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Abstract
Web measurement studies can shed light on not yet fully under-
stood phenomena and thus are essential for analyzing how the
modern Web works. This often requires building new and adjust-
ing existing crawling setups, which has led to a wide variety of
analysis tools for different (but related) aspects. If these efforts are
not sufficiently documented, the reproducibility and replicability of
the measurements may suffer—two properties that are crucial to
sustainable research. In this paper, we survey 117 recent research
papers to derive best practices for Web-based measurement studies
and specify criteria that need to be met in practice. When applying
these criteria to the surveyed papers, we find that the experimental
setup and other aspects essential to reproducing and replicating
results are often missing. We underline the criticality of this finding
by performing a large-scale Web measurement study on 4.5 million
pages with 24 different measurement setups to demonstrate the in-
fluence of the individual criteria. Our experiments show that slight
differences in the experimental setup directly affect the overall
results and must be documented accurately and carefully.
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1 Introduction

As the Web has grown to an essential part of our day-to-day life,
the complexity of the employed web applications has increased
drastically. This development has been accompanied by undesirable
practices, such as user tracking [19, 32, 56], fingerprinting [21, 47],
or even outright malicious activities, such as XSS attacks [61]. Web
measurement studies are an essential tool to understand, identify,
and quantify such threats, and they allow us to explore isolated
phenomenons at a large scale. As themodernWeb is highly dynamic
and ever-changing, this is an inherently difficult task. To conduct
studies across thousands of websites, researchers can partly rely
on crawling frameworks such as OpenWPM [21], but more often,
they have to extend existing work or build new crawlers on their
own to adapt to new developments on the Web.

This trend, however, raises the question of whether different
measurement studies using different frameworks for gathering data
are comparable and to which extent experiments can be reproduced
or replicated. In particular, in the field of Web-based measurements,
ensuring replicability requires a tremendous effort to describe, doc-
ument, and openly communicate the details of the experimental
setup and implementations. However, if the community cannot ver-
ify and reenact drawn conclusions, the entire scientific process is at
risk of becoming unreliable—something that has unfortunately been
observed in different research disciplines in the past [17, 31, 44, 53].

In this work, we systematize such effects, provide best practices
and criteria that help design studies, and additionally perform a
large-scale Web measurement study that highlights the impact of
these subtle differences. In particular, we survey 117 research pa-
pers published at top-tier security and privacy venues in the past
six years. Based on this survey, we factor out common fundamental
principles for Web measurements and establish common guidelines
for conducting such experiments. We define criteria that help de-
signing experimental setups that are reproducible and replicable.
By applying these criteria to the analyzed papers, we find that the
documentation of the experimental setups is often neglected and
does not fulfill the community’s expectations of a Web measure-
ment study (see Section 4). In a large-scale study for which we visit
4.5 million pages on over 8,800 sites with 24 browser profiles, we
show that slight changes in the experimental setup alters the results
to an extent where cross-comparability of studies is not feasible
(see Section 4). For example, we find that the identified trackers on
pages can vary by 25% based on the used browser configuration.

In summary, we make the following contributions:
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• Guidelines forWebmeasurements.Wehighlight the chal-
lenges of designing Web measurements and provide guide-
lines that help setting up experiments that effectively address
them.

• Prevalence study.We perform a survey of 117 security and
privacy papers from 2016–2021 that perform Web measure-
ments and show that our described challenges affect most
of them.

• Impact analysis. To increase the comparability of future
and previous Web measurements, we perform experiments
utilizing 24 measurement setups and compare the measured
differences that emerge from the utilized frameworks.

2 Designing Web Measurement Studies
The rapidly changing, variable content and the general trend to-
wards providing more content online makes the Web a challenging
subject for measurement studies. As an example, suppose one visits
the same website at the same time with different browser instances.
The loaded content (e.g., ads or other dynamic content) likely differs
and, thus, the overall results of measurement studies might devi-
ate (e.g., when identifying embedded trackers or analyzing shown
ads). This simple example illustrates that repeated experiments may
show (slightly) different results and conducting such experiments
in an uncontrolled environment is bristled with obstacles, endan-
gering replicability. However, the cornerstone of academic work is
the possibility to scrutinize conclusions and results. We thus pick
up the definitions of the Association for Computing Machinery [9]
for a) repeatability (“Same team, same experimental setup” ), b) re-
producibility (“Different team, same experimental setup” ), and c)
replicability (“Different team, different experimental setup” ).

We put a particular emphasis on reproducibility (see Section 3)
and replicability (see Section 4) of published studies, and leave
repeatability aside, as by definition it can only be achieved by
the team that conducted the experiment in the first place. Thus,
reproducibility and replicability are essential to our analysis, as
these enable us to verify and compare results of existing work.

2.1 Literature Survey
Transparency is an essential factor in producing reproducible and
replicable experiments. To understand the current state-of-the-art
of Web measurements in the security and privacy community, we
perform an extensive literature survey based on publications at
the top-tier conferences in this community: IEEE S&P, ACM CCS,
USENIX Security, NDSS, PETS, and the “Security, Privacy, and Trust”
tracks at ACM TheWebConf as well as ACM IMC. We performed
the survey across the past six years (2016–2021).

2.1.1 Paper-Selection Criteria Of course, not all papers on the sur-
veyed venues conduct a Web measurement or rely on data collected
by such a study. Therefore, we first determine the papers of interest
based on the following characteristics: (1) The paper in question
analyzes a phenomenon present on websites (e.g., embedded third
parties or used libraries) or focuses on the communication with a
website (e.g., HTTP headers), and (2) the paper in question analyzes
more than one website. The definition allows us to focus on works
that, on the one hand, study similar research objects (i.e., websites
and their communication) and, on the other hand, need to scale their
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Figure 1: Number of surveyed papers that perform a security
or privacy Web measurement, per year and venue.

experiments comparably. In a first step, we analyze 4,407 papers
from the above-mentioned venues and determine whether or not
to include them in our survey, by skimming the title, abstract, and
method. From the entire corpus, we consider 117 (2.7%) papers to be
analyzed in depth. Fig. 1 details the number of surveyed papers per
year and venue. Of those papers, 71 (61.5%) focus only on security
challenges, 35 (29.9%) on privacy issues, and 11 (8.5%) on both. This
general overview of our survey shows that Web measurement stud-
ies are an important tool in the security and privacy community to
analyze different phenomena and push the field forward. It hence
is essential to investigate how our community performs studies,
derive best practices, and analyze to which extent existing studies
allow to reproduce the results of the experiments.

