
ar
X

iv
:2

20
5.

05
06

8v
3 

 [
cs

.I
T

] 
 9

 N
ov

 2
02

2

Secure and Private Source Coding with Private Key

and Decoder Side Information
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Abstract—The problem of secure source coding with multiple
terminals is extended by considering a remote source whose
noisy measurements are the correlated random variables used for
secure source reconstruction. The main additions to the problem
include 1) all terminals noncausally observe a noisy measurement
of the remote source; 2) a private key is available to all legitimate
terminals; 3) the public communication link between the encoder
and decoder is rate-limited; and 4) the secrecy leakage to the
eavesdropper is measured with respect to the encoder input,
whereas the privacy leakage is measured with respect to the
remote source. Exact rate regions are characterized for a lossy
source coding problem with a private key, remote source, and
decoder side information under security, privacy, communication,
and distortion constraints. By replacing the distortion constraint
with a reliability constraint, we obtain the exact rate region
also for the lossless case. Furthermore, the lossy rate region for
scalar discrete-time Gaussian sources and measurement channels
is established.

I. INTRODUCTION

Consider multiple terminals that observe correlated random

sequences and wish to reconstruct these sequences at another

terminal, called a decoder, by sending messages through noise-

less communication links, i.e., the distributed source coding

problem [1]. A sensor network, where each node observes

a correlated random sequence that should be reconstructed

at a distant node is a classic example for this problem [2,

pp. 258]. Similarly, function computation problems in which

a fusion center observes messages sent by other nodes to

compute a function are closely related problems and can be

used to model various recent applications [3], [4]. Since the

messages sent over the communication links can be public,

security constraints are imposed on these messages against an

eavesdropper in the same network [5]. If all sent messages are

available to the eavesdropper, then it is necessary to provide

an advantage to the decoder over the eavesdropper to enable

secure source coding. Providing side information, which is

correlated with the sequences that should be reconstructed, to

the decoder can provide such an advantage over the eaves-

dropper that can also have side information, as in [6]–[8].

Allowing the eavesdropper to access only a strict subset of

all messages is also a method to enable secure distributed

source coding, considered in [9]–[11]; see also [12] in which

a similar method is applied to enable secure remote source

reconstruction. Similarly, also a private key that is shared by

legitimate terminals and hidden from the eavesdropper can

provide such an advantage, as in [13], [14].

Source coding models in the literature commonly assume

that dependent multi-letter random variables are available and

should be compressed. For secret-key agreement [15], [16]

and secure function computation problems [17], [18], which

are instances of the source coding with side information

problem [19, Section IV-B], the correlation between these

multi-letter random variables is posited in [20], [21] to stem

from an underlying ground truth that is a remote source

such that its noisy measurements are these dependent random

variables. Such a remote source allows to model the cause

of correlation in a network, so we also posit that there is

a remote source whose noisy measurements are used in the

source coding problems discussed below, which is similar to

the models in [22, pp. 78] and [23, Fig. 9]. Furthermore, in

the chief executive officer (CEO) problem [24], there is a

remote source whose noisy measurements are encoded such

that a decoder can reconstruct the remote source by using the

encoder outputs. Our model is different from the model in the

CEO problem, since in our model the decoder aims to recover

encoder observations rather than the remote source that is

considered mainly to describe the cause of correlation between

encoder observations. Thus, we define the secrecy leakage as

the amount of information leaked to an eavesdropper about

encoder observations. Since the remote source is common for

all observations in the same network, we impose a privacy

leakage constraint on the remote source because each encoder

output observed by an eavesdropper leaks information about

unused encoder observations, which might later cause secrecy

leakage when the unused encoder observations are employed

[25]–[27]; see [28]–[30] for joint secrecy and joint privacy

constraints imposed due to multiple uses of the same source.

We characterize the rate region for a lossy secure and private

source coding problem with one private key, remote source,

encoder, decoder, eavesdropper, and eavesdropper and decoder

side information. Requiring reliable source reconstruction, we

characterize the rate region also for the lossless case. A

Gaussian remote source and independent additive Gaussian

noise measurement channels are considered to establish their

http://arxiv.org/abs/2205.05068v3
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Fig. 1. Source coding with noisy measurements (X̃n, Y n) of a remote source
Xn and with a uniform private key K under privacy, secrecy, communication,
and distortion constraints.

lossy rate region under squared error distortion.

II. SYSTEM MODEL

We consider the lossy source coding model with one en-

coder, one decoder, and an eavesdropper (Eve), depicted in

Fig. 1. The encoder Enc(·, ·) observes a noisy measurement

X̃n of an i.i.d. remote source Xn ∼ Pn
X through a memoryless

channel P
X̃|X in addition to a private key K ∈ [1 : 2nR0 ].

The encoder output is an index W that is sent over a link

with limited communication rate. The decoder Dec(·, ·, ·)
observes the index W , as well as the private key K and

another noisy measurement Y n of the same remote source

Xn through another memoryless channel PY Z|X in order to

estimate X̃n as
̂̃
Xn. The other noisy output Zn of PY Z|X is

observed by Eve in addition to the index W . Suppose K is

uniformly distributed, hidden from Eve, and independent of

the source output and its noisy measurements. The source and

measurement alphabets are finite sets.

We next define the rate region for the lossy secure and

private source coding problem defined above.

Definition 1. A lossy tuple (Rw, Rs, Rℓ, D)∈R
4
≥0 is achiev-

able, given a private key with rate R0 ≥ 0, if for any δ > 0
there exist n≥1, an encoder, and a decoder such that

log
∣∣W

∣∣ ≤ n(Rw + δ) (storage) (1)

I(X̃n;W |Zn) ≤ n(Rs + δ) (secrecy) (2)

I(Xn;W |Zn) ≤ n(Rℓ + δ) (privacy) (3)

E

[
d
(
X̃n,

̂̃
Xn(Y n,W,K)

)]
≤ D + δ (distortion) (4)

where d(x̃n, ̂̃xn) = 1
n

∑n

i=1 d(x̃i, ̂̃xi) is a per-letter bounded

distortion metric. The lossy secure and private source coding

region RD is the closure of the set of all achievable lossy

tuples. ♦

Note that in (2) and (3) we consider conditional mutual

information terms to take account of unavoidable privacy and

secrecy leakages due to Eve’s side information; see also [21],

[31]. Furthermore, considering conditional mutual information

terms rather than corresponding conditional entropy terms, the

latter of which is used in [6], [14], [32]–[34], to characterize

the secrecy and privacy leakages simplifies our analysis.

