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Abstract

The bandwidth of a signal is an important physical property that is of relevance
in many signal- and information-theoretic applications. In this paper we study
questions related to the computability of the bandwidth of computable bandlim-
ited signals. To this end we employ the concept of Turing computability, which
exactly describes what is theoretically feasible and can be computed on a digital
computer. Recently, it has been shown that there exist computable bandlimited
signals with finite energy, the actual bandwidth of which is not a computable
number, and hence cannot be computed on a digital computer. In this work, we
consider the most general class of band-limited signals, together with different
computable representations thereof. Among other things, our analysis includes
a characterization of the arithmetic complexity of the bandwidth of such signals
and yields a negative answer to the question of whether it is at least possible to
compute non-trivial upper or lower bounds for the bandwidth of a bandlimited
signal. Furthermore, we relate the problem of bandwidth computation to the
theory of oracle machines. In particular, we consider halting and totality or-
acles, which belong to the most frequently investigated oracle machines in the
theory of computation.
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1. Introduction

The applications of bandlimited signals are a prominent field of research

within the community of information theory. While most real-world physical

systems are analog and continuous in time, the actual processing of informa-

tion is often done on digital devices that operate in discrete-time computational

cycles. Hence, the conversion of signals from the analog to the digital domain

and vice versa is indispensable for modern technology [1, 2]. The link between

both domains is established by various sampling theorems [3, 4], including signal

recovery in the presence of noise [5], estimates for the error arising from finite-

length sampling-series approximations [6], and refined theories for the treat-

ment of multi-band signals [7, 8]. All of the mentioned applications include the

bandwidth of the involved signals as an essential parameter. The processing of

discrete-time representations of bandlimited signals has been studied as well,

see e.g. [9, 10]. There, the authors consider the replication of time-continuous

LTI systems in the discrete-time domain. Again, the bandwidth of the involved

signals appears as a crucial quantity. Furthermore, bandlimited signals play a

significant role in wireless communication systems, where the spectrum of the

transmit signal has to be controlled in order to not interfere with other systems

[11, 12].

For a bandlimited signal f , we refer to the smallest number σ, such that f is

bandlimited with bandwidth σ, as the the actual bandwidth of B(f). According

to Shannon’s sampling theorem, a bandlimited signal f with finite energy is

uniquely determined by the sequence of samples (f(k/r))k∈Z if r ≥ rmin =

B(f)/π holds true, in which case it may be reconstructed by means of the

Shannon sampling series. Hence, the actual bandwidth of a bandlimited signal

is a relevant quantity.

In this paper we will study questions related to the computability of the

actual bandwidth B(f) of computable bandlimited signals. Our analysis is based

on the theory of Turing computability, which characterizes the fundamental

limits of digital computation. There exists a variety of problems that have been
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Algorithm

TM

Input

data f

Desired approximation error ǫ

Output: TM(f, ǫ) such that

‖"true solution" − TM(f, ǫ)‖ < ǫ

Figure 1: We adopt the computability model considered in [16]: The algorithm TM gets two

inputs: the data f and the desired approximation error ǫ. The computed output TM(f, ǫ) is

guaranteed to be ǫ-close to the true solution.

shown to be uncomputable on a digital computer, e.g., the computation of the

Fourier transform for certain signals [13, 14] or the spectral factorization [15].

That is, all of these problems lack a way to control the approximation error

involved in the computation.

Today, simulations in science and engineering rarely treat the involved ap-

proximation error explicitly, which, for example, can be observed in the absence

of error bars in plots. In those cases, the computer computes some rational

number, which serves as an approximation of the solution, without any qual-

ity guarantees. A framework which establishes such quality guarantees, i.e., an

algorithmic control of the approximation error, is provided by the concept of

computability. There, the algorithm obtains the desired approximation error

ǫ, which could be the maximum tolerable error, along with the actual data f

as an input, and returns a solution that satisfies the error specification. This

algorithmic control of the error is illustrated in Fig. 1.

In [16], it has been shown that there exist computable bandlimited signals f

for which the actual bandwidth B(f) is not a computable number. This means

that there cannot exist any algorithm for the computation of B(f) with an

effective control of the approximation error. To the best of our knowledge, [16]

is the first work on computable signals that satisfy essential properties of high

practical relevance, like finite energy, continuity, etc., and at the same time defy

computability with respect to a fundamental signal parameter.

In this work we aim to further develop the theory of computability of ban-
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dlimited signals. Several open questions and conjectures were posed in [16] with

regard to the class of computable entire functions of exponential type CEπ, which

corresponds to the most general class of bandlimited signals:

1. For specific classes of computable bandlimited signals, the bandwidth B(f)

is the limit value of a monotonically non-decreasing computable sequence

of rational numbers. Does this hold true for the class CEπ as well? It was

conjectured that the answer is no.

2. For specific classes of computable bandlimited signals, the subset of signals

that satisfy B(f) > λ for a given λ is semi-decidable. Does this hold true

for the class CEπ as well? Again, it was conjectured that the answer is no.

3. Even if it not possible to compute B(f) for problematic signals in CEπ, it

might still be possible to compute meaningful bounds for B(f). Hence,

the question is: Do there exist Turing machines TMBW and TMBW such

that for all signals f in CEπ that satisfy B(f) ≤ π, we have

TMBW(f) ≤ B(f) ≤ TMBW(f)?

It was conjectured that the only Turing machines that satisfy this require-

ment yield trivial values, i.e., TMBW(f) = 0 and TMBW(f) = π, for all

signals in CEπ.

In this work, we provide a comprehensive study of the computability properties

of the bandwidth B(f) of signals f in the class CEπ, proving all of the above

conjectures correct. As indicated above, the class CEπ respects the common

general definition of bandlimited signals, which is a broad extension of the class

of admissible signals compared to [16]. In particular, we present a sharp char-

acterization of the “degree” of non-computability of the number B(f) in the

following sense. On the one hand, the arithmetic complexity of the number

B(f) can never exceed the class Π2 (which will subsequently be introduced in

a formal manner). On the other hand, for every number x ∈ Π2 ∩ [0, π], there

exists a signal f ∈ CEπ with B(f) equal to x. This characterization is analogous

to the notion of achievability and converse in information theory.

