
On the Challenges of Detecting Side-Channel Attacks in SGX
Jianyu Jiang

The University of Hong Kong
Hong Kong, China
jyjiang@cs.hku.hk

Claudio Soriente
NEC Laboratories Europe
Heidelberg, Germany

claudio.soriente@neclab.eu

Ghassan Karame
Ruhr-University Bochum

Bochum, Germany
ghassan@karame.org

ABSTRACT
Existing tools todetect side-channelattacksonIntelSGXaregrounded
on the observation that attacks affect the performance of the victim
application. As such, all detection tools monitor the potential victim
and raise an alarm if thewitnessed performance (in terms of runtime,
enclave interruptions, cache misses, etc.) is out of the ordinary.

In this paper, we show that monitoring the performance of en-
claves to detect side-channel attacks may not be effective. Our core
intuition is that all monitoring tools are geared towards an adver-
sary that interferes with the victim’s execution in order to extract
the most number of secret bits (e.g., the entire secret) in one or few
runs. They cannot, however, detect an adversary that leaks smaller
portions of the secret—as small as a single bit—at each execution of
the victim. In particular, by minimizing the information leaked at
each run, the impact of any side-channel attack on the application’s
performance is significantly lowered—ensuring that the detection
tool does not detect an attack. By repeating the attackmultiple times,
each time on a different part of the secret, the adversary can recover
the whole secret and remain undetected. Based on this intuition,
we adapt known attacks leveraging page-tables and L3 cache to
bypass existing detection mechanisms. We show experimentally
how an attacker can successfully exfiltrate the secret key used in an
enclave running various cryptographic routines of libgcrypt. Be-
yond cryptographic libraries, we also show how to compromise the
predictions of enclaves running decision-tree routines of OpenCV.
Our evaluation results suggest that performance-based detection
tools do not deter side-channel attacks on SGX enclaves and that
effective detection mechanisms are yet to be designed.

1 INTRODUCTION
Intel Software Guard Extensions (SGX) enables applications to exe-
cute in isolation fromother software on the sameplatform, including
the OS. SGX-enabled processors run applications in so-called en-
claves and provide themwith encrypted runtimememory, encrypted
storage, and mechanisms to issue authenticated statements on the
enclave software configuration. As such, a number of practitioners
believe that Intel SGX is particularly suited for cloud deployments
since it allows to outsource applications to the cloud, with the assur-
ance that outsourced applications run untampered and their data is
not available to any (privileged) software on the same host.

Previousworkhas, however, shown that Intel SGXexhibits a num-
ber side-channels that,when coupledwith an adversary that controls
theOS, allow for effective leakage of enclave secrets [9, 20, 25, 32, 34].
Alongside attacks, the research community has proposed a number
of prevention [5, 8, 12, 16, 27] anddetectionmechanisms [14, 23, 26]—
the former having usually much higher overhead compared to the
latter. To the best of our knowledge, all detection mechanisms are
grounded on the observation that side-channel attacks affect the
performance of the victimapplication (e.g., by increasing thenumber

of enclave interruptions) and, therefore, signal an attack when the
witnessed performance is anomalous.

In this paper, we show that such detection tools may not be ef-
fective at detecting side-channel attacks on SGX enclaves. Namely,
existing detection mechanisms are geared towards an adversary
that interferes with the victim’s execution in order to extract the
most number of secret bits (e.g., the entire secret) in one or few
runs. Such an attack strategy has a significant impact on the victim’s
performance, effectively allowing detection mechanisms to notice
a deterioration in performance (e.g., in terms of runtime, enclave
interruptions, cache misses, etc.) and signal an attack.

Our core intuition is that an adversary can leak smaller portions of
the secret—as small as a single bit—at each execution of the victim, so
as to minimize the impact on its performance and, therefore, remain
undetected. More specifically, we show that an adversary can profile
a victim enclave, thereby identifying the precise moment during the
victim’s execution when a specific part of the secret can be leaked
via a side-channel attack. For example, if the victim runs the popular
square-and-multiply algorithm, we show that the attacker can infer
the moment when the 𝑖-th loop is being executed—i.e., when the 𝑖-th
secret bit is being processed—and execute a side-channel attack at
that time to leak the secret bit, without affecting the performance
of the victim. By running the victim multiple times and leaking a
different part of the secret at a time, our technique can recover the
whole secret while remaining undetected.

Based on this intuition, we adapt known attacks leveraging page-
tables, L3 cache, and a combination of the two, and evaluate their
performance on routines of libgcrypt (namely, mpi_powm and
mpi_ec_dup_point) used by popular cryptographic primitives such
as ElGamal, RSA, and EdDSA. We also apply our attack strategy
on non-cryptographic software and evaluate how to leak predic-
tions of enclaves running decision-tree routines of OpenCV [3]. Our
results show that our strategy recovers up to 100% of a secret key
used in libgcrypt routines, depending on the type of side-channel
exploited, and with marginal impact on the victim’s performance
(as low as one extra Asynchronous EXit (AEX) or roughly 40 cache
misses per run). In case of a victim using the decision-tree routines
of OpenCV to predict handwritten digits of the MNIST data-set [2],
our attack strategy can correctly leak around 55% of the predictions
(whereas a “standard” side-channel attack, that is easily detected by
available tools, reaches 64% of leaked predictions).

We additionally show that an adversary using our attack strategy
cannot be detected by existing detection tools such as T-SGX [26],
unless one tolerates a largenumberof false positives.Wealsoprovide
evidence that any detection tool that monitors the performance of
the victim is equally likely to fail.Wedo so by assuming a comprehen-
sive tool (dubbedMonitor++) that monitors all of the performance
metrics proposed in literature and show that even such a tool cannot
distinguish between a benign and a “malicious” execution.

Our results highlight that defenses that monitor performance
metrics are not enough to detect side-channel attacks on Intel SGX
enclaves. We therefore hope that our findings help avoiding addi-
tional (and probably unnecessary) cycles of defenses that monitor
performance metrics and attacks that succeed at bypassing them.

The rest of this paper is organized as follows. In Section 2, we
overview necessary background information and related work on
SGX.We describe the main intuition behind our attacks in Section 3
andwe evaluate them against libgcrypt andOpenCV in Sections 4-
6. Finally, Section 7 discusses possible defenses against our attacks
and provides some concluding remarks.

2 BACKGROUND:
SIDE-CHANNELATTACKSON SGX

Previous research has shown that Intel SGX is vulnerable to side-
channel attacks and that the Intel SGX threat model—by considering
a malicious OS—allow for very effective attacks [9, 20, 21, 31].

Proposed defenses work either as prevention or detection tools.
Prevention techniques incur in high overhead [5, 8, 16, 27], and
sometimes can only prevent specific types of side-channels [12].

Detection techniques have usually lower overhead and, to the best
of our knowledge, they all use the same “anomaly-based” approach:
they monitor the execution of the victim application and signal an
attack in case of deviations from a “normal” execution. Varys [23]
prevents L1/L2 cache-based attacks with core-reservation; at the
same time, Varys detects attacks based on page-faults or interrupts
by monitoring the number of AEXs so that an alarm is raised if their
frequency is too high. Varys is currently part of a commercial prod-
uct and its source-code is not available. Déjà Vu [14] detects attacks
based on page-faults or interrupts by monitoring the execution time
of the enclave. Déjà Vu instruments the basic blocks of the enclave
code tomeasure their execution time and an attack is “detected” if the
total time deviates from the one of an execution in a benign environ-
ment. An incomplete version of Déjà Vu is available on github [13];
we made contact with the authors to obtain the missing code, but
they are no longer maintaining the project. T-SGX [26] makes use of
Transactional Synchronization eXtensions (TSX) to suppress page-
faults notifications to the OS. When an interrupt or fault is thrown
within a TSX transaction, T-SGX aborts and executes a user-defined
handler. The handler of T-SGX keeps tracks of the number of aborts
per transaction and raises an alarm if that number reaches a given
threshold. The source code of T-SGX is available on github [29].

Previous “stealthy” side-Channel attacks. Previous work pro-
poses side-channel attacksonenclaves thatdonotcausepage-faults—
thereby achieving stealthiness despite detection-tools that monitor
page-faults. JoVanetal., [11]monitor theACCESSbitof thepage-table
to get the page access sequence of the victim without page-faults.
As the ACCESS bit of a page-table is set only the first time the page
is accessed (i.e., subsequent accesses do not modify the bit), the au-
thors of [11] force a TLB shootdown—by interrupting the enclave
via inter-process-interrupts—to reset the ACCESS bit. The authors
acknowledge that the number of interruptions during their attack
is substantially higher than what is to be expected under benign
circumstances, and suggest that a detection tool may notice the at-
tack by monitoring enclave interruptions rather than page-faults.

Differently, the attack strategy we develop in this paper causes only
a few interruptions of the victim and remains undetected.

Wangetal., [32] showthat enclave interruptionscanbeminimized
if TLB shootdown is achieved by using a sibling hyperthread that
probes memory addresses whose TLB entries are conflicted with the
ones of the victim enclave. While the attack developed by [32] can-
not be detected by monitoring enclave interruptions, it requires the
adversary and the victim to run on the same core. As such, the attack
is not viable in case of detection tools that enforce core-reservation
like Varys [23] or Déjà Vu [14]. Differently, our attack strategy does
not require the adversary to run on the same core of the victim.

Another stealthy attack is Prime+Abort [15]. Here, the idea is to
use TSX as a “watchdog” so that whenever the victim touches a spe-
cific cache-line, the adversary receives an immediate hardware call-
back in the formof a transactional abort. In principle, the attack could
be used to bypass detection mechanism that monitor asynchronous
exits [14, 23] or that use TSX to suppress page-faults notifications to
the OS [26]. However, a Prime+Abort attack could be easily spotted
bymonitoring cachemisses. In Section 5,we show that a trivialmodi-
fication to T-SGX [26] allows a victim to detect Prime+Probe attacks.