We next define the rate region for the lossless secure and

private source coding problem.

Definition 2. A lossless tuple (Rw, Rs, Rℓ)∈R
3
≥0 is achiev-

able, given a private key with rate R0 ≥ 0, if for any δ > 0
there exist n≥1, an encoder, and a decoder such that we have

(1)-(3) and

Pr
[
X̃n 6=

̂̃
Xn(Y n,W,K)

]
≤δ (reliability). (5)

The lossless secure and private source coding region R is the

closure of the set of all achievable lossless tuples. ♦

III. SECURE AND PRIVATE SOURCE CODING REGIONS

A. Lossy Source Coding

The lossy secure and and private source coding region RD

is characterized below; see Section V for its proof.

Define [a]− = min{a, 0} for a ∈ R and denote

R′ = [I(U ;Z|V,Q)− I(U ;Y |V,Q)]−. (6)

Theorem 1. For given PX , P
X̃|X , PY Z|X , and R0, the region

RD is the set of all rate tuples (Rw, Rs, Rℓ, D) satisfying

Rw ≥ I(U ; X̃|Y ) (7)

and if R0 < I(U ; X̃|Y, V ), then

Rs ≥ I(U ; X̃|Z) + R′ −R0 (8)

Rℓ ≥ I(U ;X |Z) +R′ −R0 (9)

if I(U ; X̃|Y, V ) ≤ R0 < I(U ; X̃|Y ), then

Rs ≥ I(V ; X̃|Z) (10)

Rℓ ≥ I(V ;X |Z) (11)

if R0 ≥ I(U ; X̃|Y ), then

Rs ≥ 0 (12)

Rℓ ≥ 0 (13)

for some

P
QV UX̃XY Z

= PQ|V PV |UPU|X̃P
X̃|XPXPY Z|X (14)

such that E
[
d
(
X̃,

̂̃
X(U, Y )

)]
≤ D for some reconstruction

function
̂̃
X(U, Y ). The region RD is convexified by using

the time-sharing random variable Q, required due to the

[·]− operation. One can limit the cardinalities to |Q| ≤ 2,

|V| ≤ |X̃ |+ 3, and |U| ≤ (|X̃ |+ 3)2.

We remark that (12) and (13) show that one can simulta-

neously achieve strong secrecy and strong privacy, i.e., the

conditional mutual information terms in (2) and (3), respec-

tively, are negligible, by using a large private key K , which is

a result missing in some recent works on secure source coding

with private key.



B. Lossless Source Coding

The lossless secure and and private source coding region R
is characterized next; see below for a proof sketch.

Denote

R′′ = [I(X̃ ;Z|V,Q)− I(X̃;Y |V,Q)]−. (15)

Lemma 1. For given PX , P
X̃|X , PY Z|X , and R0, the region

R is the set of all rate tuples (Rw, Rs, Rℓ) satisfying

Rw ≥ H(X̃|Y ) (16)

and if R0 < H(X̃|Y, V ), then

Rs ≥ H(X̃|Z) +R′′ −R0 (17)

Rℓ ≥ I(X̃;X |Z) +R′′ −R0 (18)

if H(X̃ |Y, V ) ≤ R0 < H(X̃ |Y ), then

Rs ≥ I(V ; X̃|Z) (19)

Rℓ ≥ I(V ;X |Z) (20)

if R0 ≥ H(X̃ |Y ), then

Rs ≥ 0 (21)

Rℓ ≥ 0 (22)

for some

P
QV X̃XY Z

= PQ|V PV |X̃P
X̃|XPXPY Z|X . (23)

One can limit the cardinalities to |Q| ≤ 2 and |V| ≤ |X̃|+2.

Proof Sketch: The proof for the lossless region R
follows from the proof for the lossy region RD, given in

Theorem 1 above, by choosing U = X̃ such that we have the

reconstruction function
̂̃
X(X̃, Y ) = X̃ , so we achieve D = 0.

Thus, the reliability constraint in (5) is satisfied because d(·, ·)
is a distortion metric.

IV. GAUSSIAN SOURCES AND CHANNELS

We evaluate the lossy rate region for a Gaussian example

with squared error distortion by finding the optimal auxiliary

random variable in the corresponding rate region. Consider

a special lossy source coding case in which (i) there is no

private key; (ii) the eavesdropper’s channel observation Zn is

less noisy than the decoder’s channel observation Y n such that

we obtain a lossy source coding region with a single auxiliary

random variable that should be optimized.

We next define less noisy channels, considering PY Z|X .

Definition 3 ([35]). Z (or eavesdropper) is less noisy than Y

(or decoder) if

I(L;Z) ≥ I(L;Y ) (24)

holds for any random variable L such that L − X − (Y, Z)
form a Markov chain. ♦

Corollary 1. For given PX , P
X̃|X , PY Z|X , and R0 = 0,

the region RD when the eavesdropper is less noisy than the

decoder is the set of all rate tuples (Rw, Rs, Rℓ, D) satisfying

Rw ≥ I(U ; X̃ |Y ) = I(U ; X̃)− I(U ;Y ) (25)

Rs ≥ I(U ; X̃|Z) = I(U ; X̃)− I(U ;Z) (26)

Rℓ ≥ I(U ;X |Z) = I(U ;X)− I(U ;Z) (27)

for some

P
UX̃XY Z

= P
U|X̃P

X̃|XPXPY Z|X (28)

such that E
[
d
(
X̃,

̂̃
X(U, Y )

)]
≤ D for some reconstruction

function
̂̃
X(U, Y ). One can limit the cardinality to |U|≤|X̃ |+3.

Proof Sketch: The proof for Corollary 1 follows from

the proof for Theorem 1 by considering the bounds in (7)-

(9) since R0 = 0. Furthermore, R′ defined in (6) is 0 for

the less noisy condition considered, which follows because

(Q, V )− U −X − (Y, Z) form a Markov chain.