4



Our analysis leads to interesting insights about the general limits of com-

putability. In recent years, attempts have been made to push the boundaries

of computing through various approaches, including analog, neuromorphic and

quantum hardware. At least in theory, the computational capabilities of these

technologies go beyond those of digital computers. For the question of whether

any of them may also yield practical advantages at some point in the future, it

is essential to precisely understand the phenomena underlying the limitations

of digital computing, especially in the context of mathematical models that

describe practically relevant problems from engineering and science.

Furthermore, our analysis uncovers interesting property of bandlimited sig-

nals, concerning the relation between the arithmetic complexity of B(f) and

the structural properties of f in the time-domain. To the authors’ knowledge,

no distinguished physical quantity other than the bandwidth of bandlimited

signals has yet been identified to show a comparable behavior. The class CEπ
includes the subclass CB∞

π of bandlimited signals with finite L∞-norm, which,

in contrast to CEπ, exhibits a Banach space structure. In particular, this struc-

ture restricts the decay of the corresponding signals on the time-axis. While all

signals in CEπ are computationally well-behaved in the time domain, we observe

a jump in the arithmetic complexity of the bandwidth when extending the class

of feasible signals from CB∞
π to CEπ. Hence, the computability properties of the

bandwidth are coupled directly with the presence or absence of a Banach space

structure in the time domain. Although not previously observed, the authors

believe that such characteristics may occur for a variety of mathematical models

used in the applied sciences.

The remainder of the paper is structured as follows. Sections 2 to 6 are

dedicated to preliminaries. There, we introduce the basic concepts of ban-

dlimited signals, Turing machines and A-computable functions, as well as the

arithmetical hierarchy of real numbers, which provides the theoretical frame-

work for classifying different degrees of uncomputability. Our main results are

presented in Sections 7 to 11. We consider different computable representations

of bandlimited signals and derive the answers to the above-mentioned conjec-
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tures. Furthermore, we characterize the problem of computing the bandwidth

of bandlimited signals by means of the arithmetical hierarchy of real numbers.

Last but not least, we relate the problem of computing the bandwidth of ban-

dlimited signals to a class of oracle computation machines. The paper closes in

Section 12, with a discussion on our results and their implications.

2. Bandlimited Signals

Our analysis of bandlimited signals is based on commonl used definitions,

several of which have already been employed in [16]. For the sake of self-

containedness, we introduce all of the relevant definitions in the following.

By N+ := {1, 2, 3, . . .}, we denote the set of (positive) natural numbers. By

N := N+ ∪{0} the set of natural numbers including zero. For Ω ⊆ R, let Lp(Ω),

1 ≤ p < ∞, be the space of all measurable, p-th power Lebesgue integrable

functions on Ω, with the usual norm ‖ · ‖p. A function f is said to be entire if

it is defined and holomorphic on all of C.

Definition 1. An entire function f is called bandlimited if there exists σ ≥ 0

such that for all ǫ > 0 there exists a constant C(ǫ) with

|f(z)| ≤ C(ǫ) e(σ+ǫ)|z| (1)

for all z ∈ C [18, 4]. By Eσ we denote the set of all entire functions that are

bandlimited with bandwidth σ.

In particular, we will consider signals that are bandlimited with bandwidth

π.

According to the definition above, f ∈ Eσ1 implies f ∈ Eσ2 whenever σ1

satisfies σ1 ≤ σ2. That is, a signal that is bandlimited with bandwidth σ1 is

also bandlimited with any bandwidth σ2 larger than σ1. For a given bandlimited

signal f , we denote by

B(f) = min{σ ≥ 0: f ∈ Eσ} (2)

the actual bandwidth of the signal.
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Remark 1. For an entire function f that satisfies (1) for some σ ∈ R, the

minimum in (2) does exist. For details, see [16, Appendix B, p. 15].

In the following, we introduce further signal spaces with practically relevant

properties. If we additionally restrict the set Eπ to signals with finite L1-norm

in the time domain, i.e.,
∫ ∞

−∞

|f(t)| dt < ∞,

we obtain the Bernstein space B1
π. On the other hand, if we restrict the set Eπ

to signals with well-defined Fourier transform in L2, we obtain the Bernstein

space B2
π. According to Plancherel’s theorem, these signals also have a finite

L2-norm in the time domain. The Bernstein space B2
π is the frequently used

space of bandlimited signals with finite energy. According to the Paley–Wiener

theorem [4, Theorem 7.2, p. 68], the support of the Fourier transform f̂ of a

signal f ∈ B2
π is contained in [−π, π], and we have

f(t) =
1

2π

∫ π

−π

f̂(ω) eiωt dω.

Hence, for the space B2
π we have a further, different characterization of the

actual bandwidth. For f ∈ B2
π, B(f) is the smallest number σ > 0 such that

f(t) =
1

2π

∫ σ

−σ

f̂(ω) eiωt dω

holds true for all t ∈ R. According to Plancherel’s identity, this is also the

smallest σ > 0 such that
∫ ∞

−∞

|f(t)|2 dt =
1

2π

∫ σ

−σ

|f̂(ω)|2 dω.

is satisfied. The actual bandwidth B(f) of a bandlimited signal f is a dis-

tinguished quantity, because it determines the minimum sampling rate that is

required so that the samples uniquely determine f .

The general definition of the Bernstein spaces is as follows.

Definition 2. The Bernstein space Bp
π, 1 ≤ p ≤ ∞, consists of all functions in

Eπ, whose restriction to the real line is in Lp(R) [4, p. 49]. The norm for Bp
π is

given by the Lp-norm on the real line.
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Remark 2. We have Br
π ( Bs

π ( Eπ for all 1 ≤ r < s ≤ ∞.