2.2 Challenges and Best Practices
In the following, we present design patterns and best practices that
help to plan Web measurement studies so that future studies can
be designed to be reproducible. We create these guidelines based
on the surveyed literature and our own experience in this research
area. For all surveyed papers, we analyze the documented setup
of each experiment, abstract general design choices, and develop
best practices that are intended to provide an overview of aspects
which need to be considered when designing Web measurements
in practice. It is essential to highlight that our guidelines are not
intended to point fingers or criticize previous work, but to highlight
pitfalls and challenges that can impact a study’s outcome.

2.2.1 Method to Design the Best Practices To derive the best prac-
tices, we analyze different experiment design choices of the papers
and compare the outcomes of the works. This allows us to identify
generalizable and common aspects that are shared across different
works. For example, if one work visits sub-pages and another work
only visits landing pages but both find different levels of tracking
activities, we create a best practices that researchers should take
this behavior into account. Moreover, we use these best practices
to derive criteria that measurement studies should follow to allow
for reproducibility of conducted experiments.

2.2.2 Building the Dataset Naturally, eachWebmeasurement study
has to identify websites and pages to be analyzed during the experi-
ment. For this step, one can distinguish between three methodically
different approaches, which all come with up- and downsides.
P1 Artificially selecting websites and pages. As the Web is
ever-growing and consists of a myriad of sites with even more
pages, measuring all of them in a single experiment is not feasi-
ble in a reasonable way. A commonly accepted way of focusing
an experiment is to use a so-called “top-list” that ranks popular
sites (e.g., Alexa [5], Tranco [38], or others [7, 40]). These lists,
however, only include the landing page (or the eTLD+1) which

534



Reproducibility and Replicability of Web Measurement Studies WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

are used for the experiment. While, at first glance, this might
seem reasonable, recent works have shown that sub-sites (e.g.,
https://www.example.com/news) show a significantly different be-
havior than the respective landing pages [7, 55], and that the rank
of a website also might impact the results [62]. Consequently, we
advocate to name the sources (e.g., top-list) of sites that have been
analyzed, detail how they have been picked, and list all analyzed
pages (e.g., in an appendix). Similar to the highlighted challenges
to enable repeatability, it is necessary to point out which criteria
are used to choose or eliminate entries from a given set of sites.
P2 Using user clickstream data. Another approach is to use
clickstreams observed from real users or analyze their traffic directly.
While such an approach is more realistic, they are harder to collect.
However, studies that explicitly need to understand the effects of a
phenomenon for individual users need to take this step [11, 22, 46].
If ‘only’ the presence of a phenomenon is of interest (e.g., if secure
CSPs are used), artificially selected sites can suit the purpose.
P3 Use existing sources. Using a previously collected public
datasets (e.g., HTTPArchive [27]), is the only option that allows
the reproduction of results, offers high repeatability, and enables to
compare properties. However, one is bound to analyze phenomena
for which data is already present in the desired granularity [18],
which is often not the case.

From this set of best practices, we derive four criteria (C1–C4)
that a measurement study should meet (see group “Dataset” in
Table 1).While criteria C1–C3 (“documentation of the analyzed sites” )
are directly related to the named practices, criterion C4 is intended
to highlight that some phenomena need to be analyzed over time
to understand their scale.In the surveyed papers, C4 was often not
noted and we analyze its effects in Section 4 in detail.

2.2.3 Experiment Design One way or another, Web measurement
studies rely on a crawler.Selecting, building, and customizing such
a crawler is an essential step in preparing each study, such that
one needs to prudently design and implement it to ensure that the
experiment is stable, repeatable, and comparable.

Building the Crawler We now discuss design decisions when
performing a study using artificial browsing data (i.e., not using
user-generated or public data). We review the essential steps that
should be taken into account when designing such a study:

P4 Choosing a technology. Previous work relies on different
measurement setups ranging from simple tools like cURL [15] to
sophisticated measurement frameworks that can spawn several
browsers at once like OpenWPM [21, 43]. As prior work has shown,
the decision of which tool to use impacts the results [4].
P5 Customization of the crawler. Naturally, each study uses a
(slightly) different measurement setup.When customizing a crawler,
it is inevitable to elaborate on the steps taken and discuss possible
artifacts and limitations of the approach. While necessary, each
customization step might impact the results (e.g., different user
agents) and, therefore, needs to be documented [39]. We discuss
these effects in more detail in Section 4.
P6 Avoiding crawler detection. Crawlers and other bots make
up approx. 37% of traffic on the Web [29] and it has been shown
that this significantly affects crawling studies [30, 41, 60]. Conse-
quently, some service providers define behavior guidelines to limit

crawling traffic, or try to detect and block them altogether [33].
These defense mechanisms might substantially impact the results
of measurement studies if sites present different content or none
at all. Hence, the authors’ choice to avoid and if so how and to
which extent an evasion technique was implemented needs to be
discussed transparently. However, it is commonly accepted (and of-
ten necessary) to circumvent bot detection mechanisms [21, 55, 56].
P7 Mimicking User Interaction.Modern websites are no longer
static HTML pages, but interactive applications that load different
sets of content depending on the users’ actions. Resources are often
only loaded once visible to the user (known as “lazy loading”) to
improve the website’s loading speed and for search engine optimiza-
tion purposes [25]. This means that crawlers that do not interact
with a page (e.g., scrolling) will miss crucial resources [34, 55, 56, 63].
Therefore, interaction mechanisms need to be documented, and
limitations of lacking user interaction should be discussed.

Based on these four aspects of a crawling setup, we derive cri-
teria C5, C6, C7, C8, and C10. We split the customization step (P5)
into two criteria (C6 & C7) to account for differences whether a
crawler was modified (e.g., a function was altered) or extended (e.g.,
a browser extension was used). Furthermore, we add a criterion that
urges authors to make the crawler publicly available (C9). Since the
effects of C5 and C11 are not yet adequately discussed by previous
work, we analyze them in Section 4.

Experiment Environment After selecting the sites to visit and
building the crawler, the experimental environment must be crafted.
In the following, we describe essential environmental aspects that
may impact the crawler and, therefore, the experiment’s outcome.