Suppose the following scalar discrete-time Gaussian source

and channel model for the lossy source coding problem

depicted in Fig. 1

X = ρxX̃ +Nx (29)

Y = ρyX +Ny (30)

Z = ρzX +Nz (31)

where we have the remote source X ∼ N (0, 1), fixed corre-

lation coefficients ρx, ρy, ρz ∈ (−1, 1), and additive Gaussian

noise random variables Nx∼N (0, 1−ρ2x), Ny∼N (0, 1−ρ2y),

Nz ∼ N (0, 1−ρ2z) such that (X̃,Nx, Ny, Nz) are mutually

independent, and we consider the squared error distortion, i.e.,

d(x̃, ̂̃x)=(x̃−̂̃x)2. We remark that (29) is an inverse measure-

ment channel P
X|X̃ that is a weighted sum of two independent

Gaussian random variables, imposed to be able to apply the

conditional entropy power inequality (EPI) [36, Lemma II];

see [20, Theorem 3] and [37, Section V] for binary symmetric

inverse channel assumptions imposed to apply Mrs. Gerber’s

lemma [38]. Suppose |ρz| > |ρy| such that Y is stochastically-

degraded than Z since then there exists a random variable

Ỹ such that P
Ỹ |X = PY |X and P

Ỹ Z|X = PZ|XP
Ỹ |Z [39,

Lemma 6], so Z is also less noisy than Y since less noisy

channels constitute a strict superset of the set of stochastically-

degraded channels and both channel sets consider only the

conditional marginal probability distributions [2, pp. 121].

We next take the liberty to use the lossy rate region in Corol-

lary 1, characterized for discrete memoryless channels, for the

model in (29)-(31). This is common in the literature since

there is a discretization procedure to extend the achievability

proof to well-behaved continuous-alphabet random variables

and the converse proof applies to arbitrary random variables;

see [2, Remark 3.8]. For Gaussian sources and channels, we

use differential entropy and eliminate the cardinality bound on

the auxiliary random variable. The lossy source coding region

for the model in (29)-(31) without a private key is given below.



Lemma 2. For the model in (29)-(31) such that |ρz| > |ρy|
and R0 = 0, the region RD with squared error distortion is the

set of all rate tuples (Rw, Rs, Rℓ, D) satisfying, for 0 < α ≤ 1,

Rw ≥
1

2
log

(1− ρ2xρ
2
y(1 − α)

α

)
(32)

Rs ≥
1

2
log

(1− ρ2xρ
2
z(1− α)

α

)
(33)

Rℓ ≥
1

2
log

(1− ρ2xρ
2
z(1− α)

1− ρ2x(1− α)

)
(34)

D ≥
α(1− ρ2xρ

2
y)

1− ρ2xρ
2
y(1− α)

. (35)

Proof Sketch: For the achievability proof, let U ∼
N (0, 1− α) and Θ ∼ N (0, α), as in [40, Eq. (34)] and

[41, Appendix B], be independent random variables for some

0 < α ≤ 1 such that X̃ = U+Θ and U−X̃−X−(Y, Z) form

a Markov chain. Choose the reconstruction function
̂̃
X(U, Y )

as the minimum mean square error (MMSE) estimator, and

given any fixed D > 0 auxiliary random variables are chosen

such that the distortion constraint is satisfied. We then have

for the squared error distortion

D = E

[(
X̃ −

̂̃
X(U, Y )

)2] (a)
=

1

2πe
e2h(X̃|U,Y ) (36)

where equality in (a) is achieved because X̃ is Gaussian

and the reconstruction function is the MMSE estimator [42,

Theorem 8.6.6]. Define the covariance matrix of the vector

random variable [X̃, U, Y ] as K
X̃UY

and of [U, Y ] as KUY ,

respectively. We then have

h(X̃|U, Y ) = h(X̃, U, Y )− h(U, Y )

=
1

2
log

(
2πe

det(K
X̃UY

)

det(KUY )

)
(37)

where det(·) is the determinant of a matrix; see also [12,

Section F]. Combining (36) and (37), and calculating the

determinants, we obtain

D =
α(1 − ρ2xρ

2
y)

1− ρ2xρ
2
y(1− α)

. (38)

One can also show that

I(U ; X̃)=h(X̃)−h(X̃|U)=
1

2
log

( 1

α

)
(39)

I(U ;X)=h(X)−h(X |U)=
1

2
log

( 1

1− ρ2x(1 − α)

)
(40)

I(U ;Y )=h(Y )−h(Y |U)=
1

2
log

( 1

1− ρ2xρ
2
y(1− α)

)
(41)

I(U ;Z)=h(Z)−h(Z|U)=
1

2
log

( 1

1− ρ2xρ
2
z(1 − α)

)
. (42)

Thus, by calculating (25)-(27), the achievability proof follows.

For the converse proof, one can first show that

I(U ; X̃)− I(U ;Y ) = h(Y |U)− h(X̃|U) (43)

I(U ; X̃)− I(U ;Z) = h(Z|U)− h(X̃|U) (44)

I(U ;X)− I(U ;Z) = h(Z|U)− h(X |U) (45)

which follow since h(X̃) = h(X) = h(Y ) = h(Z). Suppose

h(X̃|U) =
1

2
log(2πeα) (46)

for any 0 < α ≤ 1 that represents the unique variance of a

Gaussian random variable; see [20, Lemma 2] for a similar

result applied to binary random variables. Thus, by applying

the conditional EPI, we obtain

e2h(Y |U) (a)
= e2h(ρxρyX̃|U) + e2h(ρyNx+Ny)

= 2πe
(
ρ2xρ

2
yα+ ρ2y(1− ρ2x) + 1− ρ2y

)

= 2πe
(
1− ρ2xρ

2
y(1− α)

)
(47)

where (a) follows because U − X̃− (Nx, Ny) form a Markov

chain and (Nx, Ny) are independent of X̃ , so (Nx, Ny) are

independent of U , and equality is satisfied since, given U ,

ρxρyX̃ and (ρyNx + Ny) are conditionally independent and

they are Gaussian random variables, as imposed in (46) above;

see [20, Lemma 1 and Eq. (28)] for a similar result applied to

binary random variables by extending Mrs. Gerber’s lemma.

Similarly, we have

e2h(Z|U) = 2πe
(
1− ρ2xρ

2
z(1− α)

)
(48)

which follows by replacing (Y, ρy, Ny) with (Z, ρz, Nz) in

(47), respectively, because the channel PY |U can be mapped

to PZ|U with these changes due to (29)-(31) and the Markov

chain U − X̃ −X − (Y, Z). Furthermore, we have

e2h(X|U) (a)
= e2h(ρxX̃|U) + e2h(Nx)

= 2πe
(
ρ2xα+ 1− ρ2x

)

= 2πe
(
1− ρ2x(1 − α)

)
(49)

where (a) follows because Nx is independent of U , and equal-

ity is achieved since, given U , ρxX̃ and Nx are conditionally

independent and are Gaussian random variables. Therefore, by

applying (43)-(49) to (25)-(27), the converse proof for (32)-

(34) follows.

