
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

Oops... Code Execution and Content Spoofing:
The First Comprehensive Analysis of

OpenDocument Signatures
Simon Rohlmann, Christian Mainka, Vladislav Mladenov,

and Jörg Schwenk, Ruhr University Bochum
https://www.usenix.org/conference/usenixsecurity22/presentation/rohlmann

Oops. . . Code Execution and Content Spoofing:
The First Comprehensive Analysis of OpenDocument Signatures

Simon Rohlmann
Ruhr University Bochum

Christian Mainka
Ruhr University Bochum

Vladislav Mladenov
Ruhr University Bochum

Jörg Schwenk
Ruhr University Bochum

Abstract
OpenDocument is one of the major standards for inter-
operable office documents. Supported by office suites like
Apache OpenOffice, LibreOffice, and Microsoft Office, the
OpenDocument Format (ODF) is available for text process-
ing, spreadsheets, and presentations on all major desktop and
mobile operating systems.

When it comes to governmental and business use cases,
OpenDocument signatures can protect the integrity of a doc-
ument’s content, for example, for contracts, amendments, or
bills. Moreover OpenDocument signatures also protect docu-
ment’s macros. Since the risks of using macros in documents
is well-known, modern office applications only enable their
execution if a trusted entity signs the macro code. Thus, the
security of ODF documents often depends on the correct
signature verification.

In this paper, we conduct the first comprehensive analy-
sis of OpenDocument signatures and reveal numerous severe
threats. We identified five new attacks and evaluated them
against 16 office applications on Windows, macOS, Linux,
iOS, Android, and two online services. Our investigation re-
vealed 12 out of 18 applications to be vulnerable for macro
code execution, although the application only executes macros
signed by trusted entities. For 17 of 18 applications, we could
spoof the content in a signed ODF document while keeping
the signature valid and trusted. Finally, we showed that at-
tackers possessing a signed ODF could alter and forge the
signature creation time in 16 of 18 applications.

Our research was acknowledged by Microsoft, Apache
OpenOffice, and LibreOffice during the coordinated disclo-
sure.

1 Introduction

Usage of the OpenDocument Format (ODF). Major of-
fice applications, such as Apache OpenOffice, LibreOffice,
and Microsoft Office, support ODF as one of the leading file
formats. Apart from the undocumented private sector, organi-

Sub evilMacro
DownloadFile(

"https://attacker.org/ransomware.exe",
"C:\Users\Victim\ransomware.exe"

)

Shell("C:\Users\Victim\ransomware.exe")
End Sub

AO OfficeApache
OpenOffice

LibreOffice

Microsoft
Office

NeoOffice

Figure 1: If an ODF document’s macro has a trusted signa-
ture, its code is automatically executed once the document
is opened. We show how an attacker can execute malicious
macros and manipulate the entire content by spoofing the
digital signature in ODF documents.

zations and governments world-wide rely on ODF documents.
NATO, with its 30 member countries, uses ODF as one of
its mandatory standards [26, 65]. The UK government chose
ODF as the standard file format for documents in all govern-
ment departments [38] and the UK Central Digital & Data
Office recommends, among other methods, the use of ODF
document signatures for document security [19]. The French
government recommends ODF as a standard for exchang-
ing documents between administrations and citizens [23, 34].
The Russian government allows citizens to use ODF docu-
ments when communicating with government agencies [58].
France’s Inter-ministry Mutualisation for an Open Produc-
tivity Suite [25], Italy’s Ministry of Defence [24], Taiwan’s
Ministry of Finance [27], the administration of the Spanish
autonomous region of Valencia [28], among many others [84],
also use ODF office applications.

Office Macros. In advanced use cases, such as complex calcu-
lations or automation processes, ODF documents can embed
macros – a piece of program code embedded into the docu-
ment. Typically, macros perform automated changes on the
document’s content. However, macros are not limited to the

USENIX Association 31st USENIX Security Symposium 3075

respective document and can also access the file system, start
other programs, or download and execute software. Attackers
can use these possibilities to load malicious code, such as ran-
somware, on a victim’s system and execute it [15, 30, 35, 52].

ODF Digital Signatures. ODF documents can be protected
with digital signatures [68, Part 2], following the XML sig-
nature standard [40]. There are two types of signatures: doc-
ument and macro signatures. Document signatures ensure
the document’s integrity, authentication, and non-repudiation.
They rely on X.509 certificates and PKIs. If a signed docu-
ment was modified or signed with untrusted keys, the modifi-
cation triggers a warning that the office application displays
to the user. In addition, ODF can use the XML Advanced
Electronic Signatures (XAdES) extension to match the Euro-
pean Telecommunications Standards Institute (ETSI) TS 101
903 V1.4.1 specification [29] [68, Part 2]. Macro signatures
protect the integrity and authenticity of the macro code be-
cause macros are generally known to be dangerous. In their
default configuration, most office applications execute macros
only if a trusted entity signs them. In contrast to the document
signature, macro signatures only protect the code itself. The
document’s content remains editable without invalidating the
macro signature.

Security Risks through Office Macros. With the help of
office macros, attackers can execute malicious code indepen-
dently of the underlying hardware/OS. Office macros are
thus typically used to start a malware attack by loading ad-
ditional malware modules adapted to the OS in use. In [57],
Microsoft researchers report that 98% of all office target-
ing attacks were based on macro code. Many of the recent
ransomware campaigns were based on macros in office docu-
ments [15, 30, 35, 52].

From Signature Forgery to Code Execution. ODF macros
offer the same attack potential as Microsoft Office macros:
code exection. The default protection against macro-based at-
tacks is to allow the execution if a trusted entity digitally signs
the macro. Otherwise, the application blocks the macro’s exe-
cution. In this paper, we show how to circumvent this protec-
tion by exploiting vulnerabilities in the signature verification
and executing malicious macros without any restrictions (cf.
Section 5.1). To the best of our knowledge, we are the first re-
porting attacks on ODF macro signatures in its current version
1.3.

From Signature Forgery to Content Spoofing. Previous
work on PDF highlighted the significance of a document’s
signature validation Mainka et al. [51], Mladenov et al. [59],
Rohlmann et al. [74]. They introduced different techniques
to spoof the content presented in a PDF while keeping its
digital signature valid. However, a comprehensive evaluation
of digital signatures in ODF documents is still missing. In
this paper, we present three novel signature forgery attacks
that can be used to spoof the content of a signed ODF (cf.
Section 5.2):

(1) The Content Manipulation with Certificate Doubling
attack relies on a untrusted certificate used to sign an arbi-
trary ODF. The attacker adds a second, trusted certificate
to the ODF. When the application processes the document,
it uses both certificates for different purposes: one for the
cryptographic signature verification and the other as the trust
anchor.

(2) The Content Manipulation with Certificate Validation
Bypass attack relies on a untrusted certificate used to sign
an arbitrary ODF. The attacker then manipulates the certifi-
cate’s internal structure stored in the ODF and disables the
verification of the certificate chain. Once the ODF applica-
tion processes that certificate, the manipulation results in the
certificate being trusted.

(3) During the Content Manipulation with Signature Up-
grade, the attacker forces a macro signature to be treated as
a document signature. The attacker can forge arbitrary con-
tent since the macro signature cryptographically protects the
macro code only.
While the general idea for (1) resembles attacks on other
file formats [64], the attack (2) and (3) introduce novel tech-
niques.

Complexity of ODF Signature Analysis. The complexity of
the ODF signature analysis lies in the combination of several
standards used in ODF:
 ODF Standards: The ODF (zip-)file consists of a collec-

tion of files. Each of the two optional signature files in
this collection (document and macro signature) covers
different subsets of this collection. The Content Manip-
ulation with Signature Upgrade attack (Section 5.2.3)
illustrates the potential pitfalls of this construction. Ad-
ditionally, the signature files are partially signed, and
contain meta information such as X.509 certificates. The
standard does not cover the treatment of this meta infor-
mation which leads to the successful certificate doubling
attacks (Section 5.1, Section 5.2.1).

 ASN.1 Standard: The validation of X.509 certificates
uses a Abstract Syntax Notation (ASN.1)-based data
format, and is completely independent from the other
validation steps. Thus, any error in the certificate verifi-
cation leads to successful attacks, see Section 5.2.2.

 XML Standards: ODF rely on the XML signature stan-
dard [40] which is complex and builds on various other
XML standards. This inclusion resulted in a large vari-
ety of attacks, ranging from XML Signature Wrapping
(XSW) [54, 76] to XXE [61, 77] attacks (Section 5.3).

In this paper, we fill this gap by providing a systematic
analysis of the ODF standard [68] and revealing several de-
sign issues. We show four attacks allowing an attacker to
arbitrarily spoof document’s content without invalidating the
digital signature and one attack resulting in arbitrary code
execution (ACE).

Fully Automated Evaluation. The evaluation of all attack

3076 31st USENIX Security Symposium USENIX Association

vectors was conducted automatically using two different ap-
proaches. For content spoofing attacks, the tool Document
Signature Validator (DocSV) was used to compare signature
validation related strings in the process memory. In all suc-
cessful cases, the strings stored in memory were identical to
those stored after the validation of the un-manipulated origi-
nal signature, whereas the validation of self-signed (untrusted)
documents produced different strings. For macro signatures,
we verified if the macro was executed after its manipulation.

Contributions. The contributions of this paper can be sum-
marized as follows:
 We present the first comprehensive security analysis of

digital signatures in ODF, both for document and macro
signatures, in its current version 1.3 (Section 4).

 We describe five novel attacks against ODF signatures
(Section 5). In a comprehensive evaluation, we show that
17 out of 18 analyzed ODF applications are vulnerable
(Section 7).

 We present DocSV, a novel open-source tool to measure
the success of signature spoofing attacks in UI applica-
tions (Section 6). DocSV can be applied to other research
areas beyond ODF, for example, to Portable Document
Format (PDF).

All proof of concept (PoC) files for the presented at-
tacks and the source code of DocSV are released at https:
//github.com/RUB-NDS/DocumentSignatureValidator.

Coordinated Vulnerability Disclosure. We initiated a coor-
dinated disclosure process to inform the affected vendors. Ta-
ble 1 lists the Common Vulnerabilities and Exposures (CVE)
numbers published by vendors and the associated applications
that have been fixed. Microsoft Office has confirmed the vul-
nerability and announced a patch. We have not received any
feedback from AO Office. IBM Lotus Symphony is already
outside the product lifecycle.

CVE Attack Severity Application Fixed Version

2021-25633 5.1, 5.2.1 7.5 (High) Collabora
LibreOffice

6.2-33, 6.4.14
7.0.2, 7.1.22021-25634 5.3 7.5 (High)

2021-25635 5.2.2 7.5 (High)

2021-41830 5.1, 5.2.1 7.5 (High) OpenOffice
NeoOffice

4.1.11
2017.312021-41831 5.3 5.3 (Med.)

2021-41832 5.2.2 7.5 (High)

Table 1: CVEs published by the vendors. The severity score
corresponds to the Common Vulnerability Scoring System
(CVSS) 3.1 published within NIST’s National Vulnerability
Database (NVD) [66].

2 The OpenDocument Standard

The following section describes the foundations of the ODF
document structure, macros, and digital signatures. The basis

for this is the ODF standard published by OASIS in the current
version 1.3 [68].

META-INF (Directory of manifest.xml)

Basic/Scripts (Macro directory)

ODF file

manifest.xml (List of all files in the package)

Standard (Macro library)

Module1.xml (Macro lib. element (code))

script-lb.xml (References to lib. element)
script-lc.xml (References to library)

content.xml (Document content)

styles.xml (Document formatting)

documentsignatures.xml (Digital signature over all files)

macrosignatures.xml (Digital signature over macros)
Signatures

Macros

Figure 2: A simplified packaged file structure of an ODF doc-
ument. Besides mandatory files containing the document’s
content, this ODF contains files which provide integrity pro-
tection (signatures) and macros.

ODF Structure. The ODF standard defines various types of
office documents. It can be used for texts, presentations/slides,
spreadsheets, graphics, and charts. The prevalent method to
build the document is to combine multiple files into a single
zip archive. Alternatively, the document can be saved as a sin-
gle Extensible Markup Language (XML) file which, however,
cannot be digitally signed. In Figure 2, we depicted the typical
ODF document structure. The document’s starting point is the
META-INF/manifest.xml file. It lists all files that are contained
in the package. The most relevant ones are content.xml and
styles.xml. They define the actual content to be presented
when the document is opened. Additional information regard-
ing the document creation and several pre-configured viewer
preferences are defined in other files which are irrelevant from
a security perspective. Thereby, we will not further consider
them.