3 STEALTHY SIDE-CHANNELATTACKS
3.1 Threatmodel
We assume that the adversary has the victim code available (e.g., the
code belongs to a library or an open-source implementation), con-
trols theOSwhere the enclave is running, and can execute the victim
enclave arbitrarily many times. Such assumptions are similar to the
ones found in relatedwork [20, 32, 34] andcapturea realistic cloudde-
ployment where an application is uploaded by its owner to the cloud
provider, and part of the application code (e.g., a decryption routine)
runs in an enclave. After attestation and secret provisioning by the
application owner, the cloud provider can (re-)start the application
or trigger the routine running in the enclave arbitrarily many times.

3.2 Main intuition
Detection tools for (known) side-channel attacks build on the intu-
ition that attacks are likely to alter the performance of the victim
application. As a consequence, almost all detection tools monitor
the performance of the potential victim, and signal an attack if the
witnessed performance is anomalous.

We show that this intuition is not accurate. More precisely, we
show that an adversary can bypass these tools while minimizing the
effect on the victim’s performance by “spreading” the attack across
multiple runs. This can be done when the adversary extracts specific
portions of the secret, as small as a single bit, at each run of the vic-
tim enclave. By minimizing the information leaked at each run, the
impact of the attack on the victim’s performance is also lessened—so
that the detection tool notices no performance anomaly. This strat-
egy is repeated for a number of times—each time leaking a different
portion of the secret—to eventually recover the full secret.

In particular, we denote the enclave secret by s=s1,...,s𝑛 , where
each s𝑖 could be a single bit or multiple ones. Moreover, assume
the victim code is split into 𝑛 segments 𝑆1,...,𝑆𝑛 , such that segment
𝑆𝑖 processes s𝑖 . Here, the application is executed 𝑛 times. During
the 𝑖-th run, the attacker launches a side-channel attack while the
victim is executing segment 𝑆𝑖 , in order to leak s𝑖 . As the attack

2

only runs for a small time-window, the victim’s performance is only
marginally affected.

Developing the aforementioned strategy entails a number of chal-
lenges and requires the adversary to mount a side-channel attack
only during the time-window when the victim is executing code
segment 𝑆𝑖 . One option would be to precisely control the victim’s
execution by using single-stepping frameworks like SGX-Step [31].
However, side-stepping the victim generates a large number of page-
faults—allowing a tool that monitors the number of AEXs to detect
such an attack. To remedy this, we take a different approach and
design anoffline automated profiling phase to learn the time-interval
when the victim is executing a specific code segment 𝑆𝑖 . In what
follows, we detail the offline profiling phase and the design choices
we made to minimize errors.

3.3 Application profiling
Let𝑇𝑖 be the time when the victim starts code segment 𝑆𝑖 . Note that
a segment is a logical execution unit and different segments may
execute the same code, but on different portions of the secret. For
example, in the square-and-multiply routine, each segment corre-
sponds to one execution of themain loop andprocesses one secret bit.

In an ideal scenario, the execution time of each code segment is
constant, i.e.,𝑇𝑖+1−𝑇𝑖 =𝑐 . Thus, segment𝑆𝑖 starts at time𝑇𝑖 = (𝑖−1) ·𝑐 ,
for some constant 𝑐 . More generally, the execution time of a code seg-
mentmaydependon thecode itself, aswell as theportionof the secret
it processes. Thus, we model the execution time of segment 𝑆𝑖 as a
function 𝑡𝑖 (s𝑖), and set the start timeof segment𝑆𝑖 as𝑇𝑖 =

∑
𝑗<𝑖𝑡 𝑗 (s𝑗).

As an example, Figure 1 shows a simple code segment with a con-
ditional branch on the 𝑖-th bit of variable secret and three different
function calls (m, g, and k). If functions m, g and k have no conditional
branches nor loops, we can use constants 𝑐m, 𝑐g, and 𝑐k, to model
their execution time. Thus, 𝑡𝑖 (s𝑖) = 𝑐m+s𝑖 ·𝑐g+ (1−s𝑖) ·𝑐k. In case
any of the functions m, g, k has a loop or a conditional branch, we
would recursively profile its execution time in a similar fashion.

Once we have the function 𝑡𝑖 (s𝑖) that models the execution of 𝑆𝑖 ,
we assess its values by running 𝑆𝑖 multiple times, and by using a dif-
ferent assignment ofs𝑖 each time. For example, tomeasure the execu-
tion time of the code in Figure 1,we run the segment twice: oncewith
s𝑖 =0 and once with s𝑖 =1. (We actually use multiple runs with the
same configuration of variables, in order to make our measurements
more robust.) Note that the enumeration of all possible configura-
tions of the part of the secret processed by a code segment is feasible
becauseeachsegment is likely toprocessonlyoneora fewsecretbits.

Measuringexecutiontime.SinceSGXcannot read the time-stamp
counter via rdstc, we cannot directly inject time measurement in-
structions into code segments. Furthermore, when measuring the
execution time of each code segment we cannot interrupt the en-
clave, as context switches between enclave and non-enclave code
incurs extra overhead compared to context switches between regular
processes [7, 33]. We, therefore, create a logical clock by means of
a timer thread. We inject instructions at the start and end of each
segment, to set a binary variable at a memory address Addr outside
of the enclave memory. A separate timer thread continually gets the
system timestamp using rdstc and checks the value of the variable
at Addr. If the variable is set to 1, the timer thread remembers the

1 void compute_on_s(char[] p, unsigned int secret) {
2 int tmp = m(p);
3 for (int i = 0;i < NBITS;i++) {
4 if ((secret & (1 << i)) != 0)
5 g(tmp);
6 else
7 k(tmp);
8 }
9 }

Figure 1: Sample code segment.

si-1 = 1 si = 0si-2 = 0si-3 = 1

si-3 = 1, si-2 = 0, si-1 = 1
(i-1)th run

... ...

ith run

wi-1

wi si-2 = 0, si-1 = 1, si = 0

...

...

Figure 2: Alignment using a sliding window of size𝑤 =3.

current timestamp and reset Addr to 0. By measuring the time inter-
val between two reads of Addr that returned 1, we can infer the time
required to run one code segment.

Stabilizing execution time. Running time of arbitrary code on
general-purposemachines is far from deterministic due to other soft-
ware running on the same host. Similar to [32], we reduce the noise
due to other software on the same host by reserving a core for the
victim enclave. Specifically, we use the isolcpus as boot-up option
in Ubuntu. As a result, no tasks are assigned to the reserved core,
nor it is interrupted for handling I/O. Furthermore, processes can be
explicitly assigned to such cores (e.g., using sched_setaffinity)
and they can be interrupted by inter-processor interrupts. We also
note that some detection tools [14, 23] ensure core reservation to
avoid side-channel attacks based on L1/L2 caches.

To reduce the noise due to state of the cache when the victim
starts, we flush all caches before each execution. Although tech-
niques such as speculative execution may still create differences in
the state of the caches across different executions of the enclave, we
have empirically verified that each run experiences almost the same
amount of cache misses. We also disable dynamic frequency scaling
and fix the CPU frequency to stabilize execution time.

By combining core-reservation with cache-flushing and a fixed
CPU frequency, we manage to stabilize the execution time of the
victim (i.e., within 0.1%).

Improving attack accuracy. The accuracy of our technique relies
on the correct estimation of 𝑇𝑖—when we start the side-channel
attack to learn s𝑖—and the correct guess of s𝑖 .

Clearly, an error when estimating𝑇𝑖 leads to a mis-alignment be-
tween the attack and the victim that, in turn, leads to unpredictable
errors in inferring the secret s𝑖 . An error when inferring s𝑖 may lead
to an error in the estimation of 𝑇𝑗 for 𝑗 > 𝑖 since the start time of
segment 𝑆 𝑗 may depend on the value of s1,...,s𝑗−1.

3

One possible option to avoid miss-alignments between the victim
and the attack is to rely on deterministic signals thrown by the en-
clave such as page-faults, page ACCESS bit, TSX aborts and so on. For
example, the attacker may invalidate a page that is required by the
victim at the start of𝑆𝑖 so that a page-fault is thrownwhen the victim
starts executing that segment. Alternatively, alignment errors may
be corrected by attacking multiple consecutive segments at a time
by using a sliding window. This basic idea is shown in Figure 2. Let
𝑤𝑖 be the window attacking segments 𝑆𝑖−𝑤+1,...,𝑆𝑖 so to obtain bits
s𝑖−𝑤+1,...,s𝑖 and, without loss of generality, assume the step of the
window to be 1. Then, we compare the guess for bits s𝑖−𝑤+1,...,s𝑖−1
obtained when attacking window𝑤𝑖 , with the guess for the same
bits obtained when attacking window𝑤𝑖−1 (i.e., when attacking seg-
ments 𝑆𝑖−𝑤 ,...,𝑆𝑖−1). If the two bit sequences match, then we assume
that window𝑤𝑖 is well aligned and treat the guess for the last bit of
the window (i.e., s𝑖) as valid; otherwise we assume𝑤𝑖 is not aligned
with the victim and discard the guess for s𝑖 .

Note that attacking larger windows may have an impact on the
victim’s performance that could allow a detection mechanism to
spot the attack. Also, our attack with 𝑤 = 𝑛 becomes similar to a
“standard” side-channel attack that tries to leak all secret bits at once.

In order to improve the accuracy of our technique, we can also
increase the number of times we attack a given segment. That is, we
run the victim 𝑘 times and run the attack on the same segment 𝑆𝑖
(or segment window𝑤𝑖). We therefore obtain several samples for s𝑖
and use heuristics to improve the accuracy of our guess.

Automatic profiling.To automate the profiling process, we expose
twomacros, SEGMENT_START(secret) and SEGMENT_END, for anno-
tating the start and end of one segment, alongwith the portion of the
secret consumed by that segment. These macros are then compiled
with the victim code to generate a corresponding time-measuring
code that records the execution time. During the profiling process,
the portion of the secret used by a segment—usually one or a few
bits—isenumeratedand fed to the time-measuringcode. Foreachcon-
figurationof the secret value, the time-measuring codegenerates a re-
port with the execution time. The profiling process repeats to collect
sufficient reports for stably modeling execution time of the victim.