Next, consider

h(X̃|U, Y ) = −I(U ; X̃|Y ) + h(X̃ |Y )

(a)
= −h(Y |U) + h(X̃ |U) + h(Y |X̃)

(b)
=

1

2
log

( α

1− ρ2xρ
2
y(1− α)

)
+ h(ρxρyX̃+ρyNx+Ny|X̃)

(c)
=

1

2
log

( α

1− ρ2xρ
2
y(1− α)

)
+ h(ρyNx+Ny)

=
1

2
log

(
2πe

α(ρ2y(1− ρ2x) + (1− ρ2y))

1− ρ2xρ
2
y(1− α)

)

=
1

2
log

(
2πe

α(1 − ρ2xρ
2
y)

1− ρ2xρ
2
y(1− α)

)
(50)

where (a) follows by (25) and (43), and since h(Y ) = h(X̃),
(b) follows by (46) and (47), and (c) follows because (Nx, Ny)

are independent of X̃ . Furthermore, for any random variable



X̃ and reconstruction function
̂̃
X(U, Y ), we have [42, Theo-

rem 8.6.6]

E

[(
X̃ −

̂̃
X(U, Y )

)2]
≥

1

2πe
e2h(X̃|U,Y ). (51)

Combining the distortion constraint given in Corollary 1 with

(50) and (51), the converse proof for (35) follows.

V. PROOF FOR THEOREM 1

A. Achievability Proof for Theorem 1

Proof Sketch: We leverage the output statistics of random

binning (OSRB) method [16], [43], [44] for the achievability

proof by following the steps described in [45, Section 1.6].

Let (V n, Un, X̃n, Xn, Y n, Zn) be i.i.d. according to

P
V UX̃XY Z

that can be obtained from (14) by fixing P
U|X̃

and PV |U such that E[d
(
X̃,

̂̃
X)] ≤ (D + ǫ) for any ǫ > 0.

To each vn assign two random bin indices Fv ∈ [1 : 2nR̃v ]
and Wv ∈ [1 : 2nRv ]. Furthermore, to each un assign three

random bin indices Fu ∈ [1 : 2nR̃u ], Wu ∈ [1 : 2nRu ], and

Ku ∈ [1 : 2nR0 ], where R0 is the private key rate defined

in Section II. The public indices F = (Fv, Fu) represent the

choice of a source encoder and decoder pair. Furthermore, we

impose that the messages sent by the source encoder Enc(·, ·)
to the source decoder Dec(·, ·, ·) are

W = (Wv,Wu,K +Ku) (52)

where the summation with the private key is in modulo- 2nR0 ,

i.e., one-time padding.

The public index Fv is almost independent of

(X̃n, Xn, Y n, Zn) if we have [43, Theorem 1]

R̃v < H(V |X̃,X, Y, Z)
(a)
= H(V |X̃) (53)

where (a) follows since (X,Y, Z) − X̃ − V form a Markov

chain. The constraint in (53) suggests that the expected

value, taken over the random bin assignments, of the vari-

ational distance between the joint probability distributions

Unif[1 : 2nR̃v ] · P
X̃n and P

FvX̃n vanishes when n → ∞.

Moreover, the public index Fu is almost independent of

(V n, X̃n, Xn, Y n, Zn) if we have

R̃u < H(U |V, X̃,X, Y, Z)
(a)
= H(U |V, X̃) (54)

where (a) follows from the Markov chain (X,Y, Z) − X̃ −
(U, V ).

Using a Slepian-Wolf (SW) [1] decoder that observes

(Y n, Fv,Wv), one can reliably estimate V n if we have [43,

Lemma 1]

R̃v +Rv > H(V |Y ) (55)

since then the expected error probability, taken over random

bin assignments, vanishes when n → ∞. Furthermore, one

can reliably estimate Un by using a SW decoder that observes

(K,V n, Y n, Fu,Wu,K +Ku) if we have

R0 + R̃u +Ru > H(U |V, Y ). (56)

To satisfy (53)-(56), for any ǫ > 0 we fix

R̃v = H(V |X̃)− ǫ (57)

Rv = I(V ; X̃)− I(V ;Y ) + 2ǫ (58)

R̃u = H(U |V, X̃)− ǫ (59)

R0 +Ru = I(U ; X̃|V )− I(U ;Y |V ) + 2ǫ. (60)

Since all tuples (vn, un, x̃n, xn, yn, zn) are in the jointly

typical set with high probability, by the typical average lemma

[2, pp. 26], the distortion constraint (4) is satisfied.

Communication Rate: (58) and (60) result in a communi-

cation (storage) rate of

Rw = R0 +Rv +Ru

(a)
= I(U ; X̃|Y ) + 4ǫ (61)

where (a) follows since V −U−X̃−Y form a Markov chain.

Privacy Leakage Rate: Since the private key K is uni-

formly distributed and is independent of source and channel

random variables, we can consider the following virtual sce-

nario to calculate the leakage. We first assume for the virtual

scenario that there is no private key such that the encoder

output for the virtual scenario is

ĎW = (Wv,Wu,Ku). (62)

We calculate the leakage for the virtual scenario. Then, given

the mentioned properties of the private key and due to the

one-time padding step in (52), we can subtract H(K) = nR0

from the leakage calculated for the virtual scenario to obtain

the leakage for the original problem, which follows from the

sum of (59) and (60) if ǫ → 0 when n → ∞. Thus, we have

the privacy leakage

I(Xn;W,F |Zn) = I(Xn; ĎW,F |Zn)− nR0

(a)
=H(ĎW,F |Zn)−H(ĎW,F |Xn)−nR0

(b)
= H(ĎW,F |Zn)−H(Un, V n|Xn)

+H(V n|ĎW,F,Xn) +H(Un|V n, ĎW,F,Xn)− nR0

(c)

≤ H(ĎW,F |Zn)− nH(U, V |X) + 2nǫn − nR0 (63)

where (a) follows because (ĎW,F ) − Xn − Zn form

a Markov chain, (b) follows since (Un, V n) determine

(Fu,Wu,Ku, Fv,Wv), and (c) follows since (Un, V n, Xn)
is i.i.d. and for some ǫn > 0 such that ǫn → 0 when

n → ∞ because (Fv,Wv, X
n) can reliably recover V n by (55)

because of the Markov chain V n −Xn − Y n and, similarly,

(Fu,Wu,Ku, V
n, Xn) can reliably recover Un by (56) because

of H(U |V, Y ) ≥ H(U |V,X) that is proved in [21, Eq. (55)]

for the Markov chain (V, U)−X − Y .

