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ABSTRACT
The focus of this work are multi-signatures schemes in the synchro-

nized setting. A multi-signature scheme allows multiple signatures

for the same message but from independent signers to be com-

pressed into one short aggregated signature, which allows verifying

all of the signatures simultaneously. In the synchronized setting,

the signing algorithm takes the current time step as an additional

input. It is assumed that no signer signs more than one message per

time step and we aim to aggregate signatures for the same message

and same time step. This setting is particularly useful in the context

of blockchains, where validators are naturally synchronized by the

blocks they sign.

We present Squirrel, a concretely efficient lattice-based multi-

signature scheme in the synchronized setting that works for a

bounded number of 2
𝜏
time steps and allows for aggregating up to

𝜌 signatures at each step, where both 𝜏 and 𝜌 are public parameters

upon which the efficiency of our scheme depends. Squirrel allows

for non-interactive aggregation of independent signatures and is

proven secure in the random oracle model in the presence of rogue-

key attacks assuming the hardness of the short integer solution

problem in a polynomial ring.

We provide a careful analysis of all parameters and show that

Squirrel can be instantiatedwith good concrete efficiency. For 𝜏 = 24

and 𝜌 = 4096, a signer could sign a new message every 10 seconds

for 5 years non-stop. Assuming the signer has a cache of 112 MB,

signing takes 68 ms and verification of an aggregated signature

takes 36 ms. The size of the public key is 1 KB, the size of an

individual signature is 52 KB, and the size of an aggregated signature

is 771 KB.
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1 INTRODUCTION
A multi-signature scheme [30, 39] allows for compressing multiple

signatures for the same message, generated under independent

keys, into one short aggregated signature. Given the corresponding

public keys, the message, and the aggregated signature, anyone can

verify the validity of all signatures simultaneously.

Such signature schemes are particularly useful in the context

of cryptocurrencies, where a set of validators maintain a public

append-only ledger. The ledger should only contain valid data and

minimizing the amount of data stored on the ledger is crucial for the

overall efficiency of the cryptocurrency. In regular time intervals,

new candidate data blocks appear that may or may not be added to

the ledger. If a validator deems a data block eligible for addition to

the ledger, they will vouch for it by signing it. If enough validators

have signed a specific data block, then it is added to the ledger

along with all the signatures vouching for it. In this setting multi-

signatures allow for storing less data on the ledger by replacing all

individual signatures with the aggregated signature.

It has been shown that multi-signatures can be constructed from

a variety of assumptions, such as the RSA assumption [30, 43], dis-

crete logarithm assumptions [5, 7, 17, 39, 42], and pairings-based

assumptions [9, 11, 12, 20, 35]. Unfortunately, all of the above as-

sumptions are susceptible to quantum attacks [48] and there has

been little work in multi-signatures schemes that plausibly remain

secure in the presence of a quantum adversary.

A number of recent works [15, 19, 22, 26, 27, 31, 37, 45] proposed

multi-signatures schemes whose security relies on the hardness

of lattice assumptions which are currently considered hard even

against quantum adversaries. However, none of these are quite

suitable for practical deployment in the envisioned use-case.

All of the proposed schemes require interaction between the in-

dependent signers to aggregate the signatures. In applications such

as the one sketched above the signers may be online at different

times and are potentially not even aware of who the others signers

are, thus making interactive aggregation problematic. Ideally, ag-

gregation of signatures should be non-interactive in the sense that

it does not require further interaction between any of the signers

and the aggregating entity.

The interactive signing protocol of Fukumitsu and Hasegawa [26,

27], Ma and Jiang [37], and Peng and Du [45] have a runtime that

grows exponentially with the number of participants. This is caused

by rejection sampling procedures employed by the underlying lat-

tice signature schemes (e.g. Dilithium). Each user will reject a can-

didate signature with some probability to prevent information leak-

age. Rejection by any user requires the entire protocol to restart.
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This makes the schemes non-applicable with potentially 1000s of

signers.

The schemes of El Bansarkhani and Sturm [22] as well as Ma

and Jiang [37] are only proven secure in a setting where all signing

keys, even the adversarial ones, are generated honestly. In reality,

an adversary could attempt to perform a so-called rogue key at-

tack, where maliciously formed keys are chosen depending on the

honest keys, such that they can forge aggregated signatures that

supposedly correspond to a set of keys consisting of both, honest

and malicious keys. From a security perspective the aggregated

signature should remain unforgeable even if malicious keys are

included and aggregation is performed by the adversary. Finally, the

scheme of Kansal and Dutta [31] was actually shown to be insecure

by Liu et al. [34].

The best option among the previous works in this area is the

multi-signatures scheme of Boschini, Takahashi, and Tibouchi [15],

which provides security against rogue-key attacks. However, it still

has the drawback of an interactive aggregation procedure described

above.

1.1 Our Contribution
In this work, we focus on multi-signature schemes in the synchro-

nized setting [1, 20, 28, 29]. Here, the signing algorithm is given

an additional time step 𝑡 as input along with the message and the

secret key. It is assumed that no signer produces more than one

signature per time step. Rather than aiming to aggregate any set of

signatures we aim to aggregate signatures by independent signers

for the same message and same time step. Going back to our pre-

vious append-only ledger example, we observe that the validators

are naturally synchronized and only aim to aggregate signatures

for the same data block which can be associated with a time step 𝑡 .

We present Squirrel
1
, a concretely efficient lattice-based multi-

signature scheme in the synchronized setting that works for a

bounded number of 2
𝜏
time steps and allows for aggregating up

to 𝜌 signatures at each step, where both 𝜏 and 𝜌 are public param-

eters upon which the efficiency of our scheme depends. Squirrel

allows for non-interactive aggregation of signatures and is secure

against rogue key attacks in the random oracle model assuming

the hardness of the short integer solution problem in a polynomial

ring.

It may seem that having an upper bound on the number of

signatures is a severe restriction that limits the practical usefulness

of our results. To see that this is not the case in many settings, we

note that even with a 𝜏 as small as 24, a single signing key supports

signing a new message every 10 seconds for 5 years non-stop.

Squirrel is both asymptotically and concretely efficient in most

parameters as can be seen in Table 1. Keys and signature sizes

are reasonably small and verification of an aggregated signature

only takes a few tens of milliseconds. The main (theoretical) bot-

tleneck of Squirrel is the asymptotic worst-case signing cost. For-

tunately, our construction possesses several nice features that al-

leviate the asymptotic inefficiency in practice. Our construction

is an online/offline signature scheme [24] which means that the

majority of the computational cost of the signing procedure can

1
Our construction, just like our rodent friends from the Sciuridae family, heavily rely

on (binary) trees.

be preprocessed before the message to be signed is known. The

amortized overall computational cost per signature is exponen-

tially smaller than the worst-case cost, which means that signing is

computationally cheap most of the time and only rarely requires

a larger computational effort. Lastly, we show that the concrete

computational worst-case costs of the signing procedure can be

significantly reduced by storing somewhat larger secret keys. As an

exemplary data point, one can see in Table 1 that a 2 GB secret key

allows for signing times below 4 ms. We stress that storing such a

“large” secret key with modern hardware does not pose a problem

in the absolute majority of use-cases, for instance, where signers

are blockchain validators with adequate resources. Verification of

the aggregated signature, which is 771 KB large, only takes 36 ms.

A naive construction of a lattice-based multi-signature scheme

with non-interactive aggregation is to simply append individual

signatures of a plain lattice-based signature scheme. Such a scheme

can, for instance, be instantiated with Dilithium signatures [21] or

Falcon sigantures [47]. When comparing such a solution to ours,

for the parameters from above, the naive scheme with Dilithium

requires roughly 3 KB per signature and 0.2 ms per verification. For

4096 aggregated signatures, the size would be around 12 MB and

verification would take around 800 ms. In comparison, our solution

requires 771 KB for the aggregated signature, reducing size by 94%,

and verification is faster by a factor of 20. For Falcon signatures,

we observe smaller gains, reducing 71% in size, and accelerating

verification by a factor of 4. In terms of verification times, our

result is also on-par with pre-quantum algorithms, since it takes

roughly 200 ms to verify 4096 ECDSA signatures [33] and 2 ms to

verify 4096 BLS signatures [49]. When there are more signatures to

aggregate, our benchmark shows that our signature size scales sub-

logarithmically with regard to 𝜌 . We provide a detailed discussion

of the concrete efficiency of our scheme in Section 6.

1.2 Real-World Impact
Squirrel can be used in the context of major cryptocurrencies, such

as Ethereum 2 and DFinity. In a nutshell, both these systems are

keeping track of a continuously growing ordered chain of data

blocks in a distributed manner. To ensure that no malformed blocks

are added to the chain, each block has to include a sufficient number

of signatures that vouch for their validity. Both of the mentioned

cryptocurrencies are currently relying on the quantum-insecure

BLS multi-signature scheme [14] to compress the signatures in each

block. For more details, we refer the interested reader to Sections

5.7 and 5.8 in the DFinity whitepaper
2
or the annotated Ethereum 2

specification
3
. Constructing plausibly quantum-secure alternatives

to BLS signatures with good concrete efficiency has so far been

a tough nut to crack. To understand why Squirrel can be used

in the context of these cryptocurrencies we need to make two

crucial observations. Firstly, the signatures we aim to aggregate are

naturally synchronized by the length of the current chain, meaning

that signatures for block 𝑖 can be associated with a time step 𝑖 .

Secondly, both cryptocurrency designs enforce that no validator can

vouch for more than one data block at any point in time. These two

2
https://dfinity.org/whitepaper.pdf

3
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-

chain.md#attestation
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Computational Bandwidth
Offline Sign Online Sign Verify sk pk 𝜎 𝜎agg

Asymptotic worst Õ(2𝜏 ) O(1) O(𝜏) O(𝜆) Õ(𝑛) Õ(𝜏𝑛) Õ(𝜏𝑛)
Efficiency average Õ(1)

Concrete
Efficiency

0.4 s 8 MB

25 ms 2.3 ms 36 ms 128 MB 1 KB 52 KB 771 KB

1.6 ms 2 GB

Table 1: The asymptotic worst-case and average-case along with concrete worst-case costs of Squirrel. Here 𝜆 denotes the
security parameter and 𝜌 the maximum number of signatures that can be aggregated. The maximum number of signatures
that can be issued under one key pair is 2

𝜏 . The column 𝜎 specifies the size of an individual signature while 𝜎agg specifies the

size of an aggregated signature. Asymptotic worst-case cost is measured in terms of ring multiplications. The Õ(·) notation
hides logarithmic dependencies. Concrete costs are measured for 𝜏 = 24 and 𝜌 = 4096 with 𝜆 = 112.

restrictions on how multi-signatures are being used here perfectly

match the two restrictions our construction has.

1.3 Limitations
Since Squirrel is proven secure under the assumed hardness of the

short integer solution problem in a polynomial ring, it does not

directly fall victim to attacks by a quantum adversary. However, our

security proof relies on a variant [7] of the forking lemma [46], and

therefore uses a rewinding strategy that does not apply to quantum

algorithms. Although it is plausible that our scheme is secure against

quantum attackers, we do not currently know how to prove this

and leave such a proof as an open question. In this context, it may

be noteworthy, that a proof of security against quantum attackers in

the classical random oracle model would be sufficient, because such

a proof could be lifted to the quantum random oracle model [10]

using the work of Yamakawa and Zhandry [50].