4 COMPROMISING SECRETS IN LIBGCRYPT
We now show how to instantiate the strategy described earlier on
cryptographic routines of libgcrypt, namely mpi_powm (used in El-
Gamal, RSA, andDSA) and mpi_ec_mul_point (used in EdDSA).We
leverage a side-channel based on time [18, 32], one based onmemory
access pattern [11, 27], and a combination of the two. Inwhat follows,
we use libgcrypt version 1.7.0; the side-channels we exploit are
present inmpi_powmup toversion1.8.6, and inmpi_ec_mul_point
up to version 1.7.5.We stress however that the above side-channels
are mere examples to showcase the effectiveness of our strategy;
our techniques are independent of the underlying side-channel and
could use any other workable side-channel.

4.1 Side-channels of mpi_powm
Figure 3 shows the code of mpi_powm. The routine has two side-
channels, one based on time and another based on memory access
pattern.

1 void _gcry_mpi_powm (gcry_mpi_t res, gcry_mpi_t base,
2 gcry_mpi_t expo, gcry_mpi_t mod) {
3 /* ... */
4 gcry_mpi_t e = expo;
5 int esec = mpi_is_sec(expo);
6 for (;e != 0;e = (e << 1)) {
7 _gcry_mpih_sqr_n_basecase(xp, rp, rsize);
8 if(esec || (mpi_limb_signed_t)e < 0) {
9 /*mpihelp_mul(xp, rp, rsize, bp, bsize);*/
10 if(bsize < KARATSUBA_THRESHOLD) {
11 _gcry_mpih_mul (xp, rp, rsize, bp, bsize);
12 } else {
13 _gcry_mpih_mul_karatsuba_case (xp, rp, rsize,
14 bp, bsize,
15 &karactx);
16 }
17 xsize = rsize + bsize;
18 if (xsize > msize) {
19 _gcry_mpih_divrem(xp + msize, 0, xp,
20 xsize, mp, msize);
21 xsize = msize;
22 }
23 if ((mpi_limb_signed_t)e < 0) {
24 tp = rp; rp = xp; xp = tp;
25 rsize = xsize;
26 }
27 }
28 }
29 }

Figure 3: mpi_powm used in ElGamal, RSA and DSA.

The loop (line 6 ∼ 28) consumes one bit of the secret exponent
per iteration and executes an extra computation (line 9 ∼ 27) if that
bit is 1 (line 8). Thus, an adversary can infer the secret bit of the
exponent being processed, by inferring the time to complete one
loop iteration. Note that if esec is 1, then the exponent is stored in
secure memory, and the conditional branch is always executed to
eliminate side-channels. However, if xvalue is provided as input by
the user (e.g., when the key-pair is generated from a passphrase),
then libgcrypt does not store the exponent in secure memory so
that side-channels are not eliminated.

Alternatively, the secret bit of the exponent can be leaked bymon-
itoring access to memory pages that store the code required by the
if-branch of the routine. Let A, B, C be the addresses of mpi_powm,
mpi_mpih_sqrt_n_basecase and mpihelp_mul, respectively. One
iteration of the loop where the exponent bit is 1, shows a memory
access sequence like ABCAC|AB, whereas if the exponent bit is 0, the
observedmemory access sequence is like ABC|AB. In these examples,
memory accesses after | belong to the next iteration of the loop.Also,
note that mpi_mpih_sqrt_n_basecase calls mpihelp_mul, so there
will always be an access to address C after B. One could infer the
memory access sequence either by observing page-faults or cache
accesses.

4.2 Profiling of mpi_powm
In order to profile mpi_powm, we define each iteration of the main
loop as one segment. Let s𝑖 be the 𝑖-th exponent bit consumed in
segment 𝑆𝑖 . One iteration of the loop in mpi_powm computes on xp,

4

Ti

Set NX bit = 0

Time

Time

r

Ti

l >> c0 , thus si = 1

l ≈ c0 , thus si = 0

c

r l

l

Ti+1

Ti+1

c

 AEX

(a)

(b)

Figure 4:Workflow of Our-PF for (a) s𝑖 =1 or (b) s𝑖 =0.

rp and s𝑖 . We found that all branches and loops in
mpih_sqr_n_basecasehavenegligible impact onexecution time, so
we consider its runtime constant andwedenote it by𝑐𝑏𝑎𝑠𝑒 . Thus, run-
time of𝑆𝑖 with s𝑖 =0 is simply𝑐𝑏𝑎𝑠𝑒 . If s𝑖 =1, the code executed (lines
9 ∼ 27) has two branches. The first one is a conditional branch that,
depending on the value of bsize, may run either mpihelp_mul or
mpihelp_mul_karatsuba_case. We found that both paths take the
same time so we model this time as a constant 𝑐𝑚𝑝𝑖ℎ𝑒𝑙𝑝 . The second
branch depends on xsize and msize. However, we found that the
time taken to run mpihelp_divrem is negligible, so we just ignore it.
In a nutshell, the time to run segment 𝑆𝑖 is 𝑡𝑖 (s)=𝑐𝑏𝑎𝑠𝑒 +s𝑖 ·𝑐𝑚𝑝𝑖ℎ𝑒𝑙𝑝

and𝑇𝑖 = (𝑖−1) ·𝑐𝑏𝑎𝑠𝑒 +
∑

𝑗<𝑖s𝑗 ·𝑐𝑚𝑝𝑖ℎ𝑒𝑙𝑝 .

4.3 Page-faults
We start by describing an instantiation of our attack strategy that
only uses page-faults and that leverages the timing side-channel of
the victim;we denote this attack variant asOur-PF.More specifically,
for 𝑖 =1,...,𝑛, we start the victim enclave running mpi_powm, and use a
single page-fault to stop it at the beginningof segment𝑆𝑖 . Next,we re-
sume the victim andmeasure—again, using one page-fault—the time
it takes to complete that segment, in order to learn the secret bit s𝑖 .

Figure 4 shows how the Our-PF attack strategy works. Assume
the time it takes to run one iteration of the loop with exponent bit 0
and 1 is 𝑐0 and 𝑐1 (with 𝑐0<𝑐1), respectively. We start the victim and
set the NX bit of the page containing mpih_sqr_n_basecase, right
before time𝑇𝑖 (i.e., at𝑇𝑖−𝑐 , for some small constant 𝑐). As a result,
the victim stops and throws a page-fault at the beginning of segment
𝑆𝑖—i.e., at the beginning of the 𝑖-th iteration of the loop. At this time,
we resume the victim enclave, and sets again the bit NX of the page
of mpih_sqr_n_basecase. Therefore, the next page-fault will be
thrownwhen the victimmoves to the next segment. Hence, the time
between the two page-faults is compared against 𝑐0 and 𝑐1, to decide
the value of bit s𝑖 . Once we learn s𝑖 , we compute𝑇𝑖+1 accordingly
and move on to attack the next segment. This process is repeated
for 𝑖 = 1, ...,𝑛 in order to recover the whole secret. In practice, we
also make sure that the NX bit is not set while the victim is running
mpih_sqr_n_basecase. We do so by ensuring that the bit is set 𝑟

Set NX bit = 0

r

Ti

c c0 -r

 AEX

Ti+1

r

Ti

c c0 -r

Ti+1

si = 0

si = 1

Prime+Probe

Prime+Probe

(a)

(b)

Access to mpi_sqrt_basecase

Time

Time

Figure 5:Workflow of Our-PFCa for (a) s𝑖 =1 or (b) s𝑖 =0.

ticks after the page-fault, where 𝑟 is the number of ticks required to
run mpih_sqr_n_basecase.

4.4 Page-fault and cache
Wenow describe another attack variant, called Our-PFCa, that lever-
ages both page-faults and cachemisses. As Our-PFCa only leverages
a side-channel based on memory access pattern, it could be used on
routines that have no side-channel based on time.

Similar to Our-PF, we use one page-fault to stop the enclave at
the beginning of a segment. Then, we use a Prime-and-Probe attack
on L3 cache to infer the secret bit processed during the execution
of that segment. We use L3 since most detection tools prevent L1/L2
attacks by occupying the entire core.

The workflow of Our-PFCa is shown in Figure 5. Let 𝑐0 and 𝑐1
(with 𝑐0<𝑐1) be the time it takes to run one loop of mpi_powmwith
secret bit0 and1, respectively.Westop the enclave at𝑇𝑖−𝑐 bymaking
the page of mpih_sqr_n_basecase unavailable at that time; next,
we resume the victim and wait for 𝑟 clock ticks to make sure that
computation on mpih_sqr_n_basecase is over. Now, the goal is to
measure whether the next call to mpih_sqr_n_basecase happens
after time 𝑐0−𝑟 or 𝑐1−𝑟 . To do so, we start a Prime-and-Probe attack
on the address of mpih_sqr_n_basecase, for a period of 𝑐0−𝑟 . We
construct the eviction set of the Prime-and-Probe using techniques
from previous research [19]. Figure 6 shows the time to access the
target cache set when the secret bit is 1 (a) or 0 (b). Here, it is clear
that thevictimhas accessed the cache lineof mpih_sqr_n_basecase
if the access time of the attacker to the eviction set is larger than
1000 ticks. The first peak in each figure denotes the start of the i-th
iteration, while the shaded area denotes the interval of 𝑐0−𝑟 ticks
during which we run the Prime-and-Probe attack. Note that if s𝑖 is
1 (Fig. 6a) we do not witness any access to mpih_sqr_n_basecase
while running the Prime-and-Probe attack. In case s𝑖 is 0 (Fig. 6b)
we witness access to mpih_sqr_n_basecase as the routine moves
to the next iteration of the loop. Once we learn s𝑖 , we compute𝑇𝑖+1
accordingly, and move on to attack the next segment.