2.1 Macros

Macros are pieces of program code attached to a document.
They are mainly used for advanced application cases, such as
automatic content processing. The ODF standard is flexible
in which programming language can be used. Thus, various
office applications have developed their own macro function-
alities [4, 20, 71, 80]. For most applications, the programming
language is a StarBasic dialect [9, 85]. Nevertheless, macros
can also be written in Python, JavaScript, or BeanShell [49,
pp. 412-418] [8]. In contrast to its open-source competitors,
Microsoft Office solely relies on Visual Basic for Applica-
tions (VBA) in macros [56]. Although VBA and the other
Basic dialects have the same syntax, they differ in object
models, and terminology [42, p. iii] [11]. Thus, VBA macros
can have compatibility issues if executed in non Microsoft

USENIX Association 31st USENIX Security Symposium 3077

https://github.com/RUB-NDS/DocumentSignatureValidator
https://github.com/RUB-NDS/DocumentSignatureValidator

applications [12, 86]. Also, it is not possible to save macros
in ODF documents by using Microsoft Office since a file for-
mat based on Office Open XML (OOXML) is required. For
this reason, only the macro implementations that can be used
within ODF documents are considered further.
Basic Macros Structure. Macros in ODF documents are
organized in libraries within a Basic or Scripts directory as
depicted in Figure 2. If Basic macros are used, the library
is located in a sub-directory of the Basic directory. The file
script-lb.xml references all macro modules, whereby each
modules is a separate XML file containing the source code.
Users can start individual macros manually via the user in-
terface of the application or trigger-based by using events
such as load, mouseup, and keydown. Such events are stored in
content.xml in the <script:event-listener> element
[7, 83]. An example is shown in Section 12.1.
Other Macro Types. If macros are created in Python,
JavaScript, or BeanShell, the Scripts directory is used. Macro
code can also be stored on the computer’s local file system.
This enables code reusing and cross-document execution.
Macro Execution. The ODF specification does not define
any rules regarding the secure macro execution. During our
analysis, we identified four security levels regarding the macro
execution which are depicted in Table 2 and classified in two
categories – Run-by-default and Untrusted Execution. Run-by-
default means that macros are executed directly without any
consent and Untrusted Execution depicts alternative execution
methods if the macros are considered untrusted.

Sec. Level Run-by-default Untrusted Exec.
Very High Trusted location Forbidden
High (Default) Trusted location or trusted signature Forbidden
Medium Trusted location or trusted signature User consent
Low All macros are trusted No user consent

Table 2: In this paper, we concentrate on the levels running
macros by default without any user consent while relying on
digital signatures.

Trusted location is a trusted directory that is manually con-
figured in the application. Document macros stored in this
directory are executed automatically if triggered. Trusted sig-
nature is a successfully verified digital signature from a trusted
entity. In this paper, we concentrate on the signature valida-
tion for the default security level – High. The execution of
unsigned macros or macros with an invalid signature is for-
bidden.

2.2 Digital Signatures
There are two types of ODF signatures: document and macro
signatures. They are stored in the META-INF directory. As de-
picted in Figure 2, document signatures are recommended
to use the filename documentsignatures.xml. Macro signa-
tures should use the filename macrosignatures.xml. Both

files have the same internal structure. The only difference lies
in the referenced files that should be protected with the digital
signature.

document-signatures
Signature

SignedInfo
SignatureMethod → RSA-SHA512
Reference → content.xml

DigestMethod → SHA512
DigestValue → SHA512(content.xml)

Reference → (all other files)

SignatureValue → sig(SignedInfo)

KeyInfo

SignatureProperties
Object

Reference → (XAdES-related content)

Hashes of all files
in the package and
additional content

Digital signature
over SignedInfo
Used key to sign
the document
(not signed)

XAdES-related
content

Algorithm to sign
the document

Protected by the signature

Protected by the
signature

Figure 3: An abstract overview of the structure of the XML
file for digital signatures. SignedInfo and the XAdES-related
content are protected by the signature – SignatureValue. The
KeyInfo-element is not signed and is, thus, modifiable.

Document Signatures. A document signature should pro-
tect all packaged files. Thereby, all files in the ODF package
should be used as an input to compute the signature. These
files are referenced within the documentsignatures.xml

file and stored with their hash value. However, some
files are excluded from the computation, such as the
documentsignatures.xml file itself and files located in the
optional external-data directory. Three different signature
states can be distinguished, which are shown in Figure 4 using
LibreOffice as an example.

The signature computation follows the XML signature stan-
dard [40], and we depict the resulting XML in Figure 3. First,
a hash value is computed over each referenced file. Then, the
value is stored in the DigestValue. There may be an optional
Object element, for example, to match the ETSI requirements
for qualified XAdES signatures [68, Part 2, pp. 26-27]. In
this case, the XAdES-related content is also referenced in
SignedInfo. Finally, the signature value is computed over the
SignedInfo element and stored in SignatureValue. The only
unprotected elements are KeyInfo, which holds the certifi-
cate information necessary to validate the signature, and the
XAdES-related element xd:UnsignedProperties.

Macro Signatures. While document signatures protect the
whole ODF document, macro signatures protect only the
macro code, excluding the document content. In this case,
the actual document content remains modifiable, while the
user can verify the origin and thus the trustworthiness of the
macros. The macro signatures within ODF documents follow
the same structure as the document signatures. However, only
the files represented in the Basic or Scripts folder are used
for signature calculation.

3078 31st USENIX Security Symposium USENIX Association

1.
2.
3.
Figure 4: Different document signature states: (1) signature
is valid and the signer is trusted, (2) signature is valid but the
signer is not trusted (e.g. self-signed certificate), (3) signature
is invalid.

3 Attacker Model

In this section, we describe the existing entities, the attacker’s
capabilities, and the winning conditions for the attacks.
Victim. The victim is a human who opens the ODF document
sent by the attacker. The victim does not ignore any warnings
and verifies the validation result of the digital signature.
Trusted Entity on Victim’s Machine. The victim’s machine
maintains a list with trusted certificates and public keys. This
list is automatically used by the office application. The victim
does not change any setting regarding this list and does not
accept untrusted key material.
Attacker Capabilities. The attacker can create and manipu-
late ODF documents arbitrarily. This manipulation includes,
but is not limited to, adding/removing files to the ODF pack-
age (cf. Figure 2) and manipulating the content of each file
in the package (e.g., the XML structure). The attacker does
not possess any certificate/private key pair that belongs to a
trusted entity installed on the victim’s machine. Anyhow, the
attacker can create a certificate/private key pair and use his
own office applications to sign arbitrary ODF documents. The
victim’s office application treats documents signed with these
keys as invalid, since they are untrusted. Due to the nature of
public key cryptography, we assume that the attacker knows
the trusted X.509 certificates (public key, �) on victim’s ma-
chine. An attacker can obtain the certificate from a signed
ODF, OOXML, or PDF document.
For two of five attacks, there is an additional requirement:
(1) The Content Manipulation with Signature Upgrade at-

tack (Section 5.2.3) requires an ODF document with a
valid and trusted macro signature .

(2) The Timestamp Manipulation with Signature Wrapping
attack (Section 5.3) requires an ODF document with a
valid and trusted document signature .

For all other attacks, the attacker does not require any signed
ODF document. Finally, the attacker sends the manipulated
ODF document to the victim who opens it.
Winning Conditions. The success criteria depend on the
conducted attack. We distilled the following three winning
conditions.

(1) / Macro Execution: An attack targeting the macro
execution is successful if the attacker’s chosen macro code is

executed on the victim’s machine. Modern office applications
only trigger the execution if the ODF’s macro signature is
valid and trusted. In this paper, macro execution is the goal
of the Macro Manipulation with Certificate Doubling attack
(Section 5.1).

(2) Content Manipulation: An attack targeting content
manipulation is successful if the attacker-chosen content is
visible in the victim’s office application while the digital
signature remains valid and trusted. In this paper, the three
attacks Content Manipulation with Certificate Doubling, Con-
tent Manipulation with Certificate Validation Bypass, and
Content Manipulation with Signature Upgrade (Section 5.2.1)
target the content manipulation goal.

(3) Timestamp Manipulation: An attack targeting times-
tamp manipulation is successful if the victim’s ODF applica-
tion displays the attacker-chosen timestamp. The timestamp
is usually not visible as part of the ODF’s document content.
Usually, it is shown in a dedicated menu or popup. The at-
tack is successful if this dedicated menu or popup shows the
attacker-chosen timestamp and the victim’s ODF application
displays a valid and trusted ODF document signature. In this
paper, the XSW attack targets the timestamp manipulation
(Section 5.3).

An overview of all attacks, their goals, and the attacker’s
capabilities/requirements is depicted in Table 3.

4 Systematic Security Analysis

After analyzing the structure of ODF documents [67, 68],
processing the digital signatures [29, 40, 88] based on the
relevant standard and on development toolkits [5, 6, 81, 82],
we started a systematic security analysis. We summarize the
considered attack concepts in three categories: partial signa-
tures, XML-based attacks, and signing oracle. We studied
related work (see Section 9) and extracted techniques that
we could adapt on ODF. Except for timestamp manipulation,
which is a classical XSW attack, no other attacks could be suc-
cessfully applied to ODF. Analyzing the following three files
is essential: documentsignatures.xml, macrosignatures.xml,
and manifest.xml. The first two files state that the document
has been signed and contains relevant information for the
signature validation. The manifest.xml is the first processed
file after opening a document and it is used to find all other
files.

4.1 Analysis Phases

Phase 1: How are ODF signatures implemented? In the
first step, we analyzed the specification with regard to digital
signatures. The ODF versions 1.2 and 1.3 do not differ sig-
nificantly in this point. In the next step, we analyzed which
ODF package files are taken into account during the signing
process and which are protected by the signature. We repeated

USENIX Association 31st USENIX Security Symposium 3079

these steps for each application. The applications are compli-
ant to the specification and always include all existing files
of the ODF package as references in the signature (except for
the signature file itself). Thus, these files are included in the
cryptographic signature value.

Result: We identified that all files are considered in the
signature calculation, except the signature files. The signature
files, documentsignatures.xml and macrosignatures.xml,
can be manipulated.

Phase 2: How do the applications react to manipulations
of the signed content? Since attacks cannot modify already
signed content, we checked whether we can add additional
files for each application. The META-INF/manifest.xml con-
tains references to all files in the ODF package and its hash
value is also used in the signature calculation. All applica-
tions, except Microsoft Office, consider the ODF file corrupt
when the package contains files that are not referenced within
META-INF/manifest.xml. Only files with "signatures" in the
file name within the META-INF folder are excluded. However,
only the documentsignatures.xml and macrosignatures.xml

files are processed as signature files. If there are other files
with "signatures" in the file name that were added later and are
not referenced within the documentsignatures.xml file, the
ODF package is not considered corrupt by the applications,
but the signature is only recognized as a partial signature.
Thus, the applications interpret the signature as invalid be-
cause it was not formed over all files of the ODF package
according to the specification. The only exception was Mi-
crosoft Office, which accepted partial signatures and thus
enabled the Signature Upgrade attack (see Section 5.2.3).

Result: Injecting new files is not possible since: (1) un-
referenced files in META-INF/manifest.xml lead to a cor-
rupt document; (2) META-INF/manifest.xml is protected by
the signature and cannot be modified. The only excep-
tion are the signature files – documentsignatures.xml and
macrosignatures.xml.

Phase 3: What are the possible targets of attack? The
previous analysis allowed us to reduce the possible attack
targets to the signature files. From a security perspective,
all attacks on XML signatures are applicable. We studied
the related work and extracted the following attack classes:
Untrusted Keys [50], XML Signature Wrapping [54, 76], and
Insecure Algorithms [33, 44]. The first two attacks can be
extended to ODF documents. The remaining attack class is
not applicable, since no application supports the required
features.

Result: Attackers can manipulate the signature key material
because of the partial signature coverage. In addition, attacks
based on XSW are possible.

Phase 4: How to exploit the possible targets of attack? To
create signatures, the ODF specification refers to the W3C
recommendation for XML signatures [40]. We analyzed the
underlying XML schema and found that the <KeyInfo>

element is not signed. Also, the <Object> is partially
signed and allows the inclusion of unsigned child elements.
From the attacker’s perspective, these elements’ manip-
ulations are possible without invalidating the digital signature.

Manipulations in <KeyInfo>: We analyzed the <KeyInfo>
element and found that multiple <X509Data> elements
are allowed and that the ODF specification does not define
any restrictions on this either. In further analysis, we were
thus able to develop and prove the Certificate Doubling
attacks for most of the tested applications (see Section 5.1,
Section 5.2.1). In the next step, we examined how the
certificate is checked for trustworthiness. Here we checked
whether a break in the certificate chain is detected by the
application. To break the certificate chain verification, it is
sufficient to replace the included signature method without
damaging the certificate structure (see Section 5.2.2).

XML Signature Wrapping: The last possible point of
attack is the execution of an XSW attack. The idea of
XSW is to move the signed content to a place where the
application does not present it when the document is opened,
but the verification logic can find and process it. Instead, the
application presents content created by the attacker while the
signature verification remains valid.