1.4 Technical Overview
Let us start with a very simple solution. Assume we are already

given a one-time multi-signature scheme, i.e. a scheme, where a

signer can sign exactly once under a given public key. To create a

signature scheme that allows for signing 2
𝜏
many times, a signer

can generate 2
𝜏
many independent one-time signature key pairs

and publish a public key, which is the concatenation of all one-time

public keys. To sign at time 𝑡 , the signer signs using the 𝑡-th secret

key. Such a scheme would already constitute a valid multi-signature

solution in the synchronized setting for a bounded number of sig-

natures. The main drawback of this approach is that the public key

grows linearly in 2
𝜏
, which is completely unacceptable.

As a subsequent iteration of the idea above, one can attempt to

publish the root node 𝑣 of a Merkle tree that is computed on top of

all the public keys. The tree serves as a commitment to the vector

of individual public keys. To sign a message at time 𝑡 , we would

now publish a signature under the 𝑡-th key pair along with the 𝑡-th

public key and a membership proof, which shows that the key is

indeed the 𝑡-th leaf of the tree with the root node 𝑣 . The problem is

that this solution breaks the aggregation property, since one-time

signatures can still be aggregated, but the membership proofs of

the separate Merkle trees cannot.

Luckily for us, the idea of Merkle trees with homomorphic prop-

erties has already been studied by Papamanthou et al. [44]. In

principle, their construction of a “homomorphic Merkle tree” is

sufficient to make the simple idea from above work. Using these

trees, one can now aggregate both the one-time multi-signatures

and the membership proofs. To make this solution secure against

rogue-key attacks, we can not just sum up separate signatures, but

instead compute a random linear combination thereof, where the

weights are chosen via a random oracle.

The main issue with the work of Papamanthou et al. [44] is the

large asymptotic and concrete costs associated with their tree con-

struction. When trying to realize our approach with their work,

one obtains signatures sizes in the gigabyte range which would be

prohibitively expensive for practical scenarios. On a very high level

the main issue, among others, with their construction is that their

security relies on a lattice-based assumption where the parameters

grow linearly in the number of leaves of their tree. The parame-

ters of the used assumption further deteriorate, when the random

weights are applied to the membership proofs.

A simpler and more efficient set membership data structure from

lattices was considered by Libert et al. [32]. Whereas Papamanthou

et al. compute the labels of internal nodes as weighted sums of

all leaves rooted in that node, the construction of Libert et al. is

essentially a standard Merkle tree instantiated with Ajtai’s hash

function [2] with an additional decomposition step to map hash

values into the domain of the hash function. Their work did not

need or consider any homomorphic properties that their tree might

possess. In this work, we observe that the construction of Libert

et al. does indeed have the homomorphic properties that we need

for our application, but unfortunately does not allow for efficiently

aggregating random linear combinations of authentication paths

from different trees. The tree of Libert et al. works with values

over Z𝑞 that are required to have small norm, when interpreted as

integers. For our random linear combinations, however, we need

to choose weights that come from a super-polynomially large set.

Such a large subset of Z will necessarily have elements with a su-

perpolynomially large norm, which would result in a blow-up in

the asymptotic and concrete sizes of the aggregated paths in Libert

et al.’s construction. In this paper, we present a new construction

of such a Merkle tree with homomorphic properties that does not
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have the drawbacks of the previous works and is concretely effi-

cient. Essentially, we describe an analogue of the tree of Libert et

al. instantiated over a polynomial ring, where superpolynomially

large subsets of elements with small norm exist. Additionally the

construction is made more efficient by using a seperate hash func-

tion with a wider input for the leaf layer. We present an appropriate

one-time multi-signature scheme that works well in combination

with our tree as outlined above. We stress that even though our

construction is simple on a conceptual level, realizing the idea and

making it concretely efficient is far from it.

1.4.1 Paper Outline. We define some notation and review some

existing definitions that will be used throughout the paper in Sec-

tion 2. We formally define our notion of a homomorphic vector

commitment and show how to instantiate it with a construction

that resembles a Merkle tree in Section 3. We define the notion of a

one-time multi-signature scheme that we need and instantiate it

in Section 4. Our multi-signature scheme is presented in Section 5.

Finally, we discuss all relevant concrete parameters and provide

extensive benchmarks of our construction in Section 6.

2 PRELIMINARIES
This section introduces notation, some basic definitions and lemmas

that we will use throughout this work. We denote by 𝜆 ∈ N the

security parameter and by poly(𝜆) any function that is bounded

by a polynomial in 𝜆. A function 𝑓 in 𝜆 is negligible, if for every

𝑐 ∈ N, there exists some 𝑁 ∈ N, such that for all 𝜆 > 𝑁 it holds that

𝑓 (𝜆) < 1/𝜆𝑐 . We denote by negl(𝜆) any negligible function. An

algorithm is PPT if it is modeled by a probabilistic Turing machine

with a running time bounded by poly(𝜆).
Let𝑋 be a set. We write 𝑥 ← 𝑋 to denote the process of sampling

an element of 𝑋 uniformly at random. Let 𝑛 ∈ N, we denote by [𝑛]
the set {0, . . . , 𝑛}. Let 𝑇 be a full binary tree of depth 𝑑 . We denote

the root node of𝑇 by the empty string 𝜖 , and for any node 𝑣 , 𝑣 ∥0 and
𝑣 ∥1 denotes the left and right child of 𝑣 respectively. In particular,

{0, 1}𝑑 is the set of leaves of𝑇 . A labeled full binary tree with labels

in 𝑋 is represented by a labeling function lbl : {0, 1}≤𝑑 → 𝑋 .

Let 𝒗 be a vector. We write 𝒗⊺ to denote its transpose and 𝑣𝑖
to denote the 𝑖-th entry in the vector for 𝑖 ∈ [|𝒗 | − 1]. Further,
𝒗<𝑖 denotes the 𝑖-length prefix of 𝒗. Similarly for a bit-string 𝑠 , 𝑠𝑖
denotes the 𝑖-th bit of 𝑠 and 𝑠<𝑖 denotes the prefix consisting of the

first 𝑖 bits of 𝑠 . Note that vectors and bit-strings are zero-indexed.

From time to time we will slightly abuse this notation and use a

bit-string 𝑠 as an index. In this case the index is to be understood

as the canonical interpretation of 𝑠 as an integer in little-endian

encoding.

Without loss of generality, we work on a power-of-two cyclo-

tomic polynomial ring. Let Φ2𝑛 = 𝑥𝑛 + 1 the cyclotomic polynomial

with𝑛 a power of 2.Wework in a polynomial ringR = Z[𝑥]/⟨𝑥𝑛+1⟩
and represent elements of R as 𝑛-dimensional vectors Z𝑛 with

(𝑐0, . . . , 𝑐𝑛−1)⊺ ∈ Z𝑛 representing the ring element

∑𝑛−1

𝑖=0
𝑥𝑖 · 𝑐𝑖 .

Let 𝑞 be some prime such that 𝑞 ≡ 1 mod 2𝑛. R𝑞 refers to the

subset of R represented by vectors in Z𝑛𝑞 . Let 𝑥 = 𝒄 ∈ R be

a ring element. We denote ∥𝑥 ∥ = ∥𝒄 ∥∞ = max𝑖∈[𝑛−1] |𝑐𝑖 | and
∥𝑥 ∥

1
= ∥𝒄 ∥

1
=

∑
𝑖∈[𝑛−1] |𝑥𝑖 |. For an element 𝑎 ∈ R𝑞 we denote by

∥𝑎∥ or ∥𝑎∥
1
the respective norm over R.

We denote by B𝛽 the ball B𝛽 = {𝑎 ∈ R𝑞 | ∥𝑎∥ ≤ 𝛽} and by

T𝛼 = {𝑎 = (𝑎0 +𝑎1 ·𝑥 + · · · +𝑎𝑛−1𝑥
𝑛−1) ∈ R | ∥𝑎∥ = 1∧∑𝑛−1

𝑖=0
|𝑎𝑖 | =

𝛼} the set of polynomials with ternary coefficients, i.e. coefficients

from {−1, 0, 1}, with exactly 𝛼 non-zero coefficients.

The following simple lemma allows us to bound the norm of the

product of two polynomials.

Lemma 2.1 ([40]). Let 𝑎, 𝑏 ∈ R be two polynomials. Then ∥𝑏 · 𝑎∥ ≤
∥𝑎∥

1
· ∥𝑏∥.

The computationally hard problem upon which the security

of our constructions relies is the short integer solution problem

defined over rings as follows.

Definition 2.2 (Ring Short Integer Solution Problem). For a ring R
and parameters 𝜇, 𝑞, 𝛽 ∈ N, the SISR,𝑞,𝜇,𝛽 problem is hard if for all

PPT algorithms A it holds that

Pr[𝒂 ← R𝜇𝑞 ; 𝒔 ← A(𝒂) : 𝒔 ∈ B𝜇

𝛽
\ {0} ∧ 𝒂⊺𝒔 = 0] ≤ negl(𝜆)

3 HOMOMORPHIC VECTOR COMMITMENT
In this section, we formally define the notion of a homomorphic

vector commitment that we will need in our main construction.

This primitive, on an intuitive level, allows for committing to a long

vector by publishing a short commitment value. Individual positions

of the vector can then be opened individually with short openings.

The commitment scheme should be homomorphic, meaning that a

linear combination of individual commitments different vectors be

opened to the linear combination of the entries of the individual

vectors.

Definition 3.1. Let R be a ring and let 𝑞 = 𝑞(𝜆) ∈ N. A homo-

morphic vector commitment scheme (HVC) for domain Rℓdom𝑞 is

defined by four PPT algorithms (Setup,Com,Open,Vf).

pp← Setup(1𝜆, 𝜏) The setup algorithm takes as input the security

parameter and the binary logarithm of the length of the committed

vectors and outputs public parameters.

𝑐 ← Com(pp,𝒎) The commitment algorithm gets as input the

public parameters and a vector 𝒎 ∈ (Rℓdom𝑞 )2𝜏 and outputs a

commitment 𝑐 ∈ Rℓcom𝑞 .

𝑑 ← Open(pp, 𝑐,𝒎, 𝑡) The opening algorithm gets as input the

public parameters, a commitment, the committed vector, and an

index and outputs a decommitment 𝑑 ∈ Rℓdec𝑞 .

𝒎/⊥ ← wVf (pp, 𝑐, 𝑡, 𝑑) The weak verification algorithm takes as

input public parameters, a commitment, an index, and a decom-

mitment and outputs either 𝒎 ∈ Rℓdom𝑞 or an error symbol.

𝒎/⊥ ← sVf (pp, 𝑐, 𝑡, 𝑑) The strong verification algorithm takes as

input public parameters, a commitment, an index, and a decom-

mitment and outputs either 𝒎 ∈ Rℓdom𝑞 or an error symbol.

Let 𝜌 ∈ N and𝑊 ⊆ R. A vector commitment is (𝜌,𝑊 )-homo-

morphically correct, if for all security parameters 𝜆 ∈ N, vector
lengths 2

𝜏 = poly(𝜆), ℓ ∈ [𝜌], vectors 𝒎0, . . . ,𝒎ℓ−1 ∈ (Rℓdom𝑞 )2𝜏 ,
ring elements𝑤0, . . . ,𝑤 ℓ−1 ∈𝑊 , and indices 𝑡 ∈ [2𝜏 − 1] it holds
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that

Pr


pp← Setup(1𝜆, 𝜏);
𝒄𝑖 ← Com(pp,𝒎𝑖 );
𝒅𝑖 ←Open(pp, 𝒄𝑖 ,𝒎𝑖 , 𝑡)

:

sVf
(
pp,

ℓ−1∑︁
𝑖=0

𝑤𝑖 · 𝒄𝑖 , 𝑡,
ℓ−1∑︁
𝑖=0

𝑤𝑖 · 𝒅𝑖
)

=

ℓ−1∑︁
𝑖=0

𝑤𝑖 ·𝒎𝑖
𝑡


= 1

Remark 3.2. Note that the homomorphic correctness definition

above implies regular correctness of unaggregated commitments

with ℓ = 1 and 1 ∈𝑊 .