Next, we consider the term H(ĎW,F |Zn) in (63) and

provide single letter bounds on it by applying the six different

decodability results given in [21, Section V-A] that are applied

to an entirely similar conditional entropy term in [21, Eq.

(54)] that measures the uncertainty in indices conditioned on



an i.i.d. multi-letter random variable. Thus, combining the six

decodability results in [21, Section V-A] with (63) we obtain

I(Xn;W,F |Zn) ≤ n
(
[I(U ;Z|V )− I(U ;Y |V ) + ǫ]−

+ I(U ;X |Z) + 3ǫn −R0

)
. (64)

We remark that (60) implicitly assumes that the private

key rate R0 is less than (I(U ; X̃|V ) − I(U ;Y |V ) + 2ǫ) =
(I(U ; X̃ |Y, V ) + 2ǫ), where the equality follows from the

Markov chain (V, U) − X̃ − Y . The communication rate

results are not affected by this assumption since X̃n should

be reconstructed by the decoder. However, if the private key

rate R0 is greater than or equal to (I(U ; X̃ |Y, V ) + 2ǫ), then

we can remove the bin index Ku from the code construction

above and apply one-time padding to the bin index Wu such

that we have the encoder output

ĎĎW = (Wv,Wu +K) (65)

where the summation with the private key is in modulo-

2nRu = 2n(I(U ;X̃|Y,V )+2ǫ). Thus, one then does not leak any

information about Wu to the eavesdropper because of the one-

time padding step in (65). We then have the privacy leakage

I(Xn; ĎĎW,F |Zn) = I(Xn;Wv, F |Zn)

(a)

≤ H(Xn|Zn)−H(Xn|Zn,Wv, Fv) + ǫ′n
(b)

≤ H(Xn|Zn)−H(Xn|Zn, V n) + ǫ′n
(c)
= nI(V ;X |Z) + ǫ′n (66)

where (a) follows for some ǫ′n such that ǫ′n → 0 when n →
∞ since by (54) Fu is almost independent of (V n, Xn, Zn);
see also [46, Theorem 1], (b) follows since V n determines

(Fv,Wv), and (c) follows because (Xn, Zn, V n) are i.i.d.

Note that we can reduce the privacy leakage given in (66) if

R0 ≥ (I(U ; X̃)− I(U ;Y ) + 4ǫ) = (I(U ; X̃|Y ) + 4ǫ), where

the equality follows from the Markov chain U − X̃−Y , since

then we can apply one-time padding to both bin indices Wv

and Wu with the sum rate

Rv +Ru

(a)
= I(V ; X̃)− I(V ;Y ) + 2ǫ+I(U ; X̃|V )−I(U ;Y |V )+2ǫ

(b)
= I(U ; X̃)− I(U ;Y ) + 4ǫ (67)

where (a) follows by (58) and (60), and (b) follows from the

Markov chain V −U − X̃ − Y . Thus, one then does not leak

any information about (Wv,Wu) to the eavesdropper because

of the one-time padding step, so we then obtain the privacy

leakage of

I(Xn;F |Zn) = I(Xn;Fv|Z
n) + I(Xn;Fu|Z

n, Fv)

(a)

≤ 2ǫ′n (68)

where (a) follows since by (53) Fv is almost indepen-

dent of (Xn, Zn) and by (54) Fu is almost independent of

(V n, Xn, Zn).

Secrecy Leakage Rate: Similar to the privacy leakage

analysis above, we first consider the virtual scenario with the

encoder output given in (62), and then calculate the leakage

for the original problem by subtracting H(K) = nR0 from

the leakage calculated for the virtual scenario. Thus, we obtain

I(X̃n;W,F |Zn) = I(X̃n; ĎW,F |Zn)− nR0

(a)
= H(ĎW,F |Zn)−H(ĎW,F |X̃n)− nR0

(b)
= H(ĎW,F |Zn)−H(Un, V n|X̃n)

+H(V n|ĎW,F, X̃n) +H(Un|V n, ĎW,F, X̃n)

(c)

≤ H(ĎW,F |Zn)− nH(U, V |X̃) + 2nǫ′n − nR0

(d)

≤ n
(
[I(U ;Z|V )− I(U ;Y |V ) + ǫ]−

+ I(U ; X̃|Z) + 3ǫ′n −R0

)
(69)

where (a) follows from the Markov chain (ĎW,F ) − X̃n −
Zn, (b) follows since (Un, V n) determine (ĎW,F ), (c) follows

because (V n, Un, X̃n) are i.i.d. and because (Fv,Wv, X̃
n) can

reliably recover V n by (55) due to the Markov chain V n −
X̃n − Y n and, similarly, (Fu,Wu,Ku, V

n, X̃n) can reliably

recover Un by (56) due to H(U |V, Y )≥H(U |V, X̃) that can

be proved as in [21, Eq. (55)] for the Markov chain (V, U)−
X̃−Y , and (d) follows by applying the six decodability results

in [21, Section V-A] that are applied to (63) with the final

result in (64) by replacing X with X̃ .

Similar to the privacy leakage analysis above if we have

R0 ≥ (I(U ; X̃ |Y, V ) + 2ǫ), then we can eliminate Ku and

apply one-time padding as in (65) such that no information

about Wu is leaked to the eavesdropper and we have

I(X̃n; ĎĎW,F |Zn) = I(X̃n;Wv, F |Zn)

(a)

≤ H(X̃n|Zn)−H(X̃n|Zn,Wv, Fv) + ǫ′n
(b)

≤ H(X̃n|Zn)−H(X̃n|Zn, V n) + ǫ′n
(c)
= nI(V ; X̃|Z) + ǫ′n (70)

where (a) follows because by (54) Fu is almost independent

of (V n, X̃n, Zn), (b) follows since V n determines (Fv,Wv),
and (c) follows because (X̃n, Zn, V n) are i.i.d.

If R0 ≥ (I(U ; X̃ |Y )+ 4ǫ), we can apply one-time padding

to hide (Wv,Wu), as in the privacy leakage analysis above.