The base of the XSW attack is the analysis of the
<Reference> elements of the <SignedInfo> element in
documentsignatures.xml. The <Reference> elements point
to the signed files within the ODF and to the timestamps de-
fined in documentsignatures.xml. Our experiments on mov-
ing the signed files failed due to a double check – the names
and hashes of all files are contained in the <Reference>
elements and the names are listed a second time in the
manifest.xml file, which is also signed. This double-check
prevents most XSW attacks, because ODF applications con-
sider a document corrupted if additional files are added which
are not listed in manifest.xml. Thus, only content that is not
listed in manifest.xml can be manipulated. In ODF docu-
ments, this content are the timestamps. We show an attack in
Section 5.3.

Result: In total, 132 ODF documents with attack vectors
were created, 61 with XAdES compatible signatures and
61 without XAdES. The documents contain different ar-
rangements of the attack vectors, five attack vectors each
for XAdES/non-XAdES were successful and are described
in detail in Section 5. We provided the attack vectors as PoC
files to the vendors and the research community.

4.2 Hidden Content and Signing Oracle

In 2021, Mainka et al. [51] presented the concept of shadow
attacks on PDFs. These attacks hide malicious content within
the PDF document before it is signed. After the signing, a
change in unsigned parts of the PDF reveals the hidden con-

3080 31st USENIX Security Symposium USENIX Association

tent without invalidating the digital signature. For ODF docu-
ment signatures, there is no unsigned content, except in the
XML signature file itself (Section 4.1). Even adding addi-
tional hidden files into the ODF package does not succeed,
because revealing them requires changes in the document’s
meta file that is protected by the digital signature. Another
approach was to add unsigned files to the ODF document
after the signing, and to try to use these files to change the
visible content. This approach was also not successful since
all ODF applications consider documents containing files not
listed in manifest.xml as corrupt. Repairing a corrupted file
results in a removal of the ODF document signature.

5 New Attacks on ODF

In the following section, we describe five novel vulnerabilities
on ODF Signatures. Each attack manipulates a signed ODF
document. A victim opening such manipulated ODF sees a
validly signed document.

Sec-
tion

Manipulation
Goal

Require-
ment

Manipulation
Technique

5.1 / Macro � Certificate Doubling
5.2.1 Content � Certificate Doubling
5.2.2 Content - Certificate Validation Bypass
5.2.3 Content � Signature Upgrade
5.3 Timestamp � XML Signature Wrapping

Table 3: We present five novel attacks on ODF signatures.
Each attack can manipulate different parts of the ODF (i.e.,
content, macro, or timestamp) with attacker-selected values.
The signature verification remains valid in all cases. All but
the Content Manipulation with Certificate Validation Bypass
attack require the attacker to possess the trusted signer’s pub-
lic certificate �. Some attacks require either an ODF with a
valid document signature or macro signature . In total,
we used four different techniques for achieving these goals.

We categorized the attacks into three groups according to
their manipulation goal (i.e., macro, content, or timestamp) as
depicted in Table 3. In summary, one attack allows to embed
and execute the attacker’s macro code stealthily (Section 5.1)
on the victim’s machine. Three attacks forge the visible docu-
ment content and display different content than the signed one
(Section 5.2). One attack can change the XAdES timestamps
(Section 5.3).

The Certificate Validation Bypass and the Signature Up-
grade attack are novel and do not rely on any previous work.
The Certificate Doubling and XSW attacks were previously
applied on Single Sign-On protocols like SAML. We extended
these techniques on ODF documents and demonstrated their
applicability.

5.1 Macro Manipulation with Certificate Dou-
bling

In general, macros in office documents have the highest poten-
tial of damage, since a victim only needs to open the document
to execute arbitrary code on his system. To minimize the po-
tential risk, office applications can use macro policies. For
example, in Apache OpenOffice and LibreOffice, the policy
level High is set by default in the macro security settings.
This policy level allows macro execution only if the macro is
signed by a trusted source. Otherwise, macros are disabled
and not executed. Trusted sources are maintained separately
from the operating system’s certificates store and must be
approved by the user. Once the author of the signed macro is
included in this list, the macro execution is unrestricted.

/ Manipulation Goal. The Macro Manipulation with Cer-
tificate Doubling attack allows an attacker to alter an ODF’s
signed macro code without invalidating its signature. The
attacker’s goal is to create an ODF document that contains
valid signed macro code, with trusted certificate data, from a
third person or organization. The attack is based on the partial
signature protection leaving the <KeyInfo> unprotected.

Attack Requirements. For the Macro Manipulation with
Certificate Doubling attack, the attacker only requires the
public X.509 certificate of an entity trusted to execute macros
�. The attacker does not require a signed and trusted ODF
document.

Manipulation Technique. In this attack, the attacker ma-
nipulates a self-signed ODF document so that it contains
two certificates. One certificate is only used to represent the
signer’s identity (e.g., name or public key) and as such, the
certificate’s public information is sufficient for the attacker.
The other certificate is used for the cryptographic computation
of the signature. For this computation, the attacker uses his
own private key and the entire document is no longer signed,
but only the files contained in the macro folders.

Manipulation Steps.
(1) The attacker creates an ODF document with arbitrary

macro code and digitally signs the macros. The attacker
uses his own private key for this purpose. For exam-
ple, a self-signed certificate / private key combination is
sufficient.

(2) The attacker manipulates the document’s macro signa-
ture file META-INF/macrosignatures.xml as follows:
(a) The attacker duplicates the entire <X509Data> ob-

ject within this signature file.
(b) The attacker exchanges the value of the
<X509Certificate> object within the second
<X509Data> object with a public certificate from an
entity trusted to execute macros �.

During our evaluation, we systematically analyzed the
doubling of the <X509Certificate> object in Step 2.
(e.g., vice versa or tripling), but the only working solu-

USENIX Association 31st USENIX Security Symposium 3081

tion was to use the trusted certificate � as the second
<X509Certificate> element.

Impact. Suppose the attacker uses a developer certificate of
the victim’s organization. In this case, the abused certificate
is on the victim’s trusted list and the macro code is executed
without any confirmation once the document is opened. The
execution takes place in the background, so that the victim
does not notice it. There is a variety of ways to execute
malicious code on the user’s computer. For example, many
ODF applications provide a complete Python environment
inside their program folder, which the attacker can use
for malicious code development. One possibility is to
create a Python file via macro code and execute it via
the Python runtime of the office application. The func-
tion ctypes.windll.user32.ShowWindow(ctypes.windll.

kernel32.GetConsoleWindow(), 0) prevents the victim
from seeing a console window. The malicious code can
thus be executed entirely in the background. By offloading
the execution to Python, it is not interrupted even when
the document is closed. We provide a PoC of harmless
ransomware that hashes all files instead of encrypting and
deleting them. Delegating the execution to PowerShell
commands is also possible, but scripts are restricted by
default on Windows client systems [55]. In addition to
the malicious code contained directly in the document, it
can also be outsourced and downloaded from the Internet.
We identified an interesting behaviour in the execution of
downloaded executable *.exe files under Windows systems.
For security reasons, the download and execution of *.exe
files via a browser require additional permissions and user
interaction. However, if an *.exe file is downloaded and
executed via the macro code, it will be executed directly. For
this purpose, we also provide a PoC ODF file that reloads a
harmless *.exe file from the Internet and is executed via the
macro code when the manipulated ODF file is opened.

5.2 Content Manipulation

The second desired goal of the attacker is the content ma-
nipulation. The following three attacks manipulate a signed
ODF document so that it displays arbitrary attacker-selected
content while forging the document’s signature of a trusted
entity on the victim’s machine.

5.2.1 Content Manipulation with Certificate Doubling

 Manipulation Goal. The attacker can use the Content
Manipulation with Certificate Doubling attack for spoofing
the content of a signed ODF document. When the victim
opens the document, the result of the signature verification is
valid and the document seems to be signed by a trusted entity.

Attack Requirements. The attacker only requires the public
X.509 certificate of a trusted entity on the victim’s machine

�. The attacker does not require a signed and trusted ODF
document.

Manipulation Technique. First, the attacker manipulates a
self-signed ODF document so that it contains two certificates.
The manipulation steps roughly correspond to those of the
Macro Manipulation with Certificate Doubling attack.

Manipulation Steps.
(1) The attacker creates an ODF document with arbitrary

selected content. The attacker digitally signes the doc-
ument using the own private key. For example, a self-
signed certificate / private key combination is sufficient.

(2) The attacker manipulates the document’s signature file
META-INF/documentsignatures.xml as follows:
(a) The attacker duplicates the entire <X509Data> ob-

ject within the signature file.
(b) The attacker exchanges the value of the
<X509Certificate> object in the second
<X509Data> object with a public certificate
from a person trusted by the victim �.

The document generation is comparable to Macro Ma-
nipulation with Certificate Doubling but with two main dif-
ferences. In Step 1, the attacker signs the entire document
content. In Step 2, the attacker manipulates the document sig-
nature data file (META-INF/documentsignatures.xml) instead
of the macro signature file (META-INF/macrosignatures.xml).

Impact. When the victim opens the attacker’s manipulated
ODF document, the office application represents the infor-
mation of the second certificate as the signing entity �. The
victim can manually investigate all certificate data of the sup-
posed signer and the office application successfully verifies
the certificate’s trustworthiness. However, during the signa-
ture verification, the office application uses the public key of
the first <X509Data> element (i.e., the attacker’s certificate),
while the trustworthiness of the signer is determined using the
second <X509Data> (i.e., the certificate of the trusted entity)
element.

5.2.2 Content Manipulation with Certificate Validation
Bypass

Manipulation Goal. The goal of the Content Manipulation
with Certificate Validation Bypass attack is to create a valid
signed and trusted ODF document with arbitrary content. The
owner and issuer data contained in the certificate, which is
displayed to the victim, can be chosen arbitrarily.

No Attack Requirement. There are no further requirements
for this attack, because the attacker creates and signs a docu-
ment with his own private key. The attacker requires neither a
signed or trusted ODF document nor the public X.509 certifi-
cate of a trusted entity on the victim’s machine.

Manipulation Technique. To verify the trustworthiness of
a signature in ODF documents, it is crucial that the system

3082 31st USENIX Security Symposium USENIX Association

trusts the signer’s certificate. Normally, the Windows Certifi-
cate Store or the Mozilla Certificate Store for macOS and
Linux are used for this purpose. The Content Manipulation
with Certificate Validation Bypass attack aims to disrupt the
verification of this trust verification and thus force a victim’s
office application to classify arbitrary certificates as trusted.
We focused on manipulating the X.509 certificate stored as
an ASN.1 blob. We studied the fields in this blob which are
responsible for the certificate verification and created multi-
ple attack vectors covering public key injection, algorithm
manipulation, and signature exclusion. Only the algorithm
manipulation was successful and will be described further.

Manipulation Steps.
(1) The attacker creates an ODF document with arbitrary

content and signs it using his own private key.
(2) The attacker manipulates the signature file

META-INF/documentsignatures.xml in the signed
document as follows:
(a) The attacker manipulates his own X.509 certificate

by setting the therein defined signature algorithm to
an invalid value. That algorithm is defined with an
Object Identify (OID). For example, he can cut off
the trailing bytes of the OID 1.2.840.113549.1.1.11

(sha256WithRSAEncryption) and set the OID value to
1.2 (member-body). For this purpose, an ASN.1 Editor
can be used.1 This truncation breaks the ODF applica-
tion’s internal certificate validation, turning a formerly
untrusted signer into a trusted signer.

(b) The attacker exchanges the value of the
<X509Certificate> object with the manipu-
lated certificate from the previous step.

Impact. If the victim opens the manipulated ODF document,
the signature is recognized as valid because the private key
used for signing the ODF document matches the public key of
the certificate it contains. The manipulation of the certificate
simultaneously disrupts the verification of the chain of trust,
so that the signer is treated as trusted. The attacker can also
manipulate further parameters in his own certificate (Step
2a), such as its subject or issuer. By this means, the attacker
can impersonate an arbitrary entity. Only the public key must
remain unchanged to prevent influencing the cryptographic
signature verification.

5.2.3 Content Manipulation with Signature Upgrade

 Manipulation Goal. The Content Manipulation with Sig-
nature Upgrade attack manipulates an ODF document with
a macro signature in such a way that the ODF application
treats that signature as a document signature. In this way,
the attacker can arbitrarily set the content of the ODF docu-
ment while the application shows a valid document signature.
The attack abuses the partial signature coverage of the files

1www.codeproject.com/Articles/4910/ASN-1-Editor

contained in the ODF document when only the macros are
signed.
Attack Requirement. The attacker needs an ODF document
with validly signed macros .
Manipulation Technique. ODF applications use two types
of digital signatures. The first type is document signatures, the
second type is macro signatures. From a technical perspective,
the only difference between these two types is the file name
(documentsignatures.xml vs macrosignatures.xml) and the
selection of the files in the ODF package which are included
in the signature calculation with their hash values. While
document signatures include all contained documents (for
exceptions, see Section 2), macro signatures only include
the files within the macro directory. Despite their otherwise
identical implementation, the two signature variants, thus,
differ significantly in the content to be protected.