P8 Geolocation of crawls. A critical factor for each experiment
is the location from which the measurement study is conducted.
Depending on the location (e.g., based on the IP address of the
crawling machine), websites might deliver different content [28].
This may, for instance, be founded in cloaking, legislation (e.g., the
GDPR or CCPA [16, 55, 56, 62]), or even censorship [12, 45]. Such
impacts have to be accounted for (e.g., via using a VPN setup) and
actions to address them need to be disclosed in detail.
P9 Defining the page visit strategy. For the page visit strategy,
we distinguish between stateless and stateful crawls. A stateless
crawler (i.e., browser) is reset completely between each page visit,
such that each visit creates a new HTTP session that updates the
browser’s internal resources. On the contrary, some (e.g., only the
cookie jar) or all of this information is kept in stateful crawls, as
a “real” browser would. Consequently, authors need to document
what part of a browser profile is maintained statefully, what part
is reset, and when [21, 63]. This distinction has a severe impact on
the outcome of the experiment: In stateful experiments, the order
of visited pages potentially impacts the results, and it accounts for
HTTP session-specific phenomena, such as opt-in to cookie track-
ing. Stateless crawls, in turn, allow to study session-independent
attributes. Note that this practice does not account for browser
profiles that were populated before the measurement took place
(e.g., by pre-filling the cookie jar), we account for this in P11.
P10 Setting up Browser Configuration. A browser’ configura-
tion plays an important role for Web-based measurements. Depend-
ing on the browser (e.g., version) the crawled entities might act
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differently. To allow comparability and reproducibility of exper-
iments, it is essential to share basic configuration details, which
may impact the study’s outcomes [37, 59, 63]. Such design choices
range from installed extensions, used block-lists, login strategies,
used browser version, content of the cookie jar, etcetera.
P11 Describe shortcomings and limitations. Naturally, a Web
measurement can never be complete regarding, for instance, cover-
age or realism. The experimental design accounts for these “natural”
boundaries, but each design choice will likely impose certain re-
strictions and limitations. To allow the research community to
acknowledge and assess the outcomes of an experiment fully, it is
inevitable to discuss the limitations of its design [49, 51].

From these practices, each can be mapped to a single criterion
(C11, C12, C13, and C17). We add an additional criterion (C15)
asking to make results publicly available, as this particularly helps
to replicate or reproduce an experiment. Moreover, we set up two
criteria that help assessing the findings of a paper: First, asking for
an ethical discussion (C18) and second, urging to provide a general
overview of the measured results (C16).

2.3 Design and Evaluation Criteria
Based on the best practices described in the previous section, we
derived the named 18 criteria to allow reproducibility of a study.
In a first step, two experts, both with an extensive professional
and academic background in security and privacy on the Web, as-
sessed an identical, randomly selected subset of the surveyed papers
(n = 25) to test the applicability of the criteria. This exploratory
evaluation has shown a very high interrater reliability (Cohen’s
kappa: κ = 0.94), which indicates that the designed criteria can be
unambiguously applied. In a few cases, the experts have disagreed,
which however turned out to be founded in an initially ambiguous
formulation of one criteria, which was adjusted accordingly. In
a second step, the criteria have then been applied to all 117 pa-
pers in our corpus. Table 1 lists all 18 criteria and provides a brief
description of each.

3 Evaluating Reproducibility
In this section, we analyze the surveyed papers along with the
criteria we have introduced to get an understanding of the repro-
ducibility of previous works. The decision if a criterion is (fully)
satisfied is not always binary. For example, a paper might state that
the crawler was instrumented but omit how.

Evaluation Categories We use the following four categories to
distinguish if and how a criterion is satisfied: N/A: The criterion
does not apply to the analyzed paper as it does not impact the used
methodology. For example, Le Pochat et al. [38] crawl four top-lists
and combine the results in a sophisticated manner. In this case, the
criteria “Mimic user interaction” (C10) or “Geolocation” (C12) do not
apply.
Omit: A paper does not state the taken actions to satisfy a criterion,
but it would be essential to reproduce the work or that it potentially
affects the outcome of the work.
Undocumented: If a paper states that the authors took actions to
satisfy a criterion but do not specify how. For instance, the authors
state that “measures were taken to avoid bot detection” but do not
explain how this has been implemented.

Satisfies: This is the desirable case in which a paper satisfies a
criterion and details which measures have been taken to do so.

These categories allow us to differentiate to which extent a cri-
terion is satisfied and enable us to perform a fine-grained analysis
of the reproducibility. Note that these categories are not meant to
indicate whether the taken actions in a paper are sound or complete
to satisfy a criterion. Rather, they aim to understand if and to which
extent an experimental setup can be rebuilt

3.1 Survey Results
We analyze all 117 papers from our survey (see Section 2.1). Across
all categories and papers, merely in 33 (1.6%) cases a criterion does
not apply to an analyzed paper at all (category N/A). Criterion C16
(“General result/success overview” ) is satisfied by most papers (115
(98.3%). Relating to all criteria and papers, more than two-fifths
of all criteria are satisfied (882 (41.9%)), in 1,055 (50%) of all cases
the paper omits any information on the criteria, and in 136 (6.5%)
cases a criterion applies to a paper but the paper does not include
a description of it (category Undocumented).In Appendix B, we
conduct analyses of each criterion individually.

3.1.1 Dataset We only found twelve papers (10.5%) that fulfill all
four criteria related to the dataset. However, 64.1% of the papers
state the dataset they used. Four (3.4%) of the papers do not state
which sites they analyzed. Furthermore, the vast majority (72.6%)
does not offer a complete list of all the analyzed pages. Regarding
the reproducibility of the experiments, these results are critical
because most experiments are not reproducible regarding the sites
and pages that have been analyzed. The papers that used a Tranco
list [38] all offer a list of visited sites, which shows that works
that aim to provide best practices have a positive impact on our
community. Another result is that 63.3% of the analyzed papers do
not perform measurements in multiple measurement runs. Con-
ducting a measurement only once might offer little insight into
generalizability, as the experiments of Agarwal et al. indicate [2, 3].

3.1.2 Experimental Design Three of the five criteria (C7, C8, andC9)
in this category are omitted by at least half of the analyzed papers.
While most papers state the crawler, many fail to address whether
configurations have been changed or extensions have been used.
This result is concerning because documenting adjustments to the
crawling technology is an essential part of understanding and re-
building an experimental setup. Most of the papers crawl data from
websites but do not state how they evade bot detection or make the
crawler publicly available, which raises transparency and ethical
issues. Our analysis indicates that approximately a third (30.7%)
of the papers submitted to the top measurement, security and pri-
vacy conferences are not stating which technology they used to
crawl. This result again is having a severe impact on the repro-
ducibility of the experiments, as these design choices potentially
have significant impact on the results [4, 34]. Criteria C10, C12, and
C13 are omitted by 69.5% of the analyzed papers on average. For
C10 and C13, the omission might be due to the fact that recently
it was systematically shown that these factors play an important
role [55]. C12 is omitted by more than two out of three papers
(71.8%) that do not state where the scan is geographically located.
In our analysis in Section 4, we show that this can significantly
impact the overall reliability of the results and the reproducibility
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Table 1: Criteria to design Web measurement studies.

