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ABSTRACT
There is a long history of side channels in the memory hierarchy
of modern CPUs. Especially the cache side channel is widely used
in the context of transient execution attacks and covert channels.
Therefore, many secure cache architectures have been proposed.
Most of these architectures aim to make the construction of eviction
sets infeasible by randomizing the address-to-cache mapping.

In this paper, we investigate the peculiarities of write instruc-
tions in recent CPUs. We identify Write+Write, a new side chan-
nel on Intel CPUs that leaks whether two addresses contend for
the same cache set. We show how Write+Write can be used
for rapid construction of eviction sets on current cache architec-
tures. Moreover, we replicate theWrite+Write effect in gem5 and
demonstrate on the example of ScatterCache [57] how it can be
exploited to efficiently attack state-of-the-art cache randomization
schemes. In addition to theWrite+Write side channel, we show
how Write-After-Write effects can be leveraged to efficiently syn-
chronize covert channel communication across CPU cores. This
yields the potential for much more stealthy covert channel commu-
nication than before.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures.
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1 INTRODUCTION
It is no secret that the microarchitecture of recent CPUs is riddled
with side channels that can often be exploited in ways that threaten
the security of the whole system. Many of these side channels are
the result of obvious and elementary CPU components that pave the
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way to achieve the performance levels to which we have become
so accustomed. Among others, this includes caches and prefetchers.
The way these components are intended to work generates a timing
difference that can be observed by user-level processes. On the
other hand, there are more subtle aspects of CPU internals and
their implementation that lead to measurable timing differences
without being essential for CPUs performance or security. This, for
example, includes Intel’s ring interconnect implementation for last
level caches (LLCs) [35] or store-to-load forwarding [43].

Due to the vast performance discrepancy between the CPU core
and the memory subsystem, the read- and write path’s are sub-
ject to immense optimization efforts by the CPU developers. Each
saved or predicted interaction with the memory can result in hun-
dreds of saved clock cycles. Though the performance benefit of
such optimizations stands without question, ongoing research has
found many ways to exploit these to bypass essential security foun-
dations. Early work in this area demonstrated how cache-timing
can be used to reconstruct secret keys of AES [2, 34]. Over time,
these attacks developed towards well-known attack-primitives like
Prime+Probe [25, 34, 52] and Flush+Reload [62]. With these prim-
itives, cache attacks evolved to be very efficient and further CPU
components like the TLB moved into focus [12]. In 2018, the dis-
closure of Meltdown [24] and Spectre [23] shifted the momentum
and severity of microarchitectural attacks. The following avalanche
of transient execution attacks changed the understanding of the
hardware as a trust anchor for secure system development; see
generally [8]. The class of transient execution attacks goes beyond
control flow speculation, i.e. by the branch predictor. For example,
the MDS attacks [7, 54] exploit speculative data forwarding of read-
and write operations.

During transient execution attacks, leaked data is usually re-
covered via a covert channel. Thereby, the attacker transmits data
from the (speculative) victim context to their own process using
timing peculiarities of CPU internals. Covert channels can also be
used to communicate between co-located VMs in cloud environ-
ments [41]. Due to the simplicity and reliability of cache covert
channels, Flush+Reload, Prime+Probe and derivatives[14, 39] are
commonly used in this context. The bandwidth of such covert chan-
nels has shown to be more than sufficient to transmit large chunks
of data [31]. However, synchronization across cores remains an is-
sue and is frequently evaded by using self-clocking signals [50] with
massive oversampling on the receiver end and multiple accesses
on the sender side [31, 58].

Contributions. In this paper, we presentWrite+Write, a new
write-based side channel on Intel CPUs that leaks whether two
physical addresses collide in a specific range. This side channel is es-
pecially worrisome in face of the current development in cache side
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channel countermeasures. We replicate the behavior in gem5 [27]
and demonstrate an improved attack against state-of-the-art cache
randomization on the example of ScatterCache [57]. Our attack re-
quires further design constraints to be considered when implement-
ing randomized caches. Secondly, we show how Write+Write
affects traditional cache architectures and leverage the side channel
for bottom-up construction of cache eviction sets. In doing so, we
break the current speed records in eviction set construction. Third,
we present a new, write-based technique, to synchronize processes
across CPU cores. We show how this technique can be applied to
establish a common clock signal for covert channels. Using our
synchronization approach, each signal only needs to be transmitted
once which greatly reduces the monitoring surface for detection
mechanisms.

A version of this paper was sent to Intel for responsible disclosure
prior to submission to RAID’22. Proof-of-concept code is available on
GitHub1.

Organization of this Paper. The following section introduces back-
ground on caches, cache side- and covert channels, as well as some
internals of recent x86 CPUs. In Section 3, we introduce theWrite+
Write side channel and the foundation for our synchronization
technique. We then present aWrite+Write-based algorithm for
rapid eviction set construction in Section 4.1. In Section 4.2, we
adapt the algorithm for randomized caches and attack a gem5 im-
plementation of ScatterCache. Third, we demonstrate the Write-
After-Write-based cross-core synchronization for covert channel
communication in Section 4.3. We discuss mitigation techniques
and related work in Section 5 and Section 6 respectively. Finally,
we conclude in Section 7.

2 BACKGROUND
In this section, we introduce some background on caches, covert
channels, and the x86 microarchitecture.

2.1 Caches
The speed at which modern processors execute instructions greatly
exceeds the speed of read and write operations from and to the
memory. Since many programs rely on frequent memory accesses,
this would normally cause a large number of stall cycles, waiting
for the requested data to be fetched. Hence, apart from deeply
embedded devices, virtually all current processors feature at least
one level of cache.

Caches are small and fast memory modules located in close
physical proximity to the CPU. Frequently used data is stored in the
cache to accelerate memory operations and hide the latency of the
main memory. Most desktop-level processors feature three levels of
cache. The L1-cache is the smallest and fastest cache, followed by
the slightly larger and slower L2-cache. Both L1- and L2-caches are
typically duplicated for each physical CPU core. The last-level-cache
(LLC) is the largest level of cache and usually shared among cores.
A coherency protocol is implemented to keep the data consistent
across all caches and the main memory; for details on recent Intel
CPUs, see [32]. Furthermore, the LLC is usually inclusive which
means that all entries of the L1 and L2 caches are also stored in the

1https://github.com/Chair-for-Security-Engineering/Write-Write
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Figure 1: Exemplary architecture of a physically indexed
two-way set-associative cache. The index bits of the physical
address are used to determine the set (red). The replacement
policy chooses which entry is replaced on a miss access.

LLC. This brings performance benefits in multi-core systems - if a
L2 cache miss occurs, the inclusiveness makes sure that if the data
is cached in any other cores private cache, it is also cached in the
LLC. Non-inclusive LLCs need to query other cores’ private caches
or maintain a directory [61] to make sure that these do not hold a
modified copy of the requested data.

Cache Internals & Addressing. Since low latency is a key design
goal of caches, it is not practical to search the whole cache on every
access. To accelerate the lookup, caches are usually implemented as
set-associative structures. Each entry (cache line) holds 64 bytes of
data alongside a tag, which is used to uniquely identify the cached
address, and some flags including valid and dirty. As depicted in
Figure 1, the physical address is divided into tag-, set- and offset-
bits. The offset is used to select a 64-bit word from the cache line
to be returned on read-access. The set-bits select the cache set
(corresponding to the table row in each cache way in Figure 1).
The remainder of the address (i.e. the tag) is stored alongside the
data which together with the implicitly stored set index, uniquely
identifies the physical address.

