we ensured that the benchmarked applications
do not utilize the fork system call.

Non-standard Pointer Usage In general, our metadata
embedding scheme is highly compatible with 1. system
calls, 2. non-instrumented libraries, and 3. inline assem-
bler code. Hence, the use-after-free mitigation scheme
is by design compatible with legacy code. However, the
optimization techniques described in Section 3.4 poten-
tially lead to false alarms in case pointers are handled
in an uncommon fashion. For example, passing a freed
pointer across function boundaries does not necessarily
constitute a use-after-free considering that the callee might
never dereference the pointer. However, this behavior is
incompatible with our validating in the caller optimiza-
tion. Furthermore, indexing an out-of-bound pointer such
that the accessed address is correct regarding allocation
boundaries is as well not compatible with our partially-
aliasing pointer optimization. We noticed a very few cases
where this issue becomes apparent, namely the perlbench
SPEC benchmark, for which we had to disable our op-
timizations. By doing so, we avoid false alarms at the
cost of performance overhead increase but still ensuring
the same security guarantees. For two other benchmarks,
gcc and xalancbmk, we noticed that a few functions (four
functions and three function templates respectively) are
not compatible to our validating in the caller optimiza-
tion. Instead of disabling our optimization entirely for
these programs, we simply move pointer verification from
callers to callees for the few non-compliant functions. For
all other benchmarks, we did not observe any unusual
pointer usages. For a full list of incompatible functions in
SPEC 2017 intspeed and a discussion of omitted instru-
mentation in Firefox we refer to Section E.

5. Performance Evaluation

Setup Our evaluation on the SPEC CPU2017 intspeed
benchmark runs on server hardware, equipped with an
Intel Xeon Gold 6230R CPU and 196GB DDR4 RAM,
running Ubuntu 20.10. Both hyper-threading and Intel
Turbo Boost are disabled for increased reproducibility.
We also evaluate our mitigation against multiple browser
benchmarks. This evaluation runs on system with an Intel
i7-10510U CPU, 32GB of DDR4 RAM, and running
Ubuntu 20.10. In contrast to the evaluation on SPEC
CPU2017, hyper-threading and Intel Turbo Boost are en-
abled as this is the most realistic scenario for browser
execution. All SPEC benchmarks leverage profile-guided
optimization and ThinLTO [26] for peak performance.
We omit the exchange benchmark from evaluation as
we do not support instrumentation of Fortran code. We
utilize the Clang compiler version 10. The allocator for
reference values of SPEC CPU2017 intspeed is mimalloc
1.6.1 with transparent huge pages (THP) enabled. The
bars for evaluating SPEC show the median overhead in
percent relative to the reference execution running with
the mimalloc. Error bars indicate minimum and maximum
overhead of three runs relative to the same baseline.

Benchmarks on Firefox 81 utilize profile-
guided optimization and ThinLTO. For all Firefox
benchmarks, we configure --enable-valgrind
and --disable-sandbox (for compatibility with
MarkUs) as well as --disable-forkserver (for
compatibility with our prototype, see Section 4). Note
that valgrind is not actually running, however the flag is
required for build compatibility with MarkUs. Evaluating
Firefox with MarkUs [2], ASAN [45], and our prototype
requires --disable-jemalloc, as all of them utilize
a modified allocator. As a result, our allocator handles
all allocations but the garbage-collected objects of the
JavaScript engine. The baseline build does not use this
flag and runs with the built-in jemalloc allocator.

We compare xTag to two other use-after-free mitiga-
tions: MarkUs [2], the fastest and most recently published
use-after-free mitigation scheme, and the sanitizer ASAN.
We cannot compare xTag with other use-after-free miti-
gations as most prototypes, like DangSan [59] and CR-
Count [49], are built upon very old LLVM versions (i.e.,
version 3.8). As a result, we cannot compare on the SPEC
benchmark because simply changing to a new LLVM
version and a newer allocator increases performance and
biases the results towards our solution, which is based on
LLVM 10.

Runtime Overhead We evaluate the runtime overhead
on the SPEC CPU 2017 intspeed benchmarks, the results
are summarized in Figure 4. We omitted ASAN because
the geomean overhead is more than 123% (see Section C
for an overview of ASAN’s overhead).

While our measurements of MarkUs on the individual
benchmarks are generally aligned with the values reported
by the authors in the paper [2], we noticed two differences.
First, the gcc benchmark crashes, we show the overhead
from the original publication [2] instead. Second, the re-
ported overhead on omnetpp is reported as roughly 110%,
while we measure 193.3% overhead on our system.



pe
rlb

en
ch gc

c
mcf

om
ne

tpp

xa
lan

cb
mk

x2
64

de
ep

sje
ng

lee
la xz

ge
om

ea
n0%

20%

40%

60%

80%

100%
193%

xTag xTag(small pages) MarkUs

Figure 4: Runtime overhead relative to a baseline with mimalloc
v1.6.1 (THP enabled) on SPEC CPU2017 intspeed.

In most benchmarks, xTag induces a smaller runtime
overhead than MarkUs, showing that xTag performs better
compared to the current state-of-the-art use-after-free mit-
igation. The geomean overhead for xTag is 24.9%, while
it is 33.3% for MarkUs, a 25.2% relative reduction. Re-
ducing the TLB overhead incurred by mtmalloc with huge
pages is evidently critical for the performance of xTag and
further evaluated in Figure 6. Moreover, the benchmark
with SPEC CPU runs on a single CPU core, which biases
the results towards MarkUs: Note that MarkUs utilizes a
separate thread for parts of the garbage collection process
and as such can potentially utilize a second CPU core to
its advantage. For high-throughput workloads, where all
cores run at full capacity, the overhead induced by the
parallel garbage collection might increase further. In con-
trast, xTag’s overhead is fully deterministic and restricted
to a single process. We show the measurement results for
the overhead on SPEC CPU intspeed without the parallel
garbage collection in Section D, the geomean overhead
for MarkUs is then even 39.7%.