ID Criterion Description

D
at
as
et

C1 State analyzed sites States used dataset, toplist, or user clickstreams, including version.
C2 State analyzed pages Offers a .csv or comparable with all analyzed pages (i.e., distinct URLs).
C3 State site or page selection Discusses the selection process of analyzed sites.
C4 Perform multiple measurements Discuss which pages are analyzed in consecutive measurement runs, if appropriate.

Ex
pe

ri
m
en

tD
es
ig
n

Bu
ild

in
g
th
e
C
ra
w
le
r C5 Name crawling tech. Describes the used crawling technology (e.g., OpenWPM).

C6 State adjustments to crawling tech. States which technology features were used and/or (slightly) adjusted.
C7 Describe extensions to crawling tech. Describes which new features were developed to conduct, if any were made.
C8 State bot detection evasion approach Discusses which means were taken that the crawler was not detected, if necessary.
C9 Used crawler is publicly available Provides the crawler in a public location.
C10 Mimic user interaction Describes how the user interaction was implemented, if applicable.

Ex
pe
ri
m
en
tE

nv
.

C11 Describe crawling strategy Describes which crawling strategy was used (e.g., stateless vs. stateful).
C12 Document a crawl’s location States from which location(s) the study was conducted.
C13 State browser adjustments Discusses properties of the browser (e.g., user agent, version, used extensions).
C14 Describe data processing pipeline Describes the data processing steps in detail.

Ev
al
ua

ti
on

C15 Make results are openly available Authors provide the (raw) measurement results.
C16 Provide a result/success overview Describes the outcome of the measurement process on a higher level.
C17 Limitations Discusses the limitations of the experiment.
C18 Ethical discussion Discusses ethical implications of the experiment (e.g., exploiting vulnerabilities).

of the experiments. However, 76.1% of the analyzed papers describe
their data processing pipeline, such that it becomes clear how the
crawled data is processed for analysis. However, approximately
17.1% of the papers, where the pipeline is described, fail to offer
details on the crawling technology, making the reproducibility of
the analysis impossible. Combining criteria from the experimental
design (C8 + C10 + C11 + C12), we can deduct an analysis about
the realism of the papers. Except for C11 (omitted by 41% of the
works) more than half of these criteria are omitted by the papers.

3.1.3 Evaluation We have not observed a single paper where the
evaluation is not applicable. However, we find that more than half
(64.1%) of the analyzed papers omit an ethical discussion. This is
questionable in the discovery and detection of vulnerabilities. Re-
search that measures these on a large scale should always include
an ethics section. Roughly, 21.3% of the analyzed papers miss a
limitations and ethics section, which can be considered as a dis-
putable research practice. In terms of open science, only 24% of the
analyzed papers make their results openly available.

3.1.4 Venue Comparison To understand venue-based differences,
we cross-compare papers from the analyzed venues and nine essen-
tial criteria. For this analysis, we only consider criteria that must be
met to allow the repetition of an experiment. These criteria are: C1–
C3, C5–C7, C11, and C12. We do not see a tendency that any venue
publishes works that describe the methodology approach better
or worse than other venues. The only exception is ACM IMC. The
criteria were omitted 9 (18.7%) times. The other conferences have
an average omit rate of 56.8% with a standard deviation of 46.7%.
More than half of the papers, except for IMC and PETS, neglect the
geolocation of the crawls. USENIX Security is the only conference
where six criteria are omitted by more than half of the papers. This

conference is the only conference that utilizes an artifact evalua-
tion. Unfortunately, only one of the analyzed papers received such
a batch and, therefore, we cannot generalize the usefulness yet.
Especially the crawling criteria (C5–C7) and location of the mea-
surement origin suffer from violations at all top-tier conferences.
While the absolute numbers and ratios of criteria violations are
generally comparable, we conclude that any Web measurement
research published can equally benefit from the criteria we defined
in the paper. The PETS symposium is the only conference in our
corpus where not a single paper conducted an ethical review of
their work. This is an at least unsettling finding, because privacy
and ethics are intertwined and must be taken into account when
conducting privacy measurements [26].

Self-Reflection This work focuses on reproducibility and repli-
cability of Web measurement studies and highlights the need for
proper documentation and provision of needed supplementary ma-
terial. However, in line with similar works [8, 52, 57], we chose not
to publish the raw results of the categorization process. It is not
our intention to blame individual works for flaws—for which our
own papers are no exception—but to raise awareness for a general
potential problem in our community.

4 Case Studies

In this section, we proceed to demonstrate the impact of insuf-
ficiently documented experimental setups of large-scale studies
along four exemplarily case studies focusing on C4, C5, C10, and
C12. The first three are chosen because the literature currently does
not provide enough evidence on their impact, while C12 is used to
verify that our framework is able to reproduce previous results.
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4.1 Web Measurement Approach
To show the impact of seemingly small changes in a measurement
setup on the replicability of an experiment, we perform a Web mea-
surement study that uses 25 different setups. More specifically, we
compare results of four browsers (Firefox, Firefox headless, Chrome,
and Chrome headless – C5), three regions (Europe, Asia, and North
America – C12), and two types of website interactions (“none’’ and
“simple interaction” – C10) individually. Overall, we cross-compare
24 different setups. Additionally, we perform a repeating study that
measures the same sites and pages on a daily basis – C4.

The data corpus of our study consists of the top 10k Tranco [38]
websites and we collect the first 25 subpages for each site (as iden-
tified by the JavaScript engine), if possible. We designed a pipeline
that coordinates all page visits across the profiles. Our measure-
ment setup consists of virtual machines (VMs) orchestrated by a
“commander” instance to organize parallel page visits. For example,
one VM performs the measurement using Chrome from the US
with user interaction, while another does the same for the EU. A
detailed description of our framework can be found in Appendix C.

The commander is in charge of starting the measurement for
each site in parallel across the VMs. Each VM starts 10 browsers (one
for each site) in parallel using the defined profile. Once the analysis
of a page is finished, the same browser instance is moving to the
next page of the same site. Hence, subsequent visits of pages will
not be synchronized across all VMs. On the landing page level, the
timing differences in our experiment are only 17 seconds on average.
However, the timing differences on subpage level are 3min (SD:
7min). When visiting a page, each browser logs all HTTP requests
and responses and stores them in a central database. We wait until
a page has finished loading or a timeout of 30 seconds is reached,
close the browser, and move on to the next page.