When a memory address is accessed, a cache lookup occurs and
in each cache way, the tag stored at the index determined by the set
bits of the address are compared to the tag of the accessed address.
If the tags match in one cache way, a hit occurs and the data is
returned with the specified offset. If the tags do not match in any
cache way, a cache miss occurs and the data is requested from the
next device in the memory hierarchy. When the request is served,
the replacement policy selects one of the set entries to be replaced
with the new data. Often, this policy is (pseudo)-least-recently-used
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((P)LRU) which replaces the entry that has not been used longest.
Writes are handled analogously, although a distinction is made
between write-back and write-through caches. Write-back caches
store a modified version of the data until the entry gets evicted
from the cache while write-through caches immediately forward
the modification to the memory-side port. Recent LLCs are usually
configured as write-back.

In addition to that, many processors use cache slices which can
be imagined as load-balanced, parallel instantiations of caches to
reduce the workload on each slice and increase the overall band-
width of the cache. Each physical address is uniquely mapped to
a single slice. Recent Intel processors implement complex cache
indexing which derives the cache slice by using a recently revealed
function that operates on “potentially all” address bits [19]. In [15],
this complex addressing function was first reverse engineered man-
ually, followed by [30] which utilizes a generic method based on
hardware performance counters to reverse engineer the function
for several Intel processors. Both works report a simple xor-based
function to obtain the slice for each address.

Cache Side Channels. The design goal of caches is to accelerate
slow memory accesses - hence, the fact that timing measurements
can reveal whether or not some data was cached is conceptually un-
avoidable. An attacker can measure the latency of a memory access
and therefore determine whether the accessed data was cached be-
fore the access. This effect has been exploited for numerous attacks
including key-recovery on cryptographic schemes [2, 11], bypassing
ASLR [13, 15], covert channels in shared cloud environments [31],
and in the context of speculative execution attacks [8]. The latter -
most notably by the disclosure of Spectre [23] and Meltdown [24] -
hugely amplified the interest and awareness of cache side channels.
The two most common attack vectors are Flush+Reload [62] and
Prime+Probe [25, 34, 52]. Flush+Reload relies on shared mem-
ory between the attacker and the victim as well as the clflush
instruction. This instruction takes a memory address as a param-
eter and flushes the corresponding data from all cache levels. If
no data was cached for that address, the instruction has no effect.
Prime+Probe on the other hand does not rely on shared memory or
the clflush instruction. Instead, the attack makes use of eviction
sets to flush the victim entry from the cache. An eviction set is a
set ofw addresses that map to the same cache set, wherew equals
the associativity of the cache. Any entries that are stored in that
cache set prior to accessing the eviction set will be replaced by the
eviction set. Since the eviction set addresses then occupy all entries
of the set, the attacker can trigger the victim process and measure
if the victim accessed that set by probing the eviction set addresses
for a cache miss. If a cache miss occurs during the probing phase,
the attacker learns that the victim accessed the cache set. Since the
attacker does not have full control over the physical address, they
can only partially control the set bits of the address, namely those
that overlap with the page offset of the virtual address. However,
the attacker can choose a large initial set of addresses that acts as
an eviction set by sheer size, and then reduce this set to a minimal
eviction set using algorithms proposed in [46, 55].

Cache Covert Channels. There are a large number of possibilities
to transmit data from one process to another without an observer

noticing. However, the timing behavior of caches is used dispro-
portionately often in the context of microarchitectural attacks and
covert channels, since it allows fast and fine-grained transmission.
Often, Flush+Reload [62] is used for covert channels. Therefore,
the receiver first makes sure that the shared address between sender
and receiver is not cached using clflush. Note, that this shared
address may be read-only. Next, the sender encodes one bit of the
message by either accessing the shared address or not. The receiver
then measures the latency for an access to the shared address. Only
if the access results in a cache hit, the sender accessed the address.
The used side channel is interchangeable for any other side channel,
e.g., Flush+Flush [14] or Prime+Probe.

This process requires synchronization between sender and re-
ceiver which is not trivial. Usually, each symbol is repeated for
a fixed timeframe and the sender and receiver perform their ac-
tions asynchronously. Due to the repetition, the average latency
will reveal whether a zero or a one was transmitted. In order to
decode the incoming data stream, often self-clocking signals like
Manchester-Encoding are used [50].

Randomized Caches. In an effort to prevent the efficient construc-
tion of eviction sets, a variety of randomized cache architectures
have been proposed [40, 49, 57]. These schemes randomize the
address-to-cache-set mapping, such that the attacker cannot easily
construct eviction sets, even if they have full control over the phys-
ical address. One physical address can map to different indices in
different cache ways. This allows addresses to partially collide in
one cache way but not the others and hence, weakens the proper-
ties of eviction sets. It has been shown that finding fully congruent
eviction sets is not feasible in reasonable time [38, 57], i.e., it is
not feasible to obtain sets of addresses that collide with the victim
address in every cache way. Purnal et al. generalize the design pro-
posals of randomized caches and present the Prime+Prune+Probe
attack which is a generic attack on randomized caches based on
probabilistic eviction sets [38]. Probabilistic eviction sets contain ad-
dresses that are known to collide in at least one cache way with the
victim address. If the probabilistic eviction set contains enough of
such addresses, the attacker has a high probability of occupying all
possible entries of the victim address. By changing the randomiza-
tion function frequently, attacks based on Prime+Prune+Probe can
be prevented, albeit with some performance overhead. More recent
proposals [42, 51] combine randomization with further measures
to prevent Prime+Prune+Probe attacks by design. Both schemes
aim to hide the effects of victim cache accesses by freeing entries
in the cache before conflicts occur.

2.2 The x86 Microarchitecture
We now discuss some microarchitectural aspects of recent x86
processors. Thereby, we focus on Intel processors although the
general information holds for AMD processors as well. Since most
of the internals of these processors are not public, we rely on prior
reverse engineering efforts and the sparse public documentation.

Store Architecture. Every fetched instruction is converted from
the visible x86 instruction to one or more µOPs and is inserted to
the pipeline. Once a write µOP is executed, the write is forwarded
to the store buffer (SB). On the Skylake microarchitecture, the SB
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can hold up to 56 entries [28]. Then, the L1 cache is queried. If
the request results in a cache hit and the respective cache line is
in modified or exclusive state (i.e. the line is owned by the cache),
the data will be written into the L1 cache. Otherwise, a request for
ownership (RFO) is issued and a line fill buffer (LFB) is allocated to
track the outstanding write. On Sandy Bridge processors, there are
10 LFBs [16] although unofficial sources report 12 LFBs for more
recent CPU generations. According to the documentation, the SB
entry remains active until after the store instruction retires, i.e. the
SB entry only retires after the L1 cache line is filled [16].