Definition 3.3 (Position-Binding). An HVC is position binding if

for all security parameters 𝜆 and all PPT algorithmsA it holds that

Pr


pp← Setup(1𝜆, 𝜏);

(𝑐, 𝑡, 𝑑0, 𝑑1) ← A(pp);
𝒎0 ← wVf (pp, 𝑐, 𝑡, 𝑑0);
𝒎1 ← wVf (pp, 𝑐, 𝑡, 𝑑1)

:

𝒎0 ≠ 𝒎1

∧ ⊥ ∉ {𝒎0,𝒎1}


≤ negl(𝜆).

We require that a limited homomorphism holds, even for mali-

cious commitments. For any two, even malicious, commitments and

their two respective openings that strongly verify, their difference

will still weakly verify.

Definition 3.4. Let HVC be a vector commitment scheme (HVC)

for domain Rℓdom𝑞 with commitment length ℓcom and decommitment

length ℓdec. HVC is robustly homomorphic if for all security pa-

rameters 𝜆 ∈ N, vector lengths 2
𝜏 = poly(𝜆), public parameters

pp← Setup(1𝜆, 𝜏), indices 𝑡 ∈ [2𝜏 − 1], (possibly malformed) com-

mitments 𝒄0, 𝒄1 ∈ Rℓcom𝑞 , and (possibly malformed) decommitments

𝒅0, 𝒅1 ∈ Rℓdec𝑞 such that

sVf (pp, 𝒄0, 𝑡, 𝒅0) = 𝒎0
and sVf (pp, 𝒄1, 𝑡, 𝒅1) = 𝒎1

with 𝒎0,𝒎1 ≠ ⊥ it holds that

wVf (pp, 𝒄0 − 𝒄1, 𝑡, 𝒅0 − 𝒅1) = 𝒎0 −𝒎1 .

Strong vs Weak Verification. A noticable and potentially unusual

feature of the above definitions is that it uses two seperate verifi-

cation algorithms. We note that weak and strong verification can
be identical, but the definition above is more general and in fact

necessary to allow for our lattice based instantiation. To see why,

consider the following. Ideally, in a definition featuring only a single

verification algorithm, a robust homomorphism would guarantee

that for any two valid commitment, decommitment pairs (𝒄0, 𝒅0),
(𝒄1, 𝒅1) opening to 𝒎0

and 𝒎1
respectively, (𝒄0 − 𝒄1, 𝒅0 − 𝒅1) is

also valid and opens to 𝒎0 − 𝒎1
. However, this is inherently dif-

ficult to achieve with lattices. In any SIS based construction, the

verification must involve checking a bound on the norm of the

commitment/decommitment. (The same applies with LWE based

constructions and the size of the error.) If the norms of (𝒄0, 𝒅0)
and (𝒄1, 𝒅1) are already close to but still smaller than the enforced

norm-bound, the norm of (𝒄0 − 𝒄1, 𝒅0 − 𝒅1) will often exceed the

bound. This would make the individual pairs valid but their differ-

ence invalid, breaking the robust homomorphism. The issue can be

sidestepped by using two separate bounds. A smaller bound that

is used for correctness and a greater bound that is only used in

the security definition. To still allow for a clean abstraction, we

encapsulate this in strong and weak verification procedur

3.1 Homomorphic Vector Commitment for R𝑞
Having formally defined the primitive we want, we now show how

to construct it. We first focus on constructing a vector commitment

with domain R𝑞 . In Section 3.2 we will show how to leverage this

into a more general construction for domain R𝜉𝑞 .
Our construction is essentially a ring version of a tree construc-

tion already presented by Libert et al. [32] that follows the blueprint

initially presented by Papamanthou et al. [44]. We instantiate the

homomorphic vector commitments by constructing a Merkle tree

with a “sufficiently” homomorphic hash functions at the internal

nodes. The hash function will have different input and output do-

mains and for that reason we will need to apply a decomposition

function on the hash outputs at the internal nodes before they can

be used as inputs in the computation of the parent nodes’ values.

The construction differs from the work of Libert et al. because we

require somewhat different properties, in particular the ability to

compute random linear combinations of decommitments without

blowing up the size. This is achieved by working over an appro-

priate polynomial ring that allows for a superpolynomially large

set of low norm weights. We also take care to adapt the decom-

position function to optimizes the concrete efficiency of our final

construction.

We now define a decomposition function that allows us to map a

ring element with possibly large norm to a vector of low norm ring

elements and we show that this function has nice homomorphic

properties.

Definition 3.5 (Binary decomposition of R𝑞 elements). For any 𝑎 =∑𝑛−1

𝑖=0
𝑎𝑖 · 𝑥𝑖 ∈ R𝑞 , denote by (𝑎𝑖,0, . . . , 𝑎𝑖, ⌈log𝑞⌉−1

)⊺ ∈ {0, 1} ⌈log𝑞⌉

the binary decomposition of 𝑎𝑖 , i.e.,

𝑎𝑖 :=

⌈log𝑞⌉−1∑︁
𝑗=0

𝑎𝑖, 𝑗 · 2𝑗 .

We define the following decomposition of 𝑎 into binary polynomi-

als:

bin𝑞 : R𝑞 → R ⌈log𝑞⌉
𝑞

bin𝑞 (𝑎) =
(
𝑛−1∑︁
𝑖=0

𝑎𝑖,0 · 𝑥𝑖 , . . . ,
𝑛−1∑︁
𝑖=0

𝑎𝑖, ⌈log𝑞⌉−1
· 𝑥𝑖

)
.

Definition 3.6 (Projection onto R𝑞 elements). For any 𝒃 ∈ R ⌈log𝑞⌉
𝑞

we define the function

proj𝑞 : R ⌈log𝑞⌉
𝑞 → R𝑞, proj(𝒃) =

⌈log𝑞⌉−1∑︁
𝑗=0

2
𝑗 · 𝑏 𝑗 .

For the sake of readability we will omit 𝑞 and simply write bin
and proj whenever the modulus is clear from context.

The following two simple lemmas effectively states that the

projection function is the inverse of the decomposition function

and that the projection function is linear. For proofs, refer to the

full version of this work [25].

Lemma 3.7. For all 𝑎 ∈ R𝑞 , it holds that proj(bin(𝑎)) = 𝑎.

Lemma 3.8. The projection function proj is linear, i.e., for any
𝒃0, 𝒃1 ∈ R ⌈log𝑞⌉

𝑞 and any 𝑤0,𝑤1 ∈ R𝑞 , proj(𝑤0 · 𝒃0 + 𝑤1 · 𝒃1) =
𝑤0 · proj(𝒃0) +𝑤1 · proj(𝒃1).

 

1113



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Nils Fleischhacker, Mark Simkin, and Zhenfei Zhang

We extend the definitions of bin and proj to vectors of ring

elements in the natural sense. I.e., let 𝒂 ∈ R𝜉𝑞 and 𝒃 ∈ R
𝜉 · ⌈log𝑞⌉
𝑞 with

𝒃𝑖 := (𝑏𝑖 · ⌈log𝑞⌉ , . . . , 𝑏 (𝑖+1) · ⌈log𝑞⌉−1
)⊺ , then bin(𝒂) := (bin(𝑎0), . . . ,

bin(𝑎𝜉 )) and proj(𝒃) := (proj(𝒃0), . . . , proj(𝒃𝜉−1
)).

Equipped with the decomposition and projection functions, we

are now ready to define how the labels of the nodes in our tree

construction will be computed.

Definition 3.9 (Labeled full binary tree). Let 𝒉0,𝒉1 ∈ R ⌈log𝑞⌉
𝑞

and 𝒎 = (𝑚0, . . . ,𝑚2
𝜏−1)⊺ ∈ R2

𝜏

𝑞 be fixed. We define the labeling

function lbl : {0, 1}≤𝜏 → R ⌈log𝑞⌉
𝑞 of for a labeled full binary tree

of depth 𝜏 as

lbl(𝒉0,𝒉1,𝒎, 𝑣) :=


bin(𝑚𝑣) if |𝑣 | = 𝜏

bin

(
𝒉
⊺
0
· lbl(𝒉0,𝒉1,𝒎, 𝑣 ∥0)

+𝒉⊺
1
· lbl(𝒉0,𝒉1,𝒎, 𝑣 ∥1)

)
if |𝑣 | < 𝜏

Our construction proceeds by effectively computing a Merkle

tree on top of a given input vector, where the labels of the nodes are

computed as specified in Definition 3.9. The root node of that tree

will constitute the vector commitment. To open a specific position

in the vector, we will output all the node labels and adjacent node

labels along the path from that position in the vector to the root of

the computed tree.

Theorem 3.10. Let R𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑛 +1⟩ be a polynomial ring pa-
rameterized by 𝑛 = poly(𝜆) and 𝑞 = poly(𝜆). Let 𝛼 be the smallest in-
teger, such that

(𝑛
𝛼

)
·2𝛼 ≥ 2

𝜆 . If the SISR,𝑞,2 ⌈log𝑞⌉,2𝜌𝛼 problem is hard,
then the construction from Figure 1 is a (𝜌,T𝛼 )-homomorphically cor-
rect, robustly homomorphic, and position binding vector commitment
scheme (HVC) for R𝑞 .

Proof. The theorem follows from Lemma 3.11, Lemma 3.13, and

Lemma 3.14 proven below. □

Lemma 3.11. The construction from Figure 1 is a (𝜌,T𝛼 )-homo-
morphically correct vector commitment scheme (HVC) for R𝑞 .

Proof. Let𝒎0, . . . ,𝒎ℓ−1 ∈ R2
𝜏

𝑞 ,𝒑𝑖
0
= Com(pp,𝒎𝑖 ), 𝑡 ∈ [2𝜏−1],

(𝒑𝑖
1
, . . . ,𝒑𝑖𝜏 , 𝒔

𝑖
1
, . . . , 𝒔𝑖𝜏 )⊺ = Open(pp,𝒑𝑖

0
,𝒎𝑖 , 𝑡), and𝑤0, . . . ,𝑤 ℓ−1 ∈

T𝛼 as specified in Definition 3.1.Wewill first prove a claim about the

individual honestly computed commitments and decommitments.

Claim 3.12. For all 𝑗 ∈ [𝜏 − 1] it holds that
proj(𝒑𝑖𝑗 ) = 𝒉

⊺

𝑡 𝑗
· 𝒑𝑖𝑗+1 + 𝒉

⊺

1−𝑡 𝑗
· 𝒔𝑖𝑗+1 .