We then have the secrecy leakage of

I(X̃n;F |Zn) = I(X̃n;Fv|Z
n) + I(X̃n;Fu|Z

n, Fv)

(a)

≤ 2ǫ′n (71)

where (a) follows since by (53) Fv is almost indepen-

dent of (X̃n, Zn) and by (54) Fu is almost independent of

(V n, X̃n, Zn).
Suppose the public indices F are generated uniformly at

random, and the encoder generates (V n, Un) according to

P
V nUn|X̃nFvFu

that can be obtained from the proposed binning

scheme above to compute the bins Wv from V n and Wu



from Un, respectively. Such a procedure results in a joint

probability distribution almost equal to P
V UX̃XY Z

fixed above

[45, Section 1.6]. Note that the privacy and secrecy leakage

metrics above are expectations over all possible public index

realizations F = f . Therefore, using a time-sharing random

variable Q for convexification and applying the selection

lemma [47, Lemma 2.2] to each decodability case separately,

the achievability for Theorem 1 follows by choosing an ǫ > 0
such that ǫ → 0 when n → ∞.

B. Converse Proof for Theorem 1

Proof Sketch: Assume that for some δn> 0 and n ≥ 1,

there exist an encoder and a decoder such that (1)-(4) are

satisfied for some tuple (Rw, Rs, Rℓ, D) given a private key

with rate R0.

Define Vi , (W,Y n
i+1, Z

i−1) and Ui ,
(W,Y n

i+1, Z
i−1, X i−1,K) that satisfy the Markov chain

Vi − Ui − X̃i − Xi − (Yi, Zi) by definition of the source

statistics. We have

D + δn
(a)

≥ E

[
d
(
X̃n,

̂̃
Xn(Y n,W,K)

)]

(b)

≥ E

[
d
(
X̃n,

̂̃
Xn(Y n,W,K,X i−1, Zi−1)

)]

(c)
= E

[
d
(
X̃n,

̂̃
Xn(Y n

i ,W,K,X i−1, Zi−1)
)]

(d)
=

1

n

n∑

i=1

E

[
d
(
X̃i,

̂̃
Xi(Ui, Yi)

)]
(72)

where (a) follows by (4), (b) follows since providing more

information to the reconstruction function does not increase

expected distortion, (c) follows from the Markov chain

Y i−1 − (Y n
i , X i−1, Zi−1,W,K)− X̃n (73)

and (d) follows from the definition of Ui.

Communication Rate: For any R0 ≥ 0, we have

n(Rw + δn)
(a)

≥ log |W|

≥ H(W |Y n,K)−H(W |Y n,K, X̃n)

(b)
=

n∑

i=1

I(W ; X̃i|X̃
i−1, Y n

i+1, Z
i−1,K, Yi)

(c)
=

n∑

i=1

I(X̃ i−1, Y n
i+1, Z

i−1,K,W ; X̃i|Yi)

(d)

≥
n∑

i=1

I(X i−1, Y n
i+1, Z

i−1,K,W ; X̃i|Yi)

=

n∑

i=1

I(Ui; X̃i|Yi) (74)

where (a) follows by (1), (b) follows from the Markov chain

(Y i−1, X i−1, Zi−1)− (X̃ i−1, Y n
i ,K)− (X̃i,W ) (75)

(c) follows because (X̃i, Yi) are independent of

(X̃ i−1, Y n
i+1, Z

i−1,K), and (d) follows by applying the

data processing inequality to the Markov chain in (75).

Privacy Leakage Rate: We obtain

n(Rℓ + δn)

(a)

≥ [I(W ;Y n)− I(W ;Zn)] + [I(W ;Xn)− I(W ;Y n)]

(b)
= [I(W ;Y n)− I(W ;Zn)]

+ I(W ;Xn|K)− I(K;Xn|W )

− I(W ;Y n|K) + I(K;Y n|W )

(c)
= [I(W ;Y n)− I(W ;Zn)]

+ [I(W ;Xn|K)− I(W ;Y n|K)]− I(K;Xn|W,Y n)

≥
n∑

i=1

[
I(W ;Yi|Y

n
i+1)− I(W ;Zi|Z

i−1)
]

+

n∑

i=1

[
I(W ;Xi|X

i−1,K)−I(W ;Yi|Y
n
i+1,K)

]
−H(K)

(d)
=

n∑

i=1

[
I(W ;Yi|Y

n
i+1, Z

i−1)− I(W ;Zi|Z
i−1, Y n

i+1)−R0

]

+

n∑

i=1

[
I(W ;Xi|X

i−1, Y n
i+1,K)

− I(W ;Yi|Y
n
i+1, X

i−1,K)
]

(e)
=

n∑

i=1

[
I(W ;Yi|Y

n
i+1, Z

i−1)−I(W ;Zi|Z
i−1, Y n

i+1)−R0

]

+

n∑

i=1

[
I(W ;Xi|X

i−1, Y n
i+1, Z

i−1,K)

− I(W ;Yi|Y
n
i+1, X

i−1, Zi−1,K)

]

(f)
=

n∑

i=1

[
I(W,Y n

i+1, Z
i−1;Yi)−I(W,Zi−1, Y n

i+1;Zi)−R0

]

+

n∑

i=1

[
I(W,X i−1, Y n

i+1, Z
i−1,K;Xi)

− I(W,Y n
i+1, X

i−1, Zi−1,K;Yi)

]

(g)
=

n∑

i=1

[
I(Vi;Yi)− I(Vi;Zi)−R0

+ I(Ui, Vi;Xi)− I(Ui, Vi;Yi)
]

=

n∑

i=1

[
− I(Ui, Vi;Zi)−R0 + I(Ui, Vi;Xi)

+ (I(Ui;Zi|Vi)− I(Ui;Yi|Vi))

]

(h)

≥
n∑

i=1

[
I(Ui;Xi|Zi)−R0

+[I(Ui;Zi|Vi)−I(Ui;Yi|Vi)]
−
]

(76)

where (a) follows by (3) and from the Markov chain W −



Xn−Zn, (b) follows since K is independent of (Xn, Y n), (c)
follows from the Markov chain (W,K)−Xn−Y n, (d) follows

because H(K) = nR0 and from Csiszár’s sum identity [48],

(e) follows from the Markov chains

Zi−1 − (X i−1, Y n
i+1,K)− (Xi,W ) (77)

Zi−1 − (X i−1, Y n
i+1,K)− (Yi,W ) (78)

(f) follows because (Xn, Y n, Zn) are i.i.d. and K is inde-

pendent of (Xn, Y n, Zn), (g) follows from the definitions

of Vi and Ui, and (h) follows from the Markov chain

Vi − Ui −Xi − Zi.

