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With the long-term goal of studying models of quantum gravity in the lab, we propose
holographic teleportation protocols that can be readily executed in table-top experiments.
These protocols exhibit similar behavior to that seen in the recent traversable wormhole
constructions of [, 2]]: information that is scrambled into one half of an entangled system
will, following a weak coupling between the two halves, unscramble into the other half. We
introduce the concept of teleportation by size to capture how the physics of operator-size
growth naturally leads to information transmission. The transmission of a signal through a
semi-classical holographic wormhole corresponds to a rather special property of the operator-
size distribution we call size winding. For more general systems (which may not have a
clean emergent geometry), we argue that imperfect size winding is a generalization of the
traversable wormhole phenomenon. In addition, a form of signaling continues to function
at high temperature and at large times for generic chaotic systems, even though it does not
correspond to a signal going through a geometrical wormhole, but rather to an interference
effect involving macroscopically different emergent geometries. Finally, we outline imple-
mentations feasible with current technology in two experimental platforms: Rydberg atom
arrays and trapped ions.
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I. INTRODUCTION

In the quest to understand the quantum nature of spacetime and gravity, a key difficulty is the
lack of contact with experiment. Since gravity is so weak, directly probing quantum gravity means
going to experimentally infeasible energy scales. However, a consequence of the holographic
principle [4,15] and its concrete realization in the AdS/CFT correspondence [6-8] (see also [9]) is
that non-gravitational systems with sufficient entanglement may exhibit phenomena characteristic
of quantum gravity. This suggests that we may be able to use table-top physics experiments to
probe theories of quantum gravity indirectly. Indeed, the technology for the control of complex
quantum many-body systems is advancing rapidly, and we appear to be at the dawn of a new era in
physics—the study of quantum gravity in the lab.

One of the goals of this paper is to discuss one way in which quantum gravity can make contact
with experiment. We will focus on a surprising communication phenomenon. We will examine a
particular entangled state—one that could actually be made in an atomic physics lab—and consider
the fate of a message inserted into the system in a certain way. Since the system is chaotic, the
message is soon dissolved amongst the constituent parts of the system. The surprise is what happens
next. After a period in which the message seems thoroughly scrambled with the rest of the state, the
message then abruptly unscrambles, and recoheres at a point far away from where it was originally
inserted. The signal has unexpectedly refocused, without it being at all obvious what it was that
acted as the lens.

One way to describe this phenomenon is just to brute-force use the Schrodinger equation. But
what makes this phenomenon so intriguing is that it has a much simpler explanation, albeit a
simple explanation that arises from an unexpected direction [[1]. If we imagine the initial entangled
quantum state consists of two entangled black holes, then there is a natural explanation for why
the message reappears—it traveled through a wormhole connecting the two black holes! This is a
phenomenon that one could prospectively realize in the lab that has as its most compact explanation
a story involving emergent spacetime dimensions.

An analogy may be helpful. Consider two people having a conversation, or as a physicist might
describe it “exchanging information using sound waves”. From the point of view of molecular
dynamics, it is remarkable that they can communicate at all. The room might contain 10?” or more
molecules with a given molecule experiencing a collision every 10~1% or so. In such a system, it is
effectively impossible to follow the complete dynamics: the butterfly effect implies that a computer
would need roughly 103" additional bits of precision every time it propagated the full state of the
system for one more second. Communication is possible despite the chaos because the system
nevertheless possesses emergent collective modes—sound waves—which behave in an orderly
fashion.

Our second goal is understanding the emergence of collective gravitational behavior—in a
simple scenario—with the language of quantum information science. When quantum effects are
important, complex patterns of entanglement can give rise to qualitatively new kinds of emergent
collective phenomena. One extreme example of this kind of emergence is precisely the holographic
generation of spacetime and gravity from entanglement, complexity, and chaos. In such situations,
new physical structures become possible, including wormholes that connect distant regions of
spacetime. And like the physics of sound in the chaotic atmosphere of the room, the physics of
these wormholes points the way to a general class of quantum communication procedures which
would otherwise appear utterly mysterious.

The experimental study of such situations therefore offers a path toward a deeper understanding
of quantum gravity. For instance, by probing stringy corrections to the gravitational description, a
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Figure 1. The circuits considered in this paper, with Hy, = H }g. Downward arrows indicate acting with the
inverse of the time-evolution operator. In both protocols, the goal is to transmit information from the left to
the right. The (a) state transfer protocol calls for us to discard the left message qubits (Ay) and replace
them with our message W;,. The output state on the right then defines a channel applied to the input state.
The (b) operator transfer protocol calls for the operator O to be applied to A7. Based on the choice of
operator, the output state on the right is modified, similar to a perturbation-response experiment.

sophisticated experiment of this type could even provide an alternative handle on the mathematics of
string theory. Another motivation for this work is that many randomized Hamiltonian systems (such
as the Sachdev-Ye-Kitaev (SYK) model or certain random matrix models) possess gravitational
duals. Because these model are inherently not fine tuned, their quantum simulations could in
principle be easier than many other applications of quantum computers. Therefore, we believe that
quantum experiments simulating such quantum systems have greater potential to be usefully run on
near term quantum devices than most other applications that require high accuracy and fine tuning.

A companion paper [3] to this article, by the same authors, provides additional technical details,
examples, and further discussion of the physics of holographic teleportation.

A. The Quantum Circuit

In this paper, we will consider the quantum circuits shown in Fig. [Tl These circuits, which
as we will see in Sec. [[V|may be readily created in a laboratory, exhibit the strange recoherence
phenomenon we have described.

The circuits act on a 2n-qubit state. The qubits are divided into n qubits on the left, and n
qubits on the right, subject to Hamiltonians H and H” respectively, which are assumed to be
scrambling [10} [11]]. The left and right qubits are initially entangled in the “thermofield double”
(TFD) state,

ITFD) = e PP B, ® |E)) g, (1)

1
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where (3 is the inverse temperature, H |E;) = E; |E};), and the bar indicates complex conjugation.
We then further partition the systems, labelling m < n of the qubits on each side the ‘message’
qubits, and the remaining n — m qubits the ‘carrier’ qubits.

Step one is to bury the message in the left system. First, we evolve all the left qubits ‘backward
in time’ by acting with the inverse of the time-evolution operator, e*”*~, Next, we insert the message
into the message subsystem of the left qubits. Figure[I[a) shows one way to do this—we just throw
the existing m qubits away, and replace them with our m-qubit message ¥;,. Figure[I(b) shows
another way to do this—keep the m qubits around but act on them with an operator O. Next, we
evolve the left system ‘forward in time’ using e~*7*z_ This forward evolution rapidly scrambles the
message amongst the n left qubits.

The next step is to couple the left and right qubits by acting with

1
exp (tgV where V' = zlzk
p(g )7 n_mi€car§qubitsz b
and where Z; := (o,);. This operation couples each of the left carrier qubits to its mirror image on
the rightﬂ Finally, we evolve all n of the right qubits ‘forward in time’ using e ~*/'%,

It is at this stage that a surprising phenomenon occurs for ¢z ~ t;. In the case of state transfer,
Figure [I(a), the message, so carefully buried on the left, may reappear on the right. In the case
of operator transfer, Figure [I(b), the action of the operator, so carefully hidden on the left, may
become manifest again on the right. The surprise is not that it is information-theoretically possible
to recover the message on the right—after all, we coupled the left and right systems with eV
Instead, the surprise is one of complexity rather than information theory—with the right parameters,
we don’t need to decode anything, the message just presents itself refocused on the right. It is
not at all obvious how the message made it, and the most surprising fact of all is that the simplest
explanation lies in the physics of black holes.

B. Quantum Circuits as Wormholes

Holography has taught us to think of gravity and spacetime as dual descriptions of non-
gravitational quantum systems. In other words, there are chaotic quantum systems, that when
looked at differently, can be equivalently described by some type of quantum spacetime with
gravity. We tend to call the non-gravitational dual the boundary, and the gravitational dual the
bulk. In a bulk/boundary system, there are phenomena that are more natural in the gravitational
bulk side —those are signatures of the existence of a bulk dual—and phenomena that have natural
explanations on the boundary. In this paper and [3]], our goal is to propose experiments that can be
performed on a non-gravitational (boundary) system, which can detect phenomena characteristic of
a gravitational dual. Such experiments would enable us to search for signs of the existence of a
bulk gravitation dual for non-gravitational quantum systems, and would pave the way to quantum
simulations which provide a greater understanding of quantum spacetime.