Proof. We observe that for all 𝑗 ∈ [𝜏 − 1] it holds that
proj(𝒑𝑖𝑗 )

=proj
(
lbl(𝒉0,𝒉1,𝒎

𝑖 , 𝑡< 𝑗 )
)

(Def. of Com and Open)

=proj

(
bin

(
𝒉
⊺
0
· lbl(𝒉0,𝒉1,𝒎

𝑖 , 𝑡< 𝑗 ∥0)
+𝒉⊺

1
· lbl(𝒉0,𝒉1,𝒎

𝑖 , 𝑡< 𝑗 ∥1)

))
(Definition 3.9)

=𝒉
⊺
0
· lbl(𝒉0,𝒉1,𝒎

𝑖 , 𝑡< 𝑗 ∥0) + 𝒉⊺
1
· lbl(𝒉0,𝒉1,𝒎

𝑖 , 𝑡< 𝑗 ∥1)
(Lemma 3.7)

=𝒉
⊺

𝑡 𝑗
· lbl(𝒉0,𝒉1,𝒎

𝑖 , 𝑡< 𝑗 ∥𝑡 𝑗 ) + 𝒉⊺
𝑡 𝑗 ⊕1

· lbl(𝒉0,𝒉1,𝒎
𝑖 , 𝑡< 𝑗 ∥(𝑡 𝑗 ⊕ 1))

=𝒉
⊺

𝑡 𝑗
· 𝒑𝑖𝑗+1 + 𝒉

⊺

𝑡 𝑗 ⊕1

· 𝒔𝑖𝑗+1 (Def. of Open)

as claimed. □

We are now ready to prove Lemma 3.11. We first note that for

all 𝑗 ∈ [𝜏] it holds thatℓ−1∑︁
𝑖=0

𝑤𝑖 · 𝒑𝑖𝑗
 ≤ ℓ ·max

𝑖∈[ℓ−1]

{
∥𝑤𝑖 · 𝒑𝑖𝑗 ∥

} Lemma 2.1

≤ ℓ · 𝛼 ≤ 𝜌 · 𝛼

ℓ−1∑︁
𝑖=0

𝑤𝑖 · 𝒔𝑖𝑗
 ≤ ℓ ·max

𝑖∈[ℓ−1]

{
∥𝑤𝑖 · 𝒔𝑖𝑗 ∥

} Lemma 2.1

≤ ℓ · 𝛼 ≤ 𝜌 · 𝛼.

Further, for all 𝑗 ∈ [𝜏 − 1] it holds that

proj
(ℓ−1∑︁
𝑖=0

𝑤𝑖 · 𝒑𝑖𝑗
)
=

ℓ−1∑︁
𝑖=0

𝑤𝑖 · proj(𝒑𝑖𝑗 ) (Lemma 3.8)

=

ℓ−1∑︁
𝑖=0

𝑤𝑖 · (𝒉⊺
𝑡 𝑗
𝒑𝑖𝑗+1 + 𝒉

⊺

1−𝑡 𝑗
𝒔𝑖𝑗+1) (Claim 3.12)

=

ℓ−1∑︁
𝑖=0

𝒉
⊺

𝑡 𝑗
𝑤𝑖 · 𝒑𝑖𝑗+1 + 𝒉

⊺

1−𝑡 𝑗
𝑤𝑖 · 𝒔𝑖𝑗+1

=𝒉
⊺

𝑡 𝑗
·
(ℓ−1∑︁
𝑖=0

𝑤𝑖 · 𝒑𝑖𝑗+1
)
+ 𝒉⊺

1−𝑡 𝑗
·
(ℓ−1∑︁
𝑖=0

𝑤𝑖 · 𝒔𝑖𝑗+1
)

Therefore, all checks in the strong verification algorithm will go

through and it will output

proj
(ℓ−1∑︁
𝑖=0

𝑤𝑖 · 𝒑𝑖𝜏
)
=

ℓ−1∑︁
𝑖=0

𝑤𝑖 · proj(𝒑𝑖𝜏 ) (Lemma 3.8)

=

ℓ−1∑︁
𝑖=0

𝑤𝑖 · proj(bin(𝑚𝑖
𝑡 )) (Def. of Open)

=

ℓ−1∑︁
𝑖=0

𝑤𝑖 ·𝑚𝑖
𝑡 (Lemma 3.7)

as required by Definition 3.1. □

Lemma 3.13. The construction from Figure 1 is a robustly homo-
morphic vector commitment scheme.

Proof. Let 𝒄0, 𝒄1 ∈ Rℓcom𝑞 , and 𝒅0, 𝒅1 ∈ Rℓdec𝑞 , and 𝑡 ∈ [2𝜏 − 1]
be arbitrary, such that

sVf (pp, 𝒄0, 𝑡, 𝒅0) =𝑚0
and sVf (pp, 𝒄1, 𝑡, 𝒅1) =𝑚1

(1)

with 𝑚0,𝑚1 ≠ ⊥. Let 𝒅𝑖 parse as (𝒑𝑖
1
, . . . ,𝒑𝑖𝜏 , 𝒔

𝑖
1
, . . . , 𝒔𝑖𝜏 )⊺ for 𝑖 ∈

{0, 1}. We first note that if wVf (pp, 𝒄0 − 𝒄1, 𝑡, 𝒅0 − 𝒅1) ≠ ⊥, then
wVf (pp, 𝒄0 − 𝒄1, 𝑡, 𝒅0 − 𝒅1)

=proj(𝒑0

𝜏 − 𝒑1

𝜏 ) (Def of Vf)

=proj(𝒑0

𝜏 ) − proj(𝒑1

𝜏 ) (Lemma 3.8)

=sVf (pp, 𝒄0, 𝑡, 𝒅0) − sVf (pp, 𝒄1, 𝑡, 𝒅1) (Def. of sVf)

=𝑚0 −𝑚1 . (Equation 1)

It thus remains to show that wVf (pp, 𝒄0 − 𝒄1, 𝑡, 𝒅0 − 𝒅1) ≠ ⊥. For
this, let further 𝒑𝑖

0
= 𝒄𝑖 . By definition of the strong verification

algorithm, and since 𝑚0,𝑚1 ≠ ⊥ it holds that for 𝑖 ∈ {0, 1} and
𝑗 ∈ [𝜏 − 1]

∥𝒑𝑖𝑗+1∥ ≤ 𝜌 · 𝛼 ∥𝒔𝑖𝑗+1∥ ≤ 𝜌 · 𝛼 (2)
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Setup(1𝜆, 𝜏)
𝒉0 ← R ⌈log𝑞⌉

𝑞

𝒉1 ← R ⌈log𝑞⌉
𝑞

return (𝒉0,𝒉1)

Com(pp,𝒎)
𝒄 := lbl(𝒉0,𝒉1,𝒎, 𝜖)
return 𝒄

Open(pp, 𝒄,𝒎, 𝑡)
𝑡 := binN (𝑡 )
for 𝑗 ∈ [𝜏 − 2]
𝒑 𝑗+1 := lbl(𝒉0,𝒉1,𝒎, 𝑡< 𝑗 ∥𝑡 𝑗 )
𝒔 𝑗+1 := lbl(𝒉0,𝒉1,𝒎, 𝑡< 𝑗 ∥ (𝑡 𝑗 ⊕ 1))

return (𝒑
1
, . . . , 𝒑𝜏 , 𝒔1, . . . , 𝒔𝜏 )

wVf (pp, 𝒄, 𝑡, 𝒅)
return Vf (pp, 𝒄, 𝑡, 𝒅, 2𝜌 · 𝛼)

sVf (pp, 𝒄, 𝑡, 𝒅)
return Vf (pp, 𝒄, 𝑡, 𝒅, 𝜌 · 𝛼)

Vf (pp, 𝒄, 𝑡, 𝒅, 𝛽 ′)
parse 𝒅 as (𝒑

1
, . . . , 𝒑𝜏 , 𝒔1, . . . , 𝒔𝜏 )

𝑡 := binN (𝑡 )
𝒑

0
:= 𝒄

for 𝑗 ∈ [𝜏 − 1]
if ∥𝒑 𝑗+1 ∥ > 𝛽′ or ∥𝒔 𝑗+1 ∥ > 𝛽′

return ⊥
if proj(𝒑 𝑗 ) ≠ 𝒉⊺

𝑡 𝑗
· 𝒑 𝑗+1 + 𝒉

⊺

𝑡 𝑗 ⊕1

· 𝒔 𝑗+1
return ⊥

return proj(𝒑𝜏 )

Figure 1: The construction of a homomorphic vector commitment for R𝑞 based on a labeled binary tree.

proj(𝒑𝑖𝑗 ) = 𝒉
⊺

𝑡 𝑗
· 𝒑𝑖𝑗+1 + 𝒉

⊺

1−𝑡 𝑗
· 𝒔𝑖𝑗+1 . (3)

From Equation 2 it follows that for all 𝑗 ∈ [𝜏 − 1]
∥𝒑0

𝑗 − 𝒑
1

𝑗 ∥ ≤∥𝒑
0

𝑗 ∥ + ∥𝒑
1

𝑗 ∥ ≤ 2𝜌 · 𝛼

∥𝒔0

𝑗 − 𝒔
1

𝑗 ∥ ≤∥𝒔
0

𝑗 ∥ + ∥𝒔
1

𝑗 ∥ ≤ 2𝜌 · 𝛼.
From Equation 3 and the linearity of proj it follows that for all
𝑗 ∈ [𝜏 − 1]

proj(𝒑0

𝑗 − 𝒑
1

𝑗 )

=proj(𝒑0

𝑗 ) − proj(𝒑
1

𝑗 ) (Lemma 3.8)

=(𝒉⊺
𝑡 𝑗
𝒑0

𝑗+1 + 𝒉
⊺

1−𝑡 𝑗
𝒔0

𝑗+1) − (𝒉
⊺

𝑡 𝑗
𝒑1

𝑗+1 + 𝒉
⊺

1−𝑡 𝑗
𝒔1

𝑗+1) (Equation 3)

=𝒉
⊺

𝑡 𝑗
· (𝒑0

𝑗+1 − 𝒑
1

𝑗+1) + 𝒉
⊺

1−𝑡 𝑗
· (𝒔0

𝑗+1 − 𝒔
1

𝑗+1) .

Therefore, all checks in the weak verification algorithm go through

and wVf (pp, 𝒄0 − 𝒄1, 𝑡, 𝒅0 − 𝒅1) ≠ ⊥. □

Lemma 3.14. If the SISR,𝑞,2 ⌈log𝑞⌉,4𝜌 ·𝛼 problem is hard then the
construction from Figure 1 is position binding.

Proof. We will prove this lemma by leveraging that any pair

of valid decommitments will lead to a collision somewhere in the

generalized hash tree, which can be turned into a solution for the SIS

instance. Let A be an arbitrary PPT adversary against the position

binding property of the construction. We construct a PPT algorithm

that solves the SISR,𝑞,2 ⌈log𝑞⌉,4𝜌 ·𝛼 problem as follows. Upon input

𝒂 = (𝑎0, . . . , 𝑎2 ⌈log𝑞⌉−1
)⊺ , B sets 𝒉0 := (𝑎0, . . . , 𝑎 ⌈log𝑞⌉−1

)⊺ and

𝒉1 := (𝑎 ⌈log𝑞⌉ , . . . , 𝑎2 ⌈log𝑞⌉−1
)⊺ and runs (𝒄, 𝑡, 𝒅0, 𝒅1) ← A((𝒉0,

𝒉1)). For 𝑖 ∈ {0, 1} let𝑚𝑖
:= wVf ((𝒉0,𝒉1), 𝒄, 𝑡, 𝒅𝑖 ). If𝑚0 = 𝑚1

or

⊥ ∈ {𝑚0,𝑚1}, B aborts. Otherwise, parse 𝒅𝑖 as (𝒑𝑖
1
, . . . ,𝒑𝑖𝜏 , 𝒔

𝑖
1
, . . . ,

𝒔𝑖𝜏 ), set 𝒑𝑖0 := 𝒄 .

Let 𝑗∗ ∈ [𝜏] be the largest index, such that proj(𝒑0

𝑗∗ ) = proj(𝒑1

𝑗∗ ).
Note that such an index always exists, since 𝒑0

0
= 𝒄 = 𝒑1

0
and that

𝑗∗ < 𝜏 , since proj(𝒑0

𝑗∗ ) = 𝑚0 ≠ 𝑚1 = proj(𝒑1

𝑗∗ ). If 𝑡 𝑗∗ = 0, B
outputs 𝒛 := (𝒑0

𝑗∗+1, 𝒔
0

𝑗∗+1)
⊺ − (𝒑1

𝑗∗+1, 𝒔
1

𝑗∗+1)
⊺
, if 𝑡 𝑗∗ = 1, B outputs

𝒛 := (𝒔0

𝑗∗+1,𝒑
0

𝑗∗+1)
⊺ − (𝒔1

𝑗∗+1,𝒑
1

𝑗∗+1)
⊺
.