We will discuss properties of signals f ∈ Eπ next. Since every signal f ∈ Eπ
is entire, it can be represented as a power series that converges uniformly on all

compact subsets of C. Denote the n-th derivative of f by f (n). Then, defining

an := f (n)(0) for all n ∈ N, we have

f(z) =

∞∑

n=0

an
n!

zn =

∞∑

n=0

f (n)(0)

n!
zn, z ∈ C. (3)

The actual bandwidth B(f) can be determined directly from the family of co-

efficients (an)n∈N according to

B(f) = lim sup
n→∞

n
√

|an|. (4)

For details, see [19, pp. 356] or [18, Theorem 3, p. 6].

3. Preliminaries on Turing Machines and Recursive Functions

The theory of Turing machines, recursive functions and computable analysis

are well-established fields in theoretical computer science. Nevertheless, in order

to establish a self-contained work, we introduce all definitions and results that

will be required subsequently, even if they have already been given in [16]. A

comprehensive treatment of the topic may be found in [20, 21, 22, 23, 24, 25].

Turing machines, as introduced by Turing in [26, 27], are a mathematical

model of what we intuitively understand as computation machines. In this

sense, they yield an abstract idealization of today’s real-world computers. Even

though the model is relatively simple in structure, any algorithm that can be

executed by a real-world computer can be simulated by a Turing machine. In

contrast to real-world computers, however, Turing machines are not subject to

any restrictions regarding energy consumption, computation time or memory

size. All computation steps on a Turing machine are furthermore assumed

to be executed with zero chance of error. Thus, computability in the sense of

Turing is the exact characterization of what can be achieved by digital hardware,

e.g., central processing units (CPUs), digital signal processors (DSPs), or field
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programmable gate arrays (FPGAs), if practical limitations, such as energy

constraints, computing errors, and hardware restrictions, are disregarded.

In formal terms, a Turing machine consists of a formal language over a

finite alphabet, together with a list of transformation rules for the associated

words. The transformation rules can be seen as an “algorithm”, where the words

represent the “data” being processed. Since formal languages exhibit a number

of intuitive encodings into the set of natural numbers (cf. Remark 4), each

Turing machine may be characterized by some element of the set

N :=

∞⋃

n=1

{
g : Nn →֒ N

}
, (5)

where we use the symbol "→֒" to denote a partial mapping.

Recursive functions, more specifically referred to as µ-recursive functions,

characterize the notion of computability by means of different approach and

were, amongst others, considered by Kleene in [28]. According to (5), the set N
contains all possible functions g : Nn →֒ N for all n ∈ N+, and is thus uncount-

ably infinite in cardinality. The set of those functions g ∈ N that correspond

to our intuitive understanding of computability in the sense that they can be

fully described by a finite sequence of fundamental arithmetic-logic operations,

must necessarily be of countable cardinality, and thus be a proper subset of the

set N . Contrary to Turing machines, the notion of recursive functions tries to

characterize this subset directly by defining a set of fundamental computable

operations on the natural numbers, rather than starting from formal languages.

Yet, Turing machines and recursive functions turned out to be equivalent in the

following sense: the class of functions characterized by the concept of Turing

machines coincides with the set of recursive functions [29]. Hence, a function

g ∈ N can be computed on some Turing machine if and only if it is a recursive

function.

In the following, we will look further into the properties of recursive func-

tions. For A ⊆ N, denote by C(A) ( N the set which consists of the indicator

function 1A of A, the successor function, and all constant and identity func-

tions on tuples of natural numbers [24, Definition 2.1, p. 8]. By C∗(A), denote
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the closure of C(A) with respect to composition, primitive recursion and un-

bounded search [24, Definition 2.1, p. 8, Definition 2.2, p. 10]. Then, the set

C∗(A) is referred to as the set of A-computable functions. In particular, the set

C∗(∅) is the set of recursive functions. For brevity, we write C∗ instead of C∗(∅).
Furthermore, for n ∈ N+, we denote by ∗Cn(A) and ∗Cn the set of A-computable

functions in n-variables and the set of recursive functions in n-variables, respec-

tively. That is, we have

∗Cn(A) : = C∗(A) ∩
{
g : Nn →֒ N

}
,

C∗(A) =
∞⋃

n=1

∗Cn(A)

for all n ∈ N+ and all A ⊆ N.

Definition 3. A set A ⊆ N is said to be recursively enumerable if there exists

a recursive function g : N →֒ N with domain D(g) equal to A.

In the context of Turing machines, the domain D(g) ⊆ N of a function

g ∈ ∗C1 has a dedicated interpretation. Consider a Turing machine TMg that

computes the function g. Then, given an input m ∈ N, the Turing machine TMg

reaches its halting state after a finite number of computational steps if and only

if m ∈ D(g) is satisfied. In contrast, if m ∈ N \D(g), the Turing machine TMg

runs forever.

Definition 4. A set G ⊆ N is said to be recursive if the corresponding indicator

function 1G : N → {0, 1} is a recursive function.

Remark 3. A set G ⊆ N is recursive if and only if both G and Gc := N \G are

recursively enumerable sets. Furthermore, for a set G ⊆ N, we have C∗(G) = C∗

if and only if G is a recursive set.

The set of A-computable functions in one variable, C∗
1 (A), which will be of

special significance in the following, is recursively enumerable itself. In this con-

text, recursive enumerability refers to the existence of a universal A-computable

function ΦA ∈ C∗
2(A) such that for all A-computable functions g ∈ C∗

1 (A), there
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exists a number n ∈ N such that

∀m ∈ D(g) : ΦA(n,m) = g(m),

∀m /∈ D(g) : (n,m) /∈ D(ΦA) (6)

hold true [25, Theorem 1.5.3, p. 11]. In short, we say that g satisfies ΦA(n,m) =

g(m) for all m ∈ N, implicitly (and with some abuse of notation) including the

case of ΦA(n,m) and g(m) being undefined for some m ∈ N. For all n,m ∈ N,

define ϕA
n (m) := ΦA(n,m). Then, the family (ϕA

n )n∈N is a recursive enumeration

of the set of all A-computable functions in one variable. A Turing machine TMΦ∅

that computes the function Φ∅ is referred to as a universal Turing machine.