Serializing Instructions vs. Ordering Instructions. The x86 ISA
offers a set of serializing instructions and ordering instructions
that can be used to ensure the intended order of instructions and
therefore prevent unwanted effects of out-of-order execution and
speculation [18, Sec. 8.3]. The ordering instructions are sfence,
lfence and mfencewhich are accessible from userspace. The store-
fence (sfence) instruction ensures that all write instructions prior
to the fence become globally visible before those after the fence [17,
P. 4-599]. The load-fence (lfence) does the same for load instruc-
tions [17, P. 3-529] and the memory-fence (mfence) combines both
fences to ensure that all loads and stores before the fence become
globally visible before any load or store after the fence [17, P. 4-22].

Opposed to these memory-ordering instructions, serializing in-
structions enforce all modifications on the processor state made by
any instruction before the serialization must be completed before
the next instruction is fetched. This poses a very strong serializa-
tion since new instructions can only enter the pipeline after all
prior tasks are finished. Importantly, serializing instructions also
drain the SB with any outstanding write operations before the next
instructions are fetched. On Intel processors there are three non-
privileged serializing instructions, namely cpuid, iret and rsm [18,
Sec. 8.3]. While the two latter perform actions that would cause
significant side-effects for the following program execution, cpuid
only affects the values of the registers eax, ebx, ecx and edx. This
makes it a formidable candidate to serialize instructions in any
non-privileged program. According to the AMD documentation,
on AMD processors the mfence instruction is also a full serializing
instruction [1, P. 206].

3 OBSERVATIONS ONWRITE-AFTER-WRITE
In this section we first provide details on theWrite+Write side
channel. We give a brief summary on the side channel, reverse
engineer the exact collision criteria and reason about the origins of
the side channel leakage. We then take a look at the channel noise
which yields our second observation, namely the clock pattern
in the write latency. Finally, we discuss the findings and identify
affected CPUs.

3.1 Write+Write Side Channel
The Write+Write side channel exploits differences in the timing
behavior of two write operations based on features of the physical
address. In a nutshell, we observe that if a write operation is issued
to a given address, a subsequent write to some addresses is slower
than a subsequent write to some other addresses. We found in
particular, that if the physical address of the first and the second
write share some of the lower address bits, the second write will
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Figure 2: Distribution of write times over 3000 iterations for
a conflicting address a random address.

be slower than if they do not share those bits. We reverse engineer
the exact bits of the address matching function in Section 3.2. In
the following, we refer to addresses that match by this function as
colliding addresses.

A minimal proof-of-concept pseudocode is shown in Listing 1.
We inserted additional instructions that enforce the execution order
during the measurement and export the timestamp of the rdtscp
instruction. For now, we set the goal to find whether a candidate
address collides with a given target address and therefore causes
a slower write access during the measurement. To test this, the
target address is first flushed from the cache using the unprivileged
clflush instruction of x86. The flushing can be done at any time
during the attack as long as it is made sure that the data is not cached
when accessed during the measurement. Then, a write operation is
issued to the candidate address. The write is followed by a cpuid
instruction which is crucial for the success of Write+Write. It
makes sure that the first write instruction is retired before the
timing measurement begins. Note, that Write+Write does not
work if an ordering instruction like mfence is used instead. Opposed
to ordering instructions, cpuid crucially also drains the internal
store buffer. In the final step, the latency of a write operation to
the uncached target address is measured. The distribution of the
measured write latency for an address that is known to collide with
the target (solid) and one that is known to not collide with the
target (dashed) on an Intel Xeon E-2224G (Coffee Lake) is shown in
Figure 2. Therefore, we repeatedly measured the write latency to
the target address with a random candidate address directly followed
by the measurement with a candidate that collides with the target.
From the figure it is clear that the distributions can be distinguished
easily.

Listing 1: AT&T syntaxed pseudo-code assembly for the
Write+Write PoC.
CLFLUSH ( [ t a r g e t ] )
MOVQ rax , ( [ c a nd i d a t e ] )
CPUID
RDTSCP
MOVQ rdx , ( [ t a r g e t ] )
RDTSCP
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Figure 3: The bits used for the lower address match are high-
lighted in blue. The address is divided into the L3 cache ad-
dressing parts.

3.2 Collision Criteria
We now focus on reverse engineering the criteria under which
two addresses collide, and therefore influence the write latency
of each other. For this, we again use the Coffee Lake Intel Xeon
E-2224G, however we later verified that the observations hold for
all tested Intel CPUs, listed in Table 1. For the reverse engineering,
we ran tests where we fix the target address and performWrite+
Write on each address of a large array to find those colliding. We
gather those addresses that led to an increased latency for further
analysis. Using the libtea framework [10], we analyzed several
properties of the addresses and found that the physical address
of each analyzed address matches the target in the 10-bit range
between bit 6 and 15 as shown in Figure 3. We verified this by
allocating and testing possible physical addresses that only differ
in the bit-range of interest and found that none of these candidates
influenced each other. This rules out the possibility that the function
combines some parts using a more complex technique (as it is
for example the case for the cache-slice selection). We repeated
this process multiple times to account for false positives and the
influence of noise.

We further attempted to mount Write+Write across multi-
ple processor cores and hyperthreads. Therefore, we tried a syn-
chronized and a non-synchronized variant. Both variants split the
Write+Write-code in two threads, one flushing the target address
and measuring the access time to it, the other repeatedly writing to
the candidate address. The synchronized variant utilizes mutexes
to ensure the correct order of instructions, the non-synchronized
variant performs the operations in a loop without synchronization.
We did not find clear indications that Write+Write can be ex-
ploited across hyperthreads or CPU cores. We therefore conclude
that either the addressing function implements some additional
context-awareness (e.g., by matching the id of the originating core),
the noise level makes it immensely hard to observe the effect, or
the observed hardware structure is not shared among cores / hyper-
threads. The load- and store buffers are believed to be partitioned in
recent CPUs [22]. Hence, it is likely that the hardware that causes
Write+Write-leakage is also partitioned.

The measurable timing difference of Write+Write is either
an artifact of a false dependency check within the CPU core, or a
conflicting use of some hardware resource that processes the write
instructions. All our tested CPUs use exactly the 10 Bits identified
withWrite+Write for L2 and L3 cache indexing. Hence, we sus-
pect that the simultaneous write access to the two addresses causes
a collision in the set addressing process which yields the measur-
able timing difference. To support this hypothesis, we attempted
to swap the write instructions for non-temporal writes, i.e., writes
that do not affect the cache. After that, Write+Write no longer
works. We believe that the process of set allocation is similar in the
L2 and L3 cache. Since the store buffers are partitioned in recent
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Figure 4: Two non-successive executions of Write+Write.
For each execution, one address that is known to collidewith
the target (solid) is compared to an address that does not col-
lide (dashed).

Intel CPUs [22] we suspect that the hardware for allocating the
cache sets is also partitioned and the structural issue that causes
the measurable timing delay is to be found within this logic. Since
the LLC allows for cross-core attacks, we focus on the implications
on the LLC set-contention in the following. We show how Write+
Write can be used for efficient LLC attacks in Section 4.1.

3.3 Dealing with Noise
Figure 4 shows two non-successive executions of the PoC code. For
each of these distributions, the target and the candidate address
are repeatedly measured in alternating order. It is clear that while
the distribution itself appears to be similar for each run, the ideal
threshold that distinguishes colliding addresses from those that
do not collide, varies drastically. As a result, it is not possible to
make a decision based on a single measurement or even distribution.
However, for measurements that are taken in close succession like
the alternating measurements that make up the colliding and non-
colliding distribution, a distinction is simple. Hence, the channel
is only stable over short temporal periods. This distinguishes the
Write+Write side channel from many other CPU side channels
like Flush+Reload and Prime+Probe where a threshold can be
established which reliably decides the two distributions. The reason
for the temporal instability of the channel can be found in the
average write latency to any address.