We now analyze the success probability of B. It holds that

proj(𝒑0

𝑗∗ ) = proj(𝒑1

𝑗∗ ) and by the definition of the weak verification
algorithm that

𝒉
⊺

𝑡 𝑗∗
· 𝒑0

𝑗∗+1 + 𝒉
⊺

𝑡 𝑗∗ ⊕1

· 𝒔0

𝑗∗+1 = 𝒉
⊺

𝑡 𝑗∗
· 𝒑1

𝑗∗+1 + 𝒉
⊺

𝑡 𝑗∗ ⊕1

· 𝒔1

𝑗∗+1

⇐⇒ 𝒉
⊺

𝑡 𝑗∗
· (𝒑0

𝑗∗+1 − 𝒑
1

𝑗∗+1) + 𝒉
⊺

𝑡 𝑗∗ ⊕1

· (𝒔0

𝑗∗+1 − 𝒔
1

𝑗∗+1) = 0

⇐⇒ 𝒂⊺ · 𝒛 = 0

It further holds by the definition of the weak verification algorithm

that

∥𝒑0

𝑗∗+1∥ ≤ 2𝜌𝛼, ∥𝒔0

𝑗∗+1∥ ≤ 2𝜌𝛼, ∥𝒑1

𝑗∗+1∥ ≤ 2𝜌𝛼, ∥𝒔1

𝑗∗+1∥ ≤ 2𝜌𝛼.

Therefore, the norm of 𝒛 can be bounded as

∥𝒛∥ ≤ max{∥𝒑0

𝑗∗+1∥, ∥𝒔
0

𝑗∗+1∥} +max{∥𝒑1

𝑗∗+1∥, ∥𝒔
1

𝑗∗+1∥} ≤ 4𝜌𝛼.

It remains to show that 𝒛 ≠ 0. Since 𝑗∗ is the largest index such that

proj(𝒑0

𝑗∗ ) = proj(𝒑1

𝑗∗ ) it holds that proj(𝒑
0

𝑗∗+1) ≠ proj(𝒑1

𝑗∗+1) and
thereby that 𝒑0

𝑗∗+1 ≠ 𝒑1

𝑗∗+1 . Therefore 𝒛 ≠ 0. Thus, whenever A is

successful, B is successful with probability 1 and we can conclude

that

negl(𝜆) ≥ Pr

[
𝒂 ← R2 ⌈log𝑞⌉

𝑞 ; 𝒔 ← B(𝒂) :

𝒛 ∈ B2 ⌈log𝑞⌉
4𝜌 ·𝛼 \ {0}

∧𝒂⊺𝒔 = 0

]

= Pr


pp← Setup(1𝜆, 𝜏);

(𝑐, 𝑡, 𝑑1, 𝑑2) ← A(pp);
𝑚1 ← wVf (pp, 𝑐, 𝑡, 𝑑1);
𝑚2 ← wVf (pp, 𝑐, 𝑡, 𝑑2)

:

𝑚1 ≠𝑚2

∧ ⊥ ∉ {𝑚1,𝑚2}

 □

3.2 Homomorphic Vector Commitment for R𝜉
𝑞

In the previous section we constructed an HVC for domain R𝑞 for

some 𝑞 = poly(𝜆). For our application however, this is however not

ideal for two reasons. In our main construction of a synchronized

multi-signature scheme, the committed values are public keys of a

one-time signature scheme. These are not individual ring elements,

but pairs of R𝑞 elements for some 𝑞 = poly(𝜆) leading to a domain

mismatch. The simplest solution of choosing 𝑞 = 𝑞 and always

decommitting to pairs of leaves works but turns out to be inefficient.

We therefore want the freedom to choose 𝑞 ≠ 𝑞. For this purpose

we describe a domain extension in the following, that allows us to

leverage the HVC for domain R𝑞 into an HVC for domain R𝜉𝑞 .
Given a vector commitment with domain 𝑋 it is very simple to

construct a vector commitment for an arbitrary domain 𝑌 , simply

by applying a collision resistant hash function 𝐻 : 𝑌 → 𝑋 to the

committed elements. In our case we need to take care to choose the
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hash function in such a way to maintain the homomorphism. This

is easily done by again applying Ajtai’s hash function combined

with binary decomposition.

The following theorem states the security of the construction

from Figure 2. Due to space constraints the proof is deferred to the

full version of this work [25].

Theorem 3.15. Let R𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩ and R𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑛 +
1⟩ be polynomial rings parameterized by 𝑛 = poly(𝜆), 𝑞 = poly(𝜆),
and 𝑞 = poly(𝜆) and let 𝜉 ∈ N. If the SISR,𝑞,𝜉 ⌈log𝑞⌉,4𝜌𝛼 problem is
hard and ifHVC is a (𝜌,T𝛼 )-homomorphically correct, robustly homo-
morphic, and position binding vector commitment scheme (HVC) for
R𝑞 , then the construction from Figure 2 is a (𝜌,T𝛼 )-homomorphically
correct, robustly homomorphic, and position binding vector commit-
ment scheme (HVC) for R𝜉𝑞 .

4 KEY-HOMOMORPHIC ONE-TIME
SIGNATURES

In this section, we define and instantiate the notion of a key-

homomorphic one-time signature scheme that we will need in our

final construction. Intuitively, a one-time signature is unforgeable

as long as at most one signature for some message is published un-

der a given public key. We call such a scheme homomorphic, if the

a linear combination of separate signatures for the same message

verifies under the linear combination of the corresponding public

keys, while still being unforgeable.We present a construction of this

primitive, which is similar to previous one-time signature schemes

by Boneh and Kim [13] and Lyubashevsky and Micciancio [36].

Definition 4.1 (One-Time Signature). Let R be a ring. A key-

homomorphic one-time signature scheme (KOTS) over R with pub-

lic key length ℓopk and signature length ℓsig is defined by four PPT

algorithms KOTS = (Setup,Gen, Sig,Vf).
pp← Setup(1𝜆) The setup algorithm takes as input the security

parameter and outputs public parameters.

(osk, opk) ← Gen(pp) The key generation algorithm takes as in-

put the public parameters and outputs a key pair with opk ∈ Rℓopk𝑞 .

𝜎 ← Sig(pp, osk,𝑚) The signing algorithm takes as input the pub-

lic parameters, a one-time signing key, and a message and outputs

a signature 𝜎 ∈ Rℓsig𝑞 .

𝑏 ← wVf (pp, opk,𝑚, 𝜎) The weak verification algorithm takes as

input the public parameters, a verification key, a message, and

a candidate signature and outputs a bit indicating acceptance or

rejection.

𝑏 ← sVf (pp, opk,𝑚, 𝜎) The strong verification algorithm takes as

input the public parameters, a verification key, a message, and

a candidate signature and outputs a bit indicating acceptance or

rejection.

A one-time signature is (𝜌,𝑊 )-homomorphically correct, if for all

security parameters 𝜆 ∈ N, ℓ ∈ [𝜌], messages𝑚 ∈ {0, 1}∗, and ring

elements𝑤1, . . . ,𝑤ℓ ∈𝑊 it holds that

Pr


pp← Setup(1𝜆);(
osk𝑖 ,
opk𝑖

)
← Gen(pp);

𝜎𝑖 ← Sig(pp, osk𝑖 ,𝑚)

: sVf
(
pp,

ℓ∑︁
𝑖=1

𝑤𝑖opk𝑖,𝑚,

ℓ∑︁
𝑖=1

𝑤𝑖𝜎𝑖
)
= 1


= 1

Remark 4.2. Note that again the homomorphic correctness defi-

nition above implies regular correctness of unaggregated signatures

with ℓ = 1 and𝑊 = {1}.

As with the vector commitments from the previous section, we

want our signature scheme to be robustly homomorphic in the

sense that the difference of two maliciously generated signatures

under malicious public keys will verify, if the individual signatures

verify.

Definition 4.3. Let KOTS be a (𝜌,𝑊 )-homomorphically correct

one-time signature scheme over R with public key length ℓopk
and signature length ℓsig. KOTS is robustly homomorphic if for

all 𝜆 ∈ N, pp ← Setup(1𝜆),𝑚 ∈ {0, 1}∗, opk0, opk1 ∈ Rℓopk𝑞 , and

𝜎0, 𝜎1 ∈ Rℓsig𝑞 such that

sVf (pp, opk0,𝑚, 𝜎0) = 1 and sVf (pp, opk1,𝑚, 𝜎1) = 1

it holds that

wVf (pp, opk0 − opk1,𝑚, (𝜎0 − 𝜎1)) = 1.

We define a multi-user version of (one-time) existential unforge-

ability, this will allow for a tighter proof of the synchronized multi-

signature scheme. The definition is further strengthened by allow-

ing the adversary to produce forgeries not just under one of the

given public keys, but also under mildly rerandomized public key.

Definition 4.4 (Multi-User Existential Unforgeability under Reran-
domized Keys). A (𝜌,𝑊 )-homomorphically correct KOTS is𝑊 ′-
existentially unforgeable under rerandomized keys (EUF-RK), if for

all security parameters 𝜆, any 𝑇 = poly(𝜆) (𝜆) ∈ N and all stateful

PPT algorithms A it holds that

Pr



pp← Setup(1𝜆);
(osk𝑖 , opk𝑖 ) ← Gen(pp);
OPK := (opk

0
, . . . , opk𝑇−1

);(
𝑖∗,𝑚∗,
𝜎∗,𝑤∗

)
← AS̃ig( ·, ·) (pp,OPK);

:

wVf
(
pp,𝑤∗opk𝑖∗ ,

𝑚∗, 𝜎∗

)
= 1

∧𝑚∗ ∉ 𝑄𝑖

∧|𝑄𝑖 | ≤ 1

∧𝑤∗ ∈𝑊 ′


≤ negl(𝜆),

where the oracle S̃ig(·, ·) is defined as S̃ig(𝑖,𝑚) := Sig(osk𝑖 ,𝑚) and
𝑄𝑖 denotes the set of messages for which a signing query with index

𝑖 has been made.

Our construction presented here closely follows a construction

that appeared previously in the work of Boneh and Kim [13].

Theorem 4.5. Let R𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩ be a polynomial ring pa-
rameterized by 𝑛 = poly(𝜆) and 𝑞 = poly(𝜆). Let 𝛼 be the smallest in-
teger, such that

(𝑛
𝛼

)
·2𝛼 ≥ 2

𝜆 . Let𝑊 ′ = {𝑤0−𝑤1 | 𝑤0,𝑤1 ∈ T𝛼∧𝑤0 ≠

𝑤1}. If the SISR,𝑞,𝛾,(4𝜌+4)𝛼𝛽𝑠 problem is hard and 𝐻 : {0, 1}∗ → T𝛽𝑠
is collision resistant, then the construction from Figure 3 is a (𝜌,𝑊 )-
homomorphically correct KOTS that is multi-user existentially un-
forgeable under rerandomized keys.