The universal function ΦA is not unique, and hence, neither is the recursive

enumeration (ϕA
n )n∈N. Thus, we consider an arbitrary but fixed recursive enu-

meration (ϕA
n )n∈N for the rest of this work. For the sake of simplicity, we write

(ϕn)n∈N instead of (ϕ∅
n)n∈N in the special case of A = ∅. Within the scope of

this work, we will consider this case most of the time.

The case of A ( N being some non-recursive set leads to the idea of oracle-

computations, which we will investigate in Section 11. From the equivalence of

Turing machines and recursive functions, we deduce the existence of a recursive

runtime function, which will be essential in the context of oracle computations.

Intuitively speaking, given a universal Turing machine TMΦ∅ , we count the

number of steps of calculation (that is, the number of successive applications of

the specified transformation rules) that are required for TMΦ∅ , given an input

(n,m) ∈ N2, to reach its halting state. If m ∈ D(ϕn)
c, the counting continues

for an infinite amount of time. Expressed in a formal way, there exists a (total)

recursive function Ψ : N3 → {0, 1} such that the following holds true:

• For all n,m, k ∈ N that satisfy Ψ(n,m, k) = 1 we have Ψ(n,m, k+1) = 1.

• For all n,m ∈ N that satisfy m ∈ D(ϕn), there exists k ∈ N such that we

have Ψ(n,m, k) = 1.

• For all n,m ∈ N that satisfy m /∈ D(ϕn), we have Ψ(n,m, k) = 0 for all

k ∈ N.
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Even for a fixed enumeration (ϕn)n∈N of C∗
1 , the runtime function Ψ is not

unique. Hence, we again consider an arbitrary but fixed runtime function Ψ for

the remainder of this work.

Definition 5. For a universal recursive function Φ with runtime function Ψ,

we denote by

AΦ
T := {n ∈ N : ∀m ∈ N : ∃k ∈ N : Ψ(n,m, k) = 1}

the totality set of Φ.

From the properties of Ψ, it follows that the totality set contains exactly the

indices of all total functions in (ϕn)n∈N. Hence, we have

AΦ
T := {n ∈ N : D(ϕn) = N},

which yields a direct relation to the family (D(ϕn))n∈N, which enumerates the

set of recursively enumerable sets according to the universal function Φ. In this

context, we will reconsider the runtime function Ψ in Lemma 3 and Lemma 4

at the end of Section 6. Ultimately, the set C∗(AΦ
T) of AΦ

T-computable func-

tions and the set C∗(D(g)) of D(g)-computable functions for g ∈ C∗ will play a

fundamental role in Section 11 in the scope of oracle computations.

4. Encoding Abstract Structures into the Natural Numbers

Throughout this work, we consider computations on different abstract struc-

tures, like, for example, real numbers and sequences thereof. By the term “ab-

stract structure”, we refer to sets whose elements are no natural numbers. In

this section, we will prepare the formalization of computability on abstract

structures, following the presentations given in [20, 22, 24, 25].

In the previous section, we have stated that Turing machines are charac-

terized by the set C∗, which is a subset of the set N . In other words, Turing

machines characterize algorithms that operate on the natural numbers. Hence,

the elements of an abstract structure are not directly accessible to Turing ma-

chines and thus need to be represented in a suitable manner. In particular, we
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want to represent each element of the abstract structure in question by at least

one natural number. In formal terms, for an abstract structure A, we consider

partial surjective mappings νA : N →֒ A. We refer to a mapping of this kind as

notation.

Remark 4. In [20, Definition 2.3.1, p. 33], Weihrauch employs the word “no-

tation” as a name for the concept of describing abstract objects by words of a

formal language. For example, every definable object (to be precise: every de-

finable set) in ZFC set theory can, by definition, be described by a formula in

first-order predicate logic, see [30, Definition 2.8, p. 26] for details. A formal

language may be encoded into the natural numbers, as was done by Turing in

[29] in order to prove the equivalence of Turing machines and recursive func-

tions, or earlier by Gödel in [31] in the context of his work on incompleteness

theorems. On the other hand, natural numbers may be denoted by words of a

formal language, as is the case for the usual representation of natural numbers

by means of the Arabic numerals. Ultimately, both the use of formal languages

and the use of natural numbers as “fundamental” structure lead to the same

notion of computability on abstract structures.

As indicated at the end of the previous section, we will mostly concern

ourselves with recursive functions regarding questions of computability, since

they characterize the capabilities of real-world computers. Thus, we will restrict

ourselves to considering the set C∗ within this section. In principle, all of the

following considerations apply to general A-computable functions in the same

manner.

The set C∗
1 of recursive functions in one variable yields a direct way to char-

acterize recursive sets. For every recursive indicator function 1G, there exists

an n ∈ N such that 1G = ϕn holds true. Accordingly, we define the notation

n 7→ G :⇔ ϕn = 1G for G ⊆ N. (7)

This notation is (truly) partial in the following sense: a function ϕn satisfies

ϕn = 1G for some recursive set G ⊆ N if and only if it is total and attains no
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values other than 0 and 1. Clearly, there exists n ∈ N such that ϕn does not

satisfy these requirements. Hence, only a proper subset of the natural numbers

actually represents recursive sets with respect to the notation defined in (7).

In the following, we consider n-tuples m = (mj)
n
j=1 = (m1,m2, . . . ,mn) of

natural numbers and, for l ≤ k ≤ n, the projection [m]kl = (mj)
k
j=l on the sub-

tuple (mj)
k
j=l = (ml, . . . ,mk) consisting of those components of m with index

between l and k. In particular, for l = k, we write [m]k = mk. Given tuples

m ∈ Nl and s ∈ Nk for l, k ∈ N, we define m ◦ s := (m1, . . . ,ml, s1, . . . , sk) ∈
Nl+k.