Listing 2: AT&T syntaxed pseudo-code to measure the write
latency.
cpuid
rdtscp
movq rdx , ( [ a dd r e s s ] )
cpuid
rdtscp

We measure the write latency using the code in Listing 2 in
a loop. The initial cpuid instruction ensures no unfinished write
instructions are in the pipeline at the beginning of the measurement.
The second cpuid ensures that the measurement is only stopped
when the write is completed.

Figure 5 depicts the moving average of the resulting latency mea-
surement. Surprisingly, the graph represents a rather sharp clock
signal. Later in this paper we show how this can be leveraged for
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Figure 5: Moving average of the write instruction latency on
the Xeon E-2224G.

cross core synchronization. We suspect that the observed behavior
is an artifact of a CPU internal state-machine. Although the high-
and low-level of the signal appear to be stable in the figure, we
found that it can slowly change over time which might be due to
the dynamic frequency adaption of the CPU.

To filter the noise and still be able to distinguish colliding ad-
dresses, it is therefore required to take a comparative approach.
In other words, the results of a measurement are only valuable
in comparison to another measurement taken in close succession.
Since the addresses collide on 10 bits, the probability of a collision
for a randomly chosen address is 2−10. Hence, by choosing a ran-
dom address to compare the measurement against, the attacker
has a high probability of successfully gathering the addresses that
collide with the target. Since some of the bits can even be influ-
enced by the virtual address, the attacker can also make sure that
the random address does not collide with the target. While it is
sufficient to test multiple iterations of accessing the target address
combined with the candidate address, directly followed by multi-
ple iterations of accessing the target address combined with the
random address (resulting essentially in Figure 2), we find that a
better way of distinguishing the two addresses is to toggle between
accessing the target- and the candidate address every second it-
eration. This results in an access pattern of T-T-C-C-... which
avoids most of the prefetcher effects that are otherwise present.
The measurements are summed for the candidate- and the random
address respectively such that afterwards, the mean latency of both
addresses can be computed. By subtracting the mean latency of
the iterations with the random address from the mean latency of
the iterations with the candidate address, we can test whether the
distributions have a large difference in their mean value and hence
conclude if the candidate collides with the target address. If the
two addresses did not collide, then the distribution resulting from
Write+Write with the random address is similar to the distribu-
tion of Write+Write with the candidate address, resulting in a
small difference in means. We found that a threshold of 10 clock
cycles difference in means after 30 iterations with each address
gives a reliable indication of whether the two addresses collide on
each tested CPU. The pseudocode is given in Listing 3. It is benefi-
cial to write the code directly in assembly, using conditional moves
instead of branch instructions. This prevents unwanted effects from
the branch predictor and mis-speculation.

Listing 3: C-flavored pseudo code for same-process testing if
two addresses collide with Write+Write.

Table 1: List of tested CPUs for Write-After-Write effects.

CPU Architecture W+W Clk

Intel Xeon E-2224G Coffee Lake ✓ ✓

Intel Xeon W-3223 Cascade Lake ✓ ✓

Intel i5-8259U Coffee Lake ✓ ✓

Intel i5-8265U Whiskey Lake ✓ ✓

Intel i7-7600U Kaby Lake ✓ ✓

AMD Ryzen5 5600H Zen3 ✗ ✗

s i z e _ t ∗ random = ( s i z e _ t ∗ ) ma l l o c ( 8 ) ;
bool d e c i s i o n = true ;
for ( in t i = 0 ; i < 2 ∗RUNS ; i + + ; ) {

d e c i s i o n = i %4 < 2 ? 0 : 1 ;
i f ( d e c i s i o n )

sum_1 += w+w( t a r g e t , c a nd i d a t e ) ;
e l se

sum_2 += w+w( t a r g e t , random ) ;
}
i f ( ( sum_1 /RUNS) − ( sum_2 /RUNS ) > TH ) {

/ / c o l l i s i o n
} e l se { / ∗ no c o l l i s i o n ∗ / }

3.4 Discussion
We tested our implementation of theWrite+Write side channel
on various different CPUs which are listed in Table 1. All tested
Intel CPUs showed the behavior described above. We therefore
assume that most of the recent Intel CPUs will be vulnerable to
Write-After-Write effects. We adaptedWrite+Write to an AMD
CPU but were unable to identify similar effects and therefore have
no indication to believe that other AMD CPUs are affected. ARM
and RISC-V also feature serializing instructions and may therefore
show similar behavior to the Write-After-Write clock and could be
subject of further studies in future work.

Opposed to other well-known side channel attacks on mod-
ern microprocessors like Flush+Reload and Prime+Probe, the
Write+Write channel relies on a write operation and does not
work if an address is only read. Furthermore, it is not possible to
mount Write+Write attacks across process boundaries. There-
fore,Write+Write cannot directly be used to leak data from other
processes. However, in combination with the aforementioned side
channels, Write+Write and the clock synchronization can be
useful tools in the hands of an attacker. We show how Write+
Write can be used to construct eviction sets for traditional caches
(Section 4.1) and on side-channel hardened architectures like Scat-
terCache [57] (Section 4.2). Finally, we show how the hidden clock
signal can be used to synchronize covert channels (Section 4.3).

4 EXPLOITINGWRITE-AFTER-WRITE
In this section we demonstrate howWrite+Write can be exploited
to rapidly create eviction sets. We start by attacking traditional
caches on real CPUs. Then we use a gem5 implementation of Scat-
terCache [57] to show howWrite+Writewould affect randomized
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caches. Finally, we use the Write-After-Write clock for cross-core
synchronization of covert channels.

Unless stated otherwise, all CPUs run an unmodified version
of Ubuntu 20.04. We did not disable any security / performance
features or isolate cores. We use the Intel Xeon E-2224G as our
main evaluation platform.

4.1 Write+Write for Rapid Cache Attacks
Prime+Probe [25, 34, 52] is one of the most widely used cache
attacks. Therefore, the attacker needs to be able to efficiently con-
struct eviction sets, allowing them to reliably observe accesses to
the victim address. The state-of-the art algorithms [46, 55] obtain
such eviction sets using a top-down approach. They reduce a large
set of addresses that randomly include an eviction set and then
filter all addresses that are not required for a minimal eviction set.
Using Write+Write, it is possible to construct eviction sets using
a bottom-up approach that iteratively adds addresses to the eviction
set without any privileges. As we will show, this approach is much
faster compared to the top-down approach. Moreover, behavioral
detection mechanisms can likely be bypassed since the method-
ology is drastically different compared to current algorithms and
therefore, the fingerprint for detection changes.

In the following, we first define the attacker model, then describe
our methodology and evaluate the performance and reliability on
various processors.

Attacker Model. The attacker’s goal is to create an eviction set
for a known target address. We assume that this address is either
directly accessible, or the attacker has access to an address that
contends for the same LLC cache set as the target address; i.e.
the i-bit after the offset of the physical addresses match. If the
address is not directly accessible, the attacker can obtain a colliding
address by priming the cache and then observe which address is
evicted after triggering the victim process (basically one iteration
of Prime+Prune+Probe [38]). We do not require the attacker to
know any physical addresses or the mapping of virtual to physical
addresses. Furthermore, we do not make use of huge pages which
are not always available. From a microarchitectural perspective, we
assume that the CPU is vulnerable toWrite+Write as described
in Section 3.