Proof. The theorem follows from Lemma 4.6, Lemma 4.7, and

Lemma 4.8. □

The following three lemmas state that our construction satisfies

the desired homomorphic properties and that it is unforgeable. Due
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Setup(1𝜆, 𝜏)
pp← Setup(1𝜆, 𝜏)

𝒉← Rℓ ·⌈log𝑞⌉
𝑞

return (pp′,𝒉)

Com(pp,𝒎)
�̄� := (𝒉⊺ · bin𝑞 (𝒎0), . . . ,𝒉⊺ · bin𝑞 (𝒎𝜏−1))⊺

return Com(pp, �̄�)
Open(pp, 𝒄,𝒎, 𝑡)
�̄� := (𝒉⊺ · bin𝑞 (𝒎0), . . . ,𝒉⊺ · bin𝑞 (𝒎𝜏−1))⊺

return (Open(pp, 𝒄, �̄�, 𝑡 ), bin(𝒎𝑡 ))

wVf (pp, 𝒄, 𝑡, ( ¯𝒅, 𝒃))
if ∥𝒃 ∥ > 2𝜌 · 𝛼

return ⊥

if wVf (pp, 𝒄, 𝑡, ¯𝒅) ≠ 𝒉⊺ · 𝒃
return ⊥

return proj𝑞 (𝒃)

sVf (pp, 𝒄, 𝑡, ( ¯𝒅, 𝒃))
if ∥𝒃 ∥ > 𝜌 · 𝛼

return ⊥

if sVf (pp, 𝒄, 𝑡, ¯𝒅) ≠ 𝒉⊺ · 𝒃
return ⊥

return proj𝑞 (𝒃)

Figure 2: The construction of a homomorphic vector commitment for R𝜉𝑞 based on a homomorphic vector commitment for R𝑞 .

Setup(1𝜆)
𝒂 ← R𝛾𝑞
return 𝒂

Gen(pp)
𝒔0 ← B𝛾

1

𝒔1 ← B𝛾𝛽𝑠
𝑣0 := 𝒂⊺ · 𝑠0

𝑣1 := 𝒂⊺ · 𝑠1

return ( (𝒔0, 𝒔1) (𝑣0, 𝑣1))

Sig(pp, osk,𝑚)
parse osk as (𝒔0, 𝒔1)
𝜎 := 𝒔0 ·𝐻 (𝑚) + 𝒔1

return 𝜎

wVf (pp, opk,𝑚, 𝜎)
return Vf (pp, opk,𝑚, 𝜎, 2𝛽𝜎 )

sVf (pp, opk,𝑚, 𝜎)
return Vf (pp, opk,𝑚, 𝜎, 𝛽𝜎 )

Vf (pp, opk,𝑚, 𝜎, 𝛽 ′)
parse opk as (𝑣0, 𝑣1)
if ∥𝜎 ∥ > 𝛽′

return 0

if 𝒂⊺ · 𝜎 ≠ 𝑣0 ·𝐻 (𝑚) + 𝑣1

return 0

return 1

Figure 3: Description of the key-homomorphic one-time sig-
nature scheme. 𝐻 is a collision-resistant hash function map-
ping bit-strings to T𝛽𝑠 .

to space constraints the proofs are deferred to the full version of

this work [25].

Lemma 4.6. Let 𝛽𝑠 , 𝛼, 𝜌 ∈ N and let 𝐻 : {0, 1}∗ → T𝛽𝑠 } be a
hash function. Let 𝛽𝜎 = 2𝜌𝛼𝛽𝑠 . The construction from Figure 3 is a
(𝜌,T𝛼 )-homomorphically correct one time signature scheme.

Lemma 4.7. Let 𝛽𝑠 ∈ N and let 𝐻 : {0, 1}∗ → T𝛽𝑠 be a hash func-
tion. Then the construction from Figure 3 is a robustly homomorphic.

Lemma 4.8. Let 𝑛,𝛾, 𝑞, 𝛽𝑠 , 𝛼, 𝛿 be positive integers with 𝑞 prime
and 𝑛 a power of 2, such that 𝑞 > 16𝛼𝛽𝑠 , 2

(3𝜆+𝛿)/𝑛𝛾 · 𝑞1/𝛾 ≤ 3/2,
and 2

2𝜆 ≤
��T𝛽𝑠 �� ≤ 2

2𝜆+𝛿 . Let 𝐻 : {0, 1}∗ → T𝛽𝑠 be a hash function.
Let 𝛽𝜎 = 2𝜌𝛼𝛽𝑠 . If the SISR,𝑞,𝛾,(4𝜌+4)𝛼𝛽𝑠 problem is hard and 𝐻 is
collision resistant, then the construction from Figure 3 is existentially
unforgeable under rerandomized keys.

5 SYNCHRONIZED MULTI-SIGNATURES
In this section, we present the main construction of this work.

Roughly speaking, our construction will produce a public key,

which is a vector commitment to a vector of independent one-

time signature public keys. To sign a message at time 𝑡 , the signer

will publish an opening to the key in vector position 𝑡 and then sign

the corresponding message with that key. The (non-interactive) ag-

gregation of multiple independent signatures for the same message,

will heavily rely on the homomorphic properties of the used vector

commitment and one-time signature scheme. Let us now formally

define what a synchronized multi-signature scheme is.

Definition 5.1 (SynchronizedMulti-Signatures). A synchronized 𝜌-

wise multi-signature scheme for a bounded number of time periods

is defined by five PPT algorithms (Setup,Gen, Sig,Aggregate,Vf).
pp← Setup(1𝜆, 1𝜏 ) The setup algorithm takes as input the secu-

rity parameter and the maximum number of time periods and

outputs public parameters pp.
(sk, pk) ← Gen(pp) The key generation algorithm takes as input

the public parameters and outputs a key-pair.

𝜎 ← Sig(pp, sk, 𝑡,𝑚) The signing algorithm takes as input the pub-

lic parameters, a secret key, a time period 𝑡 ∈ [𝜏−1], and amessage

and outputs a signature.

𝜎agg ← Aggregate(pp,P, 𝑡,𝑚,S) The deterministic aggregation

algorithm takes as input the public parameters, a list of public

keys, a time period 𝑡 ∈ [𝜏 − 1], a message, and a list of signatures,

where |P | = |S| ≤ 𝜌 and outputs an aggregated signature or an

error ⊥.
𝑏 ← Vf (pp,P, 𝑡,𝑚, 𝜎agg) The deterministic verifification algorithm

takes as input the public parameters, a list of public keys, a time

period 𝑡 ∈ [𝜏 − 1], a message, and an aggregated signature and

outputs a bit indicating acceptance/rejection.

A synchronized 𝜌-wise multi-signature scheme is correct, if for

all 𝜆, 𝜏 ∈ N, ℓ ∈ [𝜌] \ {0}, 𝑡 ∈ [𝜏 − 1], and𝑚 ∈ {0, 1}∗ it holds that

Pr



pp← Setup(1𝜆, 1𝜏 );
(sk𝑖 , pk𝑖 ) ← Gen(pp);
P := (pk

0
, . . . , pkℓ−1

);
𝜎𝑖 ← Sig(pp, sk𝑖 , 𝑡,𝑚);
S := (𝜎0, . . . , 𝜎ℓ−1);
𝜎agg ← Aggregate(pp,P, 𝑡,𝑚,S)

: Vf (pp,P, 𝑡,𝑚, 𝜎agg) = 1


= 1

Our notion of unforgeability allows for including signatures

under adversarially chosen keys into the aggregate signature.

Definition 5.2 (Unforgeability). A synchronized 𝜌-wise multi-

signature scheme is unforgeable if for all 𝜆, 𝜏 ∈ N, and all PPT

algorithms A it holds that

Pr


pp← Setup(1𝜆, 1𝜏 );
(sk∗, pk∗) ← Gen(pp);(
P, 𝑡,𝑚,

𝜎agg

)
← ASig(pp,sk∗, ·, ·) (pp, pk∗)

:

Vf (pp,P, 𝑡,𝑚, 𝜎agg) = 1

∧ pk∗ ∈ P
∧ �. 𝜎 (𝑡,𝑚, 𝜎) ∈ Q
∧ ∀𝑡 ′. |Q𝑡 ′ | ≤ 1


≤ negl(𝜆)
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for some negligible function negl(𝜆), where Q denotes the set of

signing queries made by A and Q𝑡 ′ denotes the set of signing

queries made for timeslot 𝑡 ′.

The following lemma will be useful for proving the security of

our construction in Theorem 5.4, specifically it will be useful during

the security reduction to the underlying one-time signature scheme.

Intuitively, the lemma shows that two valid aggregate signatures

that are created using vectors of random weights that differ in one

position, allow for extracting a valid one-time signature and key.

Lemma 5.3. Let pp ← Setup(1𝜆, 1𝜏 ) and (sk∗, pk∗ = 𝑐∗) ←
Gen(pp) be fixed. Let ℓ ∈ [𝜌] \ {0}, 𝑡 ∈ [𝜏 − 1],𝑚 ∈ {0, 1}∗, P =

(pk
0
, . . . , pkℓ−1

) with pk𝑗 = pk∗, 𝜎0

agg = (𝜎 ′
0
, 𝑑0), 𝜎1

agg = (𝜎 ′
1
, 𝑑1),

and let 𝐻0, 𝐻1 be two random oracles, such that

(𝑤0, . . . ,𝑤ℓ−1) := 𝐻0 (𝑡,𝑚,P)
(𝑤0, . . . ,𝑤 𝑗−1,𝑤

′
𝑗 ,𝑤 𝑗+1, . . . ,𝑤ℓ−1) := 𝐻1 (𝑡,𝑚,P)

with𝑤 𝑗 ≠ 𝑤 ′
𝑗
and

Vf𝐻0 (pp,P, 𝑡,𝑚, 𝜎0

agg) = 1 and Vf𝐻1 (pp,P, 𝑡,𝑚, 𝜎1

agg) = 1.

Then, for

opk∗ ← HVC.wVf (ppHVC, 𝑐∗ · (𝑤 𝑗 −𝑤 ′𝑗 ), 𝑡, 𝑑0 − 𝑑1)
it holds that

opk∗ ≠ ⊥ and KOTS.wVf (ppKOTS, opk∗,𝑚, 𝜎 ′
0
− 𝜎 ′

1
) = 1.

Proof. Since

Vf𝐻0 (pp,P, 𝑡,𝑚, 𝜎0

agg) = 1 and Vf𝐻1 (pp,P, 𝑡,𝑚, 𝜎1

agg) = 1,

it must hold by definition of the verification algorithm that

HVC.sVf (ppHVC,
∑︁

𝑖∈[ℓ−1]
𝑤𝑖 · 𝑐𝑖 , 𝑡, 𝑑0) = opk

0
and

HVC.sVf (ppHVC,𝑤 ′𝑗 · 𝑐 𝑗 +
∑︁

𝑖∈[ℓ−1]\{ 𝑗 }
𝑤𝑖 · 𝑐𝑖 , 𝑡, 𝑑1) = opk

1

for opk
0
, opk

1
≠ ⊥. Thus by Definition 3.4 it holds that

opk∗ =HVC.wVf (ppHVC, 𝑐∗ · (𝑤 𝑗 −𝑤 ′𝑗 ), 𝑡, 𝑑0 − 𝑑1)

=HVC.wVf (ppHVC,
(∑︁
𝑖∈[ℓ−1]

𝑤𝑖𝑐𝑖

)
−

(
𝑤 ′𝑗𝑐 𝑗 +

∑︁
𝑖∈[ℓ−1]\{ 𝑗 }

𝑤𝑖𝑐𝑖

)
, 𝑡, 𝑑0 − 𝑑1)

=(opk
0
− opk

1
) .