4.2 Replicability of Measurements
We highlight the impact of individual criteria based on four exam-
ples and explore them along two dimensions: (1) Web tracking and
(2) usage of Content Security Policies by a page.

4.2.1 Method To compare the results of the 24 profiles, we use the
Jaccard index.For each page, we have a set of observed trackers and
CSPs (i.e., 24 sets). The Jaccard index is used to gauge the similarity
of sets. The index computes the similarity by dividing the size of
the intersections with the size of the union of all sets. By design, the
index ranges from 0 to 1, where 1 denotes that the sets are equal and
0 indicates that they have no element in common. This allows us to
compare and quantify the differences in observed trackers on page
level across all profiles. The Jaccard index is used to compare the
similarity of two sets. Since we compare multiple sets, we compute
the pairwise similarity between all sets and use the arithmetic mean
to state the similarity for a given page.

We analyze the impact on privacy-related studies along with the
presence of trackers. More specifically, we analyze which tracking
requests are observable when visiting a page. To identify them, we
use the tracking filter list EasyList (as off 07/05/2021) [20]), which
we provide in the supplementary data of this work (see Section A).
If an observed URL is present on the list, we consider it to be a
tracking request. Furthermore, we use the eTLD+1 part of these
URLs to identify trackers, in terms of domain names.
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Figure 2: Observed tracking requests and trackers by profile.

To get a better understanding of the impact of different mea-
surement setups for security studies, we analyze the presence of
Content Security Policies (CSP). CSPs help to mitigate specific attack
vectors on the Web (e.g., XSS attacks). They are implemented by an
HTTP header that contains different directives that define sources
from which content may be loaded. We analyze differences in CSPs
by inspecting the used CSP directives and all attributes within a
directive. We omit all variable attributes (e.g., nonces) in the anal-
ysis since they change by design. Furthermore, we compare the
semantic effect of a directive (i.e., ordering is ignored).

4.2.2 General Measurement Overview Our total website corpus
consists of 10k distinct sites and we found 182,586 subpages on
those sites, including the landing pages. Across all profiles, we suc-
cessfully visited 4.5M pages on 8,883 sites. The sites that could not
be crawled are not meant to be visited by a human (e.g., link short-
eners, content delivery networks, or ad networks). The resulting
database has a size of roughly 1.1 TB, which is openly available
(see Section A). On average, each profile visited 179,404 pages (SD:
6,947; max: 186,972; min: 158,691). In our analysis, we only consider
pages for which we observed at least 17 successful crawls across the
24 profiles. Hence, roughly 70% of the profiles have to visit a page
so that we consider it. Furthermore, this guarantees that at least
one profile in each category successfully crawled a page. 178,452
(92%) of the analyzed pages fall into this category. Note that 134,120
(75%) of pages were successfully crawled by all profiles.

Figure 2 provides an overview of the number of observed track-
ing requests and trackers (eTLD+1) for each page by profile. Gener-
ally, we see that Firefox profiles are tracked more than their Chrome
counterparts. Furthermore, profiles in the US are tracked more than
profiles from other regions. Finally, user interaction seems to have
a significant effect in terms of tracking, while running browsers in
headless mode makes only little difference. More details about our
results are presented in the following sections.

4.2.3 Impact of Different Browsers (C5) First, we study the impact
of the four browsers that we analyzed (i.e., Firefox, Firefox headless,
Chrome, and Chrome headless) in terms of their impact on track-
ing. Regarding HTTP requests, we see that Chrome-based profiles
make on average 2% (SD: 18.5%) more HTTP requests than Firefox-
based profiles. Furthermore, we see that every 10th (SD: 1.5, min: 7,
max: 12) HTTP request is a tracking request. We observed that for
Chrome, every 10th HTTP request is a tracking request, while for
Firefox it is every 9th. Overall, we identified for all Firefox profiles
12% more tracking requests than for the Chrome profiles. Only for
four out of the 12 Chrome profiles, we could detect more trackers
than for the respective Firefox profiles. However, on average, we
identified 3.9 (SD:8.6) distinct trackers (eTLD+1) per page for the
Firefox profiles and 3.9 (SD:8.1, min: 0, max: 68) distinct trackers for

538



Reproducibility and Replicability of Web Measurement Studies WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

the Chrome profiles.Hence, the number of distinct tracking domains
stays similar, while the volume of requests differs between the two
browsers.

We turn to the effects of when a browser is used in headless or
native (“GUI”) mode. We observed only in two of the six Chrome
headless profiles more trackers (10% per page) than in their coun-
terparts. Overall, the headless Chrome profiles only contained 3%
fewer trackers. When we run Firefox in headless mode, we noted
almost reversed results. For four out of six Firefox Headless pro-
files, we could detect 5% more trackers than native Firefox profiles.
Across all of these profiles, we see marginal differences regarding
the number of trackers when we run browsers in headless mode.
This is in contrast to previous work that has shown the importance
of this feature [4]. However, in some of the profiles, we observe
substantial differences, which indicates that the outcome of an ex-
periment is not determined by the used browser mode exclusively.
Moreover, different combinations of design choices mutually affect
the results, highlighting the need for proper documentation.

Across all pages, the mean Jaccard similarity in observed distinct
trackers for browsers Chrome and Firefox is 0.59 (SD: 0.32, min: 0,
max: 1). Overall, we identified only 1% more trackers for Firefox
headless profiles. However, we find a big difference in terms of
identified trackers. Across all pages, the mean Jaccard similarity in
observed distinct trackers for headless and non-headless profiles is
0.53 (SD: 0.48, min: 0, max: 1). Overall, the similarity in observed
trackers comes with a medium Jaccard similarity for this category
but with a significant standard deviation. While we observed a
perfect similarity (1) for 19% of the pages, we found no similarity (0)
for 11% of them (see also 3). This effect is magnified if we only look
at the headless and non-headless browser where we find perfect
similarity for 35% of the pages and no similarity for 34%. Hence, in
the worst case, studies that only alter the browser (or the display
mode) might find different results, depending on the analyzed pages.