Remark 5. For k, n ∈ N+ with k ≤ n, the function [·]k : Nn → N is an element

of the set of identity functions, which we have previously used to define the set

C∗ of ∅-computable functions. Hence, the function [·]k : Nn → N is recursive by

definition for all k, n ∈ N+ with k ≤ n.

In order to extend the idea of notations to structures that involve tuples of

natural numbers, we make use of the Cantor pairing function 〈·〉2 : N2 → N,

(m1,m2) 7→ m2 +
1

2
(m1 +m2)(m1 +m2 + 1),

which maps the set N2 bijectively to the set N. For n > 2, the n-th extension

〈·〉n : Nn → N of the Cantor pairing function is defined inductively by

〈m〉n = 〈m1,m2, . . .mn〉n
: = 〈m1, 〈[m]n2 〉n−1〉2

= 〈m1, 〈m2,m3, . . .mn〉n−1〉2.

For the sake of completeness, we also define the trivial Cantor “pairing” 〈·〉1 :

N → N, m 7→ m. For all n ∈ N+, the function 〈·〉n is total and for all m ∈ N,

there exists exactly one m ∈ Nn such that 〈m〉n = m holds true. Hence, the

inverse Cantor pairing function ∐n : N → Nn is well-defined. Furthermore,

〈·〉n is recursive, as is [∐n(·)]k for all n, k ∈ N+ that satisfy k ≥ n. Using the

inverse Cantor pairing function for n = 3, we can specify a notation for the set

14



of rational numbers Q by defining

m 7→ q := (−1)[∐3(m)]1
[∐3(m)]2

1 + [∐3(m)]3

for m ∈ N.

We define ̟1(·) := [∐2(·)]1 and ̟2(·) := [∐2(·)]2 for the special case of

n = 2. Then, inverse Cantor pairing function also yields a notation for the set

of finite tuples of natural numbers
⋃∞

n=1 N
n by setting

m 7→ ∐̟1(m)

(
̟2(m)

)
,

which is particularly useful whenever we want to define a notation for the set of

finite tuples of elements of some abstract structure A. If A admits a notation

itself, a notation for
⋃∞

n=1 An can then be defined by means of composition.

For the sake of readability, we write ∐kϕn(m) instead of ∐k(ϕn(m)) in the

following.

Definition 6. An n-fold sequence of rational numbers (rm)m∈Nn is said to be

computable if there exist exists a number k ∈ N such that

rm = (−1)[∐3ϕk(〈m〉n)]1
[∐3ϕk(〈m〉n)]2

1 + [∐3ϕk(〈m〉n)]3
holds true for all m ∈ Nn.

In general, real numbers defy exact computability by Turing machines due

to their irrational and hence infinite nature. Practically relevant functions, like

exp, sin and cos are not computable exactly, even when their domain is restricted

to the rational numbers. Hence, a shift from the domain of exact computability,

which we have considered so far, to the domain of approximate computability

is necessary. In order for approximate computations to be meaningful, it is

necessary to incorporate a procedure for estimating the approximation error.

Definition 7. A sequence (xm)m∈N of real numbers is said to converge effec-

tively towards a number x∗ ∈ R if there exists a number c ∈ N such that ξ := ϕc

is a total recursive function and

|x∗ − xm| < 1/2M (8)
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holds true for all m,M ∈ N that satisfy m ≥ ξ(M).

The function ξ : N → N,M 7→ ξ(M) is referred to as (recursive) modulus of

convergence for the sequence (xm)m∈N.

Definition 8. A real number x is said to be computable if there exists a com-

putable sequence of rational numbers that converges effectively towards x.

We denote the set of computable real numbers by Rc, by R+0
c the non-

negative numbers in Rc, and by Cc = Rc + iRc the set of computable complex

numbers. Prominent examples of computable, irrational numbers are
√
2, e,

and π. Given a computable real number x, a pair
(
(rm)m∈N, ξ

)
consisting of a

computable sequence (rm)m∈N of rational numbers that satisfies limm→∞ rm =

x and a corresponding recursive modulus of convergence ξ such that (8) holds

true is called a standard description of the number x.

Remark 6. On the set of standard descriptions of computable real numbers,

the computable real numbers induce an equivalence relation as follows: Two

standard descriptions
(
(rm)m∈N, ξ

)
and

(
( ′rm)m∈N, ξ

′
)

are equivalent, denoted

by

(
(rm)m∈N, ξ

)
∼
(
( ′rm)m∈N, ξ

′
)
,

if they represent the same number x ∈ Rc. By
(
(rm)m∈N, ξ

)
⇒ x, we indicate

that
(
(rm)m∈N, ξ

)
is a representative of x ∈ Rc. In general, we will employ the

symbol ’⇒’ in the context of computation on abstract sets whenever we want to

indicate that some abstract object is represented by some “less abstract” object

which is accessible to Turing machines.

By Definition 6, the family (ϕk)k∈N induces for all n ∈ N+ a notation for

the set of n-fold computable sequences of rational numbers. Since Definition 6

implicitly requires the function ϕk to satisfy D(ϕk) = N, the notation is partial.

Furthermore, the mapping

l 7→ (̟1(l), ̟2(l)) =: (k, c) 7→ (ϕk, ϕc), (9)
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provides a notation for the set Rc. For every standard description
(
(rm)m∈N, ξ

)

of some computable number x, there exist k, c ∈ N, such that ϕk characterizes

the sequence (rm)m∈N in the sense of Definition 6 and ϕc characterizes the

function ξ in the sense of Definition 7.

Definition 9. An n-fold sequence (xm)m∈Nn of computable real numbers

is called computable if there exists an (n + 1)-fold computable sequence

(rm◦s)m◦s∈Nn+1 of rational numbers as well as a number c ∈ N such that ξ := ϕc

is a total recursive function and

∣
∣xm − rm◦s

∣
∣ <

1

2M

holds true for all s ∈ N, m ∈ Nn, M ∈ N that satisfy s ≥ ξ(〈m ◦M〉n+1).