Memory Overhead As our tagging scheme requires
1 tag byte per 16B of allocated virtual memory, we
expect about 6.25% memory overhead. Assume a pro-
gram allocates 1MB heap memory with mtmalloc. The
physical memory backing the allocation is lazily assigned
by the OS, i.e., assignment is deferred until the allocated
memory gets accessed. However, tags are stored in shadow
memory at allocation time. Hence, we immediately require
1MB/16 = 64kB of physical memory for tag storage.
Figure 5 shows the memory overhead for the SPEC
CPU2017 benchmark, which we omitted in Section 5
due to space constraints. Virtual memory is sampled from
/proc/pid/stat, whereas physical memory usage is
profiled by placing the processes in a dedicated cgroup
and sampled from memory.usage_in_bytes. The
baseline execution uses an unmodified mimalloc v1.6.1
as allocator. Assuming memory overhead stems from

tags in shadow memory only, we compute idealized
memory usage of mtmalloc with mtmallocIdeal =
mimallocPhysical +mimallocV irtual/16
Physical memory usage of mtmalloc with 2MB pages
assigning 4 bit tags with generational tag selection is
profiled in mtmallocphysical. Decreasing the page size
to 4 kB slightly decreases physical memory utilization.
While memory overhead generally corresponds to the
expected behavior for 6 out of 9 benchmarks, xz and mcf
show an increase of 60%. x264 exhibits an initial overhead
of 60%, execution terminates with a memory overhead
of 70%. Ideally, physical memory overhead of mtmalloc
arises due to tag storage only. However, we also identified
increased kernel memory for managing virtual memory
mappings as well as aggressive page retainment by mt-
malloc for reducing system calls as additional sources for
overhead. We believe that the latter could be optimized
by introducing kernel support.

Measuring TLB Pressure As described in Section 3.3.1,
embedding a tag diversifies the virtual addresses and
hence increases pressure on the TLB. To quantify the
performance penalty, we evaluated different tag sizes on
the SPEC benchmark, the results can be found in Figure 6.
We measured the performance overhead for tags of size
1, 2, 4, and 8 bit using different tagging strategies and a
page size of 2MB. A similar evaluation of 4 kB pages is
deferred to Section B. Remember that the two hardware-
backed memory tagging solutions ARM MTE and SPARC
ADI use 4 tag bits. Note that the penalty includes some
overhead due to the increased number of system calls.
To measure the system call overhead, we introduced a
fixed tagging strategy that always uses the same tag value
and thus does not increase TLB pressure. The baseline of
our measurement is a profile-optimized build running with
an unmodified version of mimalloc. We cannot use the
standard glib allocator as baseline since this could hide
some overhead introduced by mtmalloc. The individual
benchmarks are not instrumented for any kind of runtime
mitigation as we are interested in the allocator overhead
only.

Our measurements show that using 8 bit tags is indeed
impractical, the TLB pressure and system call overhead
tremendously increases. As is shown in Figure 6a, a
random tagging strategy with 8 bit tags induces up to
251% overhead in the worst-case benchmark. On the
same benchmark, a 4 bit random tag induces only 84%
overhead. Even though our generational tagging strategy
can mitigate some TLB pressure, we conclude that 4 bit
tags are currently the only tag size that offers practical
performance implications, while still providing acceptable
security guarantees.

We also measure the impact of our generational tag-
ging strategy on the induced TLB pressure. For example,
the worst-case benchmark (xalanc) with 8 bit drops from
251% with random tag selection to 40% with generational
tag selection. Figure 6c shows a comparison between the
generational and randomized tagging strategies. Overall,
our generational tagging strategy can reduce the runtime
overhead by reducing TLB pressure to acceptable num-
bers, e.g., the xalanc benchmark with 4 bit tags can be
reduced from 84% to 14%.

Lastly, we measure system call overhead and TLB



0% 50% 100%
0

200

400

perlbench

0% 50% 100%
0

100
200
300

x264

0% 50% 100%
0

2,000
4,000
6,000
8,000

deepsjeng

0% 50% 100%
0

100
200
300

omnetpp

0% 50% 100%
0

2,000
4,000
6,000
8,000

gcc

0% 50% 100%
0

200
400
600
800

xalancbmk

0% 50% 100%
0

2,000
4,000
6,000

mcf

0% 50% 100%
0

100

200

leela

0% 50% 100%
0

5,000
10,000
15,000

xz

M
em

or
y

U
til

iz
at

io
n

in
M

B

Completion in Percent

mimallocV irtual mimallocP hysical

mtallocideal mtallocphysical

Figure 5: Memory consumption of mtmalloc with 2MB pages
for SPEC CPU2017 intspeed benchmarks.

pressure with the results shown in Figure 6c. For this,
we compare three tagging strategies: randomized, gener-
ational and fixed. The fixed tagging strategy allows us to
measure system call-induced overhead. Since we always
use the same tag, there is no impact on the TLB. As such,
we measure only the overhead induced by our changes to
the baseline allocator, such as additional system calls. We
can see that in most benchmarks this part of the over-
head is negligible but on certain benchmarks (omnetpp
and xalanc), with a lot of heap allocations, it induces
a performance impact. The majority of the overhead is
indeed caused by the TLB pressure.

Browser Performance Overhead To evaluate the per-
formance of our mitigation on browser workloads, we
run three popular web benchmarks: Kraken, Speedome-
ter 2.0, and JetStream2. Figure 7 shows the benchmark
results of the Firefox web browser protected with xTag,
MarkUs, and an unprotected build as baseline. The Kraken
benchmark measures performance of JavaScript execution.
As the results are in ms, lower results are better. Re-
peating the measurement 10 times for increased accuracy
reveals a penalty of 9% for xTag compared to 18% for
MarkUs. The Speedometer 2.0 benchmark was run three
times, while taking into account all 10 repetitions reported
per run. This benchmark simulates user interaction and
aims to quantify responsiveness. The median penalty of
xTag is 29%, compared to 42% from MarkUs. The last
benchmark, JetStream2, is a browser benchmark including
JavaScript and WebAssembly, again executed 10 times.
Our performance penalty of 22% for xTag is just slightly
more than 18% for MarkUs.

6. Exploit Case Studies

To show that we can effectively detect use-after-free
conditions, we use three recent real-world vulnerabilities
in the Firefox web browser to demonstrate that our ap-
proach can handle complex, real-world applications. All
three vulnerabilities are publicly documented and come
with a test case to reproduce the use-after-free vulner-
ability. We built an instrumented version of the Firefox
browser in version 65 and ran the test cases. For all
three case studies, our instrumentation can successfully
detect and prevent an attempt to exploit the use-after-free
vulnerability.

CVE-2018-18500 is a UAF vulnerability in the
HTML5 parser of Firefox. Custom HTML elements
might be freed during parsing, while still being in
use. The destructor of nsHtml5StreamParser
frees an nsHtml5TreeBuilder object, even
though it is subsequently used in the function
nsHtml5TreeOperation::Perform. Our
mitigation terminates program execution before accessing
the freed memory, hence successfully preventing an
exploitation of the bug.