The AdS/CFT duality is a correspondence between gravitational systems in Anti-de Sitter
(AdS) spacetimes and non-gravitational quantum conformal field theories (CFT). A CFT in the
thermofield-double state of Eq. (I)) would be dual to the two-sided eternal black hole shown in
Fig.[2] Such black holes are called ‘two-sided’ because they feature two asymptotic r = oo regions

! The separation into carrier and message qubits is done solely to clarify our exposition; our results do not change so
long as the coupling V' acts on sufficiently many qubits (see [2].)
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Figure 2. Penrose diagram of wormholes. Left: Without the coupling, a message or particle inserted at early
times on the left passes through the left horizon, and hits the singularity (the top line of the diagram). Right:
In the presence of the left-right coupling, the message hits the negative energy shockwave (the thick blue line)
created by the coupling. The effect of the collision is to rescue the message from behind the right horizon.

connected by a wormhole. A pair of observers who jump in from each side may meet before they
hit the singularity, but the wormhole is not “traversable” since it is not possible to send a signal
from the left asymptotic region all the way to the right asymptotic region.

However, in [[1] it was shown how to render such wormholes traversable. A suitably chosen
direct coupling between the two sides, which ordinarily do not interact, produces a negative energy
shockwave. Negative energy shockwaves impart a time advance to whatever they encounter, and so
can rescue a signal that would otherwise be lost to the singularity (Fig. [2)).

It is this gravitational scattering process that the circuit in Figure [1| mimics, although the
interpretation of the process as traversing a wormhole is not valid in general (see Sec. [[II). From
the gravity perspective, the thermofield double state is used because it exhibits strong left-right
correlations (due to the wormhole) that permit negative energy injection. The backward/forward
time evolution on the left corresponds to injecting a message in the past on the left. The left-right
coupling is the analog of the negative energy shockwave. Finally, the subsequent forward evolution
on the right corresponds to allowing the message to travel out to the right boundary where it emerges
unscrambled. This process has been called holographic teleportatio through the wormhole, for
which the bulk description is relatively clear. A description of this process in terms of the boundary
dynamics has previously been elusive; in this paper, we seek to explain the process from the
boundary perspective.

2 A note on terminology. ‘Quantum teleportation’ [12] refers to using pre-existing entanglement together with classical

communication to send a quantum message. If we can do the state-transfer protocol, then we can certainly teleport

in the following way [2]]. Instead of acting with ’9", one can simply measure all the left carrier qubits in the z-basis,

send the classical measurement outcomes z; € {—1, 1} over to the right-hand side, and act by e9 i #i% £/ (n=—m)

on
the right carrier qubits. This protocol would teleport the message qubits to the right system. It works because the V'

coupling is classical, i.e., it acts on the left system through a set of commuting operators.



C. Summary of Results

In this paper we identify two distinct mechanisms by which the circuit in Fig. [ can teleport:

1. High temperature, low capacity teleportation. Holds for times larger than the scrambling time.
This mechanism is unexpected from gravity and does not correspond to signals traversing a
geometric wormhole. This mechanism only requires that the system dynamics are scrambling,
and it is, therefore, applicable to a wide variety of chaotic systems (e.g., random Hamiltonian
evolutions, chaotic spin systems, etc.) We also outline experimental proposals for realizing
this form of teleportation.

2. Low temperature, high capacity teleportation. Applies near the scrambling time. This regime
corresponds to teleportation through the wormhole, and it applies to Hamiltonians that
have a holographic dual. To understand this mechanism, we introduce the notion of size
winding, which is an ansatz for the thermal operator near the scrambling time. We explicitly
demonstrate size winding in the SYK model, one of the few simple models that are known to
have gravitational duals. We thus propose size winding as a general diagnostic of signals
traversing a wormhole.

D. Organization of the paper

In Sec.[[I} we study the circuit of Fig. [I[Jusing quantum mechanics, without assuming a holo-
graphic dual. We introduce the notion of teleportation by size, we study both mechanisms of
teleportation, and we provide general formulas for the fidelity of teleportation. In Sec. [[II| we
explain how, in the context of a system with a clean holographic dual, size winding has a direct
interpretation in terms of momentum wavefunctions of bulk particles in some appropriate time
regime, while in other regimes it need not have a description in terms of particles traversing
semiclassical geometrical wormholes. In Sec. [[V|we discuss concrete experimental realizations of
teleportation by size. The appendices contain proofs of our technical results.

E. Related work

Other studies of information transfer through traversable wormholes and related notions in-
clude [13H17]. In particular, one small-scale experiment with trapped ions has already been carried
out [18]] based on [19, 20]. This experiment implemented a probabilistic protocol and a determin-
istic Grover-like protocol [19]. In the deterministic case, the circuit in [18]] can be related to our
Fig.[I[(a) if we specialize to infinite temperature, push the backward time evolution through the
thermofield double, and replace V' by a projector onto a Bell pair.

II. TELEPORTATION BY SIZE

We base most of our analysis in this paper on size distributions and operator growth, notions
heavily studied in connection to holography [21-23] and many-body physics [24-26]—hence the
term teleportation by size. In Sec. we discuss the state transfer protocol. We will see that state
transfer can be done for very generic chaotic quantum systems — even at infinite temperature. This
is the first mechanism of teleportation. In Sec. we introduce a property of size distributions,



called size winding, which we use to explain the second mechanism of teleportation. Size winding
gives a clean mechanism for operator transfer that abstracts the way geometrical wormholes work
at the level of the boundary theory (we discuss the latter in Sec. [l1I| below). In Sec. we present
general bounds on the fidelity of teleportation.

A. Mechanism 1: State Transfer by Size-Dependent Phase

In this section, we focus on the first mechanism, mentioned above. We study a toy model of state
transfer, and we will see that the phenomenon is quite generic. Consider the 2m-qubit message
system H,, ® Ha, (see Fig. , and a unitary operator S = Sy, 4, that satisfies

S|Py = e9'IPl|P) | for all m-qubit Paulis P. 2)

We show in Appendix [B|that S maps W3, ® 7, with ¥y, an m-qubit initial input state and 7 = I /2™
the maximally-mixed state, to

o i= Tra, [S(Vy, @ 7)ST] = YOAT™ (W,) Y™, (3)

after tracing out the left subsystem, where A, is the single qubit depolarizing channel A, (p) :=
(1 =X)7+4 Ap,and A = (1 — cos(¢’))/2. In pictures,

Left: Ay { Right: Ag Left: A { Right: Ag
Wout
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¥in T

For ¢’ = = the state transfer is perfect, whereas for ¢’ = 0 no signal is sent.
As we show in Fig. [3| it is natural to look at the e’V coupling between the L and R Hilbert
spaces “sandwiched” with time evolutions:

|:€+iHLt ® e—’iHRt] 6igV |:6—’iHLt R 6+’iHRt:| ) (4)

For many systems of interest, the net effect of the sandwiched coupling on the message subsystems
H 4, ® Hay, is nothing but to approximately implement the unitary S (defined in Eq. (2))). In this
way, these systems can achieve high-fidelity state transfer.