Methodology. As described in our analysis in Section 3.2,Write+
Write allows the attacker to test whether two virtual addressesmap
to the same cache set. This does not inherently result in addresses
that collide in the LLC since the L2 cache also introducesWrite+
Write leakage. Though the L2 cache uses the same index bits on
our evaluation CPUs, it is not partitioned into slices. Hence, with
Write+Write, the attacker can identify physical addresses that
collide in the cache set-index but not necessarily the cache slice. For
attacks on the LLC, the attacker needs to sort out addresses that do
not map to the target slice. For CPUs with complex cache indexing,
an undocumented hash function is used to map the address to a
cache slice. Only if the slice and the set / index of two addresses
collide, the two addresses can potentially evict each other. The slice
addressing function has been reverse engineered in [15, 20, 30]. Our
approach does not require any knowledge about this function.

The algorithm to construct eviction sets using Write+Write
is shown in Algorithm 1. Therefore, we first allocate a sufficiently
large memory area. The algorithm takes as input a pointer to the
target address, a pointer to the memory area of sizemem_size , and
the number of repetitions for each candidate. Since some of the
cache set bits can be directly controlled from the virtual address
space, we align the lower 12 bits of the first virtual address to be
tested with the lower 12 bits of the victims virtual address. As
discussed in Section 3.3, the results are only meaningful when
compared to another measurement in close succession. Previously
we mentioned that the target address can be tested alternating with
the candidate address and a random address. In that case, the timing
difference is reliably measured if the candidate address collides.
Therefore, the attacker needs to make sure that the random address
maps to a different cache set using some bits of the virtual address.
However, we found that for performance reasons, a better approach
is to test two candidate addresses (i.e. both are 212 byte aligned to
the target) in parallel and compare the timing of these instead of a
random address. This way, a timing difference will be observed if
one of the addresses collide with the target but neither if none or
both do. Since it is relatively unlikely that two successive candidate
addresses map to the same cache index, two strategies are possible:
The coverage optimized variant aims to retrieve the most conflicts
from a memory range. In that case, the two candidate addresses are
base+i∗212 andbase+i∗2∗212 and i is increased by 212 in each step.
This way, each address is tested twice which reduces the probability
of missing a conflict. The performance optimized version increases
i by 2 ∗ 212 in each iteration which does not detect if both candidate
addresses collide with the target but instead doubles the execution
speed. In the following, we use the performance variant, as shown
in the algorithm.

To reduce the error rate, each pair of addresses is tested multiple
times and the results are averaged. If the absolute difference in
means of the two candidate addresses is larger than a threshold,
one of the candidate addresses collides with the target. The sign of
the difference indicates which of the candidate addresses collides.
When a collision is observed, the address is added to the preliminary
eviction set. The attacker frequently tests if the eviction set is func-
tional by measuring whether it evicts the target address. As long as
the eviction set is not functional, the attacker continues searching
for Write+Write collisions. When the preliminary eviction set is
functional, the attacker can choose to remove false positives and
addresses that map to different slices by removing one address at a
time from the set and testing whether the remaining addresses still
form an eviction set. This step is not strictly necessary since the
initial set is also functional but depending on the use-case, it may
be important for the attacker to obtain a minimal eviction set.

Performance and Reliability. In the following we evaluate the
Write+Write-based eviction set assembly on different target CPUs.
The previously mentioned Xeon W-3223 CPU is the only one of our
test-sample implements a non-inclusive LLC. We therefore do not
consider the Xeon W-3223 for the eviction set use-case. In Figure 6,
the confidence level of a Write+Write-based observation after
2n measurements is depicted. This includes n measurements with
the first candidate address that are compared to n measurement to
the second candidate address. The True-Positive-Rate (TPR) rises
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Algorithm 1 Write+Write-based eviction set construction for
traditional caches.

Input: ∗tarдet , ∗mem,mem_size , rep
ev ← �;
start ← aliдn(mem, tarдet);
for i = 0; i < mem_size; i += 2 · 0x1000 do

sum0 ← 0; sum1 ← 0;
candidate0 ← start + i;
candidate1 ← start + i + 0x1000;
for j = 0; j < rep; j ++ do

decision ← (j & 0x2) >> 1;
if decision == 0 then

sum0 += w+w(tarдet , candidate0);
else

sum1 += w+w(tarдet , candidate1);
end if

end for
avд0 ← sum0/(rep/2);
avд1 ← sum1/(rep/2);
if avд1 − avд0 > TH then

ev ← ev
⋃

candidate0;
else if avд1 − avд0 < −TH then

ev ← ev
⋃

candidate1;
end if
if test_evset(ev) == true then

break ;
end if

end for
ev ← reduce(ev); ▷ Optional.
return ev
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Figure 6: TPR of a address classification as colliding with
the victim address in dependence of the number of repeated
measurements. Each data point was averaged over 30 execu-
tions.

sharply after the first few repetitions and then converges towards 1.
The characteristic is similar for all CPUs with the exception of small
outliers. These may be due to scheduler interruptions or system
noise during the measurement.

Table 2: Performance evaluation of Write+Write-based
eviction set construction. The results are averaged over 500
runs. The time includes filtering of false-positives and ad-
dresses that map to other slices.

This Work Song et al. [46]

Xeon E-2224G 26.6 ms (96%) 156 ms (60%)
i5-8259U 40.6 ms (86%) 146 ms (71%)
i5-8265U 72.5 ms (81%) 228 ms (59%)
i7-7600U 21.1 ms (95%) 133 ms (68%)

For the construction of eviction sets it is important that Write+
Write reliably detects colliding addresses. Therefore, we now in-
vestigate the coverage, i.e. how many addresses from the memory
area collide with the target and how many collisions are found
usingWrite+Write. We use the libtea framework [10] to compare
the addresses that map to the same cache set to those returned by
Write+Write. Each measurement forWrite+Write is repeated
30 times in order to achieve a good TPR. We found that in this
configuration, Write+Write detects about 90% of the colliding
addresses.

Table 2 shows the performance for eviction set construction of
all tested CPUs including the reduction to a minimal eviction set
and compares it to the currently fastest algorithm for eviction set
construction by Song et al. [46]. We found that the optimal perfor-
mance for Write+Write-based eviction set construction can be
achieved using a tradeoff betweenWrite+Write repetitions and
the amount of false-positive classifications for collisions. As shown
in Figure 6, the TPR of a collision classification becomes very high
for more than 30 repetitions of Write+Write. However, our exper-
iments revealed that the runtime of the eviction set construction
algorithm is minimal with about 10 to 15 repetitions. This leads to
more false positives in the preliminary eviction set which increases
the runtime of the eviction set reduction to a minimal eviction set
but reduces the time to probe for conflicts in the first part of the
algorithm.

We executed the code by Song et al. on our evaluation CPUs to get
a clearer picture of the performance difference2. For all tested CPUs,
theWrite+Write-based eviction set construction outperforms the
previous approach by a factor of three to six. The success rate is
also very high throughout all our experiments. Runs that have
been classified as failing mostly include only one address that is
wrongly classified as collision. In such a case, the false address
could be exchanged for a different colliding address without much
additional computing time.