Next, we provide the matching converse for the pri-

vacy leakage rate in (66), which is achieved when R0 ≥
I(U ; X̃|Y, V ). We have

n(Rℓ + δn)
(a)

≥ H(Xn|Zn)−H(Xn|Zn,W )

(b)
= H(Xn|Zn)−

n∑

i=1

H(Xi|Zi, Z
i−1, Xn

i+1,W, Y n
i+1)

(c)
= H(Xn|Zn)−

n∑

i=1

H(Xi|Zi, Vi, X
n
i+1)

(d)

≥
n∑

i=1

[H(Xi|Zi)−H(Xi|Zi, Vi)]

=

n∑

i=1

I(Vi;Xi|Zi) (79)

where (a) follows by (3), (b) follows from the Markov chain

(Zn
i+1, Y

n
i+1)− (Xn

i+1,W,Zi)−Xi (80)

(c) follows from the definition of Vi, and (d) follows because

(Xn, Zn) are i.i.d.

We remark that the matching converse for the privacy

leakage rate in (68), achieved when R0 ≥ I(U ; X̃|Y ), follows

from the fact that conditional mutual information is non-

negative.

Secrecy Leakage Rate: We have

n(Rs + δn)

(a)

≥ [I(W ;Y n)− I(W ;Zn)] + [I(W ; X̃n)− I(W ;Y n)]

(b)
= [I(W ;Y n)− I(W ;Zn)]

+ I(W ; X̃n|K)− I(K; X̃n|W )

− I(W ;Y n|K) + I(K;Y n|W )

(c)
= [I(W ;Y n)− I(W ;Zn)]

+ [I(W ; X̃n|K)− I(W ;Y n|K)]− I(K; X̃n|W,Y n)

(d)

≥
n∑

i=1

[
I(W ;Yi|Y

n
i+1)− I(W ;Zi|Z

i−1)
]

+ I(W ; X̃n|Y n,K)−H(K)

(e)
=

n∑

i=1

[
I(W ;Yi|Y

n
i+1, Z

i−1)− I(W ;Zi|Z
i−1, Y n

i+1)−R0

]

+ nH(X̃|Y )−
n∑

i=1

H(X̃i|Yi, Y
n
i+1,W,K, X̃ i−1)

(f)

≥
n∑

i=1

[
I(W,Y n

i+1, Z
i−1;Yi)− I(W,Zi−1, Y n

i+1;Zi)−R0

]

+ nH(X̃|Y )−
n∑

i=1

H(X̃i|Yi, Y
n
i+1,W,K,X i−1, Zi−1)

(g)
=

n∑

i=1

[
I(Vi;Yi)− I(Vi;Zi)−R0

]

+ nH(X̃|Y )−
n∑

i=1

H(X̃i|Yi, Ui, Vi)

(h)
=

n∑

i=1

[
I(Vi;Yi)− I(Vi;Zi)−R0

]

+

n∑

i=1

[
I(Ui, Vi; X̃i)− I(Ui, Vi;Yi)

]

=

n∑

i=1

[
− I(Ui, Vi;Zi)−R0 + I(Ui, Vi; X̃i)

+ (I(Ui;Zi|Vi)− I(Ui;Yi|Vi))

]

(i)

≥
n∑

i=1

[
I(Ui; X̃i|Zi)−R0

+[I(Ui;Zi|Vi)−I(Ui;Yi|Vi)]
−
]

(81)

where (a) follows by (2) and from the Markov chain W−X̃n−
Zn, (b) follows because K is independent of (X̃n, Y n), (c)
and (d) follow from the Markov chain (W,K) − X̃n − Y n,

(e) follows because H(K) = nR0 and (X̃n, Y n) are i.i.d.

and independent of K , and from the Csiszár’s sum identity

and the Markov chain

Y i−1 − (X̃ i−1,W,K, Y n
i+1, Yi)− X̃i (82)

(f) follows since (Y n, Zn) are i.i.d. and from the data

processing inequality applied to the Markov chain

(X i−1, Zi−1)− (X̃ i−1,W,K, Y n
i+1, Yi)− X̃i (83)

(g) follows from the definitions of Vi and Ui, (h) follows from

the Markov chain (Vi, Ui)− X̃i−Yi, and (i) follows from the

Markov chain Vi − Ui − X̃i − Zi.

Next, the matching converse for the secrecy leakage rate in

(70), achieved when R0 ≥ I(U ; X̃|Y, V ), is provided.

n(Rs + δn)
(a)

≥ H(X̃n|Zn)−H(X̃n|Zn,W )

(b)

≥ H(X̃n|Zn)−
n∑

i=1

H(X̃i|Zi, Z
i−1, X̃n

i+1,W, Y n
i+1)

(c)
= H(X̃n|Zn)−

n∑

i=1

H(X̃i|Zi, Vi, X̃
n
i+1)



(d)

≥
n∑

i=1

[H(X̃i|Zi)−H(X̃i|Zi, Vi)] =
n∑

i=1

I(Vi; X̃i|Zi) (84)

where (a) follows by (2), (b) follows from the Markov chain

(Zn
i+1, Y

n
i+1)− (X̃n

i+1,W,Zi)− X̃i (85)

(c) follows from the definition of Vi, and (d) follows because

(X̃n, Zn) are i.i.d.

Similar to the privacy leakage analysis above, the matching

converse for the secrecy leakage rate in (71), achieved when

R0 ≥ I(U ; X̃ |Y ), follows from the fact that conditional

mutual information is non-negative.

Introduce a uniformly distributed time-sharing random vari-

able Q ∼ Unif[1 : n] that is independent of other random

variables, and define X =XQ, X̃ = X̃Q, Y = YQ, Z = ZQ,

V =VQ, and U=(UQ,Q), so

(Q, V )− U − X̃ −X − (Y, Z) (86)

form a Markov chain. The converse proof follows by letting

δn → 0.

Cardinality Bounds: We use the support lemma [48,

Lemma 15.4] for the cardinality bound proofs, which is a

standard step, so we omit the proof.

ACKNOWLEDGMENT
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[8] D. Gündüz, E. Erkip, and H. V. Poor, “Lossless compression with
security constraints,” in Proc. IEEE Int. Symp. Inf. Theory, Toronto,
ON, Canada, July 2008, pp. 111–115.