4.5 Cache-only
The attack strategies above use page-faults to temporally align the
victim and attack threads. We now show how to run cache-only

5

400
600
800

1000
1200
1400

r c0 r
Ti Ti + 1

si = 1
(a)

0 10000 20000 30000 40000 50000 60000 70000 80000
Cache Probing Timestamp (ticks)

400
600
800

1000
1200
1400

r c0 r
Ti Ti + 1

si = 0
(b)

Ac
ce

ss
 T

im
e

(ti
ck

s)

Figure 6: L3 probing pattern of mpi_powm using Our-PFCa.

attacks on the victim enclave. In the sequel, we refer to this strategy
as Our-Ca.

Note that, using only cache to leak a specific portion of the vic-
tim’s secret may be difficult because the adversary thread may not
be aligned with the one of the victim; nevertheless, Our-Ca is par-
ticularly effective with detection tools that monitor enclave exits
(AEXs) [24, 26] as it enables the leakage of the secret without inter-
rupting the victim at all.

Our-Ca works by starting a Prime-and-Probe attack on the ad-
dress of mpih_sqr_n_basecase right before𝑇𝑖 and for 𝑐1 ticks—the
number ticks required to complete the loop iterationwhen the secret
bit is 1. If the attack thread experiences a peak in the time to access
the target cache set, followed by a sufficient number of lows, we
conclude that s𝑖 = 1, whereas if the attack thread experiences two
close peaks, we conclude that s𝑖 =0.

A considerable challenge when using Our-Ca lies in the fact that
small errors when estimating𝑇𝑖 leads to unpredictable cache pat-
terns. This is shown in Figure 7. In Figure 7(a), the attack starts at the
right time and the witnessed cache pattern does indeed support a
correct guess ofs𝑖 . Differently, in Figure 7(b) the attack starts late and
the adversary (mistakenly) estimates s𝑖 to be 0. Finally, in Figure 7(c),
the attack starts early, preventing the adversary from estimating the
value of the secret bit.

We correct alignment errors between adversary and victim by
using a sliding window technique as explained in Section 3. That
is, when attacking window𝑤𝑖 (i.e., segments 𝑆𝑖−𝑤+1,...,𝑆𝑖) we start
the Prime-and-Probe attack right before𝑇𝑖−𝑤+1 and we run it for
𝑤𝑐1 ticks—i.e. until the end of segment 𝑆𝑖 . Next, we consider the
estimate of s𝑖 as valid only if the estimate of s𝑖−𝑤+1,...,s𝑖−1 matches
the estimate of the same bits when attacking window𝑤𝑖−1. Finally,
we also repeat the attack on the same window a number 𝑘 ≥ 1 of
times in order to obtain multiple guesses for the same bit and use an
heuristic to infer its actual value.

4.6 Attacks onmpi_ec_mul_point
We now briefly discuss how to adapt our attack strategy to the
mpi_ec_mul_point routine of libgcrypt used in EdDSA. For each
signature, this subroutine is used to compute scalar multiplication

500

1000

1500 c1Ti Ti + 1 Ti + 2
si = 1

 (a)

500

1000

1500

Ac
ce

ss
 T

im
e

(ti
ck

s)

c1Ti Ti + 1 Ti + 2
si = 0

 (b)

0 20000 40000 60000 80000 100000
Cache Probing Timestamp (ticks)

500

1000

1500 c1Ti Ti + 1 Ti + 2
si = ?

 (c)

Figure 7: L3 probing pattern of mpi_powm using Our-Ca.

with a nonce that, if leaked, allows the recovery of the signing key.
Note that our attack extracts one secret bit for each execution of the
victim; hence, if the victim picks a fresh nonce at each execution,
two bits extracted by our attack would be completely uncorrelated.
Nevertheless, EdDSA is deterministic [30] and thenonce is computed
as function of the message to be signed and the signing key. Hence,
by feeding a fixed message to the signing routine we ensure that
the nonce is always the same and can extract one of its bits at each
execution.

Figure 8 shows the code of mpi_ec_mul_point. Note that the
same routine is used to process both the nonce and the signing key
(referred to as scalar in both cases). The leakage-free code (line 4∼
6) is usedwhenprocessing the singing key,whereas theelse-branch
is taken to process the nonce. In the latter case, a secret-dependent
branch (line 10) can be abused to leak one bit of the (secret) nonce.
Once the nonce and the corresponding signature are available, the
signing key can be computed.
Profilingmpi_ec_mul_point.Let segment𝑆𝑖 be the i-th iterationof
the loop. We found that there are no conditional loops nor branches
in gcry_mpi_ec_dup_point that have noticeable impact on execu-
tion time, so we model its execution time with constant 𝑐𝑏𝑎𝑠𝑒 . In
case the bit of scalar being processed is 1, the routine calls another
constant-time function called mpi_ec_add_point and we model its
execution time with constant 𝑐𝑎𝑑𝑑 . Therefore, the running time of
the i-th loop iteration is 𝑡𝑖 (s)=𝑐𝑏𝑎𝑠𝑒 +𝑠𝑖 ·𝑐𝑎𝑑𝑑 , and the start time of
the 𝑖-th segment is𝑇𝑖 = (𝑖−1) ·𝑐𝑏𝑎𝑠𝑒 +

∑
𝑗<𝑖𝑠 𝑗 ·𝑐𝑎𝑑𝑑 .

In practice, we must also accommodate for the first iteration of
the loop that takes the if-branch; this iteration must fetch
mpi_ec_add_pointand its callees fromthemainmemoryand incurs
in a time increase that we model with 𝑐𝑚𝑖𝑠𝑠 . Thus the start time for
the 𝑖-th segment becomes𝑇𝑖 = (𝑖−1) ·𝑡𝑏𝑎𝑠𝑒 +

∑
𝑗<𝑖𝑠 𝑗 ·𝑐𝑎𝑑𝑑 +(

∑𝑗=𝑖−1
𝑗=1 𝑠𝑖

mod2) ·𝑡𝑐𝑎𝑐ℎ𝑒_𝑚𝑖𝑠𝑠 . This extra time for the first loop that processes
a 1 bit does not show in mpi_powm, as the secret-dependent call
to mpi_sqrt_n_basecase is also called in other function before
mpi_powm.

When attacking mpi_ec_mul_pointwe use the page
with mpi_ec_dup_point to stop the enclave at the target segment.

6

1 void _gcry_mpi_ec_mul_point (mpi_point_t result,
2 gcry_mpi_t scalar, mpi_point_t point, mpi_ec_t ctx) {
3 /* ... */
4 if (mpi_is_secure (scalar)) {
5 /* Oblivious Implementation */
6 } else {
7 /* Implementations with side-channels */
8 for (j=nbits-1; j >= 0; j--) {
9 _gcry_mpi_ec_dup_point (result, result, ctx);
10 if (mpi_test_bit (scalar, j))
11 _gcry_mpi_ec_add_points (result, result, point,
12 ctx);
13 }
14 }
15 }

Figure 8: mpi_ec_mul_point used in EdDSA.

Further, we target mpi_ec_dup_pointwhen launching the Prime-
and-Probe attack.

5 RESULTS FOR LIBGCRYPT
Weinstantiated the relevant routinesof libgcrypt1.7.0 in SGX,by
using Panoply [28]. Our experiments were carried out with Ubuntu
18.04 on an Intel E3-1280 with 4 physical cores and 32GB RAM.

To assess the effectiveness of our attack strategy in evading ex-
isting detection tools, we compiled and run the two cryptographic
routines using T-SGXwith some engineering efforts. Since the other
two detection tools available in literature are not released as open-
source—Varys is part of a commercial product and Déjà Vu is no
longermaintained—wealso evaluate the effectiveness of our strategy
on enclaves equippedwith a comprehensive tool, dubbedMonitor++,
assumed to monitor all of the performance metrics proposed in liter-
ature (i.e., number of AEX, cache misses, and execution time). Mon-
itor++ raises an alarm if the witnessed performance is anomalous.
We note that cache misses are typically monitored via performance
counters—a feature that is not currently available for SGX enclaves.
Nevertheless, previous work has shown that non-SGX applications
could use cache-misses to detect cache-based attacks [10]; hence,
we also include the number of cache misses among the performance
metrics that are monitored by Monitor++, to capture the possibility
that it becomes available to future SGX applications.

5.1 Profiling accuracy
We start by measuring the execution time of one loop of the victim
routines—recall that a loop of mpi_powm andmpi_ec_mul_point is a
code segment as defined in Section 3.We do so by running each loop
100 times with secret bit 0 and another 100 times with secret bit 1.

Our results show that, in case of using Monitor++, a “0-loop” of
mpi_powm takes on average 46.4k clock ticks (𝜎 = 493.6), while a
“1-loop” takes on average 92.9k clock ticks (𝜎 =122.2). When instru-
mentedwithT-SGX,mpi_powm takes slightly longer: 48.3kclock ticks
(𝜎 =530.1) for a 0-loop and 103.2k clock ticks (𝜎 =251.3) for a 1-loop.

Routine mpi_ec_mul_pointwith Monitor++, takes on average
15.4k clock ticks (𝜎 = 378.1) for a 0-loop, and 39.2k clock ticks
(𝜎 =284.9) for a 1-loop. When instrumented with T-SGX, the func-
tion mpi_ec_ec_mul_point nearly double its computation time: it

Accuracy
mpi_powm (w/ Monitor++) 93.17% (𝜎 = 5.49%)
mpi_powm (w/ T-SGX) 77.68% (𝜎 = 10.90%)
mpi_ec_mul_point (w/ Monitor++) 81.74% (𝜎 = 4.52%)
mpi_ec_mul_point (w/ T-SGX) 67.33% (𝜎 = 3.40%)

Table 1: Accuracy when stopping the victim enclave at the
beginning of a specific code segment.

takes 38.8k clock ticks (𝜎 = 631.3) and 92.0k clock ticks (𝜎 = 376.1)
for 0-loop and 1-loop, respectively.