The attacker can use this macro signature together with the
included macros to create ODF documents with arbitrary con-
tent and display the included macro signature as the document
signature.
Manipulation Steps.
(1) The attacker creates an unsigned ODF document with

arbitrary content.
(2) From the macro signed ODF document

, the attacker extracts the signature file
META-INF/macrosignatures.xml, as well as the en-
tire macro directory (i.e., Basic or Scripts).

(3) The attacker renames the macrosignatures.xml to
documentsignatures.xml and inserts it together with the
macro directory into the ODF document of Step 1.

Impact. We assume that the victim trusts the certificate of
the original signer of the macro. In that case, the ODF appli-
cation recognizes the signature contained in the manipulated
document as a valid and trusted document signature, even if
the signature does not protect the actual visible content of
content.xml in any way. Since macros are typically treated
as dangerous, companies could sign specific macros that are
necessary for their business cases (e.g., fill templates, process-
ing of large tables or specific calculations in spreadsheets).
An attacker who has access to that file can upgrade the macro
signature to forge arbitrary signed content (e.g., agreements
or contracts).

5.3 Timestamp Manipulation with Signature
Wrapping

 Manipulation Goal. The attacker’s goal is to change the
timestamp of an ODF signature without invalidating it. This
change allows the attacker, for example, to forge the creation
time of a particular contract, which could lead to legal conse-
quences.

Initially, our goal was to manipulate the entire content of
the document. Our analysis showed that we cannot manipulate

USENIX Association 31st USENIX Security Symposium 3083

https://www.codeproject.com/Articles/4910/ASN-1-Editor

any external files such as manifest.xml or content.xml due
to the limitations which we described in Section 4.

Attack Requirement. The attacker needs an ODF document
with a valid and trusted document signature .

Manipulation Technique. The certificate’s data in the
<X509Data> element and the <Object> element play a
unique role in the representation of signature information
within the ODF application. For instance, the <Object> el-
ement holds the timestamp of the signature creation time,
which is displayed alongside the signer’s data. By using XSW
attacks, we can forge timestamps.

Manipulation Steps.
(1) The attacker manipulated the signature file

META-INF/documentsignatures.xml as follows:
(2) The attacker duplicates the entire <Object> element

within the signature file.
(3) The attacker changes the ID attribute of the

<SignedProperties> element within the sec-
ond <Object> element. For example, the attacker
increases the value by 1.

(4) The attacker selects an arbitrary time and sets the times-
tamp in the second <Object> element to that value.
 In the case of a regular ODF signature, the attacker

manipulates the timestamp hold in the <dc:date
xmlns:dc="http://purl.org/dc/elements/1.1/">
element.

 In the case of a XAdES signature [29], the at-
tacker manipulates the timestamp hold in the
<xd:SigningTime xmlns:xd="http://uri.etsi ⌋

.org/01903/v1.3.2#"> element.

Impact. If the victim trusts the signer’s certificate, a valid and
trusted signature will be displayed when opening the manipu-
lated ODF document. However, the manipulated timestamp
with the modified ID is used to display the signing time.

6 DocSV: A Novel Evaluation Technique of Of-
fice Documents

Verifying an ODF macro signature attack is straightforward.
If the victim’s machine executes the malicious macro, the
code execution itself can be used to inform the attacker about
the attack’s success. For document signatures, the automatic
verification of document signatures is challenging since there
is no feedback telling the attacker whether the attack was suc-
cessful. During the research, we created 132 ODF documents
with different attack vectors. The evaluation effort of the re-
sulting documents is multiplied by the number of analyzed
applications (in this paper: 18). Thus, an automation is neces-
sary to make the evaluation results effective and independent
of the number of applications to be tested.

In general, there are two approaches used for the validation:
the creation and comparison of screenshots or the use of OCR

text recognition. A screenshot comparison is only possible
when a ground truth image exists. This limitation leads to
two adverse side effects: the configuration overhead increases
and the comparison is applicable only on documents with the
same content. In addition, the comparison reacts sensitively
to changes in the document to be analyzed, for example, pop-
ups. Kuchta et al. [46] located inconsistencies in PDF readers
and Rohlmann et al. [74] implemented a tool called PDF
Tester,2 which can automatically evaluate attacks on PDF
signatures. However, screenshot comparison is slow and re-
quires a ground truth image. Another approach is using OCR
text recognition. Besides being slower than the screenshot-
approach, OCR cannot entirely exclude misinterpretations
of the texts [14]. Thus, both variants do not provide optimal
evaluation results.

6.1 Memory-based Evaluation of Documents

In this section, we present a new tool called DocSV, which
is faster, more reliable than existing analyzing techniques,
vendor-independent, and compatible with the primarily used
document formats – ODF, OOXML, and PDF. The basic idea
behind DocSV is the following: Whenever a document sig-
nature validation succeeds or fails, the document processing
application must generate a string to display this result to
the user (Figure 4). DocSV searches the process memory for
these (known) strings, and deduces the result of the signature
validation from the string found.

We defined the following requirements for DocSV:
(1) The analysis should require less configuration overhead

and fewer resources than previous techniques.
(2) The approach should allow the easy inclusion of new

office applications.
(3) The analysis should be independent of the document’s

content.

Design Decisions. DocSV should be as generically compati-
ble as possible with all standard office file formats and cor-
responding applications. Even though some vendors, such
as Apache OpenOffice or LibreOffice, allow control through
APIs, this does not apply to many other vendors. Thus, the
use of vendor-specific interfaces would not have been appro-
priate and would violate our requirements. To circumvent
the disadvantages of optical processing of screenshots and to
remain application-independent (i.e., avoid vendor-specific
APIs [3, 79]), we decided to rely on the analysis of the pro-
cess memory of the individual applications. For this purpose,
DocSV is written in C++ and capable of accessing the applica-
tion memory. Using the memory-based analysis, we achieved
reliable and reproducible results explained further in Sec-
tion 6.2. In addition to ODF applications, we were able to
successfully test the correct functionality for OOXML ap-
plications such as Microsoft Office and PDF applications,

2https://github.com/RUB-NDS/PDF-Tester

3084 31st USENIX Security Symposium USENIX Association

https://github.com/RUB-NDS/PDF-Tester

Process Memory of the Office Application

Call App

Search for Signature String

DocSV
Config

Application: LibreOffice
Document: Doc_signed.odt
Valid: "This document is
digitally signed and the
signature is valid."
Invalid: "This document has
an invalid signature."

XML Config File

(a) The DocSV analysis tool automatically opens documents in vari-
ous office applications based on a configuration file. It then evaluates
the signature status of the document by analyzing the application
process’s memory.

Apps
Configuration

Next App Config
&

Documents

Report

Screenshot

Evaluation
Manager

Process
Identifier

App
Launcher

Memory
Pointer

Sub-Process
Collector

Results

Process
Memory Finder

Documents to
be analyzed

(b) DocSV consists of four main modules: Evaluation Manager, App
Launcher, Sub-Process Collector, and Process Memory Finder. The
modules are used to classify whether the signature validation in a
document is successful and to generate a report with these results.

Figure 5: The idea behind DocSV is to analyze the office application’s process memory to determine whether the signature
validation of documents (ODF, OOXML, and PDF) is correct or not.

including Adobe Acrobat and Foxit PDF Reader. DocSV con-
sists of four modules: Evaluation Manager, App Launcher,
Sub-Process Collector, and Process Memory Finder, see Fig-
ure 5b.

Evaluation Manager. On its startup, DocSV receives a con-
figuration file. It contains, among other information, the office
application, a folder containing all documents that it should
analyze, and a list of predefined strings with possible states
of the signature validation. The Evaluation Manager is re-
sponsible for starting the analysis process for each configured
application by calling the App Launcher. For documentation
purposes, this module takes a screenshot before closing the
office applications and stores it on the system together with a
CSV file documenting the entire analysis process.

App Launcher. The App Launcher receives the path of the
application that it should start. It automatically launches the
office application and opens the documents in the document
directory one by one. During our evaluation, we determined
that the App Launcher should proceed only when the appli-
cation is fully loaded. Since the operating system does not
provide any reliable APIs to detect this, DocSV waits a time
specified in the configuration file before starting the process
memory analysis. This time can be determined depending
on the applications to be analyzed. Usually, 2-6 seconds is
sufficient. We established this value based on our empirical
observations regarding the loading time of different office
applications.

Sub-Process Collector. Depending on the application, the of-
fice application can start further sub-processes. For instance,
Adobe Reader creates a sub-process for each opened doc-
ument. Thus, DocSV first determines and collects all sub-
processes and includes these in the analysis based on the
primary process.

Process Memory Finder. All processes belonging to one ap-

plication are analyzed for the presence of the defined signature
status strings (see Figure 4). In case of a hit, the analysis is ter-
minated. The selection of the appropriate character encoding
plays a major role for the successful analysis. For example, in
Apache OpenOffice and LibreOffice the signature states are
encoded in UTF-16, while Adobe Acrobat uses UTF-8. The
encoding can be selected in advance in the configuration file.
This configuration is made for each application separately.

6.2 Advantages and Disadvantages
In this section, we provide a comparison to the other two
evaluation approaches based on screenshots and OCR. We
show that the memory-based analysis is the most sufficient
technique for the analysis of office documents since the con-
figuration overhead is minimal, the recognition rate is high,
and resource consumption is less than other approaches.
Test Environment. We first created a pool with 60 PDF doc-
uments separated in three categories each containing 20 un-
signed documents, 20 validly signed documents, and 20 ma-
nipulated documents. Thus, we can determine the detection
rate of the different techniques. We executed the tests on a
PC with Intel Core i7-8565U CPU, 40GB RAM, and Win-
dows 10. We installed PDF Tester. PDF Tester supports three
comparison modes: (1) PDF Tester Comparer uses a pixel-
based screenshot comparison; (2) PDF Tester OCR applies
OCR-based text recognition; (3) PDF Tester OCR improved
optimizes the screenshot before analysis. Additionally, we
considered the screenshot analysis introduced by Kuchta et al.
[46] which relies on the Complex-wavelet structural similarity
index (CW-SSIM) algorithm. This algorithm compares dif-
ferences in the images that are perceptible to the human eye.
Please note that only the source code of PDF Tester is pub-
licly available. Thus, we used it to open the documents and
create the screenshots which we also used for the CW-SSIM

USENIX Association 31st USENIX Security Symposium 3085

evaluation.

Direct Comparison. Table 4 depicts a direct comparison
between the resource consumption of all three evaluation
techniques. DocSV is the fastest analyzing tool in our evalua-
tion. The slowest methods are the OCR-based analysis and
the CW-SSIM since the images are transformed first and then
compared (OCR-based) or multiple measurements on small
image pieces and computations of the corresponding Struc-
tural Similarity Indices (SSIM) are executed (CW-SSIM). The
detection rate of screenshot-based analysis and DocSV is high.
The OCR comparison is less correct with 33.3% success rate
in the normal mode. Even the improved OCR recognition is
in 16.7% incorrect and falsely classify the validation status.

Content-independent Analysis. The memory-based ap-
proach requires only a configuration of the status messages
regarding the signature validation. This configuration is made
once per office application and can afterwards analyze docu-
ments with arbitrary content. In comparison, the screenshot-
based analysis requires the configuration of one valid docu-
ment as a ground truth. This ground truth, however, bases on
the specific document content. The OCR-based evaluation
produces similar results than the memory-based approach and
requires the same configuration overhead.

Tool Detect-
ion

Adobe
Acrobat

Foxit
Reader

Libre
Office

Total

PDF Tester
Comparer

Time 2:04 2:04 2:04 6:12
Rate 100% 100% 100% 100%

CW-SSIM Time 10:20 10:16 10:12 30:48
Rate 95% 100% 100% 98,3%

PDF Tester
OCR

Time 2:07 1:52 2:24 6:23
Rate 50% 0% 50% 33,3%

PDF Tester
OCR improved

Time 8:02 7:37 8:43 24:22
Rate 100% 100% 50% 83,3%

DocSV Time 1:18 1:02 1:06 3:26
Rate 100% 100% 100% 100%

Table 4: The results of the comparison between screenshot-
based analysis, OCR evaluation, and memory-based analy-
sis shows that DocSV is the most efficient tool which also
provides a high detection rate. Time values are provided in
minutes and seconds.

Limitations of DocSV. The configuration of strings as recog-
nition markup for the validation results could lead to false
results if the same string occurs in the document’s content.
For our test documents, we control the content and made
sure that none of the validation strings were present. During
our evaluation, we discovered another problem that occurs if
the application provides multiple predefined signature status
strings in the process memory. This is the case, for example,
with Foxit PDF Reader where both strings for valid and invalid
signatures are contained in the memory dump. However, we

observed that, the signature status “Signature is valid” occurs
twice in an actually valid signed document, while it appears
only once in an invalid or unsigned document. As a result,
for these type of applications we defined a minimum num-
ber of found signature status strings in the configuration file.
For the other applications, this adjustment was not necessary,
since the predefined signature status strings differed from the
actually displayed signature state based on their encoding
(UTF-16 vs. UTF-8).