[9] W. Luh and D. Kundur, “Distributed secret sharing for discrete memo-
ryless networks,” IEEE Trans. Inf. Forensics Security, vol. 3, no. 3, pp.
1–7, Sep. 2008.

[10] K. Kittichokechai, Y.-K. Chia, T. J. Oechtering, M. Skoglund, and
T. Weissman, “Secure source coding with a public helper,” IEEE Trans.

Inf. Theory, vol. 62, no. 7, pp. 3930–3949, July 2016.

[11] S. Salimi, M. Salmasizadeh, and M. R. Aref, “Generalised secure
distributed source coding with side information,” IET Commun., vol. 4,
no. 18, pp. 2262–2272, Dec. 2010.

[12] F. Naghibi, S. Salimi, and M. Skoglund, “The CEO problem with secrecy
constraints,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 6, pp.
1234–1249, June 2015.

[13] H. Yamamoto, “Coding theorems for Shannon’s cipher system with
correlated source outputs, and common information,” IEEE Trans. Inf.

Theory, vol. 40, no. 1, pp. 85–95, Jan. 1994.

[14] H. Ghourchian, P. A. Stavrou, T. J. Oechtering, and M. Skoglund,
“Secure source coding with side-information at decoder and shared
key at encoder and decoder,” in Proc. IEEE Inf. Theory Workshop,
Kanazawa, Japan, Oct. 2021, pp. 1–6.

[15] U. M. Maurer, “Secret key agreement by public discussion from common
information,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 2733–2742,
May 1993.

[16] R. Ahlswede and I. Csiszár, “Common randomness in information theory
and cryptography - Part I: Secret sharing,” IEEE Trans. Inf. Theory,
vol. 39, no. 4, pp. 1121–1132, July 1993.

[17] A. C. Yao, “Protocols for secure computations,” in Proc. IEEE Symp.

Foundations Comp. Sci., Chicago, IL, Nov. 1982, pp. 160–164.

[18] ——, “How to generate and exchange secrets,” in Proc. IEEE Symp.
Foundations Comp. Sci., Toronto, ON, Canada, Oct. 1986, pp. 162–167.

[19] M. Bloch et al., “An overview of information-theoretic security and
privacy: Metrics, limits and applications,” IEEE J. Sel. Areas Inf. Theory,
vol. 2, no. 1, pp. 5–22, Mar. 2021.
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[25] O. Günlü, “Key agreement with physical unclonable functions and
biometric identifiers,” Ph.D. dissertation, TU Munich, Germany, Nov.
2018, published by Dr.-Hut Verlag in Feb. 2019.

[26] T. Ignatenko and F. M. J. Willems, “Biometric systems: Privacy and
secrecy aspects,” IEEE Trans. Inf. Forensics Security, vol. 4, no. 4, pp.
956–973, Dec. 2009.

[27] L. Lai, S.-W. Ho, and H. V. Poor, “Privacy-security trade-offs in
biometric security systems - Part I: Single use case,” IEEE Trans. Inf.

Forensics Security, vol. 6, no. 1, pp. 122–139, Mar. 2011.

[28] L. Kusters, O. Günlü, and F. M. Willems, “Zero secrecy leakage for
multiple enrollments of physical unclonable functions,” in Proc. Symp.

Inf. Theory Sign. Process. Benelux, Twente, Netherlands, May-June
2018, pp. 119–127.

[29] L. Lai, S. W. Ho, and H. V. Poor, “Privacy-security trade-offs in
biometric security systems - Part II: Multiple use case,” IEEE Trans.

Inf. Forensics Security, vol. 6, no. 1, pp. 140–151, Mar. 2011.
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[37] O. Günlü, R. F. Schaefer, and H. V. Poor, “Biometric and physical
identifiers with correlated noise for controllable private authentication,”
July 2020, [Online]. Available: arxiv.org/abs/2001.00847.

[38] A. D. Wyner and J. Ziv, “A theorem on the entropy of certain binary
sequences and applications: Part I,” IEEE Trans. Inf. Theory, vol. 19,
no. 6, pp. 769–772, Nov. 1973.

[39] S. Watanabe and Y. Oohama, “Secret key agreement from correlated
Gaussian sources by rate limited public communication,” IEICE Trans.
Fundam. Electron., Commun. Comp. Sci., vol. 93, no. 11, pp. 1976–
1983, Nov. 2010.

[40] F. M. Willems and T. Ignatenko, “Quantization effects in biometric
systems,” in Proc. Inf. Theory Appl. Workshop, La Jolla, CA, Feb. 2009,
pp. 372–379.

[41] V. Yachongka, H. Yagi, and Y. Oohama, “Secret key-based authentica-
tion with passive eavesdropper for scalar Gaussian sources,” Feb. 2022,
[Online]. Available: arxiv.org/abs/2202.10018.

[42] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ: John Wiley & Sons, 2012.

[43] M. H. Yassaee, M. R. Aref, and A. Gohari, “Achievability proof via
output statistics of random binning,” IEEE Trans. Inf. Theory, vol. 60,
no. 11, pp. 6760–6786, Nov. 2014.

[44] J. M. Renes and R. Renner, “Noisy channel coding via privacy amplifi-
cation and information reconciliation,” IEEE Trans. Inf. Theory, vol. 57,
no. 11, pp. 7377–7385, Nov. 2011.

[45] M. Bloch, Lecture Notes in Information-Theoretic Security. Atlanta,
GA: Georgia Inst. Technol., July 2018.

[46] T. Holenstein and R. Renner, “On the randomness of independent
experiments,” IEEE Trans. Inf. Theory, vol. 57, no. 4, pp. 1865–1871,
Apr. 2011.

[47] M. Bloch and J. Barros, Physical-layer Security. Cambridge, U.K.:
Cambridge University Press, 2011.

[48] I. Csiszár and J. Körner, Information Theory: Coding Theorems for

Discrete Memoryless Systems, 2nd ed. Cambridge, U.K.: Cambridge
University Press, 2011.


	I Introduction
	II System Model
	III Secure and Private Source Coding Regions
	III-A Lossy Source Coding
	III-B Lossless Source Coding

	IV Gaussian Sources and Channels
	V Proof for Theorem 1
	V-A Achievability Proof for Theorem 1
	V-B Converse Proof for Theorem 1

	References