Once we have the running times for 0-loop and 1-loop iterations,
we validate the accuracy of our profiling technique by checking
whether we can stop the enclave at the start of each loop. To do so,
we fix a random 256 bit secret and we execute the enclave 256 times,
each time stopping it at time𝑇𝑖−𝑐 (with 𝑖 =1,...,256 and𝑐 =5,000 clock
ticks).1 In order to learn the ground truth, we inject a counter into
the code to keep track of the number of loop iterations thus far. This
experiment is repeated 20 times and we report the results in Table 1.

Stopping a victim enclave equipped with Monitor++ at the start
of a loop, leverages the fact that the victim exposes page fault to the
OS. However, if the victim uses T-SGX, we note that page-faults are
dispatched to the enclave abort-handler so that the OS is not notified.
We therefore leverage a technique similar to Prime+Abort [15]. In
particular, we leverage TSX and setup a transaction with a cache set
that conflicts with the memory address that starts the execution of
a loop at the victim. As a result, our transaction aborts as soon as the
victim starts a loop.

Our evaluation shows that stopping at a specific code segment an
enclave runningmpi_powmwithMonitor++ ismoreaccurate (93.17%)
than achieving the same if the enclave runs the routine instrumented
withT-SGX(77.68%).This is becausewemay lose synchronywith the
victim as T-SGX restarts a transaction. We observe the same behav-
ior for mpi_ec_mul_point: 81.74% for the version using Monitor++
and 67.33% for the version instrumented with T-SGX. A comparison
between mpi_powm and mpi_ec_mul_point shows lower accuracy
for the latter. This is because one loop of mpi_ec_mul_point takes
less time to complete compared to a loop of mpi_powm—therefore,
it is harder to hit the start of a specific loop iteration.

5.2 Attack accuracy
We evaluate the accuracy of our attack variants in recovering secret
bits when the victim is either equipped with Monitor++ or with
T-SGX. In case of T-SGX, we do not use attack variants that leverage
cache since the original T-SGX paper does not address cache-based
attacks [26].

We fix a random 256 bit secret and, for 𝑖 =1,...,256, we recover the
secret bit s𝑖 by attacking the corresponding code segment 9 times
(i.e., for 9 times we run the enclave and launch the side-channel
attack from 𝑇𝑖 until 𝑇𝑖+1). Given the 9 samples, we determine the
secret bit based on majority voting. We repeat the experiment 10
times and show the average accuracy and standard deviation in the
column “Attack Accuracy” in Table 2 and Table 3 for mpi_powm and
mpi_ec_mul_point, respectively. For comparison purposes, we also
report the accuracy of “standard” side-channel attacks using either

1Note thatwe can correctly estimate any𝑇𝑖 becausewe know the value of the secret bits.

7

Detection Tool Attack Accuracy AEX/TSXAborts L3 Cache-misses Time (ms)

Our attacks

Our-PF

Monitor++

85.5% (𝜎 = 7.9%) 3.04 (𝜎 =0.20) 125.91 (𝜎 =82.72) 5.67 (𝜎 =0.031)
Our-PFCa 69.8% (𝜎 = 6.1%) 2.70 (𝜎 =0.53) 175.05 (𝜎 =135.05) 5.64 (𝜎 =0.014)

Our-Ca (𝑤 =3) 76.3% (𝜎 = 10.1%) 1.32 (𝜎 =0.46) 164.05 (𝜎 =47.06) 5.62 (𝜎 =0.010)
Our-Ca (𝑤 =5) 89.14% (𝜎 = 13.54%) 1.39 (𝜎 =0.48) 218.81 (𝜎 =23.67) 5.62 (𝜎 =0.0099)
Our-Ca (𝑤 =9) 99.7% (𝜎 = 0.5%) 1.30 (𝜎 =0.46) 275.76 (𝜎 =38.02) 5.62 (𝜎 =0.011)

Our-Prime+Abort T-SGX 71.03% (𝜎 = 3.17%) 6.82 (𝜎 =10.38) 431.76 (𝜎 =415.22) 5.71 (𝜎 =0.04)

Standard attacks
Page-faults attack Monitor++ 97.9% (𝜎 = 3.2%) 831.97 (𝜎 =99.69) 124.16 (𝜎 =21.78) 11.50 (𝜎 =0.758)

Cache attack 89.5% (𝜎 = 4.3%) 1.67 (𝜎 =0.71) 2112.86 (𝜎 =82.10) 5.68 (𝜎 =0.0078)
Prime+Abort T-SGX 88.1% (𝜎 =1.1%) 577.22 (𝜎 =99.43) 7834.45 (𝜎 =1984.30) 5.84 (𝜎 =0.09)

No attack

mpi_powm
Monitor++

2.441 (𝜎 =1.93) 123.27 (𝜎 =82.91) 5.63 (𝜎 =0.017)
mpi_powm (w/ GCC) 14.44 (𝜎 =10.97) 495.0 (𝜎 =290.11) 5.78 (𝜎 =0.09)
mpi_powm (w/ Redis) 1.48 (𝜎 =0.70) 6007.21 (𝜎 =510.83) 6.05 (𝜎 =0.48)

mpi_powm
T-SGX

6.10 (𝜎 =21.76) 416.48 (𝜎 =410.76) 5.66 (𝜎 =0.02)
mpi_powm (w/ GCC) 188.67 (𝜎 =85.14) 394.14 (𝜎 =549.7) 5.71 (𝜎 =0.60)
mpi_powm (w/ Redis) 121.25 (𝜎 =120.68) 16256.47 (𝜎 =5843.78) 6.12 (𝜎 =0.25)

Table 2: Accuracy and performancemetrics for mpi_powm.

Detection Tool Attack Accuracy AEX / TSXAborts L3 Cache-misses Time (ms)

Our attacks

Our-PF

Monitor++

69.6% (𝜎 =3.3%) 3.01 (𝜎 =0.12) 98.16 (𝜎 =14.12) 6.31 (𝜎 =0.012)
Our-PFCa 64.4% (𝜎 =2.7%) 2.33 (𝜎 =0.47) 155.94 (𝜎 =112.04) 6.30 (𝜎 =0.010)

Our-Ca (𝑤 =3) 86.4% (𝜎 =12.91%) 1.60 (𝜎 =0.49) 186.43 (𝜎 =16.99) 6.29 (𝜎 =0.012)
Our-Ca (𝑤 =5) 100% 1.50 (𝜎 =0.49) 201.41 (𝜎 =22.22) 6.29 (𝜎 =0.011)
Our-Ca (𝑤 =9) 100% 1.50 (𝜎 =0.50) 249.38 (𝜎 =22.75) 6.29 (𝜎 =0.012)

Our-Prime+Abort T-SGX 70.1% (𝜎 =2.5%) 7.04 (𝜎 =9.25) 219.07 (𝜎 =116.8) 14.02 (𝜎 =0.48)

Standard attacks
Page-faults attack Monitor++ 99.6% (𝜎 =0.22%) 499.28 (𝜎 =96.31) 98.80 (𝜎 =21.09) 10.19 (𝜎 =0.76)

Cache attack 96.8% (𝜎 =5.0%) 1.47 (𝜎 =0.50) 9684.87 (𝜎 =701.08) 6.46 (𝜎 =0.011)
Prime+Abort T-SGX 98.9% (𝜎 =1.8%) 695.89 (𝜎 =72.91) 18605.17 (𝜎 =2646.15) 13.53 (𝜎 =0.11)

No attacks

mpi_ec_mul_points
Monitor++

2.71 (𝜎 =2.28) 106.23 (𝜎 =60.79) 6.29 (𝜎 =0.012)
mpi_ec_mul_points (w/ GCC) 23.21 (𝜎 =27.83) 1246.31 (𝜎 =1331.89) 6.30 (𝜎 =0.02)
mpi_ec_mul_points (w/ Redis) 1.61 (𝜎 =0.83) 6092.45 (𝜎 =1043.90) 7.21 (𝜎 =1.02)

mpi_ec_mul_points
T-SGX

6.22 (𝜎 =34.48) 158.93 (𝜎 =133.85) 13.31 (𝜎 =0.29)
mpi_ec_mul_points (w/ GCC) 377.93 (𝜎 =87.54) 817.54 (𝜎 =1331.89) 13.67 (𝜎 =0.50)
mpi_ec_mul_points (w/ Redis) 226.91 (𝜎 =109.03) 84941.38 (𝜎 =25664.85) 17.69 (𝜎 =1.17)

Table 3: Accuracy and performancemetrics for mpi_ec_mul_point.

page-faults [32] or L3 cache [18, 32]. A standard attack refers to an
attack that runs throughout the whole execution of the victim in
order to recover the largest number of secrets bits in one execution.
In case of standard attacks we also repeat the attack 9 times and use
majority voting to decide the value of each secret bit. Note that in
case of routines instrumented with T-SGX, a standard page-faults
attack does not work as T-SGX does not expose page-faults to the
OS. In this case, we use the Prime+Abort attack of [15].

Column “Attack Accuracy” of Table 2 and Table 3 show that our
attack strategy can recover between 70% and 100% of the enclave
secret, depending on (i) the type of side-channel exploited, (ii) the
detection tool used by the victim (either T-SGX or Monitor++), and
(iii) the number of consecutive code segments attacked per run for at-
tacks that only exploit cache. Our experiments also show that attack
accuracy decreases when the victim is instrumented with T-SGX:
this is likely due to the noise introduced by T-SGXwhen restarting
transactions that abort before completion.

Comparing the accuracy of attacks on mpi_powm with the ac-
curacy when attacking mpi_ec_mul_point, we note that Our-PF
performs better on mpi_powm and this is because the time difference
between a 1-loop and a 0-loop in that routine is sharper than the time
difference of the loops in mpi_ec_mul_point. Nevertheless, attack

variants that use cache are more accurate on mpi_ec_mul_point
as the cache side-channel is more noisy when attacking mpi_powm.
Furthermore, cache-only attack with larger windows (e.g.,𝑤 = 9)
provide very good results.