The distribution of the computed Jaccard values for each page
is given in Figure 3 (black bar). Most pages (34.1%) always issue
a very similar set of trackers no matter which profile visited the
page (similarity ≥ 0.8). It is worth noting that we identified on such
pages 1.9 distinct trackers on average. These pages only contain
few trackers, but those are often present independently of the used
profile. On 45.5% of the analyzed pages, we found a medium simi-
larity (0.3 ≤ sim. < 0.8) in the observed trackers. On those pages,
we observed on average 5.2 trackers. Finally, 20.4% of the analyzed
pages show almost no similarity (< 0.3) in the observed trackers.
On those pages, we observed on average 4.0 trackers. Thus, pages
that include more trackers also include a different set of trackers
based on the used profile. In the following sections, we discuss the
impact of other criteria on the similarity in more detail.

Our results show that the number of tracking requests observed
in the Firefox-based measurements is higher than in the Chrome-
based ones. However, we did not find a statistically significant
effect that running browsers in headless mode affects the number
of observed trackers. However, we find a statistically significant
difference (p-value < 0.001) in terms of identified distinct trackers.

We now describe our security analysis regarding CSP. Overall,
we identified CSPs on 17.596 pages (10%). Compared to tracking
analysis, we find very high similarity for CSPs. We find that on
16.355 pages (93%) the identified CSP headers are semantically
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Figure 3: Similarity of trackers on page level by profiles.

identical. Hence, overall we get a Jaccard similarity of roughly .97.
However, on the pages that served different CSPs (1.063), the mean
Jaccard similarity is 0.68 (SD:0.25). Furthermore, we did not find
that any profile had a significant impact on this phenomenon. This
result is expectable since some of our features cannot be detected
when the website is visited (e.g., user interaction) and, thus, cannot
impact the results. Due to the low impact of our profiles on served
CPSs, we dropped the CSP analysis in the other section because we
found comparable results. Future work could analyze the impact of
different browser profiles on more variable security features.

4.2.4 Impact of Simulated User Interaction (C10) Regarding sim-
ulating user interactions, our analysis shows that interaction on
pages causes a sharp increase in HTTP traffic (on average by 20%)
while the number of tracking requests increases by 35%. Hence,
the amount of tracking requests increases disproportional with the
number of all observed requests. For profiles with interaction, we
observed on average 7.2 (SD: 8.8) distinct trackers (eTLD+1) per
page and for the other profiles 6.7 (SD: 8.3). Thus, these high-level
figures already indicate that the choice to simulate user interac-
tion impacts the results of a study. When analyzing Chrome and
Firefox separately, we see statistically significant (p-value < 0.001)
differences. This again indicates that the effect of a single criterion
cannot straightforwardly be attributed but that they jointly impact
the results. For Chrome we find on average 6% (SD: 10%, min: -9%,
max: 14%) ) more HTTP requests whenwe perform interactions and,
surprisingly, we see an average increase of 36% (SD: 6%, min: 29%,
max: 43%) for the Firefox profiles. Of these requests we see that for
Chrome 5.6% are tracking requests. For Firefox we see that 73% (SD:
21%, min: 43%, max: 92%) of these request are used to track users.
This difference might be an artifact of our measurement framework
and should be analyzed in future work in more detail.

Across all pages, the mean Jaccard similarity in observed distinct
trackers for profiles with interaction and non-interaction is 0.67
(SD: 0.28 min: 0, max: 1). These results fit the observation that the
number of observed trackers (eTLD+1) does not increase by a lot
by user interaction. If the number of trackers stays similar, one
can expect that the set of trackers per page stays similar. Almost
half of all pages (47%) show a high similarity of more than 0.8 (see
also Figure 3), which also indicates this trend. However, for a third
(33%) of all pages, we find a similarity of 0.5 or less. This shows that
while the overall similarity is quite substantial for a non-negligible
number of pages, the results differ considerably.

4.2.5 Impact of Different Locations (C12) In this section, we want
to analyze the regional effects of an experiment. On average, we
see that profiles from the USA are tracked most in terms of distinct
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Figure 4: Fluctuation in the number of tracking requests and
domains for each day in the long running experiment.

trackers (eTLD+1) on a page (6.93; SD: 8.5), followed by Japan (5.6;
SD: 6.39), and EU profiles (4.49; SD: 5.42). These results propagate
to the number of observed tracking requests.

Across all pages, the mean Jaccard similarity in observed distinct
trackers for the profiles in the different regions is 0.62 (SD: 0.30
min: 0, max: 1). In terms of the analyzed criterion, the location
has a significant effect on tracking and has only a limited effect
on the difference in observed trackers. Half of all analyzed pages
(50%) show a similarity of 0.7 or more (see Figure 3), and only
29% of the pages show a similarity of 0.4 or less—which should be
accounted for in an experiment. This is in line with previous work
that found that only a few online advertising companies altered
their business model due to privacy regulations (e.g., withdrawing
from the European market) [56]. Overall, we note that privacy
measurements and analyses can vary up to 65% depending on the
region (e.g., due to different legislation). Thus, our analysis finds
that the region plays a crucial role in privacy measurements. These
findings are consistent with previous work [55, 56].

4.2.6 Impact of Multiple Measurements (C4) Finally, we want to as-
sess the temporal effects for measurement studies. In the following,
we look at the absolute number of identified tracking requests and
the number of observed distinct tracking domains (eTLD+1). Fig. 4
shows the result of this analysis. Over twelve days, we saw a varia-
tion of up to 27% (max on day 3–80,274; min on day 9–58,951) in
observed tracking requests. The standard deviation of such requests
is 8,203. However, the number of distinct tracking domains remains
almost stable during the experiment (variation of 3.5%). Our results
suggest that depending on the day of each measurement, the num-
ber of tracking attempts—in terms of tracking request—frequently
varies, but the companies (domains) that are active in the ecosys-
tem remain stable. Thus, studies that analyze the ecosystem will
find similar results, while studies that aim to analyze the extent
of a tracking phenomenon might see different results based on
the measurement day. In terms of replicability and reproducibility,
this is challenging since even the same setup measures different
levels of tracking on different days, which might lead to different
conclusions of a study. Our results show how important repeated
measurements are to draw more robust conclusions.