The pair
(
(rm◦s)m◦s∈Nn+1 , ξ

)
is referred to as a standard description of the

sequence (xm)m∈Nn . Again, the mapping l 7→ (ϕk, ϕc) defined in (9) provides a

notation for set of n-fold computable sequences of computable numbers. Every

standard description
(
(rm◦s)m◦s∈Nn+1 , ξ

)
of some sequence (xm)m∈Nn may be

characterized by a pair (ϕk, ϕc) according to Definitions 6 and 7, analogous to

the notation for the set Rc defined above.

Finally, returning to the domain of exact computation, we introduce for all

n ∈ N+ a notation for the set ∗Cn of recursive functions in n variables by defining

m 7→ ϕm

(
〈·〉n

)
. (10)

Clearly, ϕm

(
〈·〉n

)
: Nn →֒ N is a recursive function for all m ∈ N. On the other

hand, consider an arbitrary recursive function g : Nn →֒ N. Then, g(∐n(·)) is

a recursive function in one variable. Consequently, there exists an m ∈ N such

that ϕm(·) = g(∐n(·)) holds true and we have

ϕm

(
〈·〉n

)
= g
(
∐n (〈·〉n)

)
= g
(
·
)
.

Hence, (10) yields for all n ∈ N+ a notation for the set ∗Cn. By setting

m 7→ ϕ̟1(m)

(
〈·〉̟2(m)

)
,

we extend this notation to a notation for the set C∗ of all recursive functions.
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5. Computations and Algorithms on Abstract Structures

In the previous section, we have introduced the notion of notations. In this

section, we will employ notations to formally define the idea of computability on

a Turing machine for abstract structures.

Let A and A′ be two abstract structures with fixed notations νA : N →֒ A
and νA′ : N →֒ A′. That is, νA and νA′ are (not necessarily total) surjections

from N onto A and A′, respectively. Furthermore, consider a mapping G :

A →֒ A′. If there exists a recursive function g : N →֒ N such that for all pairs

(a, n) ∈ A× N, we have

a ∈ D(G ) ∧ νA(n) = a ⇒ νA′(g(n)) = G (a),

then we say that there exists a Turing machine TMG that returns a′ := G (a)

for input a. This Turing machine computes the mapping a 7→ a′ := G (a) in the

following sense:

• Whenever TMG is presented with a number n that denotes the object

a = νA(n) ∈ D(G ) with respect to the notation νA, it returns a number

g(n) that denotes the object a′ = νA′(g(n)) ∈ A′ with respect to the

notation νA′ .

• If G is undefined at the point a = νA(n) ∈ A, then either TMG does not

halt in a finite number of steps for input n, or g(n) is not an element of

D(νA′ ).

• In particular, TMG maps the set of numbers that denote the object a ∈ A
with respect to νA to a subset of the set of numbers that denote the object

G (a) ∈ A′ with respect to νA′ , i.e., for all a ∈ D(G ), we have

g({n : νA(n) = a}) ⊆ {n : νA′(n) = G (a)}.

With some abuse of notation, we also write TMG : A → A′, a 7→ TMG (a) = a′,

despite the fact that TMG actually computes a mapping on natural numbers

rather than a mapping on the abstract structures A and A′.
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Remark 7. If both A and A′ are either the set of computable reals Rc or the set

of computable complex numbers Cc, then a function f : A →֒ A′ that satisfies

the above notion of computability is referred to as Markov computable. Markov

computability is not the strongest notion of computability on Rc and Cc that

has been used in the literature: Turing computability, which is applicable to

functions on all of R and C, implies Markov computability when restricted to

Rc and Cc. For a comparison, see [23, Appendix 2.9, p. 21].

The majority of notations introduced in Section 4 is induced by the enu-

meration (ϕn)n∈N. If the notations of two abstract structures A and A′ are

induced by a recursive enumeration of C∗
1 , then any mapping G : A →֒ A′ is,

in principle, a transformation of recursive functions. In the following, we will

introduce a consequence of the s-m-n Theorem [24, Theorem 3.5, p. 16], which

captures a fundamental structural property of the set C∗. In particular, we will

characterize the conditions under which a transformation of recursive functions

is computable on a Turing machine.

Consider the following case: for a tuple m ∈ Nn, the abstract structure

A equals the set ∗Cm1 × · · · × ∗Cmn
, while the abstract structure A′ equals the

set C∗. For all j ∈ {1, . . . , n}, the set ∗Cmj
is equipped with an individual

notation. We can extend the individual notations to a joint notation νA for the

set ∗Cm1×· · ·× ∗Cmn
by first enumerating all n-tuples of natural numbers and then

applying the individual notations to the respective component. Furthermore,

for the set C∗, a notation νA′ was introduced at the end of Section 4. Now,

consider a mapping

G : ∗Cm1 × · · · × ∗Cmn
→ C∗,

(g1, g2, . . . , gn) 7→ h,

which, for some number k ∈ N+, is of the form

(gj)
n
j=1 =: h0 7→ h1,

(gj)
n
j=1 ◦ (hj)

1
j=1 =: h1 7→ h2,

...

(gj)
n
j=1 ◦ (hj)

k−1
j=1 =: hk−1 7→ hk =: h,
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such that for all j ∈ {1, . . . , k}, the function hj is either an element of C(∅) or

emerges from hj−1 through concatenation, primitive recursion or unbounded

search. Then, there exists a mapping g′ ∈ C∗
1 such that for all l ∈ N and all

(gj)
n
j=1 ∈ ∗Cm1 × · · · × ∗Cmn

that satisfy νA(l) = (gj)
n
j=1, we have νA′(g′(l)) =

h. That is, there exists a Turing machine TMG that computes the mapping

(g1, g2, . . . , gn) 7→ h.

As a rule of thumb, if we can implement a mapping G : ∗Cm1 ×· · ·× ∗Cmn
→ C∗

on a real world computer, it is computable by a Turing machine, which applies

to all common arithmetic and logic operations. Throughout the rest of this

work, we make implicit use of this principle on several occasions.