We also assess the impact on accuracy of the number of samples
𝑘 we obtain for each secret bit. As shown in Figure 9, increasing 𝑘
improves accuracy that, however, plateaus around 𝑘 =9 for most of
the attack variants.

Finally, we assess the impact on accuracy when relying on a slid-
ing window to reduce alignment errors in cache-only attacks. Recall
that attacking a single segment at a time by only using cache side-
channels may lead to poor results due to the difficulty of aligning the
victim and attack threads (see Section 3). In our experiments, a cache-
only attack on one segment at a time resulted in an average accuracy
over 20 runs of 46.64% (𝜎 =3.84%) formpi_powmwithMonitor++. The
same experiment when attacking mpi_ec_mul_point showed an
average accuracy of 51.64% (𝜎 =1.98%). By using the sliding window
technique described in Section 3, we improve accuracy as shown in
Figure 10. In particular, a window of size𝑤 =9 allows to recover the
full secret when attacking mpi_powm, whereas the same result can be
achievedwith awindow of size𝑤 =5 for mpi_ec_mul_point. This is

8

0 5 10 15 20
Samples per segment

30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Our-PF
Our-PFCa
Our-Ca(w = 3)

(a) mpi_powm
(w/ Monitor++).

0 5 10 15 20
Samples per segment

30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Our-Prime+Abort

(b) mpi_powm
(w/ T-SGX).

0 5 10 15 20
Samples per segment

30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Our-PF
Our-PFCa
Our-Ca(w = 3)

(c) mpi_ec_mul_point
(w/ Monitor++).

0 5 10 15 20
Samples per segment

30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Our-Prime+Abort

(d) mpi_ec_mul_point
(w/ T-SGX).

Figure 9: Accuracy versus number of samples per segment.

1 3 5 7 9
Window size (w)

30
40
50
60
70
8080
90

100

Ac
cu

ra
cy

 (%
)

k=19
k=9
k=1

(a) mpi_powm.

1 3 5 7 9
Window size (w)

30
40
50
60
70
8080
90

100

Ac
cu

ra
cy

 (%
)

k=19
k=9
k=1

(b) mpi_ec_mul_point.

Figure 10: Accuracy versus window-size for Our-Ca. Label
“k” refers to the number of samples per segment.

because, the cache side-channel is less noisy in mpi_ec_mul_point,
as explained before.

5.3 Effectiveness against detection tools
We now assess the effectiveness of T-SGX andMonitor++ described
above indetecting anadversaryusing anyof our attack strategies. Re-
call that T-SGXmonitors the number of transaction aborts whereas
Monitor++ monitors performance metrics proposed in literature,
namely number of AEXs, execution time, and cache misses.

We collect the aforementioned performance metrics, when the
victim is under attack, as well as when the victim is running in a
benign environment either (i) alone or (ii) while another process is
running on the samemachine. For the latter,we used either Redis—a
key-value store—andwemimic a realistic workload as in [4], or GCC
while building a large project. Finally, we record the required perfor-
mancemetricswhile attacking thevictimwith standard side-channel
attacks.

On the one hand, reported figures on routines instrumented with
T-SGX provide us with evidence of the effectiveness of our attack
strategies when the victim is equipped with existing tools. On the
other hand, results of the experiments with Monitor++ allow us to
reason about effectiveness of our attack strategies with respect to
any tool that monitors the performance of the potential victim. For
each scenario, we run the victim 1,000 times and report the average
and standard deviation of each metric in Table 2 and Table 3. In
particular, the tables show the number of AEX for Monitor++ and
the total number of TSX aborts across transactions for T-SGX.

For each of the considered scenarios and for different values of the
detection thresholds, we also measure recall (ratio of true positives

over all positive cases) and specificity (ratio of true negatives over all
negative cases). The recall metric is used to measure security: a per-
fect tool should have recall equal to one, and any smaller valuemeans
that the tool is not detecting some attacks. Specificity measures us-
ability: a perfect tool should have specificity equal to one, and any
smaller valuemeans that the tool is raising some false alarms. In a real
deployment, detection thresholds shouldbe set so thatboth recall and
specificity are as close as possible to one. In the following, we show
that, for both T-SGX andMonitor++, high specificity and high recall
cannot be achieved at the same time—which, in turn, shows that
such tools cannot detect an adversary that uses our attack strategy.

Detection with T-SGX. In this set of experiments, we run the vic-
tim instrumented with T-SGX along with GCC to mimic a realistic
multi-threaded workload. We vary the threshold number of trans-
action aborts before T-SGX raises an alarm, and measure specificity
and recall for each threshold.

Figure 11 (a) and (b) depicts the results for mpi_powm and
mpi_ec_mul_point. In order to reach a decent level of specificity
(i.e., to avoid false-alarms), one should set the detection threshold
𝑡 ≥ 2. This result is inline with the experiments of the original T-SGX
paper [26] that reports that most of the transactions of the applica-
tions abort and must be restarted up to two times before completing.
However, if 𝑡 ≥ 2, all of our attacks go undetected (i.e., recall is 0). For
completeness, Figure 11 (a) and (b) also reports the recall value for
the “standard” Prime+Abort attack of [15]: it is roughly 0.1 for 𝑡 =2
and decreases to 0 when 𝑡 ≥ 8. In other words, T-SGX cannot detect
Prime+Abort attacks. We note however, that Prime+Abort can be
easily detected by T-SGX if it monitored the total number of transac-
tion aborts, apart from the number of aborts per transaction. To show
this, we have modified T-SGX to keep track of the number of aborts
across all transactions and to raise an alarm if that reaches a specified
threshold 𝑡 ′. Figure 11 (c) and (d) shows specificity and recall for
mpi_powm and mpi_ec_mul_point. It takes a threshold 𝑡 ′ of roughly
600 aborts to reach specificity close to one, in order to avoid false
positives. Nevertheless, if 𝑡 ′ = 600, the standard TSX-based attack
can be easily detected whereas Our-Prime+Abort goes unnoticed
for 𝑡 ′≥ 100. Further, a Prime+Abort attack could be easily spotted
by monitoring the victim’s cache. In our experiments, Prime+Abort
against mpi_powm caused, on average a×10 increase of cachemisses,
compared to a benign execution. The increase of cache misses if the
victim were running mpi_ec_mul_pointwas ×19 on average.

9

2 4 6 8 10
T-SGX threshold

0.0

0.2

0.4

0.6

0.8

1.0
Specificity (No Attack with GCC)
Recall (Our-Prime+Abort)
Recall (Prime+Abort)

(a) mpi_powm

2 4 6 8 10
T-SGX threshold

0.0

0.2

0.4

0.6

0.8

1.0
Specificity (No Attack with GCC)
Recall (Our-Prime+Abort)
Recall (Prime+Abort)

(b) mpi_ec_mul_points

0 50 100
TSX total abort threshold

0.0

0.2

0.4

0.6

0.8

1.0

400 800

Specificity (No Attack with GCC)
Recall (Our-Prime+Abort)
Recall (Prime+Abort)

(c) mpi_powm

0 50 100
TSX total abort threshold

0.0

0.2

0.4

0.6

0.8

1.0

400 800

Specificity (No Attack with GCC)
Recall (Our-Prime+Abort)
Recall (Prime+Abort)

(d) mpi_ec_mul_points

Figure 11: Specificity and recall of detection based on T-SGX when counting aborts per transaction ((a) and (b)) and when
counting the total number of aborts across transactions ((c) and (d)). GCC is running on the same host.

2 4 6 8 10
AEX Threshold

0.0

0.2

0.4

0.6

0.8

1.0 Specificity (No Attack with GCC)
Recall (Our-PF)
Recall (Our-PFCa)
Recall (Our-Ca, w = 9)

(a) mpi_powm

2 4 6 8 10
AEX Threshold

0.0

0.2

0.4

0.6

0.8

1.0 Specificity (No Attack with GCC)
Recall (Our-PF)
Recall (Our-PFCa)
Recall (Our-Ca, w = 9)

(b) mpi_ec_mul_points

200 400 600 800
Cache Threshold

0.0

0.2

0.4

0.6

0.8

1.0 Specificity (No Attack with Redis)
Recall (Our-PF)
Recall (Our-PFCa)
Recall (Our-Ca, w = 9)

(c) mpi_powm

200 400 600 800
Cache Threshold

0.0

0.2

0.4

0.6

0.8

1.0 Specificity (No Attack with Redis)
Recall (Our-PF)
Recall (Our-PFCa)
Recall (Our-Ca, w = 9)

(d) mpi_ec_mul_point

Figure 12: Specificity and recall of detection based onMonitor++.

Detection with Monitor++. In case of Monitor++, we consider
detection based on both the number of AEXs and the number of
cache misses. For each scenario, we run the victim either along with
GCC—tomimic amulti-threadedworkload—or alongwith Redis—as
an exemplary application to mimic a memory-intensive workload.
Further, we vary the detection threshold—either the one of num-
ber of AEXs or the one of number of cache misses— and measure
specificity and recall for each threshold.

Figure 12a and Figure 12b show results when the tool is moni-
toring AEXs and the victims are mpi_powm or mpi_ec_mul_point,
respectively. No threshold in the range we consider (2 ≤ 𝑡 ≤ 10)
provides specificity greater than 0.37 in case of mpi_powm and 0.55
in case of mpi_ec_mul_point. At the same time, all of the attack
variants go undetected (recall is 0) if 𝑡 ≥ 5 for both victims.

Figure 12c and Figure 12d depict our results when the tool is mon-
itoring cache misses and the victims are mpi_powm or
mpi_ec_mul_point, respectively. For both victims, specificity is 0
for thresholds up to 800; hence, one should set a much higher thresh-
old to avoid false alarms. However, all of the attacks go undetected
if 𝑡 ≥ 800 for mpi_powm or 𝑡 ≥ 600 for mpi_ec_mul_point.