The simplest case to analyze is when the time evolution U = e is described by a Haar
random unitary. In this case, the average of the sandwiched coupling in Eq. () is given by

et + cos(g/k)F (I — ¢t ) ~ Yot + (I — dfp). (5)

up to corrections of order O(4™"). By projecting the carrier qubits onto a maximally entangled
state, we thus find that the average of the operator S = S, Ay defined in Fig. 3 (c) over the unltary
group is given by et AL AR + (I — ¢ A, AR) When m = 1, this agrees exactly with Eq. (2)), up

—1HRt ;

to a global phase. In fact, a random instance of S is close to its average S with high probability.
For Haar random unitaries, we show this in very strong terms — these operators are exponentially
close (in n) to each other in the operator norm, with a probability that is exponentially close (in
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Figure 3. (a): Infinite-temperature holographic teleportation circuit, with U = e~**, (b): An equivalent
circuit to (a) after circuit manipulations. (¢): Result of replacing the trace by projecting the carrier qubits
onto |¢™). When the teleportation has high fidelity, this projection has a negligible effect on the final state.
For many systems of interest, the operator S enclosed in the dashed rectangle approximately implements the
unitary defined in Eq. (2)) for some appropriate ¢'.

n) to 1. See Appendix for a proof. In contrast, when m > 1 then the average of S no longer
coincides with Eq. (2). Rather, the sandwiched coupling Eq. (3] acts by applying a constant phase
on |¢T) A, A, and as the identity on all other states in message Hilbert space. This simple operation
can be employed to send one qubit, but changing the sign of one state is not a powerful enough
operation to send multiple qubits (see Appendix E] In fact, no matter what the encoder does at
time —t to the system Ay, (i.e., acting by a generic channel on Ay, which includes the state transfer,
operator transfer, and many other protocols), the Holevo information of the full quantum channel
from left to right is highly limited. In Appendix [C 3] we show that it is not possible to send more
than 3 classical bits, and, consequently, 3 qubits in this way. Moreover, we believe that this bound
is a conservative one.

The preceding results hold more generally for 2-designs (which are commonly associated with
scrambling and chaos) and can therefore be thought of as modeling the late time behavior of
scrambling many-body systems. In [3]], we study a variety of other systems in detail, including time
evolution with random nonlocal Hamiltonians (GUE or GOE ensembles), 2-local Brownian circuits,
and spin chains. We show that, at very large times, all models demonstrate the same behavior, but
at intermediate times different systems have different physics.

3 Note that our results agree with the observations of [2] that at late times in the traversable wormhole setup, the
commutator of left and right boundary operators acquires an imaginary part, indicating some transmission of
information. In [2], the authors observed that at late times the signal should be proportional to sin g, while our
calculations indicate a signal proportional to 1 — cos(g). This apparent contradiction is resolved in Appendix
in which we derive an explicit formula for the output state upon acting by a generic quantum channel on Aj.
Specifically, in [2] it is assumed that one acts on A;, using €*°©, for which we can see from the generic channel
in Appendixthat the response of W, is proportional to sin(g), consistent with [2][Eq. (2.20)].



10

B. Mechanism 2: Size Winding

Consider an observable O and its transpose (in the computational basis) O acting at time —¢
on the left Hilbert space. Using the definition of the TFD state, this can be expressed as:

1

57301 (=) [TED) 1y = (0 *)rOR(1) [6) 1 (©)

where O(t) = e'OQe=#t ps = e PH(tre=PH)~1 is the thermal state, and |¢") denotes the
maximally entangled state. The application of O (—t) should be contrasted with the action of
Or(t) directly on the thermofield double state:

—3OR(t) [TFD) , = On(®)(p ) |6%) 11 )

2n
. . . : 1/2
Importantly, the only difference between Eqgs. (@) and (7)) is the order of insertion of p/~ and O(t).

Now, expand the operator p;/ 2O(t) in the Pauli basis as 27"/2" , ¢p P, where the sum runs over

all n-qubit Paulisﬂ Write | P| for the size of an n-qubit Pauli operator, i.e., the number of terms not
equal to an identity operator. We define the winding size distribution:

q(l) =) ch. (8)

|P|=l

The winding size distribution is in contrast to the definition of the conventional size distribution, for

which the sum is over the square of the absolute value of cp. (See [23] for a proper treatment of

fermionic systems.) The conventional size distribution and the winding size distribution coincide

for § = 0, for which p;/ 2O(t) is a Hermitian operator and has real expansion coefficients, cp € R.
Size winding, in its perfect form, is the following ansatz for the operator wavefunction:

1/2 1 ialP|/n
pﬁ O(t) = W Z € TPP, rp € R.
P is an n-qubit Pauli
The key part of this definition is that the coefficients in the size basis acquire an imaginary phase
that is linear in the size of the operators. If we define |P), , := Pr|¢™); 5 and assume perfect size

winding, then we conclude from the discussion above that

Of (—t) |TFD) = » " e™"/mrp | P), 9)

-
Og(t) |TFD) =Y " e P/mrp | P) (10)
P

Thus, when expressed in the Pauli basis, the difference between the actions of Of (—t) and Og(t)
is given by the “direction” of the winding of the phases of the coefficients.

The role of the coupling €*" on a Pauli basis state | P) is very simple: it gives a phase of —2¢/k
times the number of Pauli X or Y operators acting on the carrier qubits (up to a constant phase).
For typical Pauli operators P, the latter is roughly 2/3 times the size, hence it follows that

eV |P) a2 e~ *@W/39IPl/m Py up to a constant phase,

* From now on, we suppress the subscripts L and R when there is no confusion.
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provided n > m (up to a constant phase). Under the natural hypothesis that the coefficients rp
only depend on the support of the Pauli operator P, we can similarly show that

eV OT (—t)|TFD) ~ Z eie=@/3)9)IPl/ny 1 Py up to a constant phase. (11)
P

Equation (1) illustrates how the weak coupling can transfer a signal from left to right: with a
careful choice of g, the action of the coupling unwinds the distribution in Eq. (9) and winds it in
the opposite direction to obtain Eq. (I0). This shows that the coupling maps a perturbation of the
thermal state of the left system to a perturbation of the right system. See Appendix [D]for a precise
statement and derivation of this result.

In [3], we show that the large-¢ SYK model exhibits near-perfect size winding and that near-
perfect size winding should be present in holographic systems. Indeed, this is to a large extent
nothing but a translation of existing results on two-point functions for traversable wormholes [2, 23]
in the language of size, as we discuss in Sec. [[TIl We will also see that more general size winding,
i.e., a size-dependent phase in (/) that is not necessarily linear in the size, exists in systems without
geometric duals. In fact, we study non-local random Hamiltonian evolution analytically and show
that they can weakly transmit a small amount of information in this fashion. See Fig. [ for a
summary of size winding in different scenarios.

C. General Bounds on the Fidelity

In this section, we present general bounds on the entanglement fidelity of the state transfer
protocol at arbitrary times and temperatures (Fig. (I} (a)). For a quantum channel C,4_, 4, the
entanglement fidelity [27] is given by the overlap between the output and input state when the
input is a maximally entangled state between A and an environment £ of the same dimension:
F = /(¢ 45Caa(0} ) |¢1) - Importantly, F lower bounds the average fidelity of the
channel over random inputs |¥) ,,i.e., F' < Ey), F(¥4,C(¥4)). Motivated by Eq. , we take
the channel C to be the composition of the state transfer protocol with a tensor product of Pauli-Y
operators serving as the decoding channel.

Consider a Pauli operator of initial size [,. We assume that Pauli operators with the same initial
size [y have the same generic operator growth, and we denote by ¢;, the corresponding winding size
distribution (defined as in Eq. (§))). The central object in our bounds is the Fourier transform of the
size distribution, which, for g%, gm < n, is equal to the left-right two-point function:

Go(9) =Y q, (e 95" x 79 (TFD| Og(t)e'" OF (—t) |TFD) . (12)
=0

This is proved in Appendix [E| The fidelity is a difficult quantity to evaluate directly, yet one can
still provide strong bounds on the fidelity in terms of the simpler quantity F, defined to be

Fy= Y IN/4™ (=1 '@lg)

=0

,  where N, = (7)3" (13)

We show the following bounds on the entanglement fidelity in terms of F:

m

Fy S FSF+ ) (N/A™Y1—alg))? (14)
=0
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Figure 4. A short summary of teleportation by size, discussing different systems, different patterns of
operator growth, and consequence of each growth pattern for signal transmission. Blue: Initial operator-size
distribution. Red: Winding size distribution of the time-evolved operator.

For local Hamiltonian evolutions, and in a variety of time regimes, [, can be a good estimate of [
as the error term on the right-hand side of Eq. (I4) will be small. Under the assumption that the
thermal state has a narrow size distribution, we can also show that

1
Fgl-(1-F). (15)

See Appendix [F for proofs. These relations allow us to rigorously bound the entanglement fidelity
for various random Hamiltonian and spin chain models in several parameter regimes.