CVE-2019-11752 is a UAF in the IndexedDB
implementation of Firefox. A key value deleted
in IDBObjectStore::DeleteIndex might
be accessed later on during a call to the function
indexedDB:: KeyPath::ExtractKey. Our
instrumentation successfully terminates program
execution in the latter function, hence mitigating
the vulnerability.

CVE-2019-11691 is a UAF vulnerability occurring
during processing of XMLHttpRequests in
combination with event loops. The garbage collector
reclaims objects not kept alive while still being
used. This causes an access to freed memory in
XMLHttpRequestMainThread::DispatchProgress
Event. Our mitigation is again able to detect the access
and terminates program execution accordingly.



251%

pe
rlb

en
ch gc

c
mcf

om
ne

tpp

xa
lan

cb
mk

x2
64

de
ep

sje
ng

lee
la xz

ge
om

ea
n0%

20%

40%

60%

80%

1 Bit 2 Bits 4 Bits 8 Bits

(a) Tags are selected randomly.

pe
rlb

en
ch gc

c
mcf

om
ne

tpp

xa
lan

cb
mk

x2
64

de
ep

sje
ng

lee
la xz

ge
om

ea
n0%

20%

40%

60%

80%

1 Bit 2 Bits 4 Bits 8 Bits

(b) Tags are selected in a generational fashion.

pe
rlb

en
ch gc

c
mcf

om
ne

tpp

xa
lan

cb
mk

x2
64

de
ep

sje
ng

lee
la xz

ge
om

ea
n0%

20%

40%

60%

80%

Fixed Generational Randomized

(c) Comparison of tagging strategies with a tag
size of 4 bit.

Figure 6: mtmalloc induced performance overhead with 2MB pages on SPEC CPU2017. Different tag sizes and tagging strategies
are compared to mimalloc v1.6.1 (THP enabled).

0ms

500ms

1,000ms

be
tte

r←
w

or
se

Kraken

0

50

100

w
or

se
→

be
tte

r

Speedometer 2.0

Baseline xTag MarkUs

0

50

100

w
or

se
→

be
tte

r

JetStream2

Figure 7: Performance overhead for three browser benchmarks.
Note that Kraken measures performance in ms (lower is better),
while the other two show performance impact (higher is better).

7. Security Considerations

In the following, we discuss the security implications
of xTag to ASLR, the effectiveness of a 4-bit tag, as well
as multithreading aspects.

ASLR Weakening From a theoretical point of view,
our pointer tagging scheme potentially weakens address
space layout randomization (ASLR). Given that we have
multiple mappings of the same data in the virtual ad-
dress space, our method reduces the potential entropy by
4 bit. The pointer prefix allowing to quickly distinguish
between tagged and untagged pointers changes with every
execution due to randomization by the operating system.
The pointer format shown in Figure 2 features 10 bit
of randomness in Prefix due to randomization by the
OS. Furthermore, the allocator can randomize the Suffix
bits, allowing for up to additional 34 bits of randomness,
modulo alignment requirements of individual allocations.

However, we argue that in practice, our pointer tagging
scheme does not have any significant impact on ASLR.
Current ASLR implementations on all major unhardened
operating systems do not actually utilize the full address
space for randomization. For example, a typical unhard-

ened Linux system utilizes the same pointer prefix for
all mmap allocated memory and a different fixed prefix
for all brk allocated data. This prefix is constant any-
way, so our embedded metadata does not actually reduce
pointer entropy when compared to a stock Linux kernel.
Furthermore, brute-force attacks against ASLR [47] have
become less of an issue in recent years. Already on
32 bit systems, brute-force attacks required a long time
to succeed. As such, arbitrary [52, 43] or limited [34]
read exploit primitives have become an integral part of
many real-world exploit chains to bypass ASLR reliably.
Additionally, recent micro-architectural and timing side-
channel attacks [38, 21, 11] have shown that ASLR does
not offer a strong defense against local attackers with
limited code execution (i.e., in the browser threat model).
As such, we believe the potential entropy reduction in
ASLR induced by our pointer tagging scheme does not
induce any practically relevant disadvantage.

Tag Reuse As other hardware-backed memory tagging
solutions, our implementation utilizes 4 bit tags. This
allows for an efficient implementation and low runtime
overhead. However, as this results in only 16 different
tags, there is a small probability of a tag reuse condition.
Assuming there exists a dangling pointer with a specific
tag, after multiple allocations and free operations, the
memory the dangling pointer refers to could potentially
be re-allocated with the same tag again. Then the use-
after-free condition would remain undetected. Note that
due to random tag selection, an adversary cannot exploit
deterministic behavior [55] to deliberately create colliding
tags. With a 1/16 chance of tag re-use, we believe this
to be improbable enough in practice that use-after-free
will not be missed. Furthermore, other memory tagging
schemes, such as ARM MTE and SPARC ADI, also utilize
the same tag size and as such are also prone to tag reuse.

However, more problematic in an adversarial setting is
a potential brute-force attack against the tag value. Under
normal conditions, the process terminates whenever a use-
after-free is detected. As such, there is a 1/16 chance that
the use-after-free exploit succeeds and the next attempt
would utilize new random tag values. However, if the
attacker is able to perform the use-after-free access in a



crash-resistant manner [20], then it is possible to brute-
force the tag. The attacker needs to be able to force the
target program to re-allocate the same memory under a
new tag. The attacker probes the tag by triggering access
through the dangling pointer. If a crash is observed, the
attacker again forces a re-allocation under a new tag
and probes again. An adversary with access to a crash-
resistance primitive can bypass any existing tagging-based
solution. In such a scenario, even 8-bit tags do not offer
significant advantage over 4-bit tags. That is, this is not a
limitation of our implementation, but an open problem of
any tagging-based scheme.

Prior work has shown that there are multiple ways to
achieve crash-resistant exploit primitives [20, 27]. How-
ever, most of the known crash-resistance primitives are not
suited to brute-forcing our pointer tagging scheme. For
example, primitives that abuse the kernel as a confused
deputy to dereference a pointer cannot be used to gain
information about the actual tag value, as every possible
embedded tag can always be dereferenced by the kernel.
Only crash-resistance primitives that mask all signals (i.e.,
also trapping instructions) can be utilized for brute-forcing
the memory tag and those are rare to find [27]. Crash-
resistance is a big problem to any exploit mitigation as
it enables probing the address space, e.g., to find hidden
shadow stacks in CFI schemes. As such, xTag—similar to
any other mitigation—will benefit from software systems
removing crash-resistance primitives.