Further, by definition of the verification algorithm it must also hold

that

KOTS.sVf (ppKOTS, opk0
,𝑚, 𝜎 ′

0
) = 1 and

KOTS.sVf (ppKOTS, opk1
,𝑚, 𝜎 ′

1
) = 1

Thus, by definition Definition 4.3 it holds that

KOTS.wVf (ppKOTS, opk∗,𝑚, 𝜎 ′
0
− 𝜎 ′

1
)

=KOTS.wVf (ppKOTS, opk0
− opk

1
,𝑚, 𝜎 ′

0
− 𝜎 ′

1
) = 1 □

The following theorem now states the security of our construc-

tion presented in Figure 4 under the Ring-SIS assumption. The

proof of the theorem is relatively long and technical and thus de-

ferred to the full version of this work [25]. It essentially works by

applying the forking lemma to extract two different aggregated

signatures on which Lemma 5.3 can then be applied. The result of

𝜌 1024 4096 8192

𝑛 512

𝑞HVC 12289 61441 249857

𝑞KOTS 6694913 28930049 57673729

𝛼 20

𝛽𝑠 44

𝛽agg 2048 4096 8192

𝛾 41 44 46

Table 2: Parameter sets

that can then be leveraged to attack either the position binding of

the homomorphic vector commitment or the unforgeability of the

key-homomorphic one-time signature. We stress again that, due to

the use of the forking lemma, this proof does not apply to quantum

adversaries.

Theorem 5.4. Let R𝑞 = Z𝑞 [𝑥]/⟨𝑥𝑛 + 1⟩ be a polynomial ring
parameterized by 𝑛 = poly(𝜆) and 𝑞 = poly(𝜆). Let𝑊 ⊆ R𝑞 be a
set and let𝑊 ′ := {𝑤0 −𝑤1 |𝑤0,𝑤1 ∈ 𝑊 }. Let KOTS be a (𝜌,𝑊 ′)-
homomorphically correct one-time signature scheme with public keys
in R𝜉𝑞 and let HVC be a (𝜌,𝑊 )-homomorphically correct vector com-

mitment for domain R𝜉𝑞 . If KOTS is robustly homomorphic and multi-
user existentially unforgeable under rerandomized keys and HVC is
robustly homomorphic and position-binding, then Squirrel, shown
in Figure 4, is a correct and unforgeable synchronized 𝜌-wise multi-
signature.

6 PARAMETERS AND PERFORMANCES
Let us first set up our stage with Ethereum blockchain as a running

example. It is reported that there are over 300,000 nodes in total [38],

and an Ethereum block is agreed by around 2500 active validators

within 10 seconds [23]. We therefore target 𝜌 = 4096 signature

aggregations which is more than enough to aggregate all the votes

from those validators. To illustrate the scalability of our scheme,

we also present data for 𝜌 = 1024 and 8192, respectively.

Our synchronized multi-signature scheme “Squirrel” uses a time

parameter 𝜏 , which also defines the height for our labeled binary

tree. We give parameters for 𝜏 ∈ {21, 24, 26}, that roughly translate

to 0.66, 5 and 21 years of life time for public keys, if we assume

each block takes 10 seconds to generate.

6.1 Parameters and space complexity
We propose three parameter sets each targeting 112 bits security

as in Table 2. For the rest of the section, we will use 𝜌 = 4096

as an example. We set 𝑞KOTS = 28930049 and 𝑞HVC = 61441 re-

spectively; both are NTT friendly for our choice of 𝑛 = 512. This

implies that our bin(·) maps an R𝑞HVC element into 16 elements; and

maps an R𝑞KOTS element into 25 elements. Note that bin(·) does not
map a random elements in R𝑞HVC uniformly to binary polynomials

space; neither does our scheme require such a uniformity. It takes

𝑛⌈log𝑞HVC⌉ = 8192 bits, or 1 kilobytes to represent an element in

R𝑞HVC . A Squirrel signature consists of three components:
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Setup(1𝜆, 𝜏)
ppKOTS ← KOTS.Setup(1𝜆)

ppHVC ← HVC.Setup(1𝜆, 𝜏)
return pp := (ppKOTS, ppHVC, 𝜏)

Gen(pp)
parse pp as (ppKOTS, ppHVC, 𝜏)
foreach 𝑖 ∈ [2𝜏 − 1]
(osk𝑖 , opk𝑖 ) ← KOTS.Gen(ppKOTS)

OSS = (osk0, . . . , osk2
𝜏−1)

OPK = (opk
0
, . . . , opk

2
𝜏−1
)

𝑐 ← HVC.Com(ppHVC,OPK)
return (sk, pk) := ( (OSS,OPK), 𝑐)

Sig(pp, sk, 𝑡,𝑚)
parse pp as (ppKOTS, ppHVC, 𝜏)
parse sk as ( (osk0, . . . , osk2

𝜏−1),OPK)
𝜎′ ← KOTS.Sig(ppKOTS, osk𝑡 ,𝑚)
𝑑 ← HVC.Open(ppHVC, 𝑐,OPK, 𝑡 )
return 𝜎 := (𝜎′, 𝑑)

Aggregate(pp,P, 𝑡,𝑚,S)
parse S as ( (𝜎′

0
, 𝑑0), . . . , (𝜎′ℓ−1

, 𝑑ℓ−1))
(𝑤0, . . . , 𝑤ℓ−1) := 𝐻 (𝑡,𝑚, P)

𝜎′ :=

ℓ−1∑︁
𝑖=0

𝑤𝑖 · 𝜎′𝑖

𝑑 :=

ℓ−1∑︁
𝑖=0

𝑤𝑖 · 𝑑𝑖

return 𝜎agg := (𝜎′, 𝑑)

Vf (pp,P, 𝑡,𝑚, 𝜎agg)
parse pp as (ppKOTS, ppHVC, 𝜏)
parse P as (𝑐0, . . . , 𝑐ℓ−1)
parse 𝜎agg as (𝜎′, 𝑑)
if ℓ > 𝜌 or 𝑡 ≥ 2

𝜏

return 0

(𝑤0, . . . , 𝑤ℓ−1) := 𝐻 (𝑡,𝑚, P)

𝑐 :=

ℓ−1∑︁
𝑖=0

𝑤𝑖 · 𝑐𝑖

opk← HVC.sVf (ppHVC, 𝑐, 𝑡, 𝑑)
if opk = ⊥

return 0

else

return KOTS.sVf (ppKOTS, opk,𝑚, 𝜎′)

Figure 4: The synchronizedmulti-signature scheme Squirrel based onhomomorphic vector commitments andkey-homomorphic
one-time signatures.

• an HVC decommitment of 2𝜏 path nodes and adjacent nodes,

where each node consists of ⌈log𝑞HVC⌉ many R𝑞HVC elements

with bounded norm 𝛽agg;

• a KOTS public key and its sibling public key, which are hashed

into the committed leaves. This consists of 4⌈log𝑞KOTS⌉ many

R𝑞HVC elements with bounded norm 𝛽agg;

• a KOTS signature, that consists of 𝛾 many R𝑞KOTS elements with

bounded norm 𝛽𝜎 .

For a fresh signature (prior to aggregation), the polynomials in

each node are all binary, derived from a decomposition of a single

R𝑞HVC element. It is therefore sufficient to represent the node with

1 kilobytes of data. In addition, since the signature has not been

aggregated, one will be able to derive the nodes along the path with

the adjacent leaf and 𝜏 adjacent nodes. This reduces the required

number of nodes to 𝜏 , excluding the root (a.k.a. the public key). In

total, we require 𝜏 kilobytes storage for a path when the signature

is not aggregated.

During aggregation, we multiply the binary polynomials from

different users but at a same position from the tree with random-

izers, and sum up the products. This gives us a total number of

2𝜏 ⌈log𝑞HVC⌉ polynomials, where each polynomial has an infinity

norm bound 𝛼𝜌 . In practice, it is possible to derive a better bound

𝛽agg = 4096 if we assume that the polynomials in the decom-

mitments are all binary. We defer this discuss to Section 6.3. An

aggregated path requires a maximum 2𝜏 ⌈log𝑞HVC⌉𝑛(log 𝛽agg + 1)
bits, or 26𝜏 KB of data.

For the KOTS, prior to aggregation, each public key consists of 2

R𝑞KOTS elements, of a combined size of 3.1 KB. During aggregation,

each public key is decomposed into ⌈log𝑞KOTS⌉ many R𝑞HVC ele-

ments. The aggregated polynomials also have a same norm bound

of 𝛽agg. That is, an aggregated KOTS public key requires a maxi-

mum 2⌈log𝑞KOTS⌉𝑛(log 𝛽agg + 1) bits, or 40.6 KB of data.

A non-aggregated KOTS signature requires 𝛾 ring elements with

a norm bound of 2𝛽𝑠 , or 𝑛𝛾 (⌈log(2𝛽𝑠 )⌉ + 1) = 22 KB. We defer to

Section 6.3 for how 𝛽𝑠 is chosen. An aggregated KOTS signature

requires 𝛾 ring elements with a norm bound 𝛽𝜎 = 2𝜌𝛼𝛽𝑠 , which is

𝑛𝛾 (⌈log(𝛽𝜎 )⌉ + 1) = 66 KB.

Putting everything together, our scheme’s public key is the root

of the tree that uses 1 kilobytes. An un-aggregated signature re-

quires 𝜏 + 28 kilo byte, consists of the path to the root, which is 𝜏

nodes; two KOTS public keys of 6.2 kilobytes, and a KOTS signature

that requires 22 KB. An aggregated signature requires 26𝜏 + 147

kilobytes, consists of the HVC decommitment, which is 2𝜏 number

of nodes; two aggregated KOTS public keys of 81.2 KB, and a KOTS

signature of 66 KB.

We summarize the characteristics of our scheme in Table 3.

6.2 Computational complexity and benchmarks
We implement our scheme and release the source code to the

open domain
4
. We report benchmark result for the case of 𝜌 ∈

{1024, 4096} and 𝜏 = 21; and give estimations for performance of

𝜏 = 24 and 26. We run the benchmark over an AMD 5900x CPU

with 12 cores, and with parallelization option turned on.

6.2.1 Microbenchmarks. We report the computation cost in Table 4.

The main units of computations are

• A generic R𝑞HVC multiplication consists of converting both input

polynomials into their NTT form (𝑂 (𝑛 log𝑛)), and conducting

a coordinate-wise multiplication (𝑂 (𝑛)), and convert the result

back to integer polynomials. Denote this cost by 𝑐1.

• A generic R𝑞KOTS multiplication consists of converting both input

polynomials into their NTT form (𝑂 (𝑛 log𝑛)), and conducting

a coordinate-wise multiplication (𝑂 (𝑛)), and convert the result

back to integer polynomials. Denote this cost by 𝑐2.

• Multiply a binary polynomial with a fixed weight ternary poly-

nomial. Denote this cost by 𝑐3.

As examples, our hash function takes 2⌈log𝑞HVC⌉ number of generic

ring multiplications; randomizing a node takes ⌈log𝑞HVC⌉ ternary
ring multiplications. Concretely, our implementation reports that

4
https://github.com/zhenfeizhang/squirrel
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𝜌 : #sig 𝜏 : tree height Life cycle PK size Sig size Max AggSig size Improvement
𝑎

21 8 months 45 KB 572 KB 14%

1024 24 5 years 0.9 KB 48 KB 635 KB 5%

26 21 years 50 KB 677 KB

21 8 months 49 KB 693 KB 74%

4096 24 5 years 1 KB 52 KB 771 KB 71%

26 21 years 54 KB 823 KB 69%

21 8 months 53 KB 762 KB 85%

8192 24 5 years 1.1 KB 57 KB 850 KB 84%

26 21 years 59 KB 908 KB 83%

𝑎
Improvement over 𝜌 signatures of Falcon-512 with signature size of 666 bytes.