As an example, we can use Eq. (I4) to confirm that random unitary time evolution at infinite
temperature should teleport a single qubit as shown in Sec. At 5 =0, qpis peaked at [ = 0
for all times. However, O(t) = UTOU is a completely random combination of Pauli strings, and
thus its size distribution is peaked at [ = (3/4)n. Hence, Go(g) = 1, and ¢1(g) ~ e~ %. Thus,
F, =13e7"9/4 — 1/4] = \/1/4 + 3/4(1 — cos(g))/2. Furthermore, since |¢| = 1, we have that
F, = F from Eq. (T4). Therefore, the channel can teleport with perfect fidelity when g = 7.




13

III. THE HOLOGRAPHIC INTERPRETATION

The analogy between Figs. [[]and [2]is very suggestive, and now we will return to the question
of whether the geometric picture is a faithful representation of the physics. In other words, when
can we claim that a message was sent through an emergent geometry? The teleportation-by-size
mechanism we have introduced generalizes the traversable wormhole, and persists even in cases
where a fully classical wormhole is not the appropriate description. In fact, we will see that even in
the holographic setting, at very large times the teleportation-by-size paradigm remains valid even
when the description in terms of a single semi-classical geometry breaks down.

A. Size and momentum

The growth of the size of an operator is a basic manifestation of chaos, and is related to a particle
falling towards a black hole horizon [23, 28, 29]]. In the context of SYK, or Nearly AdS, holography,
the bulk interpretation of size is particularly sharp [22]], which we now review. In the traversable
wormhole, the particle crossing the negative-energy shockwave experiences a (null) translation.
The shockwave can therefore be interpreted as the generator of this translation, otherwise known as
(null) momentum. The shockwave is a direct consequence of the interaction between the two sides,
which in the SYK model is simply the “size” operator. Thus, the size operator is simply related to
null momentum [2, 3, 22].

A more precise argument based on [22]] can also be given; a detailed version will appear in [3]].
Readers unfamiliar with Nearly AdS, may jump to the next section. The starting point is that for
states close to the thermofield double, the operators defined by

B=Hp—H,, E=H;+Hp+uV—E, (16)

have a simple geometrical action as a Lorentz boost B, and as global time translation £ [30]. Here
V is a sum of operators on both sides V = 3>  OFOZF; in the SYK model, the simplest choice
would be to take V o< iy W-fﬁz to be the size operator. The value of 1 and Ej should be tuned
so that the TFD is an approximate ground state of £, see [30]. It is then natural to consider the
combinations

1
Py = —§(EiB). 17)
For our purposes, the important point is that gia*Px generate a null shift By choosing the right

sign of a®, we can shift the particle backwards so that it traverses the wormhole. Now notice that
—P,. =Hgp+pV/2, —P_=Hp+pV/2 (18)

The remarkable feature of this formula is that the action of Py is exceedingly simple on the left/right
Hilbert space (equivalently, on one-sided operators), since we can ignore H, or Hp. For operators
on the left (right) side, the amount of P, (P_) momentum inserted is just given by the size, up to
some normalization.

This in turn implies that the size wavefunction of a one-sided operator O (e.g., the components
of O in a basis of operators organized by size) is dual to the momentum-space wavefunction of the

> Said more precisely, these generators act as left/right Poincare symmetry generators, which are null shifts at the edge
of the Poincare patch.



14

particle created by O. The Fourier transform of the momentum wavefunction is then related to the
“position” of the particle in the bulk, where “position” here means the AdS, coordinate conjugate to
null momentum. Furthermore, the action of the two-sided coupling ¢*"" in the traversable wormhole
protocol simply shifts the position of the particle, allowing the particle to potentially exit the black
hole.

The upshot is that in a holographic setting, we can clearly see that the winding of the size
distribution is related to the location of the particle, e.g., whether the particle is inside or outside
of the black hole horizon. The case of imperfect winding can be seen as a generalization of the
situation where a good geometric dual exists, though the geometric intuition may still prove useful
even in that case.

B. Superpositions of Geometries at Large Times

For times much larger than the scrambling time, the evolution of any chaotic system becomes
random. In this regime, a few bits of information can still be transmitted by the coupling. But the
interpretation of this signal is not that the particle goes through a semi-classical wormhole, even
if the quantum system is in a parameter regime (e.g., large N and strong coupling) where a clean
semi-classical description is possible. The reason is the butterfly effect: at large times, a small
perturbation (putting in the particle) can destroy any correlations between the two sides that would
have existed without the perturbation. The strength of the negative energy shockwave in the bulk is
directly proportional to the amount of correlation between the two sides; at very large times, the
correlation is simply too weak to shift the particle out of the horizon. Nevertheless, there is another
effect [2]] involving the interference of two macroscopically different states (or bulk geometries)
that allows for information transfer that we will now explain.

Consider the insertion of a message at time —t¢ on the left system using the unitary operator
Up = % ~ 1+ i5¢LE] At time ¢t = 0 we let the left and right systems interact, so that the
state is |®) = 9V U, (—t) |TFD). We know that the action of ¢V depends on the size of the
state on which it acts. The key fact is that the operator ¢, (—t), for large ¢, is a totally random
operator. Therefore, its size is equal to that of a random operator, which is nearly maximal. So
¢V acts simply as a relative phase 6 ~ 1 between |TFD) and ¢1(—t) |TFD). We can think of
it as a phase-shift gate. Then |®) = |TFD) + ice'’¢; (—t) |TFD). This state is a superposition
of two vastly different geometries: one is an empty wormhole, given by the state | TFD), while
¢1(—t) |TFD) contains an energetic particle with a significant backreaction on the geometry.

A simple way to record the receipt of the message is to compute the change of the expectation
value of ¢p(t):

<(I)’ ¢R(t) ’q)> - <¢R<t)>therm = 2¢ Sin(99)<¢R¢L>therm- (19)

See [2, 31] for similar calculations. Clearly, this scenario does not have the interpretation of a
classically traversable wormhole. In fact, there is not much geometry left in the description at all.
This scenario is contrasted with the situation at shorter times, where we have access to multiple
eigenvalues of €9 and the momentum-size correspondence has a clear geometric meaning. In all
cases, the dynamics of the phase in the size distribution gives the right description of the physics,
but there is a transition from a classical to a quantum picture.

© The small-¢ approximation is not necessary for the conclusions of this section. See [31]].
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C. Wormhole Tomography and Other Future Directions

There are a number of interesting future directions for investigation. We have focused on two
regimes, one relatively short (slightly before the scrambling time) where the particle classical
traverses, and the long time effect, which involves interference. This of course does not exhaust
the list of non-geometric effects; for example, stringy effects can play an important role at finite
coupling, when the string scale is not parametrically suppressed [2]. We have started to explore this
in the analytically-tractable playground of the large-g SYK model at finite 5.7 [3].

One might wonder whether it is really possible to operationally distinguish whether the informa-
tion went “through” the wormhole, or not. We propose the following criteria: if the black hole is in
a state where there is a diary behind both horizons, a protocol which involves teleportation “through”
the wormhole should be sensitive to what is in the diary. In other words, if Bob claims that he went
through a wormhole to get to Alice, we can ask him to prove it by giving some description of what
was inside the black hole. If we send multiple observers through, they should share information
about the interior that is consistent with each other.

In the classically-traversable case, one can imagine therefore engaging in “wormhole tomogra-
phy,” where the contents of the wormhole interior (as determined by some non-TFD initial state)
are probed experimentally by state transfer experiments; the signal exiting the wormhole will be
modified in some way by the particular geometry of the wormhole and the presence or absence of
any matter.

We analyze size winding in the SYK model in [3]], but there are still some open questions about
the details of the state transfer protocol in the case where it corresponds to a through-the-wormhole
process. Rather than simply swapping a physical qubit with the message qubit, as we have advocated
here, one wants to swap the message qubit with a logical qubit that represents, say, the polarization
states of an emergent bulk photon. The key fact about this distinction is that the logical subspace
for the encoding has fixed bulk energy, so the gravitational backreaction does not depend on the
message. This is one way to avoid superpositions of macroscopically different geometries. There is
no obstruction preventing us from carrying out this task in principle, and it might be instructive to
actually do it. The problem is one of engineering, and a more complicated model like N' = 4 super
Yang-Mills theory might be required in order to have the necessary ingredients.