Multithreading In general, our solution supports mul-
tithreading, which is challenging to support securely in
exploit mitigations [12, 7]. Similar to other non-atomic
software-only mitigations (e.g., Microsoft’s Return Flow
Guard [7]), there is a potential time-of-check to time-
of-use race condition inside the use-after-free check. A
memory object is freed by one thread, while at the same
time another thread accesses the same memory object.
Now in the instrumentation, there is a small race window
between the shadow memory load and the actual memory
load. This means while one thread is freeing a pointer, a
second thread could still access the same memory with the
previous pointer tag (since the shadow memory has not
been updated yet). While this race window is generally
very small, it could be lengthened by, e.g., compiler op-
timization that move the instrumentation code away from
the actual pointer dereference. This race window exists in
any software-only mitigation. For detecting use-after-free
we believe that (1) this race window is small enough to be
practically irrelevant, and (2) concurrent use-after-free are
sufficiently rare, as usually concurrent access is protected
by locking mechanisms in the application. In our exploit
case studies (see Section 6) we did not encounter any
concurrent use-after-free conditions.

8. Related Work

In the past years, memory safety attacks and defenses
were a very active research field. We now discuss how
our approach relates to prior work in this area.

Automatic Memory Management In principle, auto-
matic memory management basically eradicates use-after-
free exploits by providing temporal memory safety. Al-
though garbage collectors for the C and C++ languages

were proposed and implemented [10], none of them has
found widespread use in practice. In general, garbage
collection in C/C++ is not considered safe due to potential
pointer hiding issues [9] in the application.

Recently, MarkUs [2], a hybrid approach of manual
memory management and garbage collection, has been
proposed as a security defense. MarkUs is implemented
on top of the Boehm garbage collector, which features
a parallel marking algorithm. The basic idea is to apply
garbage collection to all objects that have been marked as
freeable by a call to the standard free function. However,
as long as a dangling pointer is detected by the garbage
collector in memory, the object is not freed. This hybrid
approach is semantically secure, as no undefined behavior
is introduced by freeing objects, whose pointer references
are hidden from the garbage collector. Only those objects
that are also manually freed are collected by the garbage
collector. However, this also means that this approach
cannot identify complex use-after-free conditions where
the dangling pointer is a hidden pointer. In contrast, a
pointer tagging based solution such as ours can detect use-
after-free conditions even for hidden pointers: As long as
the pointer-embedded tag is preserved, the pointer hiding
requires no changes. Furthermore, we show experimen-
tally that xTag offers better performance characteristics
than MarkUs in many workloads (see Section 5) and
we believe that xTag is better suited for high-throughput
scenarios.

Reference counting is another approach to automatic
memory management, which is becoming more popular in
modern C++ codebases with smart pointers. Smart point-
ers encapsulate a raw pointer together with a reference
counter. However, smart pointers must be manually in-
serted into the source code. CRCount is an automatic
solution that can be used to retrofit reference counting
into legacy C/C++ codebases [49]. However, solutions that
automatically introduce reference counting are prone to
incorrect frees and potential errors when non-instrumented
code, like inline assembly, copies the pointer without
increasing the reference counter. In contrast, xTag handles
non-instrumented code gracefully.

Pointer Invalidation Several works have studied a dif-
ferent approach to use-after-free mitigation. Instead of
changing some property of the allocation, such as the
shadow memory tag in this paper, dangling pointers can
be explicitly invalidated [31, 62, 59]. This solves the
root cause of use-after-free, i.e., dangling pointers are
eradicated. However, to achieve this property, all pointers
must be closely tracked so that the instrumentation can
determine which pointers need to be invalidated. This
leads to expensive instrumentation and metadata tracking.
A similar approach is taken by the Oscar allocator as well
as by FFMalloc [15, 61]. However, instead of tracking
pointers, the allocator never reuses virtual addresses. After
a free, the dangling pointer points to a memory area
never assigned to another allocation, hence preventing
any attempt to corrupt allocated data. This allows to
perform use-after-free checks without instrumenting the
code. Similar to xTag, Oscar and FFMalloc repurposes
the MMU for security purposes. However, in contrast to
xTag such techniques use a lot of virtual addresses. As a
consequence, this increases TLB pressure, but also leads



to an increased system call overhead.

Preserving Type Safety Another approach to limiting
the impact of use-after-free bugs is the use of type-pooled
allocators. By allocating only the same types of objects
within one heap region, we can preserve type safety even
under use-after-free conditions [16, 58, 3]. This prevents
an attacker from breaking type safety as part of the exploit.
For example, a common strategy during heap exploitation
is to force the application to interpret attacker-controlled
input as a pointer value. By preserving type safety, such
exploit strategies would not be possible anymore. How-
ever, it is not clear whether such type-pooled allocators
can be efficiently and securely implemented in practice,
especially for complex C++ programs relying on custom
allocators and in-place construction of objects via place-
ment new. Several web browsers have implemented some
form of pool-based allocation, most notably Chrome’s
PartitionAlloc [40]. However, a recent analysis of serious
security bugs in Chrome [57] revealed that about 36% of
the analyzed 912 high or critical severity security bugs
since 2015 were related to use-after-free. This indicates
that even in the face of hardened allocators, use-after-free
is still a major problem.

Delayed Free Lists To make use-after-free conditions
harder to exploit, many hardened allocators [6, 37, 50, 51],
such as scudo [42], or ASAN’s allocator use a delayed
free list. This means that any heap allocated object is not
immediately freed, but is stored in a queue instead. At
some point during the program’s execution, the allocator
decides to free the objects within the delayed free list. This
helps to prevent exploitation of use-after-free conditions
by introducing a non-determinism in the allocation order.
However, such delayed free lists are not as useful under
memory pressure, which might be attacker-controlled. For
example, if the attacker has a lot of control of the allo-
cations performed by the target, e.g., in the web browser
setting, the attacker is likely able to fill the delayed free
list up to a point where the desired object is freed, hence
forcing a free. As such, even probabilistic defenses built
around pointer tagging offer better security properties than
introducing non-deterministic allocation behavior.

9. Conclusion and Future Work

In this paper, we introduced a practical pointer tagging
scheme, called xTag, for the Intel x86-64 architecture that
overcomes the lacking hardware support on this platform.
By embedding the tag bits in a clever way, we obtain
a scheme that is highly compatible and performant, we
consider this scheme to be the first efficient and effec-
tive pointer tagging scheme for x86-64. Based on xTag
and several optimizations that significantly reduce TLB
pressure, remove redundant checks, and reduce memory
overhead, we showed how a use-after-free and a double-
free mitigation scheme can be implemented on top of
this method. Compared to state-of-the-art methods, our
approach leads to a lower performance impact, while
offering strong security properties.