7 Evaluation

In this section, we describe which office applications are vul-
nerable to which of our five attacks. We discuss the used test
environment and the specifics of individual office applications
in connection with the attacks. The results in Table 5 show that
17 out of 18 office applications are vulnerable to at least one
attack. Only for Digital Signature Service (DSS) developed
by Nowina Solutions, we could not detect any vulnerability.

Test Environment. We use three different system landscapes
to represent a test situation that is as close as possible to real-
world use cases. The attacker system consists of a Windows
10 virtual machine (VM). It contains a combination of the
private key and self-signed public certificate of the attacker,
and the public certificate of a entity classified as trusted by the
victim. The second system is the signing system, consisting of
a Windows 10 VM with the private key and public certificate
of the trusted entity. The third system depicts the victim’s
landscape and it spans VMs with Windows 10 and Ubuntu
20.04.3 LTS, as well as physical systems in the form of ma-
cOS Catalina, Android 10, and iOS 15. All systems trust the
public certificate of the signer system, but not the attacker’s
certificate.

Tested Applications. We used the references [13, 37, 70, 90,
91] as a basis for the selection of office applications to be
evaluated. In the first step we checked the applications for
general ODF support. In the next step, we analyzed whether
the applications processed the included and unmanipulated
ODF signatures. All applications that met these requirements
and whose development had not already been discontinued
were included in the evaluation (see Table 5). IBM Lotus Sym-
phony development was discontinued in 2012 and features
were merged with Apache OpenOffice [2, 10]. We included
Lotus Symphony in the evaluation to demonstrate how long
some of the vulnerabilities have been present in the code and
are still detectable in today’s office applications. AndrOpen
Office in version 4.8.7, is excluded from the evaluation since
it does not show an included signature for any of our unma-
nipulated test documents. The online variant of Collabora in
version 6.4.11 could not perform correct signature validation
for any of our unmanipulated signed test documents. Any
signatures included were always detected as invalid. Thereby,
we used an older variant in version 6.0-18, in which this bug

3086 31st USENIX Security Symposium USENIX Association

Attacks on OpenDocument Signature
Application Version OS Macro

Manipulation
with Certificate

Doubling

Content
Manipulation

with Certificate
Doubling

Content
Manipulation

with Certificate
Validation Bypass

Content
Manipulation
with Signature

Upgrade

Timestamp
Manipulation
with Signature

Wrapping
Section 5.1 Section 5.2.1 Section 5.2.2 Section 5.2.3 Section 5.3

Apache OpenOffice 4.1.8

W
in

do
w

s ○ ○ ○ ○␣ ○
Collabora Office 6.2-20210530 ○ ○ ○ ○␣ ○
IBM Lotus Symphony 3.0.1 fp2 ○ ○ ○␣ ○␣ ○
LibreOffice 7.0.4.2 ○ ○ ○ ○␣ ○
Microsoft Office 2019 16.0.10374.20040 ○ ○␣ ○␣ ○ ○␣

Apache OpenOffice 4.1.8

m
ac

O
S ○ ○ ○␣ ○␣ ○

Collabora Office 6.2-20210530 ○ ○ ○␣ ○␣ ○
LibreOffice 7.0.4.2 ○ ○ ○␣ ○␣ ○
NeoOffice 2017.27 ○ ○ ○␣ ○␣ ○

Apache OpenOffice 4.1.8
L

in
ux

○ ○ ○␣ ○␣ ○
Collabora Office 6.2-20210530 ○ ○ ○␣ ○␣ ○
IBM Lotus Symphony 3.0.1 fp2 ○ ○ ○␣ ○␣ ○
LibreOffice 7.0.4.2 ○ ○ ○␣ ○␣ ○

Collabora Office 6.4.11-2

iO
S ○ ○1 ○␣ ○␣ ○1

AO Office 4.1.6 ○ ○ ○␣ ○␣ ○

Collabora Office 6.4.3 Android ○ ○1 ○␣ ○␣ ○1

Collabora Online (CODE) 6.0-18 Online ○ ○1 ○␣ ○␣ ○1

Digital Signature Service 5.9 ○ ○␣ ○␣ ○␣ ○␣

∑ Applications that are vulnerable ○, max 18 12 16 3 1 16

○ Vulnerable: Application is vulnerable to this attack. 1No certificates view available, but valid signature and valid certificate verification is displayed.
○␣ Secure: Application is not vulnerable to this attack.
○ Non-verifiable: Attack cannot be tested with this application.

Table 5: Evaluation results. We could identify macro execution in all applications supporting macros (i.e., in 12 of 18). In all
cases except the Digital Signature Service, we could spoof signed content (i.e., in 17 of 18).

does not exist.

Certificate Doubling Attacks. Macros and Content Manip-
ulation with Certificate Doubling attacks are based on the
fundamental problem of incorrectly processing the XML sig-
natures. However, both attacks have entirely different manip-
ulation goals: in the first variant, arbitrary malicious code is
supposed to be executed on the victim’s system, and in the
second variant, the victim is supposed to be fooled into think-
ing that a document is signed by a trusted entity. We show that
12 out of 18 applications are vulnerable for the first variant,
and 16 out of 18 applications are vulnerable for the second
variant. We could, thus, execute arbitrary macro code in all
ODF applications that can generally process macro code in
ODF documents. Our PoC examples show that the attacker
could cause significant damage (e.g., compromise all user
files) by exploiting this vulnerability. For the content manipu-
lation variant, the Collabora iOS, Android, and online variants
show correct signature validation and certificate verification
for the attacker-manipulated ODF documents. Still, they do
not provide a feature to view more detailed information about
the signer. Microsoft Office and DSS specified the attacker’s
certificate as the creator of the signature and are, thus, not
vulnerable to this attack.

Content Manipulation with Certificate Validation Bypass.
Only the Windows versions of Apache OpenOffice, Collabora

Office and LibreOffice are vulnerable to the attack. 15 of the
18 applications classify the signature as invalid due to the
manipulated certificate of the signer.

Content Manipulation with Signature Upgrade. This prob-
lem of partial signatures, which is the root cause for this attack,
has been recognized in the ODF specifications 1.2 and 1.3.
These specifications require that a document signature is al-
ways created over all files within the ODF package [67, Part
1, p. 99] [68, Part 3, p. 98] (for exceptions, see Section 2).
Following this recommendation, 17 out of 18 applications
comply and evaluate the macro signature disguised as a docu-
ment signature as invalid. Only Microsoft Office accepts this
type of signature and is vulnerable.

Timestamp Manipulation with Signature Wrapping. We
identify 16 of 18 applications as vulnerable to the Times-
tamp Manipulation with Signature Wrapping attack. Only
Mircosoft Office and DSS are secure. Surprisingly, there is
not even a logical check of the timestamp for the 16 applica-
tions. This missing check allows the attacker to form arbitrary
date such as 66/66/6666.

8 Countermeasures

This section discusses mitigations for our attacks. We catego-
rized them by their manipulation techniques.

USENIX Association 31st USENIX Security Symposium 3087

Manipulation Technique: Certificate Doubling. Both Cer-
tificate Double attack techniques have the same root cause.
They abuse a logical inconsistency during the validation of
the signature. This validation consists of two steps.
(1) The signature must be cryptographically verified. For

example, in RSA signatures, the signature’s hash and its
RSA value are verified.

(2) The origin of the used key material must be verified. In
the case of an XML signature, this typically means to
ascertain the trustworthiness of the X.509 certificate.

A Certificate Doubling attack abuses a binding between these
two steps. It provides two X.509 certificates within the XML
signature. One certificate is trusted (Step 2) but fails during
the cryptographic verification (Step 1). The other provides the
opposite. In the case of LibreOffice, the inconsistency lies in
the XSecParser class of the xmlsecurity module [87]. The
signature validation extracts two certificates but uses them for
different purposes (cf. Step 1 and Step 2). A mitigation for
the attack is to enforce the passing of each certificate to both
validation steps. Only if one certificate passes both steps, the
signature can be handled as valid. Another proper way would
be to execute the validation steps subsequently but remove a
certificate in the event of the XML signature document object
not passing a step. If this process leaves no certificates, the
signature must be handled as invalid.

Manipulation Technique: Certificate Validation Bypass.
The Certificate Validation Bypass technique abuses unspeci-
fied input value during the certificate validation process. The
root cause for the attack is that certificates are initially consid-
ered valid. In case that the certificate trust verification returns
invalid (Step 2), the initial value changes. If the application
cannot finish Step 2 of the verification, the signature validity
status remains valid. The attack causes this interruption by
using an unspecified input at a specific place in the X.509
certificate. The effective mitigation (e.g., implemented by
LibreOffice and OpenOffice) is to set the default validity of
each certificate to invalid during the startup so that disruption
during its processing does not result in trusted certificates.

Manipulation Technique: Signature Upgrade. The Signa-
ture Upgrade technique can be traced back to an incomplete
implementation of the ODF specifications. These specifica-
tions requires that for document signatures all files of the ODF
package are included in the signature calculation [68, Part 3,
p. 98] [67, Part 1, p. 99] (exceptions see: Section 2). Thus,
an effective countermeasure is to treat partial signatures as
invalid in general.

Self-signed Certificates. Four attacks use the attacker’s self-
signed certificates. However, deprecating self-signed certifi-
cates in the ODF specification would not be a useful coun-
termeasure. For the attacks, the attacker could also use cer-
tificates issued by a trusted certificate authority (CA) and
perform the attacks in the same way.

Manipulation Technique: XSW. A reliable method to pre-

vent XSW is to apply the see-what-is-signed approach [76]:
the signature validation removes all parts of the ODF doc-
ument that are not part of the signature computation. With
respect to the Timestamp Manipulation with Signature Wrap-
ping attack, all unsigned timestamps will be ignored and mak-
ing the spoofing impossible. This protection applies to both
ODF signature variants – XAdES and non-XAdES signatures.
The mitigation would also prevent additional XSW variants
that could possibly be applied to other parts, for example, the
content.

9 Related Work

Security of Office Documents. In the years 2006 to 2009,
different researchers [21, 31, 32, 47, 72] analyzed the security
of OpenOffice.org respectively OOXML and proposed dif-
ferent attack and obfuscation techniques to stealthy execute
malicious code. The authors highlighted security issues in the
design of OpenOffice.org version 2.x to 3.x. The analyses also
identified problems with digital signatures, which have been
addressed in recent ODF standards. Our work, in contrast, is
the first to analyze ODF signatures systematically, focusing
on the latest standard. Malware in the context of VBA macros
has been discussed by various researchers [22, 36, 48, 92].
Their focus lied in convincing the victims to allow macro
execution. Another attack technique is called VBA stomp-
ing which abuses the so-called performance code in VBA
macros [16, 18, 69, 75]. This attack cannot be adapted to ODF
since it does not use precompiled code. In 2020 Müller et al.
[62] presented a systematic analysis of ODF and OOXML
documents. They investigated, inter alia, macro attacks but
did not consider signatures.

Attacks on PDF Documents. In 2019, Mladenov et al. [59]
presented attacks on digitally signed PDF documents. They
targeted a similar attack goal (content spoofing). On an ab-
stract level, they used comparable techniques (signature wrap-
ping, universal forgery) for two of their attacks. However, they
did not consider code execution attacks and concentrated on
the PDF file format. In 2021, Mainka et al. [51] presented
shadow attacks on PDF that are not applicable to ODF docu-
ments (cf. Section 4.2). In 2021, Rohlmann et al. [74] abuses
PDF annotations for attacking PDF signatures. Annotation-
based attacks on ODF are not applicable because ODF anno-
tations are stored in content.xml which is protected by the
signature. Various research groups conducted content mask-
ing attacks based on polyglots [1, 17, 73]. These attacks are
not applicable on ODF documents due to its compression into
a zip archive and the strict internal structure of the document
containing different files.

XML-based Attacks. In 2002, Klein [45] and Steuck [78]
used for the first time XML features to carry out efficient
Denial-of-Service attacks. In the following years, additional
malicious features have been systematically evaluated and

3088 31st USENIX Security Symposium USENIX Association

further vulnerabilities were discovered [43, 61, 77]. We used
their attack vectors and adapted the attacks on ODF doc-
uments. The first XSW attacks were published by McIn-
tosh and Austel [54] in 2005. In the following years, sev-
eral other XSW attacks and countermeasures were presented
[39, 41, 60, 76, 89]. In 2019, Munoz and Mirosh [64] demon-
strated a key confusion attack on SAML which is comparable
to our Certificate Doubling attacks. The difference is that a
symmetric key, instead of a trusted certificate, is added to the
<KeyInfo> element to bypass the signature validation.

10 Discussion and Future Work

Future Research Directions. ODF is only one format in
the family of XML-based file formats. When considering
the transferablity of XML-based attacks to these formats,
future research in various file formats is imaginable. There
are further XML-based document formats, for example, the
Open Packaging Conventions (OPC) family, which includes –
inter alia – OOXML, 3D Manufacturing Format (3mf), and
Autodesk AutoCAD Design Web Format (DWFX). Although
these formats similarly support digital signatures, and thus
directly relate to our research, further attacks, for example,
ACE [36, 48, 63], should also be considered.