Table 3: Space complexity

𝜌 = 1024 𝜌 = 4096

R𝑞HVC NTT 4.1 𝜇𝑠 6.9 𝜇𝑠

R𝑞HVC NTT mul. 197 𝑛𝑠 260 𝑛𝑠

R𝑞KOTS NTT 5.8 𝜇𝑠 5.43 𝜇𝑠

R𝑞KOTS NTT mul. 508 𝑛𝑠 413 𝑛𝑠

ter-bin mul. 1.5 𝜇𝑠

HVC hash 69 𝜇𝑠 107 𝜇𝑠

KOTS hash 111 𝜇𝑠 143 𝜇𝑠

gen randomizer 1.8 𝜇𝑠

path randomization 274 𝜇𝑠 283 𝜇𝑠

1024 paths aggregation 680𝑚𝑠 834 ms

1024 paths batch verifiction 20𝑚𝑠 30𝑚𝑠

Table 4: Microbenchmarks

• Hashing two child nodes into a parent node takes 107 microsec-

ond;

• Hashing a KOTS public key into a leaf node takes 143 microsec-

ond.

This is a lot better than 2 log𝑞 number of multiplications due to a)

parallelization, and b) the fact that hash parameters are already in

the NTT form already; and that we only need to perform a single

inverse NTT at the end.

6.2.2 Full Picture. Similar to hash based signature schemes [8, 16],

the key generation stage is the most expensive one in our case.

It involves generating 2
𝜏
KOTS keys, each costs 2𝛾 generic ring

multiplications; and the whole tree, at a cost of 2
𝜏
node hashes and

2
𝜏
leaf hashes. Overall cost is 2

𝜏 (2⌈log𝑞HVC⌉ + 2⌈log𝑞KOTS⌉)𝑐1 +
2
𝜏+1𝛾𝑐2 = 2

𝜏+1 ((⌈log𝑞HVC⌉ + ⌈log𝑞KOTS⌉)𝑐1 + 𝛾𝑐2).
Squirrel is an online/offline signature scheme. A speed sensitive

signer may store the whole tree and avoid the entire offline phase.

The online signing time becomes simply generating the OTS signa-

ture, which takes 𝛾 generic ring multiplications at a cost of 𝛾𝑐2. The

signer will need to store the whole tree which consists of 2
𝜏
nodes

and 2
𝜏
leaves, which translates into 5.1 gigabytes, 41 gigabytes and

164 gigabytes of data for each of the parameter settings respectively.

A space sensitive signer may store the last used path (and its

adjacent nodes); and update it to its current path on-the-fly. Observe

that any node will not be computed more than twice: the first time

is during tree generation, and the second time is when it is firstly

required in a path (and its adjacent nodes). Once a node is no

longer required by a path nor the adjacent nodes, it will never be

required again. Therefore, the amortized cost for each signatures

will be 2 hashes (total number of nodes divided by total number

of leaves). Since our hash function uses 2⌈log𝑞HVC⌉ = 32 generic

ring multiplications, the amortized cost is 64 ring multiplications to

update the path, and 𝛾 = 44 generic ring multiplications for KOTS

signing.

In practice, the real bottleneck is the worst-case scenario, in

which the signer will need to generate the signature for leaf with

index 2
𝜏−1

(i.e., the first leaf of the second sub-tree) within a block

interval. Concretely, the signer will need to generate 2
𝜏 −2 nodes, or

equivalently, conduct (2𝜏+1−4) ⌈log𝑞HVC⌉ ≈ 2
𝜏+1 ⌈log𝑞HVC⌉ generic

ring multiplications. There are a few straightforward method to

alleviate the situation. First, as an online/offline scheme, the signer

always knows exactly when it will use leaf 2
𝜏−1

. Therefore, it will

be able to pre-compute this path offline. Secondly, if the signer is

allowed some cache, it can store the top ℎ levels of the tree, or

2
ℎ+1 − 2 nodes, excluding the root. Accordingly, at the worst-case,

the signer will need to online compute two sub-trees whose roots
are the nodes at ℎ-th level. That is 2(2𝜏−ℎ+1 − 1) ≈ 2

𝜏−ℎ+2
nodes, or

2
𝜏−ℎ+3 ⌈log𝑞HVC⌉ generic ring multiplications in total. It also implies

that the worst-case complexity will be reduced by half for every

additional level of nodes we cache. Table 6 gives a rough estimation

of cache versus signing time.

To aggregate 𝜌 signatures, the aggregator will need to multiply

each path with some randomizers. There are 𝜌 (2𝜏 + 2) number of

nodes, leaves and KOTS public key nodes, combined; each requires

⌈log𝑞HVC⌉ ternary ring multiplications. The aggregator will also

need to randomize-then-aggregate KOTS signatures, which also

incurs 𝜌 generic ring multiplications. The total cost will be 𝜌𝑐2 +
𝜌 (2𝜏 + 2) ⌈log𝑞HVC⌉𝑐3.

To verify an (aggregated) signature, the verifier will need to

check that the path is valid with regard to the root of the tree. This

takes 2⌈log𝑞HVC⌉𝜏 number of multiplications to check the path;

and 𝜌 number of multiplications to aggregate the public keys. In

addition, the KOTS verification also uses 2𝛾 ring multiplications.

6.3 Security estimation
6.3.1 Combinatorials. First we need the randomizers to be sampled

from a space large enough for the forking lemma used in the proof

to give a meaningful guarantee. Setting 𝛼 = 20, i.e., randomizers

are sampled from the set of ternary polynomials with 20 non-zero

entries, we have

(𝑛
𝛼

)
· 2𝛼 > 2

𝜆
as required.

 

1120



Squirrel: Efficient Synchronized Multi-Signatures from Lattices CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

𝜌 𝜏

Offline signing Offline signing with cache

amortized worst-case

ℎ = 12 ℎ = 16 ℎ = 20

2
13

nodes 2
17

nodes 2
21

nodes

4⌈log𝑞HVC⌉𝑐1 2
𝜏+1 ⌈log𝑞HVC⌉𝑐1 2

𝜏−ℎ+3 ⌈log𝑞HVC⌉𝑐1

1024

storage 7 MB 112 MB 1.8 GB

21 43 sec 42 ms 2.6 ms 164 𝜇s

24 41 𝜇s 6 min 336 ms 21 ms 1.3 ms

26 23 min 1.3 sec 83 ms 5.2 ms

4096

storage 8 MB 128 MB 2 GB

21 52 sec 50 ms 3.1 ms 195 𝜇s

24 48 𝜇s 7 min 0.4 sec 25 ms 1.6 ms

26 28 min 1.6 sec 99 ms 6.2 ms

Table 5: Estimated cost with cache

𝜌 𝜏
Key Generation Online signing Aggregation

∗
Verification

∗

2
𝜏+1 ((⌈log𝑞HVC⌉ + ⌈log𝑞KOTS⌉)𝑐1 + 𝛾𝑐2) 𝛾𝑐2 𝜌𝑐2 + 𝜌 (2𝜏 + 2) ⌈log𝑞HVC⌉𝑐3 2⌈log𝑞HVC⌉𝜏𝑐1 + (2𝛾 + 𝜌)𝑐2

21 4 min 1.2 sec 19.5 ms

1024 24
∗∗

32 min 2.1 ms 1.4 sec 22 ms

26
∗∗

2 hour 1.5 sec 24 ms

21 4.5 min 1.4 sec 31 ms

4096 24
∗∗

36 min 2.3 ms 1.6 sec 36 ms

26
∗∗

2.4 hour 1.8 sec 38 ms

∗
: Aggregate and batch verify 1024 signatures.

∗∗
: Estimations based on extrapolating 𝜏 = 21 data.

Table 6: Benchmark results and estimations

Then, we discuss how we arrive at 𝛽agg = 4096. We assume that

the aggregator may be malicious, that is, it can cherry pick their

signatures so that, for a given node (i.e., an R𝑞 element) for a given

path, all the signatures will have 1s at a same index, Even so, the

randomizers are outputs from the random oracle, where there are 𝛼

number of ±1s with equal probability. Therefore, for an aggregated

polynomial, each coefficient can be seen as a sum of 𝛼𝜌 number

of random elements in {−1, 1}. We need to set a bound 𝛽agg such

that, the probability that all coefficients for all nodes are bounded
by 𝛽agg in absolute value with overwhelming probability, i.e.,

2𝜏 ⌈log𝑞HVC⌉𝑛 ·Pr

[
∀𝑖 ∈ [𝛼𝜌] . 𝑏𝑖 ← {−1, 1} :

���𝛼𝜌∑︁
𝑖=1

𝑏𝑖

��� ≥ 𝛽agg

]
≤ 2
−𝜆

For 𝛼 = 20 we are able to set 𝛽agg = 4096. Additionally, we require

that 2𝛽agg < 𝑞HVC/2 so that in Lemma 3.14 the extracted vector is

indeed a short solution to the SIS problem.

The messages are hashed into T𝛽𝑠 . Therefore, we need to set

𝛽𝑠 = 44 so that |T𝛽𝑠 | > 2
2𝜆
. Note that we need (4𝜌+8)𝛼𝛽𝑠 < 𝑞KOTS/2

so that in Lemma 4.8 the extracted vector is indeed a short solution

to the SIS problem. Per Lemma 4.8, we then need to set 𝛾 = 44 such

that 2
(3𝜆+1)/𝑛𝛾 · 𝑞1/𝛾

KOTS ≤ 3/2.

6.3.2 Lattice attacks. For a root Hermite factor 𝑐 ≤ 1.005, the LWE-

estimator [3] reported that BKZ [18] will be able to find a short

vector for a block size of 286. Such a lattice reduction requires 112

bits operations under the realistic model in [4], which estimates

the SVP cost from [6]. For a BKZ of block size 𝛽 , the cost in this

model is estimated by 2
0.292𝛽+16.4+log(#SVP calls)

. This consists of

the number of operations in a single sieving (2
0.292𝛽

), a constant

factor from experiments (2
16.4

) attributed to per operation cost, and

the number of SVP calls. Note that [4] also proposed a core-sieving-
SVP model that ignores all the constant factors (2

16.4
per operations,

and the number of svp calls). We do not adopt this model.

Our HVC scheme requires that the SISR,𝑞,2 ⌈log𝑞HVC ⌉,4𝜌𝛼 problem

is hard as per Theorem 3.10 and Lemma 3.14, for 𝑞HVC = 61441, 𝜌 ∈
[4096] and 𝛼 = 20. An SIS becomes easier when the target solution

is longer, therefore it is sufficient to analyze the case 𝜌 = 4096. This

instantiation yields a lattice of dimension (2⌈log𝑞HVC⌉ + 1)𝑛 and

determinant 𝑞𝑛HVC. As per [41], a lattice reduction algorithm will

find a short vector of 2
2

√
𝑛 log𝑞HVC log𝑐

for some root Hermite factor

𝑐 that depends on the lattice reduction algorithm. In the meantime,

the vector we are searching for has an infinity norm of 𝛽agg, which

means its ℓ2 norm is bounded by 𝑡HVC =
√︁

2𝑛 log𝑞HVC𝛽agg. With our

choice of parameters, a lattice reduction algorithm will be able to

find this target vector for 𝑐 < 1.005.

Last, we analysis the hardness of the SISR,𝑞KOTS,𝛾,(4𝜌+8)𝛼𝛽𝑠 as-

sumption for our KOTS scheme as per Lemma 4.8. This follows

a similar analysis as the above SIS analysis. Here, we have a lat-

tice of dimension (𝛾 + 1)𝑛 and determinant 𝑞𝑛KOTS. An aggregated

signature has an infinity norm bound of (4𝜌 + 8)𝛼𝛽𝑠 , which im-

plies 𝑡HOST =
√
𝛾𝑛(4𝜌 + 8)𝛼𝛽𝑠 in ℓ2 norm. We also require that

𝑡HOST < 𝑐dim
2

2

√
𝑛 log𝑞KOTS log𝑐

so that BKZ cannot solve this instance

of SIS problem. With our parameter sets we have 𝑐 < 1.004.
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