The current implementation of xTag lays the founda-
tion for software-based memory tagging. Note that out-
of-bound memory accesses are an orthogonal class of
memory safety violations. Our proposed scheme can be

extended to cover out-of-bounds memory violations as fol-
lows: First, this requires to replace generational tag selec-
tion with randomized tag selection, as adjacent allocations
must feature (probabilistically) different tags. The perfor-
mance impact of this modification due to increased TLB
pressure is quantified in Figure 6c. Second, the partially-
aliasing pointer optimization is no longer applicable. In-
stead, a naive implementation to protect against out-of-
bounds violations could validate all accesses to structs and
array separately. A more advanced implementation could
reduce the performance overhead by reasoning over allo-
cation bounds. As an example, iterating over an array with
known size could be preceded by a check verifying that
the first and last element are within bounds. Assuming the
check is successful, all inner elements must also be within
the bounds. This is in stark contrast to hardened allocators,
which instead seek to reduce the consequences of memory
corruptions after the fact, rather than preventing them in
the first place.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972.

References

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Lig-
atti, “Control-flow integrity principles, implementa-
tions, and applications,” ACM Trans. Inf. Syst. Secur.,
vol. 13, no. 1, 2009.

[2] S. Ainsworth and T. M. Jones, “MarkUs: Drop-in
use-after-free prevention for low-level languages,”
in 2020 IEEE Symposium on Security and Privacy
(S&P), 2020.

[3] P. Akritidis, “Cling: A memory allocator to miti-
gate dangling pointers,” in Proceedings of the 19th
USENIX Conference on Security, ser. USENIX Se-
curity’10, 2010.

[4] P. Akritidis, M. Costa, M. Castro, and S. Hand,
“Baggy bounds checking: An efficient and
backwards-compatible defense against out-of-bounds
errors.” in 18th USENIX Security Symposium, 2009.
[Online]. Available: https://www.usenix.org/events/
sec09/tech/full papers/akritidis.pdf

[5] K. Aziz, “Application data integrity feature
introduced by separc m7,” 01 2017. [Online].
Available: https://lwn.net/Articles/712531/

[6] E. D. Berger and B. G. Zorn, “DieHard: Probabilistic
memory safety for unsafe languages,” in Proceedings
of the 27th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
2006.

[7] J. Bialek. (2018) The evolution of cfi attacks
and defenses. Talk at OffensiveCon 2018 (Minute
33). [Online]. Available: https://youtu.be/oOqpl-
2rMTw?t=1980

[8] J. Bialek, K. Johnson, M. Miller, and T. Chen,
“Security analysis of memory tagging,” Microsoft,
Tech. Rep., Mar. 2020. [Online]. Available:
https://raw.githubusercontent.com/microsoft/MSRC-

https://www.usenix.org/events/sec09/tech/full_papers/akritidis.pdf
https://www.usenix.org/events/sec09/tech/full_papers/akritidis.pdf
https://lwn.net/Articles/712531/
https://youtu.be/oOqpl-2rMTw?t=1980
https://youtu.be/oOqpl-2rMTw?t=1980
https://raw.githubusercontent.com/microsoft/MSRC-Security-Research/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf


Security-Research/master/papers/2020/Security%
20analysis%20of%20memory%20tagging.pdf

[9] H. Boehm, “Simple garbage-collector-safety,” in
Proceedings of the ACM SIGPLAN’96 Conference
on Programming Language Design and Implemen-
tation (PLDI), 1996.

[10] H. Boehm, A. J. Demers, and S. Shenker, “Mostly
parallel garbage collection,” in Proceedings of the
ACM SIGPLAN’91 Conference on Programming
Language Design and Implementation, ser. PLDI,
1991.

[11] C. Canella, M. Schwarz, M. Haubenwallner,
M. Schwarzl, and D. Gruss, “KASLR: Break it,
fix it, repeat,” in ASIA CCS 2020-Proceedings of
the 15th ACM Asia Conference on Computer and
Communications Security (AsiaCCS), 2020.

[12] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen,
M. Negro, C. Liebchen, M. Qunaibit, and A.-R.
Sadeghi, “Losing control: On the effectiveness of
Control-Flow integrity under stack attacks,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS),
2015.

[13] C. R. Covey and H. K. Gorowara, “Memory tag-
ging for object reuse protection,” 1992, US Patent
5249231A.

[14] C. Cowan, S. Beattie, R. F. Day, C. Pu, P. Wagle,
and E. Walthinsen, “Protecting systems from stack
smashing attacks with stackguard,” in Linux Expo,
1999.

[15] T. H. Y. Dang, P. Maniatis, and D. Wagner,
“Oscar: A practical Page-Permissions-Based
scheme for thwarting dangling pointers,” in
26th USENIX Security Symposium (USENIX
Security), 2017. [Online]. Available: https://www.
usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/dang

[16] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner,
“Memory safety without runtime checks or garbage
collection,” in Proceedings of the 2003 Conference
on Languages, Compilers, and Tools for Embedded
Systems (LCTES), 2003.

[17] G. J. Duck, R. Yap, and L. Cavallaro, “Stack bounds
protection with low fat pointers,” in NDSS 2017,
2017.

[18] G. J. Duck and R. H. C. Yap, “Heap bounds
protection with low fat pointers,” in Proceedings of
the 25th International Conference on Compiler
Construction, ser. CC 2016, 2016. [Online].
Available: https://doi.org/10.1145/2892208.2892212

[19] D. L. et al., “mimalloc,” https://github.com/
microsoft/mimalloc, 2020.

[20] R. Gawlik, B. Kollenda, P. Koppe, B. Garmany, and
T. Holz, “Enabling Client-Side Crash-Resistance to
overcome diversification and information hiding,”
in 23rd Annual Network and Distributed System
Security Symposium (NDSS), 2016. [Online].
Available: http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2017/09/enabling-client-
side-crash-resistance-overcome-diversification-
information-hiding.pdf

[21] B. Gras, K. Razavi, E. Bosman, H. Bos, and
C. Giuffrida, “ASLR on the line: Practical cache

attacks on the MMU,” in 24th Annual Network
and Distributed System Security Symposium
(NDSS), 2017. [Online]. Available: https:
//www.ndss-symposium.org/ndss2017/ndss-2017-
programme/aslrcache-practical-cache-attacks-mmu/

[22] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena,
and Z. Liang, “Data-oriented programming: On the
expressiveness of non-control data attacks,” in IEEE
Symposium on Security and Privacy (S&P), 2016.