Proprietary Features. We identified proprietary features to
be a desired source of attacks, as shown by the partial docu-
ment signatures feature that lead to the Content Manipulation
with Signature Upgrade attack. We were not the first to come
to this conclusion, as the discoveries in recent years show. For
example, the performance code feature in Microsoft Office led
to the VBA stomping attack [16, 18, 69, 75]. Such proprietary
features are not well documented. They require a thorough
analysis of each implementation. A generic approach to deal
with them is missing.

Memory-based Attack Verification. By using DocSV, the
attack’s success can be automatically evaluated on GUI appli-
cations, such as Microsoft Office (OOXML) or AutoCAD. In
its current state, we only use DocSV to analyze the signature
verification result, but other attacks could extend its scope.
For example, it could be used to detect inconsistencies in the
presentation of the document, but the evaluation of content
masking [53] and polyglot [1, 17, 73] attacks would greatly
benefit from this approach.

11 Conclusion

In this paper, we conducted the first comprehensive analysis
of digital signatures in ODF documents. We described five
attacks, three of which forged content and one of which forged
the signature timestamp. Another attack even led to code
execution on the victim’s computer system. Using a novel
memory-based evaluation approach for documents named

DocSV, we showed that 17 out of 18 ODF applications were
vulnerable.

Attacks’ Root Causes. The discovered issues that our at-
tacks abuse raise from an imprecise or incomplete description
in the ODF standard and its subsequent standards. For ex-
ample, the ODF signatures rely on using XML signatures.
These can have multiple certificates, but the ODF standard
does not describe what an implementation should do in such
cases, which lead to Macro Manipulation with Certificate
Doubling and Content Manipulation with Certificate Dou-
bling attacks. Another example is the incomplete description
of naming signature files in the ODF package. The renam-
ing of macrosignates.xml to documentsignatures.xml was
the foundation for the Content Manipulation with Signature
Upgrade attack. These gaps leave developers on their own to
properly address such cases, although all malicious documents
presented in this paper remain compliant to the ODF/XML
standards.

Lessons Learned. Document signatures and macro signatures
are hard to implement flawlessly. To the best of our knowl-
edge, we can find one reason in the inappropriate handling
of partial signatures. Compared to classical file signatures,
where the signature protects every byte, documents are more
flexible. Particularly in the case of ODF, document and macro
signatures leave unprotected gaps in the ODF package. The
gaps in combination with imprecise or incomplete descrip-
tions in the standards open the potential for severe threats,
as shown in this paper. For countering these threats, future
standards should be more precise. In addition, we see the
demand for automatic attack evaluation in the field of doc-
ument security. DocSV could serve as a foundation for this
automation.

Acknowledgment

We would like to thank Steve Martin for his contributions
in developing the initial attacks in his master’s thesis, David
Dankelmann for his idea of using memory analysis for sig-
nature validation, and Daniele Antonioli for shepherding this
paper. Simon Rohlmann was supported by the German Fed-
eral Ministry of Economics and Technology (BMWi) project
“Industrie 4.0 Recht-Testbed” (13I40V002C). This research
was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy - EXC 2092 CASA - 390781972.

References
[1] Ange Albertini. This PDF is a JPEG; or, This Proof of Concept

is a Picture of Cats. PoC 11 GTFO 0x03, 2014. URL https:
//www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf.

[2] Apache Software Foundation. Merging Lotus Symphony: Alle-
gro moderato, . URL https://blogs.apache.org/ooo/entry/
merging_lotus_symphony_allegro_moderato.

USENIX Association 31st USENIX Security Symposium 3089

https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
https://blogs.apache.org/ooo/entry/merging_lotus_symphony_allegro_moderato
https://blogs.apache.org/ooo/entry/merging_lotus_symphony_allegro_moderato

[3] Apache Software Foundation. The Apache OpenOffice API Project, .
URL https://www.openoffice.org/api/.

[4] Apache Software Foundation. Apache OpenOffice BASIC Pro-
gramming Guide, . URL https://wiki.openoffice.org/wiki/
Documentation/BASIC_Guide.

[5] Apache Software Foundation. Security/Digital Signatures,
. URL https://wiki.openoffice.org/wiki/Security/
Digital_Signatures.

[6] Apache Software Foundation. Apache OpenOffice Basic IDE,
. URL https://wiki.openoffice.org/wiki/Documentation/
DevGuide/Basic/OpenOffice.org_Basic_IDE.

[7] Apache Software Foundation. Service Events, . URL
https://www.openoffice.org/api/docs/common/ref/com/
sun/star/document/Events.html.

[8] Apache Software Foundation. Scripting Framework, . URL
https://wiki.openoffice.org/wiki/Documentation/
DevGuide/Scripting/Scripting_Framework.

[9] Apache Software Foundation. FAQs, . URL http://
www.openoffice.org/FAQs/faq-overview.html.

[10] Apache Software Foundation. Symphony contribution, . URL https:
//wiki.openoffice.org/wiki/Symphony_contribution.

[11] Apache Software Foundation. The Structure of Spreadsheet Documents,
. URL https://wiki.openoffice.org/wiki/Documentation/
BASIC_Guide/Structure_of_Spreadsheets.

[12] Apache Software Foundation. VBA interoperability in
OpenOffice, . URL https://wiki.openoffice.org/wiki/
VBA_interoperability_in_OpenOffice.

[13] Apple Inc. App Store. URL https://www.apple.com/app-store/.

[14] Mehdi Assefi. Ocr as a service: An experimental evaluation of google
docs ocr, tesseract, abbyy finereader, and transym. International Sym-
posium on Visual Computing, pages 735–746, 12 2016.

[15] Australian Cyber Security Centre (ACSC). Update on Petya
ransomware campaign. URL https://www.cyber.gov.au/acsc/
view-all-content/advisories/update-petya-ransomware-
campaign.

[16] Vesselin Bontche. pcodedmp.py - a vba p-code disassembler. URL
https://github.com/bontchev/pcodedmp.

[17] Francesco Buccafurri, Gianluca Caminiti, and Gianluca Lax. Fortifying
the dalì attack on digital signature. In Proceedings of the 2nd Interna-
tional Conference on Security of Information and Networks, SIN ’09,
page 278–287, New York, NY, USA, 2009. Association for Computing
Machinery. ISBN 9781605584126. doi: 10.1145/1626195.1626262.
URL https://doi.org/10.1145/1626195.1626262.

[18] Pieter Ceelen and Stan Hegt. Ms office file format
sorcery. In Troopers, March 2019. URL https:
//github.com/outflanknl/Presentations/blob/master/
Troopers19_MS_Office_file_format_sorcery.pdf.

[19] Central Digital and Data Office. Using Open Document For-
mats (ODF) in your organisation. URL https://www.gov.uk/
guidance/using-open-document-formats-odf-in-your-
organisation#securing-your-odf-compliant-solution.

[20] Collabora Ltd. Programming with Collabora Office Basic.
URL https://help.collaboraoffice.com/latest/en-US/text/
sbasic/shared/01000000.html?DbPAR=BASIC.

[21] David de Drézigué, Jean-Paul Fizaine, and Nils Hansma. In-depth
analysis of the viral threats with OpenOffice.org documents. In
Journal in Computer Virology, volume 2, pages 187–210, dec 2006.
doi: 10.1007/s11416-006-0020-2. URL https://doi.org/10.1007/

s11416-006-0020-2.

[22] Didier Stevens. Tampering with Digitally Signed VBA Projects,
2020. URL https://blog.nviso.eu/2020/06/04/tampering-
with-digitally-signed-vba-projects/.

[23] European Commission. France’s RGI v2 recommends ODF,
. URL https://joinup.ec.europa.eu/collection/open-source-
observatory-osor/news/frances-rgi-v2-recommends-odf.

[24] European Commission. Italian military to save 26-
29 million Euro by migrating to LibreOffice, . URL
https://joinup.ec.europa.eu/collection/open-source-
observatory-osor/news/italian-military-save-26-2.

[25] European Commission. MIMO: a working group of
French ministries to certify a LibreOffice release, . URL
https://joinup.ec.europa.eu/collection/open-source-
observatory-osor/document/mimo-working-group-french-
ministries-certify-libreoffice-release.

[26] European Commission. EU: NATO makes ODF one of its manda-
tory standards, . URL https://joinup.ec.europa.eu/collection/
egovernment/news/eu-nato-makes-odf-one-its.

[27] European Commission. Taiwanese government standardises on true
ODF document format, . URL https://joinup.ec.europa.eu/
collection/open-source-observatory-osor/document/
taiwanese-government-standardises-true-odf-document-
format.

[28] European Commission. Valencia region government completes
switch to LibreOffice, . URL https://joinup.ec.europa.eu/
collection/open-source-observatory-osor/news/valencia-
region-government-co.

[29] European Telecommunications Standards Institute (ETSI). XML
Advanced Electronic Signatures (XAdES), Jun. 2009. URL
https://www.etsi.org/deliver/etsi_ts/101900_101999/
101903/01.04.01_60/ts_101903v010401p.pdf.

[30] European Union Agency for Law Enforcement Cooperation (Europol).
World’s most dangerous malware EMOTET disrupted through
global action. URL https://www.europol.europa.eu/newsroom/
news/world%E2%80%99s-most-dangerous-malware-emotet-
disrupted-through-global-action.

[31] Eric Filiol. Openoffice v3.x security design weaknesses. In
Black Hat Europe, April 2009. URL https://www.blackhat.com/
presentations/bh-europe-09/Filiol_Fizaine/BlackHat-
Europe-09-Filiol-Fizaine-OpenOffice-Weaknesses-
slides.pdf.

[32] Eric Filiol and Jean-Paul Fizaine. Openoffice security and vi-
ral risk – part one. In Virus Bulletin Journal, September
2007. URL https://www.virusbulletin.com/virusbulletin/
2007/09/openoffice-security-and-viral-risk-part-one.

[33] James Forshaw. Exploiting XML Digital Signature Imple-
mentations, 2013. URL https://conference.hitb.org/
hitbsecconf2013kul/materials/D2T1%20-%20James%
20Forshaw%20-%20Exploiting%20XML%20Digital%
20Signature%20Implementations.pdf.

[34] French government. Arrêté du 20 avril 2016 portant approba-
tion du référentiel général d’interopérabilité. URL https://
www.legifrance.gouv.fr/jorf/id/JORFTEXT000032438896.

[35] G DATA CyberDefense AG. Ransomware on the Rise:
Buran’s transformation into Zeppelin. URL https:
//www.gdatasoftware.com/blog/2020/06/35946-burans-
transformation-into-zeppelin.

[36] Jacob Gajek. Macro malware: dissecting a malicious word
document. Network Security, 2017(5):8–13, 2017. ISSN