IV. EXPERIMENTAL REALIZATION

As discussed above, this work concerns a whole family of protocols, all of which are interesting
to study experimentally for the light they would shed on entanglement, chaos, and holography.
For example, if the system under study has a simple dual holographic description, such as the
SYK model [[32-39] or certain supersymmetric gauge theories, the experiments described here can
directly probe traversable wormholes. More generally, these experiments probe communication
phenomena inspired by and related to the traversable wormhole phenomenon in holographic models.
The key ingredients are as follows.

First, one must be able to prepare a thermofield double state associated with /. This means
preparing a special entangled state of two copies of the physical system, the left and right systems.
At infinite temperature, the thermofield double state is just a collection of Bell pairs between left and
right (or the appropriate fermionic version). For general Hamiltonians and non-infinite temperature,
there is no known procedure to prepare the thermofield double state. However, there are recently
proposed approximate methods that are applicable to systems of interest including the SYK model
and various spin chains [40-42]].
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Second, one must be able to effectively evolve forward and backward in time with the system
Hamiltonian . More precisely, we require the ability to evolve forward and backward with H; =
H on the left system and the ability to evolve forward with the CPT conjugate of H, Hr = H”,
on the right system. Given a fully controlled fault-tolerant quantum computer and a Trotterized
approximation of e~*, it is in principle no more challenging to implement e*!* (backward
evolution) than it is to implement e ~*#* (forward evolution). However, implementing forward and
backward time evolution in a specialized quantum simulator requires specific capabilities. In the
context of measurements of out-of-time-order correlators, various techniques have been developed
to achieve this level of control, at least approximately [18, 20, 43-50].

Third, one must be able to apply the weak left-right coupling given by the V' operator. More
precisely, it must be possible to generate the unitary eV, This coupling must be applied suddenly,
in between the other time-evolution segments of the circuit.

Fourth, one must be able to apply local control operations, including deleting and inserting
qubits, performing local unitary operations, and making local measurements in a general basis.
This requires some degree of individual qubit addressability, although in the simplest cases one
only needs to single out a small number of qubits.

Given these capabilities, the general protocols in Fig. |I{can be carried out. For concreteness, the
remainder of this section will focus on the case of the insertion/deletion protocol, Fig. [[(a). To give
an example, consider the deletion/insertion protocol at infinite temperature when g = m, all times
involved are large, n is very large, and m = 1. In this case, Vo, = Y V;,Y with perfect fidelity.

A. Rydberg atom arrays

One platform where such phenomena could be studied is Rydberg atom arrays. In one imple-
mentation [31]], information is encoded in a pair of levels in 8"Rb, a ground state |g) and a Rydberg
state |r), such that the effective Hamiltonian can be written in a spin-chain form as

Qi — 4y
H:Z?Xi+ZAiI 2Z +iZVij(1_Zi)([_Zj)a

1<j

where Z; = |g;Xg:| — |ri)(r;| and X; = |g:)}(ri| + |r:)}gi], 2 and A; are tunable field parameters,
and Vj; is the van der Waals interaction between the atoms.

In terms of capabilities listed above, preparation of an infinite-temperature thermofield double
state (i.e., Bell pairs) has already been achieved using Rydberg atoms [52]. For finite temperatures,
the approximate methods discussed above could also be applied to this setup. One can engineer
the requisite backwards time evolution in various ways. One possibility is to work in the blockade
regime, in which the effective dynamics takes place in a constrained Hilbert space and is governed
just by the fields €2 and A. These parameters can be reversed with echo pulse sequences and so
forward and backward evolution is possible. Below we will also discuss a different Floquet scheme.
The left/right coupling V' = ﬁ >, ZFZE is also feasible in a Rydberg system, and is already
needed to prepare the Bell states. Finally, local addressing is possible and localized readout has
been demonstrated [51]].

One particularly interesting system to consider is a Floquet version of the Rydberg Hamiltonian
known as the kicked quantum Ising model. Although experiments here are naturally restricted to
infinite temperature because of heating, the driving is interesting because it can enhance chaos and
aid in the problem of backward and forward time evolution. Consider, for example, the kicked
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Figure 5. Expectation value of Z1 g after injection of Z1;, = 1 state on the left system. Black dots are direct
numerical simulation of the protocol in the quantum kicked Ising model with n = 7 spins on the left and
right and with J = b = 7 /4 and h; drawn from a box distribution of width .5. Left: Signal at fixed large
time as a function of g. The black circles are the exact numerical simulation. The red curve is the theory
prediction in Eq. (20). Right: Signal at fixed g as a function of time step. The black circles are the exact
numerical simulation. The red curve is a crude approximation where we assume Eq. (20) holds at all times
with the effective system size replaced as n — min(t + 1,n).

quantum Ising model of Prosen et al. [S3]], in which the time evolution for one time step is given by
U=UxU;

where
Uk = exp (inXZ)
and
U; = exp <2JZ ZiZi +1) hiZZ) .

The parameters of the model are J, b, and the set of local fields h;. Remarkably, if J = b = /4
and h; are drawn uniformly at random from a Gaussian distribution with variance o, then the model
is in a sense maximally chaotic (albeit not in the out-of-time-order correlator sense). For example,
the entanglement entropy of subsystems grows as rapidly as possible when starting from a product
state [S3]. We note that a hyperfine encoding for qubits (instead of directly using the Rydberg level)
might be useful for this kind of gate-like time dynamics [52].

This kicked model is particularly appealing because the infinite-temperature thermofield double
state is easier to prepare and because it allows easier control over the evolution. This relative ease
is due to the fact that the spectra of >, X; and ) . Z; 7, are integer, so that one has, for example,
U (b+27) = Uk(b). Thus, backward evolution corresponds to Ug () ™! = U (—b) = Uk (2m—0),
so one can achieve backward time evolution by over-evolving in the forward direction. This covers
the transverse field and interaction terms; the longitudinal field terms can be dealt with using a
standard echo sequence. One important point is that if the left evolution for one time step is U, then
the right evolution for one time step must be U7 = U;Uj (note the reverse ordering of the pulsed
terms, which are individually symmetric).
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In Fig.[5] we show an exact numerical simulation of the experimental protocol for n = 7 atoms
on the left and right. We inject a pure state with eigenvalue Z;;, = 1 into the first qubit on the
left. Then, as a more experimentally accessible stand-in for the full fidelity, we show the result of
measuring the expectation value of Z; ; on the right. The black dots are the exact simulation and
the red curves are obtained from our theory calculations. In particular, for a system with n atoms
and left-right coupling ¢ at large time, the prediction for the expectation value is

)"‘1 — (cos #)nfl + cosg. 20)

(Zir)g = (cos g 5

n—1

As can be seen from the left panel of Fig.[5] the theory prediction perfectly fits the exact simulation
data in the kicked quantum Ising model.

B. Trapped ions

While the Rydberg atom arrays just discussed have a natural spatial structure to their interactions,
it is also quite interesting to consider systems which can support few-body but geometrically non-
local interactions. One such system is an ion trap quantum processor, e.g. [54], a version of which
has already been used to study a wormhole-inspired protocol [18]. By driving vibrational modes
of an ionic crystal, one can engineer a rich pattern of all-to-all interactions [S5]. Such systems
are interesting because they mimic the structure of the SYK model and other matrix models that
exhibit low-energy dynamics governed by a simple gravitational effective theory. One can again
consider analog or digital versions of the platform, and in the digital case all the needed capabilities
are present. Particularly interesting is a recent small-scale preparation of approximate thermofield
double states on such a digital trapped ion quantum processor [S6]].

V. CLOSING REMARKS

We have discussed two candidate systems, but many other platforms should be able to realize
the physics discussed here. In our companion paper [3l], we study a wide variety of models,
including spin chains, random circuits, random Hamiltonians, and the SYK model, and some of
these would be more naturally suited to other platforms, for example, proposals to realized SYK in
simulators [57, 58] or on digital devices [59, 60].