5 Related Work
Recently different works, similar to our measurement study, fo-
cused on the comparability of various crawling tools used in Web
measurement studies. Most recently, Jueckstock et al. [34] com-
pared how different measurement tools and setups affect the results

of a study. Similarly to us, they used other locations and browser
modes to perform the measurement. In their study, the authors
focus on “request/traffic volumes”, JavaScript libraries loaded, and
known ad/tracking domains loaded. Ahmad et al. [4] presented a
survey on tools used in Web measurements and performed an ex-
periment to compare the outcomes of these tools. In their study, the
authors compare metrics like request/response sizes or used cipher
suits. Both works find, similar to our results, that different crawlers
impact the results of an experiment. Cassel et al. found that mo-
bile browsers receive fewer tracking-and-advertising requests than
desktop browsers in a comparative study [14]. In contrast to our
work, they focus on tracking and show differences between mobile
and stationary devices. Similar to our approach to systematize and
evaluate our community’s researcher methods, other studies were
performed by various authors in different domains [6, 8, 36, 48, 52].
Our work focuses on a different research object than the named
studies, namely the Web.

6 Ethics & Limitations
One limitation of our measurement is that—for scaling reasons—the
site visits are not fully synchronized. We argue that this limitation
will have minor influence on the results of our study, as the site
visits still happenwithin a small timewindow (mean time difference
is 3min). We thus assume that sites will still hold similar content.
The experiment design comes with the limitation that our crawler
does not interact with websites as an actual human would, which is
probably impossible in an automated fashion.From an ethical point
of view, our crawler creates traffic on the visited websites that could
be omitted and save resources, and we might see ads that might
drain the budget of the advertising company. Since our crawler only
visits each page once (once a day for the long-running experiment),
we argue that these issues are minor and can be accepted.Our
survey comes with limitations. There are more conferences than
the analyzed venues. However, we decided to focus on them because
(1) works published there go through a very competitive process,
which is meant to increase the quality of the published work, and
(2) we argue that analyzing 117 papers provides a sample set that
is large enough to make qualified assertions.

7 Conclusion
Our survey shows that Web-based measurement studies often do
not sufficiently document their experimental setup. As an example,
the used crawler or its configuration are frequently not described
in detail. This results in a lack of reproducibility in practice. To help
mitigate this in the future, we have developed a set of best practices
and 18 criteria for designing and conducting Web measurement
studies. In a large-scale measurement with multiple crawling pro-
files, we demonstrate that minor adjustments to the crawling tech-
nology (e.g., browser type or mimicking user interaction) may lead
to significant differences in the results. We show that inadvertently
documented experiments reduce the chances that researchers can
reliably reproduce the results. More importantly, replicability and
comparability of individual works cannot be universally assumed. A
takeaway from this is that we as a community need to find ways to
perform more robust Web measurements to draw reproducible and
replicable conclusions from the conducted experiments. We hope
that our results improve the situation and spark a vivid discussion.
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A Availability of Data & Code Artifacts

To foster future research, we release our code, measurement data,
and other supplementary information openly online at: https://
github.com/awareseven/Reproducibility-and-Replicability-of-Web-
Measurement-Studies

B Individual Criterion Analysis

The results of the analysis for each of our 18 criteria are given in
Table 2. Roughly 40% of the criteria have been satisfied, 7% were
not properly documented, 50% were omitted, and 2% were not
applicable to a paper. The decision if a criterion is (fully) satisfied
is not always binary. Especially the distinction between “N/A” and
“omit” is sometimes not straightforward. For example, for C12, we
rated LePochat et al.’s work, which builds the Tranco list [38], with
“N/A”. We have done so because the geolocation has no impact on
the work (i.e., it does not matter from which location one reads
the toplist). An example for a more complex process is C13, where
we rated the work of Matte et al., where they analyze whether the
choice of cookie banners is respected [42]. We decided on “N/A”
because the study focuses on the respect of choice, and not whether
or how the respect is treated in different contexts.

C Experimental Setup

To measure the impact of different experimental setups, we built a
pipeline that enables us to compare measurement results based on
different setups. To allow comparability, parallel page visits across
all defined profiles are essential. Our measurement setup consists
of different virtual machines (VMs) orchestrated by a “commander”
to organize parallel page visits. For all VMs, we use Ubuntu 20.04
as operating system and do not pass the GPU to them, which can
impact fingerprinting scripts [1]. Each of the worker VMs conducts
the measurement according to a specific profile (see C5–C10 below).

As an initial step, the commander assembles the set of URLs
that should be visited during the experiment based on the heuristic
described in C1 and C2 (see below). For our experiment, this had
happened on 06/24/2021, three days before we started the mea-
surement. At the beginning of the measurement, the commander
starts one VM for each of the 24 browser profiles. The VMs will
query the commander for batches of sites (n = 10) to analyze. All
VMs receive an identical list of sites and pages, such that all VMS
conduct measurements in the same order, starting with the site’s
landing page. Once all managed VMs are ready to start their mea-
surements, the commander issues a signal to start the experiment as
stateless coordinated crawls of the provided URLs. Each VM starts
10 browsers (one for each site) in parallel using the defined profile.
Once the analysis of a page is finished, the same browser instance
is moving to the next page of the site. Once the results have been
stored, the VM will query for the next batch of URLs and wait until
the commander tells all VMs to start the analysis. To conduct this
large-scale measurement and to host the virtual machines with
the necessary resources, we use a server which is equipped with
256GB RAM, a AMD 7542, 2.90GHz CPU with 32 cores, and a 10
Gbps network interface. We supplied each VM with 10GB RAM,
five CPUs, and 40GB of hard disc space to cache the results before
sending them to the commander.

C.1 Dataset

C1 In our analysis, we use the Tranco list generated on 06/23/2021,
which is available at https://tranco-list.eu/list/ZGPG/15000 [38].
We use the top 10k sites to build our website dataset.
C2 Tranco lists only contain sites (eTLD+1). Therefore, we used the
following heuristic to identify the landing page by defining a proto-
col to use. We used four prefixes (http[s]://[www.], starting with
the https variants) and test if the resulting URL is reachable. If so,
we added the first identified site to our corpus. Once we determined
the seed URLs for our crawl, we visited each of them and randomly
chose up to 25 first-party links (recursively if necessary), which
we used for our measurement run. Selecting subsites is essential
since they often show a different behavior compared to the landing
pages [7, 55]. To avoid incorporating duplicated URLs, we always
ignore each identified link’s anchor part and omit links that could
result in redirects (e.g., links including http:// in the path).
C3 Wemake the list of pages and sites openly available (see App. A).
C4 For our continuous measurement, we visit the top 1k sites from
our website corpus (18,377 distinct pages) daily (starting at mid-
night) throughout our experiment (from 07/08/2021 to 07/19/2021).