4.2 Attacks on Randomized Caches
The search for effective countermeasures to thwart cache side chan-
nels has peaked in a number of cache architectures that randomize
the cache index using (partial) address encryption [42, 49, 51, 57]
to prevent efficient eviction set generation. Cache randomization
is generally considered to make attacks more difficult [45], even

2Our results generally meet the numbers reported in their paper. However, due to the
vast configurability, it may be that there are slightly more optimal configurations. We
do not expect major deviations.
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though attacks like Prime+Prune+Probe [4, 38] are still feasible
on pure index-randomization schemes. More recent designs try to
encounter such attacks with further security mechanisms [42, 51].
Hence, we believe to see some form of index randomization to be
adapted by major CPU vendors in the not-too-distant future.

Since the principle of contention is still present in randomized
caches, i.e. two addresses can still collide in the cache, it is likely
that the implementation of the entry selection remains similar and
hence, Write+Write-like leakage may still exist.

Methodology. To demonstrate the threats of Write+Write leak-
age in the randomized cache setting, we implement the Write+
Write behavior in the CPU simulator gem5 [27]. On traditional
caches,Write+Write causes an increased write latency when two
addresses map to the same cache index. In randomized caches, ad-
dresses may have an index collision in one cache way, but not the
others. In our implementation, the increased latency occurs when
two successive write operations are issued and the address of the
second write can map to the same index in the cache way in which
the first write is stored. This follows our assumption thatWrite+
Write is caused by a conflict in the simultaneous set allocation of
two write operations. The intention is that the first write is assigned
to a set, and then the second write needs to be placed. If a second
write can map to the entry in which the first one was placed, the
replacement policy needs to wait until the first write has updated
the replacement data. We chose a conservative approach where
the other option would be that a timing difference is measurable if
the two addresses can collide in any cache way. The effect on the
security on randomized caches would be equal, however, the latter
approach would accelerate the attack even further.

For the randomized cache, we implement ScatterCache [57] with
random replacement policy in gem5. Thus, each address is random-
ized in every cache way individually, yieldingw independent cache
indices in aw-way cache. The attacker model is similar to the one
in the non-randomized setting, although the aim is no longer to
construct a minimal eviction set but instead a probabilistic one;
see [38]. That is, since constructing a minimal eviction set would
require the attacker to findw fully congruent addresses. This has
been shown to be infeasible [57].

The algorithm to construct a probabilistic eviction set using
Write+Write is similar to the algorithm in the non-randomized
cache and shown in Algorithm 2. The main difference is that the
candidate addresses are no longer aligned to the target address
since the attacker cannot influence the lower bits used for set selec-
tion from the virtual address space. This increases the search space
for colliding addresses significantly. Each cache line holds 64 byte
of data, hence, the attacker needs to probe for colliding addresses
in a 64-byte stride. Smaller offsets would result in addresses that
map to the same cache line while larger offsets would skip poten-
tially conflicting addresses. A further difference is that the attacker
can no longer deterministically test if the eviction set is complete.
The test needs to be conducted multiple times and the attacker
needs to determine whether the eviction set evicts the target with
the expected probability pe . The optional reduction to a minimal
eviction set also differs from the traditional algorithm. Instead of
removing one address at a time and probing if the eviction set is

still functional, the attacker can prime the target multiple times
and remove those addresses that are never evicted by the target.

Algorithm 2 Write+Write-based eviction set construction for
randomized caches.

Input: ∗tarдet , ∗mem,mem_size , rep
ev ← �;
for i = 0; i < mem_size; i += 2 · 0x40 do

sum0 ← 0; sum1 ← 0;
candidate0 ←mem + i;
candidate1 ←mem + i + 0x40;
for j = 0; j < rep; j ++ do

decision ← (j & 0x2) >> 1;
if decision == 0 then

sum0 += w+w(tarдet , candidate0);
else

sum1 += w+w(tarдet , candidate1);
end if

end for
avд0 ← sum0/(rep/2);
avд1 ← sum1/(rep/2);
if avд1 − avд0 > TH then

ev ← ev
⋃

candidate0;
else if avд1 − avд0 < −TH then

ev ← ev
⋃

candidate1;
end if
if test_evset_ratio(ev) ≈ pe then

break ;
end if

end for
ev ← reduce(ev); ▷ Optional.
return ev

Performance Evaluation. We configured gem5 to use the O3 CPU
model equipped with a small 64 kB, 2-way associative L1 cache and
a larger 1 MB, 8 way associative L2 cache. Both cache levels use
our ScatterCache implementation. The randomization function is
a round reduced version of PRINCE [3] with equal keys in the L1
and L2 cache. This way, the generalized eviction set evicts entries
from both levels of cache. In practice, this reduces the complexity
of cache randomization, since the address encryption only needs
to be performed once for cache lookups in any cache level.

We implement our attack and execute it in gem5’s syscall emu-
lation (SE) mode. The SE mode executes the binaries in an isolated
environment without any operating system or parallel processes.
Calls to OS functions are handled by gem5 directly. Hence, in our
setup there is no noise or disturbance by scheduler decisions or
parallel processes. The numbers reported in the following therefore
represent the best-case for an attacker.

Constructing a probabilistic eviction set with pe = 90% for an
8-way cache requires about 143 addresses that collide with the
target in at least one cache way as shown in [38]. We executed the
attack 10 times and the average runtime was 267 ms. Furthermore,
we verified that the correctness of the constructed eviction set by
probing whether it evicts the target with the expected probability.
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To compare our attack to the established Prime+Prune+Probe
attack [38], we also implement this attack in the same setup. Prime+
Prune+Probe repeatedly fills large parts of the cache and accesses
the prime-set until there are no more evictions within this set. Then,
the target address is accessed which with some probability evicts
one of the attacker controlled addresses. If an eviction is observed,
the address is added to the generalized eviction set. We found
that priming 50% of the cache leads to a reasonable probability of
observing an eviction while keeping the amount of conflicts in the
prune phase low. Using the same settings, we executed the attack
10 times and the average runtime was 2.324 s. Hence, theWrite+
Write-based attack outperforms Prime+Prune+Probe by a factor
of 10 in this cache configuration. In practice, priming and pruning
a large part of the cache is difficult in the presence of noise induced
by parallel processes. Any such process may cause an eviction of
the pruned set which leads to a false-positive observation. Write+
Write is less affected by such noise since only two addresses are
used to perform the measurement. Therefore, we expect that our
attack would perform even better in real-world scenarios compared
to Prime+Prune+Probe.

4.3 Cross-Core Synchronization
If an attacker wants to communicate over a covert channel, they
must make sure that the sender- and receiver process are properly
synchronized. This is not trivial since there is no direct way for the
sender to communicate to the receiver that the next symbol starts
and in many scenarios, there is no common clock (e.g. when using
virtualization). In prior work this problem is often evaded by using
edge detection during post-processing of the received signal [21]
or using self-clocking encodings such as the phase / Manchester
encoding [31, 50, 58]. However, the former suffers from noise being
classified as edges and limitations on how short a single symbol can
be, while the latter reduces the channel entropy since two bits are
needed to transmit one bit of information. Moreover, if for example,
the Flush+Reload channel shall be used for transmission, the
sender and receiver have no way of coordinating the flush/reload
and access steps. In practice, the sender and receiver perform the
flush and the access in parallel which on average leads to the low
reload latency on the receiver end. However, this approach is not
very stealthy. If the sender and receiver were to share a precise
clock source, they could coordinate the flush and access in a way
that each probe by the receiver yields precisely one bit of message.
This is exactly what the Write-After-Write clock achieves.