In closing, let us highlight some of the conceptual and practical issues that will be faced in any
experimental effort along the lines we discuss here. On the practical side, one key question is the
impact of noise and experimental imperfections on our protocols, especially imperfect time-reversal
due to over- or under-evolution and effects of environmental decoherence. Preliminary simulations
indicate that the basic physics can still be seen when imperfections are below the 5% level for
modest system size and time, but much more study is needed in the context of particular platforms.
This general class of observables does exhibit some forms of resilience [61]. Another crucial
question is how well the thermofield double state must be prepared to see the physics we discuss.

On the conceptual side, we must ask what we ultimately hope to learn about nature from such
experiments. We emphasized above that the infinite-temperature large-time example does not
correspond to geometrical motion through a semi-classical wormhole. For one thing, only a single
qubit can be teleported with high fidelity in the high-temperature limit, but with the right encoding
of information many qubits can be sent at low temperature and intermediate time in a holographic
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system hosting a traversable wormhole. Instead, the infinite-temperature example probes a physical
effect common to all chaotic quantum systems with many degrees of freedom, including quantum
gravitational systems.

From these considerations, it should be clear that measuring a successful teleportation signal for
a single qubit is not enough to guarantee a semi-classical traversable wormhole in the bulk. One
needs additional conditions that can be tested within the framework discussed here by varying the
time ¢, the coupling g, and the way input information is encoded. Hence, while one long-term goal
of such experiments is to detect and study wormholes arising holographically in highly entangled
systems, there are other goals. More generally, the purpose is to shed light on deep and theoretically
challenging questions about nature, including the necessary conditions to have a semi-classical bulk
and the effects of quantum and stringy corrections to the semi-classical gravity picture. Thus, we
believe the experiments described here are worth the effort to realize the long-term potential for
experimental insight into quantum gravity.
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Appendix A: Preliminaries on Pauli operators

In this section we review the algebra of n-qubit Pauli operators and recall some useful identities.
Consider the Hilbert space (C?)®" of an n qubit system. For any integer vector v = (p, q) € Z*"
we can define a corresponding Pauli operator (also known as Weyl operator) by

P, =i Pazn X0 ...Q 7P X (A1)

The Pauli operators P, for v € {0, 1}*" form a basis of the space of n-qubit operators. However,
we caution that P, depends on v modulo 4 and is well-defined modulo 2 only up to a sign. Namely,

Pyiow = (—D)VVP,, (A2)

where [+, -] is the ‘symplectic form” defined by [(p, q), (p’,q')] = p-q — q - p’. Using this form,
the commutation relation of the Pauli operators can be succinctly written as

P,P, = (-1)"¥P,P,
and multiplication is given by
PPy =i Py, (A3)

where the addition v + w in P, must be carried out modulo 4 and can only be reduced to the
range {0, 1} by carefully applying Eq. . Finally, we note that the transpose of a Pauli operator
is given by

P} = (=1)P9P,, (A4)
since transposing only impacts the Y operators.

With these facts in mind, let us discuss the size of Pauli operators. The size (or weight) of a
Pauli operator P = P,, which we denote by |P| = |v|, is defined as the number of single-qubit
Paulis in Eq. (AI) that are not proportional to an identity operator. The locations of those Pauli
operators are called the support of P, which is a subset of {1,...,n}. If v € {0, 1}?" then the size
of P, can be calculated as p- p + q-q — p - q, where the last term ensures we do not double count
the Y operators. Using the properties above, we arrive at an identity which holds for all v € Z*"
and will frequently be used:

yenplyen = (—p)ppraapl’ = (—1)I™p, (AS)

Appendix B: Proof of Eq. (3)

In this section, we derive the formula for the teleportation-by-size channel. Clearly it suffices to
prove Eq. (3) for m = 1, since both the left-hand and the right-hand side are tensor power channels.
Thus we need to show that if S = S4, 4, is the two-qubit unitary that acts as

S|P) = el | p)
for all single-qubit Paulis P then we have that

Tra, [S(p®7)ST] = YAL(p)Y (B1)
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for any single-qubit state p, where 7 = I/2 is the maximally mixed state, A, is the single-qubit
depolarizing channel A, (p) = (1 — A\)7 + Ap, and A = (1 — cos(g))/2.
To verify Eq. (BI)), note that we can write

S:¢++6ig ([—¢+) :ez‘g (]_{_(e—ig_1)¢+>’

where ¢ = |¢*)¢*| denotes the projector onto the maximally entangled state |¢+) = |I) =
(|00) + [11))/+/2. Thus,

(e79 —1)(e" — 1)
4
Ly 2D

S(penSt=per+ (-1 (p@7)+ (- 1)(p@ 1) + ¢

6_7/9 —

1
=p®T+ oI ®p") + ¢t

using the transpose trick, and hence

e —1 e9—1 5 (e —1)(e"—1)

Tra, [S(p®7)ST) =7+ A | T

=1+ N7 =" =1 =T+ AYpY =YAy\(p)Y,

since, for qubits, p” = I — Y pY'. This proves Eq. (B1) and, hence, Eq. (3).

Appendix C: Random unitary time evolution

In this section we establish our technical results for a random unitary time evolution, which
were discussed in Sec. [[TAl

1. Proof of Eq. (5) and concentration

We first compute the average “sandwiched” coupling in Eq. (@) in case the time evolution is
given by a random unitary, that is,

MLR :EUMLRa where MLR = (UL@UR)QZQV(UE(X)U};)

Consider the partial transpose MLT]% of My r on the right subsystem. Using the invariance property
of the Haar measure, one can see that for every unitary V/,

(Vi @ VR)M}E = MIE(V, ® V).

By Schur-Weyl duality, any operator that commutes with all matrices of the form V®" is in the
span of the permutations of r replicas of the system. Here, we have » = 2, and there exist only two
permutations: the identity and the flip operator. Hence, we have:

(Mpg)™® = o'I g + ' Fpr, for some o/ and /3.

Now, note that (I z)"® = I g and (FLgr)™ x ¢f . By taking another partial transpose of the
above equation we get:

Mg = alpg + Bois.
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To determine the coefficients o and 3, we compute the following traces:
4"a + B = Tr(Mpg) = Tr(e") = 4" cos(g/k)*,
a+p=Tr(Mpg QSJLFR) = Tr(eigv(bj{R) = e,
Therefore:

o= cos(g/k)" — 47" = cos(g/k)* +0(4™)

1—4-—"
ig _ k)* .
5= Y _ o cos(g /)t + 0(7)
Therefore, we obtain:
Mg = cos(g/k)* (ILr — ¢1p) + €991 + O(47") (C1)

up to corrections of order O(4~"™). This establishes Eq. (5) in the main text.
We now consider the projection of the “sandwiched” coupling onto a maximally entangled state
on the carrier qubits, that is,

gALAR = <¢+’BLBR (UL ® UR)eigV(Ug ® sz) |¢+>BLBR : (C2)

Clearly,

E(SALAR) = <¢+|BLBR, Mg |¢+>BLBR,
We now prove that Sa . Ap concentrates around its average. There are many different ways to prove
this, such as by computing the variance directly or using the fact that if the average of a number of
unitaries is close to a unitary, then the distribution must be peaked near its average. Here, we chose
to use a slightly more technical approach employing Levy’s lemma. This has the benefit of giving

a generalizable proof technique with stronger bounds. Levy’s lemma for the unitary group [62,
Corollary 4.4.28] states that if a function f: U(2") — R is A-Lipschitz, meaning that

[fU) = V) < AU = Vg forallU,V € U(2"),

then

2
Pr(|f(U) ~Bf(U)] 2 ¢) < 2exp(-2"3). (C4)
We will first bound the matrix elements of M 1.r. For this, consider the function
fu:U@Y) =R, fa(U) = (U|Mpp|¥) = (¥|(UL @ Ug)e”" (U ® UL)|W)
for any fixed pure state |¥). We have
[fa(U) = fo(V)| < (UL @ U)e®” (UL @ UL) — (VL @ VR)e (Vi @ V) lop
< (UL @ Ur)e (UL @ UL) — (U, @ Up)e?” (UL @ Vi) lop
+ (UL @ Ug)e® (UL @ V) — (UL @ Ur)e” (Vi @ Vi) llop
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+ (UL @ Ur)e (V] @ Vi) = (UL @ Ve)e (V@ V) lop
+HI(TL @ Ve)e (VI @ Vi) = (VL @ Ve)e (V! @ V) [lop
= 1€V (UL, = VD) llop + 169" (UL = V)llop

+(Ur = Va)e Nlop + (T = Vi) [lop

< AU = Vop <4|U = V||p.