Detection bymonitoring execution time.A detection tool may
monitor the execution time to decide whether the application is un-
der attack. This is for example the case of Déjà Vu [14]. Results from
Table 2 and Table 3 show that standard page-fault attacks almost
double the execution time andwould be likely detected by tools such
as Déjà Vu. Differently, our attacks cause minimal increase of the
victim’s execution time (below 2%); as such, it is challenging for Déjà
Vu or similar tools to detect them.

5.4 T-SGXwith cache-basedmonitoring
So far, we have not considered cache-based attacks against T-SGX.
This is because T-SGX [26] does not monitor the cache performance
of an enclave and considers cache-based attacks as out of scope. In
this section,we show that even ifT-SGXwere to be enhancedwith ad-
ditional functionality fromMonitor++ (suchasmonitoring cacheper-
formance), it would still not be able to detect our fine-grained attacks.

If T-SGXwere to be enhanced with the performance monitoring
of Monitor++, the result is a detection mechanism that (i) uses TSX
to suppress page-faults notification to the OS, (ii) keeps track of the
number of aborts per transaction, and (iii) monitors the number of
cachemisses.We then use cache-based attacks against this enhanced
version of T-SGX and assess whether it can distinguish attacks from
benign runs.

Table 4 and Table 5 summarize our findings for mpi_powm and
mpi_ec_mul_point. As expected, Our-Prime+AbortCa performs
slightlyworse thanOur-PFCa(e.g., 70%vs 60%accuracy formpi_powm):
this is because accuracy of stopping at a specific code segment an
enclave is higher if the enclave exposes page-faults. We also note
that attack strategies that only leverage cache can recover the whole
secrets with alignment windows of size𝑤 =9.

Regarding performance metric, we note that a standard cache
attack noticeably increases the number of cache misses at the victim
compared to benign run when, for example, GCC is running on the
same host (between ×10 and ×20) whereas Our-Ca causes a number
of cache misses at the victim that is comparable to a benign run with
no other application on the same platform.

Finally, Figure 13 and Figure 14 show precision and recall of T-
SGX and the enhanced T-SGX detection tool against cache-based
attacks, respectively. Figure 13 shows that the threshold of allowed
aborts per transaction should be at least 2, in order to have specificity

10

2 4 6 8 10
T-SGX threshold

0.0

0.2

0.4

0.6

0.8

1.0
Specificity (No Attack with GCC)
Recall (Our-Prime+AbortCa)
Recall (Our-Ca, w = 9)
Recall (Prime+Porbe)

(a) mpi_powm

2 4 6 8 10
T-SGX threshold

0.0

0.2

0.4

0.6

0.8

1.0
Specificity (No Attack with GCC)
Recall (Our-Prime+AbortCa)
Recall (Our-Ca, w = 9)
Recall (Prime+Probe)

(b) mpi_ec_mul_points

Figure 13: Specificity and recall of detection based on T-SGX
when GCC is running on the same host.

close to 1 (so to avoid false positives). In this case, all cache-based
approaches are likely to go undetected (recall close to 0); we note
that a standard “Prime+Probe” attack (recall around 0.1) performs
slightly worse than our attacks (recall close to 0).

If T-SGXwere modified to also monitor the total number of trans-
action aborts, Figure 14 suggests that a threshold of at least 600 must
be used to achieve precision close to 1 and avoid false positives.With
this threshold, a standard “Prime+Probe” attack can be detected (re-
call is 1) while our cache-based attacks remain unnoticed (recall is 0).

6 ATTACKINGOPENCV
Wenowadaptourattackstrategy toknownside-channelsofdecision-
tree routines [22] to assess the feasibility of attacking the decision-
tree routine of OpenCV [3]—a well-known computer vision library.
Similar to previous work [1], we use the MNIST [2] data-set and as-
sumeanapplicationconsistingofanenclavedexecutionofOpenCV’s
decision-trees to detect handwritten digits.

Thedecision-tree traversal functionofOpenCVwalks the treeand,
depending on the input image, accesses different nodes, resulting
in different page accesses. We use page-faults to infer the pattern of
page accesses and leak the prediction output. To capture the access
pattern of different input images, we rely on an offline analysis of the
routine and observememory page access patterns. Thus, we set such
memory pages as fault during runtime, to infer the prediction output.

For training the decision-tree, we rely on 60,000 samples from the
MNISTdata set.During the inferencephase, the traineddecision-tree
model is first loaded into the enclave and then used to recognize 100
input images at a time from a set of 10,000 test images. The execution

0 50 100
TSX total abort threshold

0.0

0.2

0.4

0.6

0.8

1.0

400 800

Specificity (No Attack with GCC)
Recall (Our-Prime+AbortCa)
Recall (Our-Ca, w = 9)
Recall (Prime+Porbe)

(a) mpi_powm

0 50 100
TSX total abort threshold

0.0

0.2

0.4

0.6

0.8

1.0

400 800

Specificity (No Attack with GCC)
Recall (Our-Prime+AbortCa)
Recall (Our-Ca, w = 9)
Recall (Prime+Probe)

(b) mpi_ec_mul_points

Figure 14: Specificity and recall of detection based when the
total number of aborts across transactions is used in T-SGX.
GCC is running on the same host.

time of image recognition is almost independent of the input image,
as the tree is almost balanced. Therefore, we canmodel the execution
time as𝑇𝑖 =𝑇𝑖 +𝑐 , where 𝑐 is a constant value. In our experiments,
we found out that 𝑐 is roughly 9.7k clock ticks (𝜎 =975.3).
Profiling and attack accuracy. We successfully stopped the en-
clave at the 𝑖-th invocation of DTreesImpl::predictTrees around
8 out of 10 times (84.8% (𝜎 = 7.85%)). The corresponding accuracy
is reported in Table 6. We observe that a variant attack leveraging
page-faults (Our-PF) is only slightly less accurate than a standard
page-fault attack.
Effectiveness against detection tools. To analyze the effective-
ness of our strategy against detection tools, we measure specificity
and recall for different AEX thresholds.We only assume the victim is
equipped with Monitor++—as T-SGX supports only C, we could not
instrumentOpenCVusing T-SGX. Figure 15 shows that no threshold
value can achieve high specificity and high recall at the same time.
In particular, if the detection threshold is smaller than 17, then speci-
ficity falls below 0.84 (i.e., a false alarm is raised 2 out of 10 times). At
the same time, a detection threshold equal to or bigger than 11 allows
attacks to go undetected (recall=0.003). We also note that Our-PF
causes no noticeable overhead in terms of cache misses or execution
time. We conclude that Monitor++—monitoring number of AEXs,
cache misses or execution time—may not be able to tell an attack
that uses our strategy from a benign run of the victim enclave.

11

Attack Accuracy TSXAborts L3 Cache-misses Time (ms)

Our attacks

Our-Prime+AbortCa 60.2% (𝜎 = 3.4%) 9.56 (𝜎 =3.85) 247.69 (𝜎 =153.40) 5.71 (𝜎 =0.02)
Our-Ca (𝑤 =3) 76.10% (𝜎 = 10.52%) 7.11 (𝜎 =18.46) 237.06 (𝜎 =115.11) 5.66 (𝜎 =0.06)
Our-Ca (𝑤 =5) 86.42% (𝜎 = 14.32%) 18.59 (𝜎 =1.01) 284.94 (𝜎 =69.83) 5.68 (𝜎 =0.05)
Our-Ca (𝑤 =9) 100% 28.16 (𝜎 =3.74) 388.20 (𝜎 =87.73) 5.67 (𝜎 =0.04)

Standard attacks Cache attack 84.4% (𝜎 = 9.6%) 923.18 (𝜎 =55.52) 3697.68 (𝜎 =817.95) 5.81 (𝜎 =0.013)

No attack
mpi_powm 6.10 (𝜎 =21.76) 416.48 (𝜎 =410.76) 5.66 (𝜎 =0.02)

mpi_powm (w/ GCC) 188.67 (𝜎 =85.14) 394.14 (𝜎 =549.7) 5.71 (𝜎 =0.60)
mpi_powm (w/ Redis) 121.25 (𝜎 =120.68) 16256.47 (𝜎 =5843.78) 6.12 (𝜎 =0.25)

Table 4: Accuracy and performancemetrics for mpi_powm.

Attack Accuracy TSXAborts L3 Cache-misses Time (ms)

Our attacks

Our-Prime+AbortCa 55.3% (𝜎 =2.5%) 6.06 (𝜎 =15.54) 303.66 (𝜎 =344.21) 13.95 (𝜎 =0.40)
Our-Ca (𝑤 =3) 61.44% (𝜎 = 14.1%) 17.65 (𝜎 =42.48) 268.35 (𝜎 =562.07) 13.45 (𝜎 =0.26)
Our-Ca (𝑤 =5) 75.91% (𝜎 = 10.1%) 18.73 (𝜎 =43.10) 257.92 (𝜎 =448.48) 13.70 (𝜎 =0.32)
Our-Ca (𝑤 =9) 100% 23.9 (𝜎 =55.37) 305.34 (𝜎 =524.03) 13.36 (𝜎 =0.24)

Standard attacks Cache attack 96.6% (𝜎 =3.8%) 788.89 (𝜎 =67.50) 15730.48 (𝜎 =4363.18) 14.17 (𝜎 =0.19)

No attack
mpi_ec_mul_points 6.22 (𝜎 =34.48) 158.93 (𝜎 =133.85) 13.31 (𝜎 =0.29)

mpi_ec_mul_points (w/ GCC) 377.93 (𝜎 =87.54) 817.54 (𝜎 =1331.89) 13.67 (𝜎 =0.50)
mpi_ec_mul_points (w/ Redis) 226.91 (𝜎 =109.03) 84941.38 (𝜎 =25664.85) 17.69 (𝜎 =1.17)

Table 5: Accuracy and performancemetrics for mpi_ec_mul_point.