6. The Arithmetical Hierarchy of Real Numbers

Since Turing published his work on the theory of computation, it has been

known that almost all real numbers are uncomputable. In an attempt to charac-

terize different degrees of (un)computability, Zheng and Weihrauch introduced

the arithmetical hierarchy of real numbers [32], which is strongly related to the

Kleene–Mostowski hierarchy of subsets of natural numbers [33, 34]. The hierar-

chical level of a real number solely depends on the logical structure that is used

to define the number.

Definition 10 (Kleene–Mostowski Hierarchy, cf. [33, 34]). For n ∈ N+, con-

sider m = (m1, . . . ,mn) ∈ Nn. Then, the sets Σ0
n ( 2N, Π0

n ( 2N and ∆0
n ( 2N

are defined as follows:

• A set A ⊆ N satisfies A ∈ Σ0
n if there exists a recursive set G ⊆ N such

that for all j ∈ N, we have j ∈ A if and only if

∃m1∀m2∃m3 . . .Qmn(〈m ◦ j〉n+1 ∈ G)

holds true, where “Q” is replaced by “∀” if n is even and by “∃” if n is odd.

• A set A ⊆ N satisfies A ∈ Π0
n if there exists a recursive set G ⊆ N such
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that for all j ∈ N, we have j ∈ A if and only if

∀m1∃m2∀m3 . . .Qmn(〈m ◦ j〉n+1 ∈ G)

holds true, where “Q” is replaced by “∃” if n is even and by “∀” if n is odd.

• A set A ⊆ N satisfies A ∈ ∆0
n if satisfies both A ∈ Σ0

n and A ∈ Π0
n. Hence,

we have ∆0
n = Σ0

n ∩ Π0
n.

Definition 11 (Zheng-Weihrauch Hierarchy, cf. [32]). For n ∈ N+, consider

m = (m1, . . . ,mn) ∈ Nn. Then, the sets Σn ( R, Πn ( R and ∆n ( R are

defined as follows:

• A number x∗ ∈ R satisfies x∗ ∈ Σn if there exists an n-fold computable

sequence (rm)m∈Nn of rational numbers such that

x∗ = sup
m1∈N

inf
m2∈N

sup
m3∈N

. . . Θ
mn∈N

(rm)

holds true, where “Θ” is replaced by “inf” if n is even and by “sup” if n is

odd.

• A number x∗ ∈ R satisfies x∗ ∈ Πn if there exists an n-fold computable

sequence (rm)m∈Nn of rational numbers such that

x∗ = inf
m1∈N

sup
m2∈N

inf
m3∈N

. . . Θ
mn∈N

(rm)

holds true, where “Θ” is replaced by “sup” if n is even and by “inf” if n is

odd.

• A number x∗ ∈ R satisfies x∗ ∈ ∆n if satisfies both x∗ ∈ Σn and x∗ ∈ Πn.

Hence, we have ∆n = Σn ∩ Πn.

Remark 8. A real number x is computable if and only if it satisfies both x ∈ Π1

and x ∈ Σ1. Hence, we have Rc = ∆1.

Given a set A ⊆ N, we denote x[A] :=
∑

j∈A
1/2(j+1). Zheng and Weihrauch

showed that for all n ∈ N+, if A satisfies A ∈ Σ0
n, A ∈ Π0

n or A ∈ ∆0
n, then x[A]

satisfies x[A] ∈ Σn, x[A] ∈ Πn or x[A] ∈ ∆n, respectively.
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Assuming the finiteness of the respective suprema and infima, an n-fold

computable sequence (xm)m∈Nn of computable numbers is referred to as n-th

order lower Zheng-Weihrauch (ZW) description of the real number

x∗ = sup
m1∈N

inf
m2∈N

sup
m3∈N

. . . Θ
mn∈N

(xm),

where “Θ” is replaced by “ inf” if n is even and by “sup” if n is odd.

Likewise, again assuming the finiteness of the respective suprema and infima,

an n-fold computable sequence (xm)m∈Nn of computable numbers is referred to

as n-th order upper Zheng-Weihrauch (ZW) description of the real number

x∗ = inf
m1∈N

sup
m2∈N

inf
m3∈N

. . . Θ
mn∈N

(xm),

where “Θ” is replaced by “sup” if n is even and by “ inf” if n is odd.

Lemma 1. If there exists an n-th order upper ZW description for a number

x∗ ∈ R, then x∗ ∈ Πn is satisfied.

Proof. Consider the standard description
(
( ′rs)s∈Nn+1 , ξ

)
of an n-th order upper

ZW description (xm)m∈Nn of x∗ and define

g′(m) : =
(
̟1(m1),m2, . . . ,mn

)
,

g(m) : = g′(m) ◦ ξ
(
g′(m), ̟2(m1)

)
,

rm : = ′rg(m) +
1

2̟2(m1)
,

for all m ∈ Nn. Then, (rm)m∈Nn is an n-fold computable sequence of rational

numbers that satisfies rm ≥ xg′(m) for all m ∈ Nn, and hence

x∗ ≤ sup
m2∈N

inf
m3∈N

. . . Θ
mn∈N

(
xg′(m)

)

≤ sup
m2∈N

inf
m3∈N

. . . Θ
mn∈N

(
rm
)

(11)

for all m1 ∈ N as well. Since
(
( ′rs)s∈Nn+1 , ξ

)
is a standard description of

(xm)m∈N, we have
∣
∣
∣
∣
sup
m2∈N

inf
m3∈N

. . . Θ
mn∈N

(xm) . . .

. . .− sup
m2∈N

inf
m3∈N

. . . Θ
mn∈N

(
′r
m◦ξ((m),M)

)
∣
∣
∣
∣
<

1

2M
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for all m1,M ∈ N. Since furthermore, (xm)m∈N is an upper ZW description

of x∗, we conclude that for ǫ > 0 arbitrary, there exist l, k ∈ N such that for

m
′ := (l,m2, . . . ,mn) ∈ Nn,

x∗ + ǫ ≥ sup
m2∈N

inf
m3∈N

. . . Θ
mn∈N

(
′r
m

′◦ξ((m′),k)

)

− 1

2k

holds true. The mapping 〈·〉−1
2 : N → N2 is bijective. Hence, for all l, k ∈ N,

there exists m1 ∈ N such that 〈m1〉−1
2 = (̟1(m1), ̟2(m1)) = (l, k) holds true.