C.2 Experimental Design

C5 We use four different browser types (Chrome, Chrome headless,
Firefox, Firefox headless) in our study. We use the popular Open-
WPM Framework [21] (v0.15.0 – Firefox version 88) to perform the
Firefox-based measurements and Chromium [24] to perform the
Chrome-based measurements, respectively.
C6 Regarding adjustments to OpenWPM, we built a wrapper that
feeds the pages to visit and which extracts the measurement re-
sults. Hence, the wrapper does not affect the functionality of the
framework. Regarding changes to OpenWPM, we use two custom
commands provided by the framework (1) for logging visits and
(2) to simulate “user interaction” (see C10). Regarding flexible op-
tions of the framework, we used the native display mode, which
enables the GUI browser and disable it for the the headless mode.
Otherwise, we used the standard configuration of the platform. For
our Chrome setup, we aim to use setups similar to other studies [4].
Hence, we utilize Selenium [54] to build our Chrome-based crawler
(version: 91). When implementing the crawler and page visiting
strategy, we oriented at the parameters used in OpenWPM to allow
more realistic comparison (e.g., each page visit is done in a new
tab or waiting for resources to be loaded). To conduct the headless
crawl, we pass the headless argument to Selenium.
C7 Aside the named adjustments, we did not extend the browsers.
C8 To disguise our crawler, we modified the standard Selenium
parameters based on the findings of Jonker et al., who empiri-
cally studied which techniques are used in practice to detect such
crawlers [33] (e.g., changing the user agent). Otherwise, we imple-
mented simulated user interaction (see C10).
C9 We make the used framework publicly available (see App. A).
C10 We use two approaches to simulate user interaction: (1) no
interaction (“none”) and (2) mimicking artificial user interaction
(“user interaction”). Thus, for (1) we do not interact with the website
at all. In profile (2), once the browser loads the page, we wait for 30
seconds or until the page finished loading and then simulate three
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Table 2: Overview of our survey’s results.

ID N/A Omit Undoc. Sat. Interpretation

D
at
as
et

C1 0% 3% 32% 64% A third of the analyzed papers did not document which sites they analyzed, which makes an reproduction of
the results nearly impossible.

C2 0% 73% 5% 22% The vast majority (73%) of works omit or do not document which pages they analyzed. However, not all
pages on a same site show the same behavior [13, 55].

C3 0% 32% 13% 56% The documentation which pages are analyzed is somewhat balanced. The works that did not document or
omitted this step (62%) presumably analyzed the landing page of a site.

C4 1% 62% 3% 33% Nearly two-thirds of the papers use a single snapshot to analyze a phenomenon. If research checks for a
certain behavior (e.g., a vulnerability), temporal trends should be included.

Ex
pe

ri
m
en

ta
lD

es
ig
n

C5 2% 31% 10% 57% Approx. two-fifth of the papers completely omit or do not document the crawler properly, which is a problem
because the used crawled has an direct impact on the produces results [4].

C6 3% 50% 8% 40% The majority of the papers (60%) of the papers do not state, which adjustments they made to the crawler
configuration. This has a negative impact on reproducibility of the results since one cannot rebuild the setup.

C7 6% 60% 5% 29% Only Two-fifth of the analyzed papers do state whether they developed an extension or if they extended the
crawler at all. The impact on the reproducibility is similar to C6.

C8 3% 88% 0% 9% The majority of papers do not state which approaches (if any) were taken to evade bot detection. Not taking
any action to avoid detection can impact the results significantly [34, 55].

C9 6% 67% 1% 29% Almost a third of the analyzed papers make their crawler available. This is making reproducibility harder,
does not allow comparison to previous work, and also contradicts open science.

C10 4% 67% 4% 25% Only roughly a third of the papers took steps how they mimicked user interaction. Similarly to the used
crawling strategy (C11) user interaction verifiable impact the outcomes of results [55].

C11 3% 41% 12% 44% More than half of the analyzed papers provided details on their crawling strategy. However, the vast majority
does not provide details on the process or omits the description. The crawling strategymight have a significant
impact on the results(e.g., visited pages [7]).

C12 2% 72% 2% 25% Most papers do not state from which location the measurement was performed. The geographical location of
a measurement is important information since the results might be impacted by for example censorship [58]
or different legislation [56].

C13 3% 70% 4% 23% A majority of papers do not state if and which adjustments they made to the used browser. Depending on
the research question already small adjustments can highly impact the results (e.g., using a headless browser
to scale up the experiment [34]).

C14 0% 14% 10% 76% Amajority of papers describes their data processing pipeline, which enables the reproducibility or replicability
of the experiment. However, 36% of the papers lack that type of information.

Ev
al
ua

ti
on

C15 0% 74% 3% 24% More than two out of three papers do not provide raw measurement results. Not providing these results
makes the reproducibility of the results harder.

C16 0% 1% 1% 98% Nearly all papers describe the outcome of the measurement on a higher level and provide general results.
This is an expectable result.

C17 0% 35% 2% 63% Most papers provide a limitations section, but more than one-third do not discuss limitations.Providing
details on limitations is not only good scientific practice but also important to assess the results of a study.

C18 0% 64% 1% 35% Almost two-thirds of the measurement papers do not provide an ethics section. Since they focus on security
& privacy issues the ethics of each experiment should be discussed [10].

page down keystrokes followed by three Tab keystrokes, and finally
an end keystroke with minimal periods of delay in between.
C11 When visiting a page, wewait until a page has finished loading,
close the browser, andmove on to the next page.We use a timeout of
30 seconds for each page visit (standard configuration ofOpenWPM),
after which the visit will be terminated (e.g., to avoid slow websites).
C12 We choose three geolocations for our measurement: (1) Ger-
many (EU), (2) Japan (AS), and (3) the United States (NA).We choose
these continents since the majority of the analyzed papers focuses
on them. To simulate the geolocations, we used ProtonVPN [50].
C13 We altered browsers resolution to 1366x768 and the user agents
to Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/ 91.0.4472.77 Safari/537.36 for Chrome and Mozilla/5.0

(X11; Linux x86_64; rv:88.0) Gecko/20100101 Firefox/88.0 for Firefox.

C14 For OpenWPM, after crawling a site, our wrapper (described
in C6) extracts the HTTP traffic from the database provided by
OpenWPM. The Chrome-based crawlers collect the HTTP traffic
with the help of selenium-wire [35]. The results of themeasurements
are pushed into a Google BigQuery database [23].

C.3 Evaluation
C15 Our (raw) results are publicly available (see App. A).
C16 We elaborate on our findings in Sec. 4.2.
C17 & C18 We discuss limitations and ethics in Sec. 6.
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