3090 31st USENIX Security Symposium USENIX Association

https://www.openoffice.org/api/
https://wiki.openoffice.org/wiki/Documentation/BASIC_Guide
https://wiki.openoffice.org/wiki/Documentation/BASIC_Guide
https://wiki.openoffice.org/wiki/Security/Digital_Signatures
https://wiki.openoffice.org/wiki/Security/Digital_Signatures
https://wiki.openoffice.org/wiki/Documentation/DevGuide/Basic/OpenOffice.org_Basic_IDE
https://wiki.openoffice.org/wiki/Documentation/DevGuide/Basic/OpenOffice.org_Basic_IDE
https://www.openoffice.org/api/docs/common/ref/com/sun/star/document/Events.html
https://www.openoffice.org/api/docs/common/ref/com/sun/star/document/Events.html
https://wiki.openoffice.org/wiki/Documentation/DevGuide/Scripting/Scripting_Framework
https://wiki.openoffice.org/wiki/Documentation/DevGuide/Scripting/Scripting_Framework
http://www.openoffice.org/FAQs/faq-overview.html
http://www.openoffice.org/FAQs/faq-overview.html
https://wiki.openoffice.org/wiki/Symphony_contribution
https://wiki.openoffice.org/wiki/Symphony_contribution
https://wiki.openoffice.org/wiki/Documentation/BASIC_Guide/Structure_of_Spreadsheets
https://wiki.openoffice.org/wiki/Documentation/BASIC_Guide/Structure_of_Spreadsheets
https://wiki.openoffice.org/wiki/VBA_interoperability_in_OpenOffice
https://wiki.openoffice.org/wiki/VBA_interoperability_in_OpenOffice
https://www.apple.com/app-store/
https://www.cyber.gov.au/acsc/view-all-content/advisories/update-petya-ransomware-campaign
https://www.cyber.gov.au/acsc/view-all-content/advisories/update-petya-ransomware-campaign
https://www.cyber.gov.au/acsc/view-all-content/advisories/update-petya-ransomware-campaign
https://github.com/bontchev/pcodedmp
https://doi.org/10.1145/1626195.1626262
https://github.com/outflanknl/Presentations/blob/master/Troopers19_MS_Office_file_format_sorcery.pdf
https://github.com/outflanknl/Presentations/blob/master/Troopers19_MS_Office_file_format_sorcery.pdf
https://github.com/outflanknl/Presentations/blob/master/Troopers19_MS_Office_file_format_sorcery.pdf
https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation#securing-your-odf-compliant-solution
https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation#securing-your-odf-compliant-solution
https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation#securing-your-odf-compliant-solution
https://help.collaboraoffice.com/latest/en-US/text/sbasic/shared/01000000.html?DbPAR=BASIC
https://help.collaboraoffice.com/latest/en-US/text/sbasic/shared/01000000.html?DbPAR=BASIC
https://doi.org/10.1007/s11416-006-0020-2
https://doi.org/10.1007/s11416-006-0020-2
https://blog.nviso.eu/2020/06/04/tampering-with-digitally-signed-vba-projects/
https://blog.nviso.eu/2020/06/04/tampering-with-digitally-signed-vba-projects/
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/frances-rgi-v2-recommends-odf
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/frances-rgi-v2-recommends-odf
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/italian-military-save-26-2
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/italian-military-save-26-2
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/document/mimo-working-group-french-ministries-certify-libreoffice-release
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/document/mimo-working-group-french-ministries-certify-libreoffice-release
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/document/mimo-working-group-french-ministries-certify-libreoffice-release
https://joinup.ec.europa.eu/collection/egovernment/news/eu-nato-makes-odf-one-its
https://joinup.ec.europa.eu/collection/egovernment/news/eu-nato-makes-odf-one-its
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/document/taiwanese-government-standardises-true-odf-document-format
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/document/taiwanese-government-standardises-true-odf-document-format
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/document/taiwanese-government-standardises-true-odf-document-format
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/document/taiwanese-government-standardises-true-odf-document-format
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/valencia-region-government-co
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/valencia-region-government-co
https://joinup.ec.europa.eu/collection/open-source-observatory-osor/news/valencia-region-government-co
https://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.01_60/ts_101903v010401p.pdf
https://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.01_60/ts_101903v010401p.pdf
https://www.europol.europa.eu/newsroom/news/world%E2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://www.europol.europa.eu/newsroom/news/world%E2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://www.europol.europa.eu/newsroom/news/world%E2%80%99s-most-dangerous-malware-emotet-disrupted-through-global-action
https://www.blackhat.com/presentations/bh-europe-09/Filiol_Fizaine/BlackHat-Europe-09-Filiol-Fizaine-OpenOffice-Weaknesses-slides.pdf
https://www.blackhat.com/presentations/bh-europe-09/Filiol_Fizaine/BlackHat-Europe-09-Filiol-Fizaine-OpenOffice-Weaknesses-slides.pdf
https://www.blackhat.com/presentations/bh-europe-09/Filiol_Fizaine/BlackHat-Europe-09-Filiol-Fizaine-OpenOffice-Weaknesses-slides.pdf
https://www.blackhat.com/presentations/bh-europe-09/Filiol_Fizaine/BlackHat-Europe-09-Filiol-Fizaine-OpenOffice-Weaknesses-slides.pdf
https://www.virusbulletin.com/virusbulletin/2007/09/openoffice-security-and-viral-risk-part-one
https://www.virusbulletin.com/virusbulletin/2007/09/openoffice-security-and-viral-risk-part-one
https://conference.hitb.org/hitbsecconf2013kul/materials/D2T1%20-%20James%20Forshaw%20-%20Exploiting%20XML%20Digital%20Signature%20Implementations.pdf
https://conference.hitb.org/hitbsecconf2013kul/materials/D2T1%20-%20James%20Forshaw%20-%20Exploiting%20XML%20Digital%20Signature%20Implementations.pdf
https://conference.hitb.org/hitbsecconf2013kul/materials/D2T1%20-%20James%20Forshaw%20-%20Exploiting%20XML%20Digital%20Signature%20Implementations.pdf
https://conference.hitb.org/hitbsecconf2013kul/materials/D2T1%20-%20James%20Forshaw%20-%20Exploiting%20XML%20Digital%20Signature%20Implementations.pdf
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000032438896
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000032438896
https://www.gdatasoftware.com/blog/2020/06/35946-burans-transformation-into-zeppelin
https://www.gdatasoftware.com/blog/2020/06/35946-burans-transformation-into-zeppelin
https://www.gdatasoftware.com/blog/2020/06/35946-burans-transformation-into-zeppelin

1353-4858. doi: https://doi.org/10.1016/S1353-4858(17)30049-
1. URL https://www.sciencedirect.com/science/article/
pii/S1353485817300491.

[37] Google Ireland Limited. Google Play. URL https://
play.google.com/store.

[38] Government Digital Service (GDS). Open document formats selected
to meet user needs. URL https://www.gov.uk/government/news/
open-document-formats-selected-to-meet-user-needs.

[39] Abhinav Nath Gupta and P. Santhi Thilagam. Detection of xml sig-
nature wrapping attack using node counting. In V. Vijayakumar and
V. Neelanarayanan, editors, Proceedings of the 3rd International Sym-
posium on Big Data and Cloud Computing Challenges (ISBCC – 16’),
pages 57–63, Cham, 2016. Springer International Publishing. ISBN
978-3-319-30348-2.

[40] Frederick Hirsch, David Solo, Joseph Reagle, Donald Eastlake, and
Thomas Roessler. XML signature syntax and processing (second
edition). W3C recommendation, W3C, June 2008. URL http://
www.w3.org/TR/2008/REC-xmldsig-core-20080610/.

[41] Paul Höller, Alexander Krumeich, and Luigi Lo Iacono. Xml sig-
nature wrapping still considered harmful: A case study on the per-
sonal health record in germany. In Audun Jøsang, Lynn Futcher, and
Janne Hagen, editors, ICT Systems Security and Privacy Protection,
pages 3–18, Cham, 2021. Springer International Publishing. ISBN
978-3-030-78120-0.

[42] James M. Thompson. Porting Excel/VBA to Calc/StarBasic,
Jun. 2004. URL http://www.openoffice.org/documentation/
HOW_TO/various_topics/VbaStarBasicXref.pdf.

[43] Sadeeq Jan, Cu D. Nguyen, and Lionel Briand. Known XML Vul-
nerabilities Are Still a Threat to Popular Parsers and Open Source
Systems. In 2015 IEEE International Conference on Software Qual-
ity, Reliability and Security, pages 233–241. IEEE, August 2015.
doi: 10.1109/qrs.2015.42. URL http://ieeexplore.ieee.org/
document/7272938/.

[44] Kelby Ludwig. Duo Finds SAML Vulnerabilities Affecting Multiple
Implementations. URL https://duo.com/blog/duo-finds-saml-
vulnerabilities-affecting-multiple-implementations.

[45] Klein. Multiple vendors XML parser (and SOAP/WebServices
server) Denial of Service attack using DTD, 2002. URL http:
//www.securityfocus.com/archive/1/303509.

[46] Tomasz Kuchta, Thibaud Lutellier, Edmund Wong, Lin Tan, and Cris-
tian Cadar. On the correctness of electronic documents: studying,
finding, and localizing inconsistency bugs in PDF readers and files,
volume 23. Empirical Software Engineering, 2018. ISBN 1066401896.
doi: 10.1007/s10664-018-9600-2.

[47] Philippe Lagadec. OpenDocument and Open XML security (OpenOf-
fice.org and MS Office 2007). In Journal in Computer Virology, vol-
ume 4, pages 115–125, may 2008. doi: 10.1007/s11416-007-0060-2.
URL https://doi.org/10.1007/s11416-007-0060-2.

[48] Philippe Lagadecl. Advanced vba macros attack & de-
fence. In Black Hat Europe, December 2019. URL
https://www.decalage.info/files/eu-19-Lagadec-Advanced-
VBA-Macros-Attack-And-Defence.pdf.

[49] LibreOffice Documentation Team. Getting Started Guide, Jun.
2021. URL https://documentation.libreoffice.org/assets/
Uploads/Documentation/en/GS7.1/GS71-GettingStarted.pdf.

[50] Christian Mainka, Vladislav Mladenov, Florian Feldmann, Julian Kraut-
wald, and Jörg Schwenk. Your software at my service: Security analysis
of SaaS single sign-on solutions in the cloud. In Proceedings of the 6th
Edition of the ACM Workshop on Cloud Computing Security, October
2014. URL https://dl.acm.org/doi/10.1145/2664168.2664172.

[51] Christian Mainka, Vladislav Mladenov, and Simon Rohlmann. Shadow
Attacks: Hiding and Replacing Content in Signed PDFs. In 28th
Annual Network and Distributed System Security Symposium, NDSS
2021, virtually, February 21-25, 2021. The Internet Society, 2021.
URL https://www.ndss-symposium.org/ndss-paper/shadow-
attacks-hiding-and-replacing-content-in-signed-pdfs/.

[52] Malwarebytes Inc. Ransom.Locky. URL https://
blog.malwarebytes.com/detections/ransom-locky/.

[53] Ian Markwood, Dakun Shen, Yao Liu, and Zhuo Lu. PDF Mirage: Con-
tent Masking Attack Against Information-Based Online Services. In
26th USENIX Security Symposium (USENIX Security 17), (Vancouver,
BC), pages 833–847, 2017.

[54] Michael McIntosh and Paula Austel. XML signature element wrapping
attacks and countermeasures. In Proceedings of the 2005 Workshop
on Secure Web Services, SWS ’05, page 20–27, New York, NY, USA,
2005. Association for Computing Machinery. ISBN 1595932348.
doi: 10.1145/1103022.1103026. URL https://doi.org/10.1145/
1103022.1103026.

[55] Microsoft Corporation. about Execution Poli-
cies, . URL https://docs.microsoft.com/en-us/
powershell/module/microsoft.powershell.core/about/
about_execution_policies?view=powershell-7.1.

[56] Microsoft Corporation. Office VBA Reference, . URL https://
docs.microsoft.com/en-us/office/vba/api/overview/.

[57] Microsoft Defender Security Research Team. New feature in
Office 2016 can block macros and help prevent infection. URL
https://www.microsoft.com/security/blog/2016/03/22/
new-feature-in-office-2016-can-block-macros-and-help-
prevent-infection/.

[58] Ministry of Digital Development of the Russian Federation. в рос-
сии вступил в действие национальный стандарт откры-
тых офисных приложений OpenDocument (ODF). URL https:
//digital.gov.ru/ru/events/27931/.

[59] Vladislav Mladenov, Christian Mainka, Karsten Meyer zu Selhausen,
Martin Grothe, and Jörg Schwenk. 1 trillion dollar refund: How to
spoof PDF signatures. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019, pages 1–14. ACM,
2019. doi: 10.1145/3319535.3339812. URL https://doi.org/
10.1145/3319535.3339812.

[60] Subrata Modak, Koushik Majumder, and Debashis De. Vulnerability of
cloud: Analysis of xml signature wrapping attack and countermeasures.
In Debotosh Bhattacharjee, Dipak Kumar Kole, Nilanjan Dey, Subhadip
Basu, and Dariusz Plewczynski, editors, Proceedings of International
Conference on Frontiers in Computing and Systems, pages 755–765,
Singapore, 2021. Springer Singapore. ISBN 978-981-15-7834-2.

[61] Timothy D Morgan and Omar Al Ibrahim. XML Schema, DTD,
and Entity Attacks . Technical report, may 2014. URL https://
vsecurity.com//download/papers/XMLDTDEntityAttacks.pdf.

[62] Jens Müller, Fabian Ising, Christian Mainka, Vladislav Mladenov,
Sebastian Schinzel, and Jörg Schwenk. Office document security
and privacy. In 14th USENIX Workshop on Offensive Technolo-
gies (WOOT 20). USENIX Association, August 2020. URL https:
//www.usenix.org/conference/woot20/presentation/muller.

[63] Jens Müller, Dominik Noß, Christian Mainka, Vladislav Mladenov, and
Jörg Schwenk. Processing Dangerous Paths - On Security and Privacy
of the Portable Document Format. In Proceedings 2019 Network and
Distributed System Security Symposium. Internet Society, February
2021.