Attack Accuracy AEX L3 Cache-misses Time (ms)

No attack DTreesImpl::predictTrees 7.83 (𝜎 =0.49) 134.55 (𝜎 =85.38) 2.46 (𝜎 =0.06)
DTreesImpl::predictTrees (w/ GCC) 16.74 (𝜎 =1.44) 132.42 (𝜎 =73.18) 2.55 (𝜎 =0.03)

Standard attack Page-faults attack 65.2% (𝜎 =0) 3070.9 (𝜎 =1.4) 2164 (𝜎 =5455.22) 58.81 (𝜎 =0.41)
Our attack Our-PF 54.9% (𝜎 = 3.61%) 8.21 (𝜎 =1.34) 150.77 (𝜎 =74.67) 2.47 (𝜎 =0.08)

Table 6: Accuracy and performancemetrics for DTreesImpl::predictTreeswithMonitor++.

6 8 10 12 14 16 18 20
AEX Threshold

0.0

0.2

0.4

0.6

0.8

1.0 Specificity (No Attack with GCC)
Recall (Our-PF)

Figure 15: Specificity and recall of detection based on the
number of AEXs when GCC is running on the same host.

7 CONCLUDINGREMARKS
In this paper, we analyzed the limitations of existing detection tools
that monitor performance metrics to detect side-channel attacks on
SGX enclaves. Our findings show that an adversary can bypass exist-
ing tools when deployed in realistic cloud scenarios by exfiltrating
small portions of a secret at each run of the victim.

One possible countermeasurewould be to instruct detection tools
to keep state to detect a pattern of small anomalies spread across
multiple executions. Intel SGX, however, does not provide freshness
of state information sealed to disk. A malicious OS can, therefore,

easily bypass such a tool by providing stale state to the enclave.
Another countermeasure could be to prevent arbitrary restarts of
the victim enclave by, e.g., programming the enclave to run only
upon receiving an authenticated request. Nevertheless, this option is
hardlyworkablewhen the enclave provides a “public” service. For in-
stance, if the enclave hosts a TLS server [6] or a password-hardening
service [17], it is extremely challenging to differentiate between an
authorized request from a honest user and another issued by the
adversary acting as a honest user.

We hope that our findings will motivate further research in this
area, with the aim to avoid unnecessary cycles of attacks/defenses
on detection tools that solely rely on performance metrics.

ACKNOWLEDGMENTS
We thank all anonymous reviewers for their helpful comments. This
work was partially funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement No.
957406 (TERMINET), and by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy - EXC 2092 CASA - 390781972.

REFERENCES
[1] 97% on MNIST with a single decision tree (+ t-sne). https://www.kaggle.com/

carlolepelaars/97-on-mnist-with-a-single-decision-tree-t-sne.
[2] Mnist dataset. http://yann.lecun.com/exdb/mnist/.
[3] Opencv. https://github.com/opencv/opencv.
[4] Redis benchmark. https://redis.io/topics/benchmarks.

12

https://www.kaggle.com/carlolepelaars/97-on-mnist-with-a-single-decision-tree-t-sne
https://www.kaggle.com/carlolepelaars/97-on-mnist-with-a-single-decision-tree-t-sne
http://yann.lecun.com/exdb/mnist/
https://github.com/opencv/opencv
https://redis.io/topics/benchmarks

[5] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungy-
oung Lee. Obfuscuro: A commodity obfuscation engine on intel sgx. InNDSS, 2019.

[6] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthukumaran, Chris-
tianPriebe, JoshuaLind, Robert Krahn,Christof Fetzer,DavidM. Eyers, andPeter R.
Pietzuch. Libseal: revealing service integrity violations using trusted execution. In
Proceedings of the Thirteenth EuroSys Conference, EuroSys, pages 24:1–24:15, 2018.

[7] Maurice Bailleu, Donald Dragoti, Pramod Bhatotia, and Christof Fetzer. Tee-perf:
A profiler for trusted execution environments. In 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages
414–421. IEEE, 2019.

[8] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto,
Kari Kostiainen, and Ahmad-Reza Sadeghi. Dr.sgx: Automated and adjustable
side-channel protection for sgx using data location randomization. In Proceedings
of the 35th Annual Computer Security Applications Conference, ACSAC ’19, pages
788–800, New York, NY, USA, 2019. ACM.

[9] FerdinandBrasser, UrsMüller, AlexandraDmitrienko, Kari Kostiainen, SrdjanCap-
kun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks are
practical. InUSENIXWorkshop onOffensive Technologies (WOOT), pages 1–12, 2017.

[10] Samira Briongos, Gorka Irazoqui, Pedro Malagón, and Thomas Eisenbarth.
Cacheshield: Detecting cache attacks through self-observation. In Ziming Zhao,
Gail-Joon Ahn, Ram Krishnan, and Gabriel Ghinita, editors, Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy, CODASPY
2018, Tempe, AZ, USA, March 19-21, 2018, pages 224–235. ACM, 2018.

[11] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1041–1056, 2017.

[12] G. Chen, W.Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, T. Lai, and D. Lin. Racing
in hyperspace: Closing hyper-threading side channels on sgx with contrived data
races. In 2018 IEEE Symposium on Security and Privacy (SP), pages 178–194, May
2018.

[13] Sanchuan Chen. Déjà Vu. https://github.com/schuan/dejavu. Accessed on
22/11/2021.

[14] SanchuanChen,XiaokuanZhang,MichaelK. Reiter, andYinqianZhang. Detecting
privileged side-channel attacks in shielded execution with déjà vu. InACMAsia
Conference onComputer andCommunications Security, (AsiaCCS), pages 7–18, 2017.

[15] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean M. Tullsen.
Prime+abort: A timer-free high-precision L3 cache attack using intel TSX. In 26th
USENIX Security Symposium, USENIX Security, pages 51–67, 2017.

[16] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa. Strong and efficient cache side-channel protection using hardware
transactional memory. In 26th USENIX Security Symposium (USENIX Security 17),
pages 217–233, Vancouver, BC, August 2017. USENIX Association.

[17] Arseny Kurnikov, Klaudia Krawiecka, Andrew Paverd, MohammadMannan, and
N. Asokan. Using safekeeper to protect web passwords. In TheWeb Conference,
WWW, pages 159–162, 2018.

[18] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level
cache side-channel attacks are practical. In 2015 IEEE symposium on security and
privacy, pages 605–622. IEEE, 2015.

[19] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen,
and Aurélien Francillon. Reverse engineering intel last-level cache complex
addressing using performance counters. In International Symposium on Recent
Advances in Intrusion Detection, pages 48–65. Springer, 2015.

[20] AhmadMoghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom: How SGX
amplifies the power of cache attacks. In International Conference on Cryptographic
Hardware and Embedded Systems (CHES), pages 69–90, 2017.

[21] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar.
CopyCat: Controlled instruction-level attacks on enclaves. In 29th USENIX
Security Symposium, pages 469–486, August 2020.

[22] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party machine
learning on trusted processors. In 25th USENIX Security Symposium (USENIX
Security 16), pages 619–636, 2016.

[23] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. Varys: Protecting SGX enclaves from practical side-channel attacks. In
USENIX Annual Technical Conference (ATC), pages 227–240, 2018.

[24] Meni Orenbach, Yan Michalevsky, Christof Fetzer, and Mark Silberstein. Cosmix:
A compiler-based system for secure memory instrumentation and execution in
enclaves. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages
555–570, Renton, WA, July 2019. USENIX Association.

[25] Michael Schwarz, SamuelWeiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. Malware guard extension: Using SGX to conceal cache attacks. In
International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - 14th International Conference (DIMVA), pages 3–24, 2017.

[26] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-sgx: Eradicating
controlled-channel attacks against enclave programs. In Network and Distributed
System Security Symposium 2017 (NDSS’17), February 2017.

[27] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
Preventing page faults from telling your secrets. In ACM Asia Conference on
Computer and Communications (AsiaCCS), pages 317–328, 2016.

[28] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. Panoply: Low-tcb
linux applications with sgx enclaves. In NDSS, 2017.

[29] SSLab@Gatech. T-SGX. https://github.com/sslab-gatech/t-sgx. Accessed on
22/11/2021.

[30] O Sury and R Edmonds. Edwards-curve digital security algorithm (eddsa) for
dnssec. Technical report, RFC 8080 (Proposed Standard). Internet Engineering
Task Force, 2017.

[31] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-step: A practical attack
framework for precise enclave execution control. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution, pages 1–6, 2017.

[32] WenhaoWang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFengWang, Vin-
cent Bindschaedler, Haixu Tang, and Carl A. Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in SGX. In ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), pages 2421–2434, 2017.

[33] OfirWeisse, Valeria Bertacco, and ToddAustin. Regaining lost cycleswith hotcalls:
A fast interface for sgx secure enclaves. ACM SIGARCH Computer Architecture
News, 45(2):81–93, 2017.

[34] Yuanzhong Xu,Weidong Cui, andMarcus Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In IEEE Symposium
on Security and Privacy (SP), pages 640–656, 2015.

13

https://github.com/schuan/dejavu
https://github.com/sslab-gatech/t-sgx

	Abstract
	1 Introduction
	2 Background: Side-channel attacks on SGX
	3 Stealthy side-channel attacks
	3.1 Threat model
	3.2 Main intuition
	3.3 Application profiling

	4 Compromising secrets in libgcrypt
	4.1 Side-channels of mpi_powm
	4.2 Profiling of mpi_powm
	4.3 Page-faults
	4.4 Page-fault and cache
	4.5 Cache-only
	4.6 Attacks on mpi_ec_mul_point

	5 Results for libgcrypt
	5.1 Profiling accuracy
	5.2 Attack accuracy
	5.3 Effectiveness against detection tools
	5.4 T-SGX with cache-based monitoring

	6 Attacking OpenCV
	7 Concluding remarks
	Acknowledgments
	References