[23] Q. T. Inc., “Pointer authentication on
armv8.3,” Qualcomm Technologies Inc.,
Tech. Rep., Jan. 2017. [Online]. Available:
https://www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf

[24] Intel Corporation, “Intel architecture instruction set
extensions and future features,” Intel Corporation,
Tech. Rep., May 2021. [Online]. Available:
https://www.intel.com/content/dam/develop/external/
us/en/documents/architecture-instruction-set-
extensions-programming-reference.pdf

[25] K. K. Ispoglou, B. AlBassam, T. Jaeger, and
M. Payer, “Block oriented programming: Automat-
ing data-only attacks,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), 2018.

[26] T. Johnson and X. D. Li, “Thinlto: A fine-grained
demand-driven infrastructure,” in EuroLLVM 2015,
2015.

[27] B. Kollenda, E. Göktas, T. Blazytko, P. Koppe,
R. Gawlik, R. K. Konoth, C. Giuffrida, H. Bos, and
T. Holz, “Towards automated discovery of Crash-
Resistant primitives in binary executables,” in 2017
47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2017.

[28] T. Kroes, K. Koning, C. Giuffrida, H. Bos, and
E. van der Kouwe, “Fast and generic metadata man-
agement with Mid-Fat pointers,” in Proceedings of
the 10th European Workshop on Systems Security
(EuroSec), 2017.

[29] V. Kuznetsov, L. Szekeres, M. Payer, G. Can-
dea, R. Sekar, and D. Song, “Code-pointer
integrity,” in 11th USENIX Symposium on
Operating Systems Design and Implementation
(OSDI 14). USENIX Association, 2014. [On-
line]. Available: https://www.usenix.org/conference/
osdi14/technical-sessions/presentation/kuznetsov

[30] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, and
A. DeHon, “Low-fat pointers: compact encoding and
efficient gate-level implementation of fat pointers
for spatial safety and capability-based security,” in
Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security (CCS),
2013.

[31] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu,
and W. Lee, “Preventing use-after-free with dangling
pointers nullification,” in 22nd Annual Network and
Distributed System Security Symposium (NDSS),
2015. [Online]. Available: https://www.ndss-
symposium.org/ndss2015/preventing-use-after-free-
dangling-pointers-nullification

[32] A. J. Mashtizadeh, A. Bittau, D. Boneh, and
D. Mazières, “CCFI: cryptographically enforced
control flow integrity,” in Proceedings of the 22nd

https://raw.githubusercontent.com/microsoft/MSRC-Security-Research/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://raw.githubusercontent.com/microsoft/MSRC-Security-Research/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://doi.org/10.1145/2892208.2892212
https://github.com/microsoft/mimalloc
https://github.com/microsoft/mimalloc
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/enabling-client-side-crash-resistance-overcome-diversification-information-hiding.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/enabling-client-side-crash-resistance-overcome-diversification-information-hiding.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/enabling-client-side-crash-resistance-overcome-diversification-information-hiding.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/enabling-client-side-crash-resistance-overcome-diversification-information-hiding.pdf
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/aslrcache-practical-cache-attacks-mmu/
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/architecture-instruction-set-extensions-programming-reference.pdf
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.ndss-symposium.org/ndss2015/preventing-use-after-free-dangling-pointers-nullification
https://www.ndss-symposium.org/ndss2015/preventing-use-after-free-dangling-pointers-nullification
https://www.ndss-symposium.org/ndss2015/preventing-use-after-free-dangling-pointers-nullification


ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), 2015.

[33] Microsoft Corporation, “Visual Studio 2015
preview: Work-in-progress security feature,” 2014.
[Online]. Available: http://blogs.msdn.com/b/vcblog/
archive/2014/12/08/visual-studio-2015-preview-
work-in-progress-security-feature.aspx

[34] M. Morton, J. Werner, P. Kintis, K. Z. Snow, M. An-
tonakakis, M. Polychronakis, and F. Monrose, “Se-
curity risks in asynchronous web servers: When per-
formance optimizations amplify the impact of Data-
Oriented attacks,” in 2018 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), 2018.

[35] S. Nagarakatte, J. Zhao, M. Martin, and
S. Zdancewic, “CETS: Compiler enforced temporal
safety for C,” in Proceedings of the 9th International
Symposium on Memory Management (ISMM), 2010.

[36] S. Nagarakatte, J. Zhao, M. M. K. Martin, and
S. Zdancewic, “Softbound: highly compatible and
complete spatial memory safety for C,” in Proceed-
ings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), 2009.

[37] G. Novark and E. D. Berger, “DieHarder: Securing
the heap,” in Proceedings of the 17th ACM Con-
ference on Computer and Communications Security
(CCS), 2010.

[38] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and
A. D. Keromytis, “The spy in the sandbox: Practical
cache attacks in JavaScript and their implications,” in
Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS),
2015.

[39] J. Pewny, P. Koppe, and T. Holz, “STEROIDS for
DOPed applications: A compiler for automated data-
oriented programming,” in IEEE European Sympo-
sium on Security and Privacy (EuroS&P), 2019.

[40] C. Project. (2020) Partitionalloc design. [Online].
Available: https://chromium.googlesource.com/
chromium/src/+/master/base/allocator/partition
allocator/PartitionAlloc.md

[41] L. Project. (2021) Clang 12 documentation: Control
flow integrity. [Online]. Available: http://clang.llvm.
org/docs/ControlFlowIntegrity.html

[42] ——. (2021) Scudo hardened allocator.
[Online]. Available: https://www.llvm.org/docs/
ScudoHardenedAllocator.html

[43] R. Rogowski, M. Morton, F. Li, F. Monrose, K. Z.
Snow, and M. Polychronakis, “Revisiting browser
security in the modern era: New Data-Only attacks
and defenses,” in 2017 IEEE European Symposium
on Security and Privacy (EuroS&P), 2017.

[44] F. Schuster, T. Tendyck, C. Liebchen, L. Davi,
A. Sadeghi, and T. Holz, “Counterfeit object-oriented
programming: On the difficulty of preventing code
reuse attacks in C++ applications,” in 2015 IEEE
Symposium on Security and Privacy (S&P), 2015.

[45] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov, “Addresssanitizer: A fast address
sanity checker,” in 2012 USENIX Annual
Technical Conference (ATC), 2012. [Online].
Available: https://www.usenix.org/conference/atc12/
technical-sessions/presentation/serebryany

[46] K. Serebryany, E. Stepanov, A. Shlyapnikov,
V. Tsyrklevich, and D. Vyukov, “Memory tagging
and how it improves C/C++ memory safety,” 2018.

[47] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, and D. Boneh, “On the effectiveness
of address-space randomization,” in ACM Confer-
ence on Computer and Communications Security
(CCS), 2004.