Thus, fy is 4-Lipschitz and Eq. (C4) shows that

2

Pr(|fu(U) ~Efu(U)| = €) < 2exp(-2"1). (C5)

This result implies very strong concentration of all the individual matrix elements of M, but we
would like to prove concentration of the whole matrix S4, 4,, in the operator norm. For this we use
the existence of small e-nets. Namely, it is known that there exists a set A/ of at most (5/¢)2*4"
many pure states in the 4™-dimensional A; ® Apg satisfying the following property [63]:

For every pure state U 4, 4., there exists @ALAR € N such that ||\IIALAR—@ALAR||H <e

Now,

HgALAR - E(SALAR)HOP = max Tr \IIALAR<‘§ALAR - E(SALAR))

Y 1 Ap pure
If Uy LAy, is the element of the net NV closest to some Wy, 4,, in trace norm then

Tr \IJALAR(S’ALAR - E(gALAR))
< T Wy (Saran = E(Saa0) + 1Waa0 = Cayanlill Saran = E(Sara0) oo
<Tr \IJALAR(SALAR - E(SALAR)) +2e
= f\iJALAR®¢§LBR(U> - ]Ef\i’ALAR(XJd?ELBR (U) +2

Therefore,

15,0, = B(Sapap)llop < max  fo, \ oop , (U) =Efa, \ eop , (U)+2

Va,Ap€

Therefore:

Pr (1184, — B(Sa, 40 o = 3¢)
cot, . (D) Z)

< Pr(H\DALAR eN: ’f‘i/ALAR®¢ELBR (U) N ]Ef\iIALAR
2

E n < 2"€2> 2 (22m+11 > 2"5)
- exp(—2"—) =2ex og——2"—).
=2\z P\T* 64 P & T %6

where the second inequality follows from Eq. (C5) and the union bound. This shows that for
n > m the operator S, 4, is with very high probability very close to its mean.
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2. Sending many qubits: The transpose depolarizing channel

In Appendix we computed the effective coupling between the left and right-hand side
message subsystems. Using Eq. (C3)), one can see that for n >> m the net effect of the teleportation
protocol is with high probability given by the following formula, up to O(4~") corrections:

P T+ %sin(g/Q)2 <7’ — pT>, (C6)
where d = 2™ and 7 = I/d denotes the maximally mixed state. We can interpret T as noise,
(1 — p?) as the signal, and the factor (4/d?) sin(g/2)? as the strength of the signal. The latter attains
its maximum 4/d? only for g = 7 (mod 27).

For a single qubit, and only in this case, high fidelity teleportation is possible. Indeed, for d = 2
the channel

p=TH(T=ph)=1-p" =YY,

is unitary (cf. Eq. ), while for d > 2 the signal is suppressed by 4/d* < 4/9.

There another reason that shows that reliably transmitting more than one qubit by the single
use of a channel of the above form is impossible. The mapping p — 7 + (7 — p’) is not a valid
quantum channel for d > 2. In fact, the mapping

pr7+a(t—ph)
is completely positive (and hence a valid quantum channel) if and only if —1/(d + 1) < a <
1/(d—1). The channel in Eq. is an example of the class of transpose depolarizing channels [64],

which were originally studied as examples of channels where the minimal output entropy is
additive [64), 65].

3. General teleportation channel at infinite temperature

So far, we considered teleportation protocols where the m message qubits Ay, are replaced by the
state that is to be teleported. Here we will show that even when using a very general communication
protocol there are fundamental limitations, and even when we only wish to communicate classical
bits. Specifically, we will consider a protocol where one applies one out of several arbitrary quantum
channels to Ay, (one for each possible message).

Let us first study the effect of applying a single quantum channel A/ on the message system Ay
In this case, the output state on system A, is given by the following circuit diagram:

] A A |
dU B Br ut L
elgv elgv
Trg,. B, > < B,
T 17 T U
Ul vl U |a al U, L

It is known that one can always write a quantum channel as the following process: (1) add an
environment system in a fixed quantum state, (2) evolve the environment and the system by some
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unitary, and (3) trace out the environment. This is known as the Stinespring representation. If we

represent our quantum channel in this form, N (pa,) = Trg (GALE (pa, ®10)(0]) GLLE> , we

can write:
] A Ap |
r U Bg Bg UT |
eigV eigV
Trppie _ —:BL :—BL _
uT | | | | U \la 41 UT | | | | U
G Gt
Eoyor=£

Finally, after using transpose trick we obtain the following equivalent diagram:

(O o £ —0)

v ut U |5 B| Ut U Ut
elgv > < elgV|
TrBRL B, B,
LJ 4 4, L

It is possible to compute the average output state exactly by using the above diagram using a Haar
integration similar to the above. The final result is that for any channel N, the average output state
on Ay, is given by the following formula up to O(4~") corrections:

]

paw =7 [(1=¢)(Q~ TQlr) +hec] (C7)
where @ = Try, [N’(GbLARWLAR]

Moreover, the output state is self-averaging, i.e., close to its average with high probability. One can
see that when ) is the channel that replaces a qubit by a new one in a fixed state, then the output
signal depends on g through cos(g), while when N'(pa,) = e %%p4, e *© for some Hermitian
operator O, then the signal depends on sin(g).

Next, we will show that the output state in Eq. is highly mixed. For this it is useful to
consider the Kraus representation of the channel, i.e., N'(pa L) = ZZ Eipa, Ej . Then, one can
check that

Tr B/
T 7

Consider the following matrix inequality, which holds for arbitrary x € C:

é Z(E + 2 Te[E]7) (E; + 2 Tr[E;]T) > 0.
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Since NV is trace-preserving, . EZT E; = I, and now a short calculation shows that the preceding
matrix inequality is equivalent to 7 + |z|> Tr[Q]7 > —2Q — zQT, and hence

T (14 (|2 + 2+ 2) Tr[Q]) > —2(Q — Tr[Q]) — 2(Q — Tr[Q])".
Setting z = (1 — ¢%) /2 and using Eq. (C7), we obtain

pan < 3(1+ (1= cos(g)) (#*IN(6)[¢") ) r < O ()

This is a strong constraint, since it implies that all the eigenvalues of p4,, are smaller than 9/d. This
in turn means that at least d/9 eigenvalues are nonzero. Therefore, one can send at most 9 perfectly
distinguishable states in this way.

One can also compute the Holevo information of an ensemble {p;, p; }, where each state p; is the
output state for a different choice of channel N;. Recall that the Holevo information is defined as

{pupz - szpz ZpZS(pl)

But S(> . pipi) <logd, and if p; < c7 then S (pl) > log d — log c. Accordingly, for any ensemble
of states satisfying Eq. (C8]) we can bound the Holevo information as

x({pi,pi}) <log9 =~ 3.17,

where we use the logarithm to base 2.

Appendix D: Proof of Eq. (11)

In this section, we show that the action of the weak coupling unitary e”" on the state O [¢™),
amounts to approximately a size-dependent phase under a natural assumption on the operator O.

Recall the setup in the main text: L and R are each split into an m-qubit ‘message’ subsystem A
and a k-qubit ‘carrier’ subsystem B, where m + £ = n. The two sides are coupled by the
Hamiltonian V' = £ 3. ZFZF. Tt is straightforward to see that

o 1Py = 1(275) |y,

where |P|¥ denotes the number of single-qubit Pauli X or Y operators in P that act on the
B subsystem. Therefore, we have for any operator O = 27"/2 " p cpP expanded in the Pauli basis
that

. B
¢ Or9%) 15 = O ¥ 167) L1 (D1)
where we defined
B
OWX =27 "/2 " ¢ (1-25%) L p (D2)
P
For typical Pauli operators P and n > m, it holds that L | %'P | suggesting one might be able

to replace Eq. (D2) by the following operator:

09 .— 9~ "/QZew ) epp (D3)

The following lemma shows that this is indeed Vahd under the natural assumption that the coeffi-
cients |cp|? only depend on the support of P.
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Lemma 1. Ler O = 27", cpP be an operator such that |cp|* = |cp|? for any two Pauli
operators P, P' with equal support. Then:

1 m\ 2
9% _ ) _ -

The right-hand side is negligible if [|O||r = O(1), ¢*> < k, gm < n. In this case, Eq. (D1)) also
implies that

. _
¢ Orl¢™) p~ Ol(é]) 67 g
since the Frobenius norm dominates the operator norm. This establishes Eq. (11 in the main text.