In the following, we demonstrate how changes in the average
write latency can be leveraged for cross-core synchronization of
multiple processes. We show how covert channels can synchronize
a sender and receiver process by observing the averagewrite latency
to an arbitrary address. Importantly, this address does not need
to be shared between the sender and receiver process. Due to the
synchronization, the sender only needs to send each symbol once
and the receiver only once measures the access time to read the
symbol. This makes our approach much more stealthy compared
to previous techniques.

Attacker Model. We assume that the attacker controls two pro-
cesses on the target device. The goal is to transmit a message from
one process to the other over a covert channel. The sender and

the receiver process execute in parallel but not necessarily on the
same physical CPU core. For covert channels that require shared
memory (i.e. Flush+Reload [62] and Flush+Flush [14]), we as-
sume that both processes can access a shared memory resource.
For Prime+Probe, this is not required. Furthermore, we assume
that both parties have access to a precise timer. Should rdtsc not
be available, such timers can easily be constructed as shown by
Schwarz et al. [44].

Methodology. As shown earlier (c.f. Figure 5), the average write
latency to a given address periodically switches between a high
and a low state. The resulting signal already resembles a very sharp
clock signal. We verified that this change in the write latency is
synchronized across multiple CPU cores. The raw measurement
is shown in Figure 7 (❶). While the average latency is reasonably
stable, the latency of single write instructions can vary massively,
making trivial classification to the low, or the high state infeasi-
ble. Therefore, we compute a running average of the write latency
(❷) and then perform edge detection on that data (❸). To gener-
ate the clock signal, we hence instantiate a loop that measures
the write latency to a given address constantly. It does not mat-
ter whether the address is cached, as long as it is either always
cached or always not cached. A ring buffer is used to compute a
moving average. Moreover, we implement a second ring buffer that
stores delta between the measured time and the current moving
average. This way, the average of the second ring buffer is close
to zero if the mean write latency is stable, but if the average write
latency changes abruptly, the mean over the second ring buffer
will peak briefly. Using this technique, a simple threshold value
is sufficient to detect changes in the write latency and therefore,
generate the clock signal. If the average change in write latency is
above a threshold (e.g., 15) and the current clock is low, the signal
changes to high and vice versa. As depicted in Figure 7 (❹), the
synchronization is highly accurate and even in the selected small
time frame, no visible error can be observed. We introduce two
metrics to evaluate the accuracy of the received clock signal. The
cycle-to-cycle jitter measures the mean difference of clock periods
of two successive cycles. It calculates as Jcc =mean(|Tj −Tj+1 |)∀j.
To quantify the measurement error of two processes observing the
Write-After-Write clock, we define the synchronization error as
the mean difference between the detection of a clock edge of two
processes. It calculates as Scc =mean(|T (P0)j −T (P1)j |)∀j.

Until now, the clock period is fixed by the characteristics of the
write latency. However, if the synchronization error is small, the
sender and receiver can split each clock period in smaller chunks
and hence increase the bandwidth. Therefore, both the sender and
receiver need to keep track of the average clock period. The edges
of theWrite-After-Write clock serve as synchronization marks from
which both the sender and receiver separate the expected period inn
timeframes, each of which is used to transmit one bit of message. In
the following, we use the Flush+Reload covert channel to transmit
a message from the sender to the receiver process. If a ’1’-bit is to
be transmitted, the sender will access the shared memory address
on the rising edge of the Write-After-Write clock. If a ’0’-bit is
transmitted, the sender does not access that address. The receiver
then measures the access (read) latency to the shared address on
each falling clock edge and flushes the shared address afterwards
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❶ Repeatedly measure the write latency to any address.
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❷ Compute the moving average of the write latency.
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❸ Edge detection in the average write latency.
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❹ Use a threshold to generate the final clock signal.

Figure 7: Illustration of the process to generate a synchronized clock signal between two processes, based on an Intel Xeon
E-2224G.

Table 3: Statistics for various CPUs averaged over 100 iter-
ations. The average jitter and the synchronization error is
shown in percent of the mean clock period.

CPU Period (clk) 𝐽𝐶𝐶/𝑐𝑙𝑘 𝑆𝐶𝐶/𝑐𝑙𝑘
Xeon E-2224G 4.295𝑥109 0.13% 0.02%
Xeon W-3223 4.294𝑥109 0.02% 0.03%
i5-8259U 4.295𝑥109 0.09% 0.03%
i5-8265U 4.587𝑥109 10.03% 0.02%
i7-7600U 4.157𝑥109 5.1% 0.05%

latency. The results are shown in Table 3. The measured clock pe-
riod is similar in all our measurements. For the two Xeon processors
and the i5-9259U, the jitter is low, indicating a very stable clock
period. However, on the i5-8265U and the i7-7600U the, the jitter is
much higher. On these CPUs, we experienced a large number of
outliers during the measurement which reduces the accuracy of
the observed clock signal. However, the synchronization error is
very low on all tested CPUs, i.e. both processes are equally affected
by the noise and hence, synchronization is still provided.

We now use the Write-After-Write clock to synchronize a covert
channel communication using Flush+Reload on the Xeon E2224-G
CPU. Both the sender and receiver process outsource the clock gen-
eration to a separate thread. This way, we get the highest possible
sampling rate of the write latency which improves the accuracy of
the retrieved clock signal. We furthermore schedule each process
(sender, receiver and two clock threads) on different CPU cores to
avoid heavy noise disturbance. During a transmission two kinds of
errors may occur: We classify a flipped bit as a transmission error
and a missing or added bit as a clock error. Transmission errors
occur if the covert channel is noisy or the threshold is not optimally
chosen. Clock errors are an artifact of failed clock synchronization.
This may happen if one of the processes gets descheduled by the
scheduler and therefore misses a clock edge, or if the clock signal is
disturbed by system noise. In our implementation, clock errors also
occur if the receiver process is stopped too late or too early which
might lead to additional or missing symbols. Since such errors are
easily detected in the final message, we do not count them into the
error rates.

To compare the sent and the received data and classify the er-
rors, we use the Needleman-Wunsch algorithm [33]. The algorithm
originates in bioinformatics and can be used to identify matches,

Figure 7: Illustration of the process to generate a synchronized clock signal between two processes, based on an Intel Xeon
E-2224G.

Table 3: Statistics for various CPUs averaged over 100 iter-
ations. The average jitter and the synchronization error is
shown in percent of the mean clock period.

CPU Period (clk) JCC/clk SCC/clk
Xeon E-2224G 4.295x109 0.13% 0.02%
Xeon W-3223 4.294x109 0.02% 0.03%
i5-8259U 4.295x109 0.09% 0.03%
i5-8265U 4.587x109 10.03% 0.02%
i7-7600U 4.157x109 5.1% 0.05%

to prepare for the next symbol. On average, transmitting one bit of
message therefore only requires 0.5 memory accesses on the sender
side, and a single memory access and a cache flush instruction on
the receiver side.