[48] V. Shanbhogue, D. Gupta, and R. Sahita, “Security
analysis of processor instruction set architecture for
enforcing control-flow integrity,” in Proceedings of
the 8th International Workshop on Hardware and Ar-
chitectural Support for Security and Privacy, 2019,
pp. 1–11.

[49] J. Shin, D. Kwon, J. Seo, Y. Cho, and Y. Paek,
“CRCount: Pointer invalidation with reference
counting to mitigate use-after-free in legacy C/C++,”
in 26th Annual Network and Distributed System
Security Symposium (NDSS), 2019. [Online]. Avail-
able: https://www.ndss-symposium.org/wp-content/
uploads/2019/02/ndss2019 05A-4 Shin paper.pdf

[50] S. Silvestro, H. Liu, C. Crosser, Z. Lin, and T. Liu,
“FreeGuard: A Faster Secure Heap Allocator,”
in ACM CCS, 2017. [Online]. Available: https:
//arxiv.org/abs/1709.02746

[51] S. Silvestro, H. Liu, T. Liu, Z. Lin, and T. Liu,
“Guarder: A tunable secure allocator,” in 27th
USENIX Security Symposium (USENIX Security 18),
2018. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity18/presentation/silvestro

[52] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A. Sadeghi, “Just-In-Time code
reuse: On the effectiveness of Fine-Grained address
space layout randomization,” in 2013 IEEE Sympo-
sium on Security and Privacy (S&P), 2013.

[53] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim,
W. Lee, and Y. Paek, “Hdfi: Hardware-assisted data-
flow isolation,” in 2016 IEEE Symposium on Security
and Privacy (SP), 2016.

[54] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volck-
aert, P. Larsen, and M. Franz, “SoK: Sanitizing for
security,” in 2019 IEEE Symposium on Security and
Privacy (S&P), 2019.

[55] A. Sotirov, “Heap feng shui in javascript,” Black Hat
Europe, 2007.

[56] M. Stone. (2020, Jul.) Root cause analyses
for 0-day in-the-wild exploits. [Online]. Avail-
able: https://googleprojectzero.blogspot.com/2020/
07/root-cause-analyses-for-0-day-in-wild.html

[57] C. S. Team. (2020) Memory safety. [Online]. Avail-
able: https://www.chromium.org/Home/chromium-
security/memory-safety

[58] E. van der Kouwe, T. Kroes, C. Ouwehand, H. Bos,
and C. Giuffrida, “Type-after-type: Practical and
complete type-safe memory reuse,” in Proceedings
of the 34th Annual Computer Security Applications
Conference, ser. ACSAC ’18, 2018. [Online].
Available: https://doi.org/10.1145/3274694.3274705

[59] E. van der Kouwe, V. Nigade, and C. Giuffrida,
“DangSan: Scalable use-after-free detection,” in Pro-
ceedings of the Twelfth European Conference on
Computer Systems (EuroSys), 2017.

[60] R. N. M. Watson, J. Woodruff, P. G. Neumann,

http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx
http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx
http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/PartitionAlloc.md
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/PartitionAlloc.md
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/PartitionAlloc.md
http://clang.llvm.org/docs/ControlFlowIntegrity.html
http://clang.llvm.org/docs/ControlFlowIntegrity.html
https://www.llvm.org/docs/ScudoHardenedAllocator.html
https://www.llvm.org/docs/ScudoHardenedAllocator.html
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_05A-4_Shin_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_05A-4_Shin_paper.pdf
https://arxiv.org/abs/1709.02746
https://arxiv.org/abs/1709.02746
https://www.usenix.org/conference/usenixsecurity18/presentation/silvestro
https://www.usenix.org/conference/usenixsecurity18/presentation/silvestro
https://googleprojectzero.blogspot.com/2020/07/root-cause-analyses-for-0-day-in-wild.html
https://googleprojectzero.blogspot.com/2020/07/root-cause-analyses-for-0-day-in-wild.html
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://doi.org/10.1145/3274694.3274705


S. W. Moore, J. Anderson, D. Chisnall, N. H. Dave,
B. Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. M.
Norton, M. Roe, S. D. Son, and M. Vadera, “CHERI:
A hybrid capability-system architecture for scalable
software compartmentalization,” in 2015 IEEE Sym-
posium on Security and Privacy (S&P), 2015.

[61] B. Wickman, H. Hu, I. Yun, D. Jang, J. Lim,
S. Kashyap, and T. Kim, “Preventing use-after-
free attacks with fast forward allocation,” in 30th
USENIX Security Symposium (USENIX Security 21),
2021. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity21/presentation/wickman

[62] Y. Younan, “FreeSentry: protecting against use-after-
free vulnerabilities due to dangling pointers,” in 22nd
Annual Network and Distributed System Security
Symposium (NDSS), 2015. [Online]. Available:
https://www.ndss-symposium.org/ndss2015/ndss-
2015-programme/freesentry-protecting-against-use-
after-free-vulnerabilities-due-dangling-pointers/

Appendix A.
Optimization Ablation Study

To better understand the individual compiler optimiza-
tions described in Section 3.4, we conducted an ablation
study. We executed the SPEC CPU2017 benchmark with
generational tag selection and huge pages enabled, while
gradualy enabling the xTag-specific compiler optimiza-
tions. The performance overhead is measured relative
to a baseline execution using mtmalloc with the same
configuration (generational tagging, 4 bit tags, and THP
enabled), but with all runtime checks disabled. As a
result, we only measure the overhead of the runtime check
inserted by xTag. Note that perlbench has been removed
from the benchmark as it is incompatible with some
of the tested optimizations (see Section 4). The results
of the study are shown in Figure 8. The study shows
that all optimizations contribute a significant reduction
in overall geomean performance overhead. In total, the
overhead introduced by runtime checking decreases from
21.1% (with no optimizations) to 15.8% (all optimizations
enabled). There are two benchmarks (gcc and mcf ) which
suffer from a performance degradation when comparing
the baseline execution with the repeated access via same
pointer optimization. We explain this difference by the op-
timization strategy that inserts checks in places with worse
runtime properties. Since the repeated access optimization
is a prerequisite for the partially-aliasing optimization, we
conclude that it is still worth using in any case.