Proof. We start by expanding
HO(g)§ — O(g)H2

=27 HZC e"

= Z|Cp|2}6‘
3

< Z|CP|2‘€ig(1_2$) — i % ‘ +Z|CP‘ }619 % ) _eig(l—%%)F
3

The first term can be bounded using our assumption, as follows. Let Ep/ p denote the uniform
average over all Pauli operator P’ that have the same support as some given Pauli operator P (that
is, P/ = I if P, = I, otherwise P! is chosen independently and uniformly from {X,Y, Z}). Then:

B
S el (12255) — o (1-415) 2 =2 lerl et (G1r-1r)
P
ROy (% Dc °E
=\ % =\ % Pl lLpp
- (k) Z|CP| Varpp(|P'%) = ( ) Z| |2 |P|B— 9k Z|CP|2

where we first used using |e? — 1|> < ¢? and then the assumption. The second term can be bounded
as follows without using the assumption:

Slnffer -] - A = S (2

< (gg) Slerf ('—?—%) - (gg) Slerf (P mIPEY < (i) Serf

Since [|O||% = >_ p|cp|?, we obtain the desired result. O

9 2
|2 pye |

2
~IPIE — %
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Appendix E: Proof of Eq. (12)

For an arbitrary operator O, consider
_ i (9)
Go(g) = ¢ Tr [/%”O(t) (pE/QO(t)> } , (E1)

using the notation defined in Eq. (D3)) and O(t) = UTOU.
This quantity can be interpreted as the Fourier transform of the winding size distribution

of pl/ZO( t). Recall the latter is defined as qo (1) = Z‘P‘:l c%, where 02/20(75) =272 cpP.
Therefore

1Pl

, (9) 4 ~ 4
Go(g) = e ™ Tr [p;/QO(t) <p/13/20(t)) ] = 2021;6*195 n o= Zqo(l)e”%%
P 1=0
We wish to compare Eq. (EI) with the following two-point function
. ( )B
(TFD| Og(t)e' OF (—t) |TFD) = Tr { 20(1) (p;/ 20(75)) ! X} , (E2)

where the equality follows using |TFD) := 27/ Q(p;/ Yz |¢™), the transpose trick, and Eq. lb

Assuming the thermal operator ng/ 2O(t) satisfies the hypotheses of Lemma we can the two-point
function to Eq. (E1):

Ty {p;ﬂO(t) (PEMO(t))(g))B(] T {p;/ZO(t) <p;/20(t)>(9)} ’

< o] | (70w) ™ - (sow)”|

4 1 . (m) 2 < 4 1 . (m>2HOH2
=39\ % =39 T\ op
where we used Lemma |1 and ||p1/2 (t)||F < IO@)|lop = [|Ollop- If O is a Pauli operator,
then [|O||op = 1, hence provided that ¢* < k, gm < n we obtain
G, (9) = e (TFD| Og(t)e" OF (—t) |TFD). (E3)
This establishes Eq. in the main text.

p5*O(t)

Appendix F: Proof of Egs. (14) and (15)

In this section we prove our fidelity formulas for the state transfer protocol. Formally, the state
transfer protocol amounts to the channel

Wiy > Wou = Ty |Une'® UL F 4,0, U1 (Wip @ [TEDYTED| ) UT Fogy 0, Upe " U]

—iHpt _ (,—iHpt

Here, the time evolution is given by U = e (e )T, and we initially place the m-
qubit input state into an auxiliary Hilbert space A;,, which is then inserted into the left message
subsystem A, at time —¢ by using the swap operator F 44, (compare (Fig.[1] left).

In view of Eq. , we expect the Pauli operator Yy, := Y®™ to be a good decoding of the
message. The following lemma bounds the entanglement fidelity of the corresponding channel.
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Lemma 2. The entanglement fidelity of the channel C(V,) = Y,V 0 Ya,, is given by

)

B (<) Pu(0) (Pa0)

-

where the average is over random Pauli operators Py on A, we denote P4(t) = U tP,U, and the
notation OYX is defined in Eq. @b

Proof. By definition of the entanglement fidelity,
F? = (¢} plYa, Tra,Lp, [UReinggFAmALUL(QﬁmE ® |TEDXTFD|, ) UL Fa,a, Ure @ UL| Yauloh, ) -

Rewriting swap operator as F 4, 4, =277 ) Py PY , we get

F? = Z (0" a,m Yar Tra,Ley, [UReinggFAinALUL(¢j4_inE ® [TFDXTFD] )

v

UFFp,a,Upe " U}E} Yap [05) 4

=4m Z (0" | a Yar Tra, e, [UReiQVULTPXmPXLUL(gb;mE ® |[TFDYTFD], »)

UL Py, PY,ULe " UR]Yan 167 i

— 470" 4 PYYan Teayrie | Une'® UL PY, U1 (64, © [TFDYTFD], )

UEPXLULeiigVUJT%] YARPXIR |¢+>ARE
=167 Tr [PXRYAR Ure'® UL PY Uy |TEDXTFD|, , UL P} Upe @V ULYa, Py,

We continue using the definition of |[TFD) := 2"/ 2(/)2/ YR |¢™) > then the transpose trick, and
finally Eq. (DI)), which show that
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Thus we obtain
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after inserting YA =14, URUR = I, and using Eqs and . [
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F

We now use Lemma to derive bounds on the entanglement fidelity. By the Cauchy-Schwarz
inequality, using that Hpﬁ % = |lpsll: = 1, we obtain the following lower bound:

< F. (F1)

B (-1 T [ 2Pate) (Pa) "

Next, we give two useful upper bounds. The first one follows by a simple triangle inequality:

F=|[Er, (=)™Q]|

< |Eea (1)@ = Tl Q1o})||+ [Bry (—)P Tl Q10|
1/2 @)% '
where we denote Q = Qp, = Pa(t) (Pg Pa(t )> . Using ||Q||r = 1, the first term can be
bounded as
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while the second term equals

1/2
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= |Er, (—1) " (o} Q).
Accordingly, we obtain the upper bound

F<
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which complements Eq. (FI). A second, simple upper bound on the entanglement fidelity can be
obtained as follows:
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where the first inequality follows by upper bounding all terms by 1 except for those where P4 or P
is the identity operator. Thus we obtain the following upper bound, which is most useful for m = 1:

F<i-g (1= B0 T0nG)

) (F3)

We finally evaluate these bounds in terms of the Fourier transform of the winding size dis-

tribution. As in the main text, we assume that the winding size distribution of a thermal Pauli
operator p;‘j/ ’Pa (t) only depends on the initial size |P4| = [; accordingly, we denote the Fourier

transform by ;(g). Assuming the thermal operators satisfy the hypotheses of Lemma and ¢* < k,
gm < n, we have

~ . (9%
o) = T [ Rae) (o2at0)

(see Egs. (ET) to (E3)). Thus, the quantity I, defined in Eq. (I3)) in the main text can be computed
as

Fy = |Ep, (=1)"1gp, (9)] ~

B, (-1 T [ Pa) (52 Pa0) "] |

Thus the lower bound in Eq. (FI)) and the upper bound in Eq. (F2) become

m

Fy S FSFi+ ) (N4 —alg))*

=0

This proves Eq. (I4). At last, we evaluate Eq. under the assumption that the width of the size
distribution of the thermal state is small and of order \/n. (This is a common feature, with the
important exception of completely nonlocal random Hamiltonian evoluations (GUE/GOE).) In this
case, Q; = (p;ﬂ)(g) is close to ,0}3/2, up to a global phase, hence Tr[QpQJH x qp|(g), again up to a
global phase, and we obtain the following bound:

1 ) 1
FRl-1 (1= |Ep, (=1)"4lgp,(9)]) =1 - am (1= F0).

This establishes Eq. (15).
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