Performance and Reliability. We first measure some characteris-
tics of the Write-After-Write clock on our target CPUs. Therefore,
we execute two processes on each CPU that both measure the write
latency. The results are shown in Table 3. The measured clock pe-
riod is similar in all our measurements. For the two Xeon processors
and the i5-9259U, the jitter is low, indicating a very stable clock
period. However, on the i5-8265U and the i7-7600U the, the jitter is
much higher. On these CPUs, we experienced a large number of
outliers during the measurement which reduces the accuracy of
the observed clock signal. However, the synchronization error is

very low on all tested CPUs, i.e. both processes are equally affected
by the noise and hence, synchronization is still provided.

We now use the Write-After-Write clock to synchronize a covert
channel communication using Flush+Reload on the Xeon E2224-G
CPU. Both the sender and receiver process outsource the clock gen-
eration to a separate thread. This way, we get the highest possible
sampling rate of the write latency which improves the accuracy of
the retrieved clock signal. We furthermore schedule each process
(sender, receiver and two clock threads) on different CPU cores to
avoid heavy noise disturbance. During a transmission two kinds of
errors may occur: We classify a flipped bit as a transmission error
and a missing or added bit as a clock error. Transmission errors
occur if the covert channel is noisy or the threshold is not optimally
chosen. Clock errors are an artifact of failed clock synchronization.
This may happen if one of the processes gets descheduled by the
scheduler and therefore misses a clock edge, or if the clock signal is
disturbed by system noise. In our implementation, clock errors also
occur if the receiver process is stopped too late or too early which
might lead to additional or missing symbols. Since such errors are
easily detected in the final message, we do not count them into the
error rates.

To compare the sent and the received data and classify the er-
rors, we use the Needleman-Wunsch algorithm [33]. The algorithm
originates in bioinformatics and can be used to identify matches,
mismatches and gaps in two input vectors. Mismatches correspond
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Figure 8: Transmission errors and clock errors in percent
as a function of the clock division rate on the Intel Xeon
E-2224G processor.

to transmission errors and gaps correspond to synchronization er-
rors during the transmission.We configure the match andmismatch
scores to 1 and -1 respectively. We set the score for gaps to -8 to
prevent false classifications as gaps. We do not implement any error
correction during the transmission which could reduce the amount
of gaps and mismatches.

Figure 8 shows the average transmission- and clock error rate in
percent.We therefore compute the average over eight transmissions
of 1kB data over the covert channel using the write-synchronization
method. With the exception of one outlier at n ≈ 75, 000, the error
rates are very low. The transmission error rate which is purely
influenced by the accuracy of Flush+Reload is at about 1% while
the clock error rate is significantly smaller between 0.2% to 0.8%.
The outlier may be explained by a scheduled task that interrupted
one of the processes. Since the Xeon E-2224G CPU has only four
cores, any additional process directly competes for CPU time. We
achieved a maximum transmission rate of up to 2 kB/s. Since the
error rates are still low at this rate, we suspect that the bottleneck
of the transmission speed lies in the communication between the
clock generating thread and the sender / receiver. We also tested
the code on an AMD Ryzen 5 5600H but did not observe the same
clock-like characteristic in the write latency.

5 MITIGATION
The mitigation of the Write-After-Write effects requires modifica-
tion on the microarchitectural level by re-designing the aspects
of the CPU that lead to the behavior exploited in this work. This,
however, requires significant change to the design which cannot be
applied to currently deployed CPUs. A less intrusive way to prevent
Write-After-Write effects would be a change in the behavior of the
cpuid instruction. There is no apparent reason why the instruction
should be unprivileged and serializing. The fencing instructions
([s,l,m]fence) are well defined and sufficient to prevent specula-
tive execution attacks which is a valid use-case for many programs.
To the best of our knowledge, beyond that, there is no further
scenario for an unprivileged serializing instruction.

In-line with previous research on cache side channels, making
the clflush instruction privileged would render Write+Write
infeasible in unprivileged environments. However, this does not
affect the clock synchronization based on the average write latency.

6 RELATEDWORK
In this section, we briefly summarize related work.

Side Channels. There is a vast variety of different side chan-
nels in modern CPUs. In the following, we focus on memory-
related side channels in desktop- and server-grade CPUs; for re-
cent surveys, see [26, 47, 48]. Caches are the most commonly used
source of leakage. Early timing-based attacks could be used to
recover cryptographic keys, among others of AES [2], DES [53],
and RSA [6] by measuring the overall runtime of the program.
Eviction-based cache side channels increase the attack resolution
since they allow the attacker to trace single cache accesses by the
victim. Evict+Time [34] compares the execution time of a program
before and after some cache entries were evicted to reconstruct an
AES key. Flush+Reload [62] flushes a shared cache line and mea-
sures whether it will be reloaded by the victim. Flush+Flush [14]
operates similarly but instead of measuring the reload-latency, it
measures the latency of a second clflush instruction. These at-
tacks require shared memory between the attacker and the receiver.
Prime+Probe [34, 52] instead uses eviction sets to evict entries
from the cache. Reload+Refresh [5] is a variant of Prime+Probe
that reduces the amount of cache misses and exploits the replace-
ment policy of caches. Both attacks rely on eviction sets [25] that
reliably evict a target entry from the cache. An algorithm for finding
such eviction sets has been presented in [55] and improved in [46].
Several randomization-based cache designs have been presented
to prevent the construction of eviction sets [42, 49, 51, 56, 57]. The
Prime+Prune+Probe attack [4, 38] targets randomized caches and
constructs generalized eviction sets, albeit much less performant
compared to regular caches. Other side channels in the memory
hierarchy have been discovered, most notably on TLBs [9, 12],
DRAM [37], and the on-chip ring interconnect [35]. The group of
MDS attacks [7, 54] exploit speculative behavior in Intel’s store
buffers.

Covert Channels. Cross-VM covert channel communications
have been studied in real-world environments on AWS systems
in [41, 60]. Wu et al. use a memory-bus-based covert channel
in [58], and Xiao et al. exploit memory deduplication for covert-
communication [59]. Cache-based covert channels have been pre-
sented in [14, 29, 36, 60]. In [31] it has been shown that cache covert
channels can even be used to establish ssh connections between
the communication partners.

7 CONCLUSION
We investigated the microarchitectural peculiarities of write in-
structions on recent Intel processors. We discoveredWrite+Write,
a new side channel that leaks set contention in the cache archi-
tecture. We used Write+Write for bottom-up construction of
cache eviction sets and in doing so, broke current speed records
for eviction set construction. Furthermore, we demonstrated that
attacks on randomized caches can be accelerated significantly if
Write+Write leakage is present. Therefore, we implemented Scat-
terCache in gem5 and benchmarked our attack against the recent
Prime+Prune+Probe attack. We found that the Write+Write-
based attack outperforms current attacks by a factor of 10 and
expect an even larger advantage in real-world implementations.
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That is, since the Write+Write algorithm for eviction set con-
struction is much less susceptible to noise by parallel processes.

Moreover, we developed a new approach to synchronize pro-
cesses across CPU cores. The clock-like nature of the noise in the
write latency allows for accurate synchronization and therefore
more stealthy covert channel transmissions.
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