Appendix B.
mtmalloc Overhead on small pages

Figure 9 shows the overhead of mtmalloc with 4 kB
pages for different tag sizes and selection strategies. This
evaluation is analogue to Figure 6, which measured the
overhead for 2MB pages. In general, the overhead of
mtmalloc is higher for smaller pages sizes. The worst indi-
vidual benchmark (8 bit tags on xalancbmk with random-
ized tag selection) has an overhead of 375%, compared
to only 251% with huge pages. As a consequence, xTag
selects huge pages by default.

gc
c

mcf

om
ne

tpp

xa
lan

cb
mk

x2
64

de
ep

sje
ng

lee
la xz

ge
om

ea
n100%

120%

140%

160%

No Opt + Repeated Access
+ Partially-Aliasing + Caller Validate

Figure 8: Performance overhead of xTag relative to a baseline
disabling all runtime verification. The allocator configuration is
generational tagging, 4 bit tags, and THP enabled.

Appendix C.
Runtime Overhead Comparison

Figure 10 shows the runtime overhead of all tools
we measured during our benchmarking: xTag, MarkUs,
MarkUs without parallel GC, and ASAN. We omitted
ASAN from our plots in Section 5, since ASAN is
generally considered as a debugging/testing tool and not
a mitigation method for production. As such, it is not
optimized to provide low overhead and, as can be seen
in Figure 10, it provides the overall worst performance
characteristics. However, in contrast to xTag and MarkUs,
ASAN also checks for more memory safety issues, such
as spatial memory safety issues and use-after-return.

Appendix D.
Serial Performance Benchmark

MarkUs is based on the Boehm garbage collec-
tor, a popular mark-and-sweep garbage collector. As
such, it inherits its parallel marking algorithm. As a
consequence, MarkUs can utilize idle cores during the
single-core workload executed by most of the SPEC2017
intspeed benchmarks. To offer a fair comparison with
other inherently single-core mitigations such as ours, we
benchmarked MarkUs both with and without the paral-
lel garbage collection. Our measurements for the single-
core setting are designated as MarkUsSerial, where we
disabled the parallel garbage collection by configuring
--disable-parallel-mark. Figure 11 shows the
results of our measurements and show both MarkUs vari-
ants in comparison with xTag. We can see that with-
out parallel garbage collection, MarkUs’ runtime over-
head increases significantly, especially in workloads where
MarkUs already induces a high overhead.

https://www.usenix.org/conference/usenixsecurity21/presentation/wickman
https://www.usenix.org/conference/usenixsecurity21/presentation/wickman
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/freesentry-protecting-against-use-after-free-vulnerabilities-due-dangling-pointers/
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/freesentry-protecting-against-use-after-free-vulnerabilities-due-dangling-pointers/
https://www.ndss-symposium.org/ndss2015/ndss-2015-programme/freesentry-protecting-against-use-after-free-vulnerabilities-due-dangling-pointers/


104%

375%104%104%

pe
rlb

en
ch gc

c
mcf

om
ne

tpp

xa
lan

cb
mk

x2
64

de
ep

sje
ng

lee
la xz

ge
om

ea
n0%

20%

40%

60%

80%

1 Bit 2 Bits 4 Bits 8 Bits

(a) Tags are selected randomly.

pe
rlb

en
ch gc

c
mcf

om
ne

tpp

xa
lan

cb
mk

x2
64

de
ep

sje
ng

lee
la xz

ge
om

ea
n0%

20%

40%

60%

80%

1 Bit 2 Bits 4 Bits 8 Bits

(b) Tags are selected in a generational fashion.

104%

pe
rlb

en
ch gc

c
mcf

om
ne

tpp

xa
lan

cb
mk

x2
64

de
ep

sje
ng

lee
la xz

ge
om

ea
n0%

20%

40%

60%

80%

Fixed Generational Randomized

(c) Comparison of tagging strategies with a tag
size of 4 bit.

Figure 9: mtmalloc induced performance overhead with 4 kB pages on SPEC CPU2017. Different tag sizes and tagging strategies
are compared to an unmodified mimalloc (THP disabled) as baseline.

pe
rlb

en
ch gc

c
mcf

om
ne

tpp

xa
lan

cb
mk

x2
64

de
ep

sje
ng

lee
la xz

ge
om

ea
n

50%

100%

150%

200%

250%

xTag MarkUs ASAN

Figure 10: Runtime overhead relative to a baseline with mimalloc
v1.6.1 (THP enabled) on SPEC CPU2017 intspeed.

.

Appendix E.
Incompatible Functions

While in general xTag’s instrumentation is highly
compatible with legacy code, there are certain pointer op-
erations that are incompatible with xTag’s inserted instru-
mentation or optimizations. To identify these functions,
we run the instrumented programs and after observing a
crash, we identify the offending function in the backtrace
of the crash. For the SPEC2017 benchmark, we also
had to ignore several functions, with a full list shown in
Table 1. For Firefox, we ignore a total of 40 functions.
These functions are mainly related to the JavaScript im-
plementation, the optimized skia graphics library, and the
LZ4 decoding library. These components exhibit highly
unusual and optimized pointer usages. One example is
the ReleaseData function, which receives a pointer
as first parameter that might be a dangling pointer. The
second parameter to this function then indicates whether

pe
rlb

en
ch gc

c
mcf

om
ne

tpp

xa
lan

cb
mk

x2
64

de
ep

sje
ng

lee
la xz

ge
om

ea
n

20%

40%

60%

80%

100%

120%
192%
264%

xTag MarkUs MarkUsSerial

Figure 11: Runtime overhead relative to a baseline with mimalloc
v1.6.1 (THP enabled) on SPEC CPU2017 intspeed.

.

the pointer actually refers to an alive object. As such,
there is no temporal memory safety violation. However,
we also cannot apply our optimizations here. More con-
cretely, we cannot hoist the use-after-free checks out of
the ReleaseData function into the caller.

TABLE 1: SPEC2017 functions whose pointer arguments cannot
be verified in their respective callers.

gcc

build_function_call_vec
operation_could_trap_helper_p

vn_nary_op_lookup_pieces
vn_nary_op_insert_pieces

xalancbmk

DeleteFunctor<>
DestroyFunctor<>
DestroyTable<>


	Introduction
	Technical Background
	Memory Tagging and Low-Fat Pointers
	Use-After-Free Vulnerabilities

	Design
	Metadata Embedding Scheme
	Use-after-free Mitigation Scheme
	Design Optimizations
	Reducing TLB Pressure

	Optimizing Instrumentation

	Implementation
	Performance Evaluation
	Exploit Case Studies
	Security Considerations
	Related Work
	Conclusion and Future Work
	Appendix A: Optimization Ablation Study
	Appendix B: mtmalloc Overhead on small pages
	Appendix C: Runtime Overhead Comparison
	Appendix D: Serial Performance Benchmark
	Appendix E: Incompatible Functions