[64] Alvaro Munoz and Oleksandr Mirosh. SSO Wars: The Token Men-

USENIX Association 31st USENIX Security Symposium 3091

https://www.sciencedirect.com/science/article/pii/S1353485817300491
https://www.sciencedirect.com/science/article/pii/S1353485817300491
https://play.google.com/store
https://play.google.com/store
https://www.gov.uk/government/news/open-document-formats-selected-to-meet-user-needs
https://www.gov.uk/government/news/open-document-formats-selected-to-meet-user-needs
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.openoffice.org/documentation/HOW_TO/various_topics/VbaStarBasicXref.pdf
http://www.openoffice.org/documentation/HOW_TO/various_topics/VbaStarBasicXref.pdf
http://ieeexplore.ieee.org/document/7272938/
http://ieeexplore.ieee.org/document/7272938/
https://duo.com/blog/duo-finds-saml-vulnerabilities-affecting-multiple-implementations
https://duo.com/blog/duo-finds-saml-vulnerabilities-affecting-multiple-implementations
http://www.securityfocus.com/archive/1/303509
http://www.securityfocus.com/archive/1/303509
https://doi.org/10.1007/s11416-007-0060-2
https://www.decalage.info/files/eu-19-Lagadec-Advanced-VBA-Macros-Attack-And-Defence.pdf
https://www.decalage.info/files/eu-19-Lagadec-Advanced-VBA-Macros-Attack-And-Defence.pdf
https://documentation.libreoffice.org/assets/Uploads/Documentation/en/GS7.1/GS71-GettingStarted.pdf
https://documentation.libreoffice.org/assets/Uploads/Documentation/en/GS7.1/GS71-GettingStarted.pdf
https://dl.acm.org/doi/10.1145/2664168.2664172
https://www.ndss-symposium.org/ndss-paper/shadow-attacks-hiding-and-replacing-content-in-signed-pdfs/
https://www.ndss-symposium.org/ndss-paper/shadow-attacks-hiding-and-replacing-content-in-signed-pdfs/
https://blog.malwarebytes.com/detections/ransom-locky/
https://blog.malwarebytes.com/detections/ransom-locky/
https://doi.org/10.1145/1103022.1103026
https://doi.org/10.1145/1103022.1103026
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.1
https://docs.microsoft.com/en-us/office/vba/api/overview/
https://docs.microsoft.com/en-us/office/vba/api/overview/
https://www.microsoft.com/security/blog/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://www.microsoft.com/security/blog/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://www.microsoft.com/security/blog/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://digital.gov.ru/ru/events/27931/
https://digital.gov.ru/ru/events/27931/
https://doi.org/10.1145/3319535.3339812
https://doi.org/10.1145/3319535.3339812
https://vsecurity.com//download/papers/XMLDTDEntityAttacks.pdf
https://vsecurity.com//download/papers/XMLDTDEntityAttacks.pdf
https://www.usenix.org/conference/woot20/presentation/muller
https://www.usenix.org/conference/woot20/presentation/muller

ace, 2019. URL https://www.blackhat.com/us-19/briefings/
schedule/index.html#sso-wars-the-token-menace-15092.

[65] NATO. NATO Interoperability Standards and Profiles - Agreed Interop-
erability Standards and Profiles. URL https://nhqc3s.hq.nato.int/
Apps/Architecture/NISP/volume2/ch03s02.html.

[66] NIST. National Vulnerability Database. URL https://
nvd.nist.gov/.

[67] OASIS Open. Open Document Format for Office Applications (Open-
Document) Version 1.2, Sep. 2011. URL http://docs.oasis-
open.org/office/v1.2/.

[68] OASIS Open. Open Document Format for Office Applications (Open-
Document) Version 1.3, Apr. 2021. URL https://docs.oasis-
open.org/office/OpenDocument/v1.3/.

[69] Harold Ogden, Kirk Sayre, and Carrie Roberts. Vba stomping ad-
vanced malicious document techniques. In DerbyCon, December
2018. URL https://github.com/clr2of8/Presentations/blob/
master/DerbyCon2018-VBAstomp-Final-WalmartRedact.pdf.

[70] OpenDoc Society. About OpenDocument Format. URL https://
opendocumentformat.org/aboutODF/.

[71] Planamesa Inc. Using Macros. URL https://
neowiki.neooffice.org/index.php/Using_Macros.

[72] Henrich C. Pöhls and Lars Westphal. Die "untiefen"
der neuen xml-basierten dokumentenformate. In Black
Hat Europe, 2008. URL http://henrich.poehls.com/
papers/2008_Poehls_Westphal_2008_DFN-CERT-
WS_Untiefen_der_XML-Dokumentenformate.pdf.

[73] Dan-Sabin Popescu. Hiding malicious content in PDF docu-
ments. CoRR, abs/1201.0397, 2012. URL http://arxiv.org/abs/
1201.0397.

[74] Simon Rohlmann, Vladislav Mladenov, Christian Mainka, and Jörg
Schwenk. Breaking the Specification: PDF Certification. In
2021 IEEE Symposium on Security and Privacy (SP), pages 1485–
1501, Los Alamitos, CA, USA, May 2021. IEEE Computer So-
ciety. doi: 10.1109/SP40001.2021.00110. URL https://
doi.ieeecomputersociety.org/10.1109/SP40001.2021.00110.

[75] Kirk Sayre and Carrie Roberts. Advanced malware vba stomping.
In Sp4rkCon, May 2019. URL https://github.com/clr2of8/
Presentations/blob/master/Sp4rkCon2019-VBAstomp.pdf.

[76] Juraj Somorovsky, Andreas Mayer, Jörg Schwenk, Marco Kamp-
mann, and Meiko Jensen. On breaking saml: Be whoever you
want to be. In 21st USENIX Security Symposium, Bellevue, WA,
August 2012. URL https://www.usenix.org/system/files/
conference/usenixsecurity12/sec12-final91.pdf.

[77] Christopher Späth, Christian Mainka, Vladislav Mladenov, and
Jörg Schwenk. SoK: XML parser vulnerabilities. In
USENIX Workshop on Offensive Technologies (WOOT), Au-
gust 2016. URL https://www.usenix.org/system/files/
conference/woot16/woot16-paper-spath.pdf.

[78] Gregory Steuck. XXE (Xml eXternal Entity) Attack, 2002. URL
http://www.securiteam.com/securitynews/6D0100A5PU.html.

[79] The Document Foundation. LibreOffice 7.2 API Documentation, .
URL https://api.libreoffice.org/.

[80] The Document Foundation. Programming with LibreOffice Ba-
sic, . URL https://help.libreoffice.org/latest/en-US/text/
sbasic/shared/01000000.html?DbPAR=BASIC.

[81] The Document Foundation. Applying Digital Signatures, . URL
https://help.libreoffice.org/latest/en-US/text/shared/
guide/digitalsign_send.html.

[82] The Document Foundation. LibreOffice Basic IDE, . URL
https://help.libreoffice.org/latest/en-US/text/sbasic/
shared/01050000.html?DbPAR=BASIC.

[83] The Document Foundation. Document Event-Driven Macros, .
URL https://help.libreoffice.org/latest/ro/text/sbasic/
shared/01040000.html.

[84] The Document Foundation. LibreOffice Migrations, . URL https:
//wiki.documentfoundation.org/LibreOffice_Migrations.

[85] The Document Foundation. BASIC, . URL https://
wiki.documentfoundation.org/BASIC.

[86] The Document Foundation. Working with VBA Macros, .
URL https://help.libreoffice.org/latest/lo/text/sbasic/
shared/vbasupport.html.

[87] The Document Foundation. XSecParser Class Reference, .
URL https://docs.libreoffice.org/xmlsecurity/html/
classXSecParser.html.

[88] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). URL
https://www.w3.org/TR/xml/.

[89] Gerard Wawrzyniak and Imed El Fray. New xml signature scheme that
is resistant to some attacks. IEEE Access, 8:35815–35831, 2020. doi:
10.1109/ACCESS.2020.2975034.

[90] Wikipedia. OpenDocument software, . URL https://
en.wikipedia.org/wiki/OpenDocument_software.

[91] Wikipedia. List of word processors, . URL https://
en.wikipedia.org/wiki/List_of_word_processors.

[92] Yu Kaijun. Upgrade signed Office VBA macro projects to V3
signature, 2021. URL https://developer.microsoft.com/en-
us/sharepoint/blogs/upgrade-signed-office-vba-macro-
projects-to-v3-signature/.

12 Appendix

12.1 Macro Example

1 Sub Macro1
2 MsgBox("Hello world!")
3 End Sub

Listing 1: Basic code displaying a message box.

1 <script:event-listener script:language="ooo:script"
2 script:event-name="dom:load" xlink:type="simple"
3 xlink:href="vnd.sun.star.script:Standard.Module1 ⌋

.Macro1?language=Basic&location=document"↪→
4 />

Listing 2: Once the document is opened (dom:load), "Macro1"
is triggered via the xlink:href in the file content.xml (see
Listing 1).

3092 31st USENIX Security Symposium USENIX Association

https://www.blackhat.com/us-19/briefings/schedule/index.html#sso-wars-the-token-menace-15092
https://www.blackhat.com/us-19/briefings/schedule/index.html#sso-wars-the-token-menace-15092
https://nhqc3s.hq.nato.int/Apps/Architecture/NISP/volume2/ch03s02.html
https://nhqc3s.hq.nato.int/Apps/Architecture/NISP/volume2/ch03s02.html
https://nvd.nist.gov/
https://nvd.nist.gov/
http://docs.oasis-open.org/office/v1.2/
http://docs.oasis-open.org/office/v1.2/
https://docs.oasis-open.org/office/OpenDocument/v1.3/
https://docs.oasis-open.org/office/OpenDocument/v1.3/
https://github.com/clr2of8/Presentations/blob/master/DerbyCon2018-VBAstomp-Final-WalmartRedact.pdf
https://github.com/clr2of8/Presentations/blob/master/DerbyCon2018-VBAstomp-Final-WalmartRedact.pdf
https://opendocumentformat.org/aboutODF/
https://opendocumentformat.org/aboutODF/
https://neowiki.neooffice.org/index.php/Using_Macros
https://neowiki.neooffice.org/index.php/Using_Macros
http://henrich.poehls.com/papers/2008_Poehls_Westphal_2008_DFN-CERT-WS_Untiefen_der_XML-Dokumentenformate.pdf
http://henrich.poehls.com/papers/2008_Poehls_Westphal_2008_DFN-CERT-WS_Untiefen_der_XML-Dokumentenformate.pdf
http://henrich.poehls.com/papers/2008_Poehls_Westphal_2008_DFN-CERT-WS_Untiefen_der_XML-Dokumentenformate.pdf
http://arxiv.org/abs/1201.0397
http://arxiv.org/abs/1201.0397
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00110
https://doi.ieeecomputersociety.org/10.1109/SP40001.2021.00110
https://github.com/clr2of8/Presentations/blob/master/Sp4rkCon2019-VBAstomp.pdf
https://github.com/clr2of8/Presentations/blob/master/Sp4rkCon2019-VBAstomp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final91.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final91.pdf
https://www.usenix.org/system/files/conference/woot16/woot16-paper-spath.pdf
https://www.usenix.org/system/files/conference/woot16/woot16-paper-spath.pdf
http://www.securiteam.com/securitynews/6D0100A5PU.html
https://api.libreoffice.org/
https://help.libreoffice.org/latest/en-US/text/sbasic/shared/01000000.html?DbPAR=BASIC
https://help.libreoffice.org/latest/en-US/text/sbasic/shared/01000000.html?DbPAR=BASIC
https://help.libreoffice.org/latest/en-US/text/shared/guide/digitalsign_send.html
https://help.libreoffice.org/latest/en-US/text/shared/guide/digitalsign_send.html
https://help.libreoffice.org/latest/en-US/text/sbasic/shared/01050000.html?DbPAR=BASIC
https://help.libreoffice.org/latest/en-US/text/sbasic/shared/01050000.html?DbPAR=BASIC
https://help.libreoffice.org/latest/ro/text/sbasic/shared/01040000.html
https://help.libreoffice.org/latest/ro/text/sbasic/shared/01040000.html
https://wiki.documentfoundation.org/LibreOffice_Migrations
https://wiki.documentfoundation.org/LibreOffice_Migrations
https://wiki.documentfoundation.org/BASIC
https://wiki.documentfoundation.org/BASIC
https://help.libreoffice.org/latest/lo/text/sbasic/shared/vbasupport.html
https://help.libreoffice.org/latest/lo/text/sbasic/shared/vbasupport.html
https://docs.libreoffice.org/xmlsecurity/html/classXSecParser.html
https://docs.libreoffice.org/xmlsecurity/html/classXSecParser.html
https://www.w3.org/TR/xml/
https://en.wikipedia.org/wiki/OpenDocument_software
https://en.wikipedia.org/wiki/OpenDocument_software
https://en.wikipedia.org/wiki/List_of_word_processors
https://en.wikipedia.org/wiki/List_of_word_processors
https://developer.microsoft.com/en-us/sharepoint/blogs/upgrade-signed-office-vba-macro-projects-to-v3-signature/
https://developer.microsoft.com/en-us/sharepoint/blogs/upgrade-signed-office-vba-macro-projects-to-v3-signature/
https://developer.microsoft.com/en-us/sharepoint/blogs/upgrade-signed-office-vba-macro-projects-to-v3-signature/

	Introduction
	The OpenDocument Standard
	Macros
	Digital Signatures

	Attacker Model
	Systematic Security Analysis
	Analysis Phases
	Hidden Content and Signing Oracle

	New Attacks on ODF
	Macro Manipulation with Certificate Doubling
	Content Manipulation
	Content Manipulation with Certificate Doubling
	Content Manipulation with Certificate Validation Bypass
	Content Manipulation with Signature Upgrade

	Timestamp Manipulation with Signature Wrapping

	DocSV: A Novel Evaluation Technique of Office Documents
	Memory-based Evaluation of Documents
	Advantages and Disadvantages

	Evaluation
	Countermeasures
	Related Work
	Discussion and Future Work
	Conclusion
	Appendix
	Macro Example