Consequently, there exists m1 ∈ N such that

x∗ + ǫ ≥ sup
m2∈N

inf
m3∈N

. . . Θ
mn∈N

(
rm
)

(12)

holds true. Joining (11) and (12), we conclude that

x∗ + ǫ ≥ inf
m1∈N

sup
m2∈N

sup
m3∈N

. . . Θ
mn∈N

(
rm
)
≥ x∗

is satisfied. Since ǫ > 0 was chosen arbitrarily, the claim follows.

Remark 9. From the definition of computable sequences of computable num-

bers, it is imminent that every computable sequence of rational numbers is also

a computable sequence of computable numbers. Hence, a converse to Lemma 1

is straightforward to prove, and we conclude that if a number x∗ ∈ R satisfies

x∗ ∈ Πn, there exists an n-th order upper ZW description for x∗. Likewise, if

a number y∗ ∈ R satisfies y∗ ∈ Σn, there exists an n-th order lower ZW de-

scription for y∗. Furthermore, the line of reasoning presented in the proof of

Lemma 1 applies analogously to n-th order lower ZW description of some num-

ber y∗ ∈ R. In summary, we arrive at the following: a number x∗ ∈ R satisfies

x∗ ∈ Πn if and only if there exists an n-th order upper ZW description for x∗,

while a number y∗ ∈ R satisfies y∗ ∈ Σn if and only if there exists an n-th order

lower ZW description for y∗.

The following lemma was stated in a slightly different form by

Zheng and Weihrauch. A close examination shows that the corresponding

proof is constructive and exclusively employs operations that can be computed

on a Turing machine. Hence, the derivation provided by Zheng and Weihrauch

is sufficient to prove the subsequent version of the lemma.
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Lemma 2 ([32, Lemma 3.2, p. 55]). Let (rm)
m∈N2 be a computable double se-

quence of rational numbers such that infm1∈N
supm2∈N

(rm) exists. There exists

a Turing machine which computes a mapping (rm)
m∈N2 7→ ( ′rm)m∈N such that

( ′rm)m∈N is a computable sequence of rational numbers and lim supm→∞( ′rm) =

infm1∈N supm2∈N(rm) is satisfied.

In Section 3, we introduced the totality set AΦ
T and its relation to the family

(D(ϕn))n∈N. As indicated, these sets will play a role in the context of oracle

computations. In the following, we will characterize AΦ
T and (D(ϕn))n∈N with

respect to the Kleene–Mostowski hierarchy.

Lemma 3. For all n ∈ N, we have D(ϕn) ∈ Σ0
1.

Proof. Define GΨ
n := {m ∈ N : Ψ(n,̟2(m), ̟1(m)) = 1}. Since Ψ is a total

recursive function, the set GΨ
n is recursive. Furthermore, incorporating the

definition of Ψ, we have

D(ϕn) = {j ∈ N : ∃k ∈ N : Ψ(n, j, k) = 1}

= {j ∈ N : ∃k ∈ N : 〈k, j〉2 ∈ GΨ
n }.

The claim then follows from Definition 10.

Lemma 4. The totality set AΦ
T satisfies AΦ

T ∈ Π0
2.

Proof. Again, the claim follows from the existence of a suitable recursive set,

which is induced by the runtime function Ψ. Define

GΨ :=
{
m ∈ N : Ψ

(
[∐3(m)]3, [∐3(m)]1, [∐3(m)]2

)
= 1
}
.

Since Ψ is a total recursive function, the set GΨ is recursive. Furthermore, by

Definition 5, we have

AΦ
T = {n ∈ N : ∀j ∈ N : ∃k ∈ N : Ψ(n, j, k) = 1}

= {n ∈ N : ∀j ∈ N : ∃k ∈ N : 〈j, k, n〉3 ∈ GΨ}.

The claim then follows from Definition 10.
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7. Computable Bandlimited Signals

Having introduced a framework for computable analysis, we are now

equipped to formalize the concept of computable bandlimited signals. Again,

for the sake of self-containedness, we repeat some of the definitions found in

[16].

Definition 12. We call a signal f elementary computable if there exists a nat-

ural number L and a sequence of computable numbers (ck)
L
k=−L that satisfy

f(t) =

L∑

k=−L

ck
sin(π(t − k))

π(t− k)
.

The building blocks of an elementary computable signal are sinc functions.

Hence, elementary computable signals are exactly those functions that can be

represented by a finite Shannon sampling series with computable coefficients

(ck)
L
k=−L. Note that every elementary computable signal f is a finite sum of

computable continuous functions and hence a computable continuous function.

As a consequence, for every t ∈ Rc the number f(t) is computable. Further, the

sum of finitely many elementary computable signals is elementary computable,

as well as the product of an elementary computable signal with a computable

number.

Definition 13. A signal in f ∈ Bp
π, p ∈ (1,∞)∩Rc, is called computable in Bp

π

if there exists a computable sequence of elementary computable signals (fm)m∈N

and a recursive function ξ : N → N such that for all M ∈ N we have

‖f − fm‖Bp
π
≤ 1

2M

for all m ≥ ξ(M). By CBp
π, p ∈ (1,∞) ∩ Rc, we denote the set of all signals in

Bp
π that are computable in Bp

π.

According to this definition we can approximate any signal f ∈ CBp
π,

p ∈ (1,∞) ∩ Rc, by an elementary computable signal, where we have an “effec-

tive”, i.e. computable control of the approximation error. For every prescribed

approximation error ǫ > 0, ǫ ∈ Rc, we can compute a number M ∈ N such that
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M ≥ − log2(ǫ) holds true. Hence, the approximation error ‖f − fm‖Bp
π

is less

than or equal to ǫ for all m ≥ ξ(M).

We finally give the definition of computability for bandlimited signals in Eπ.

Definition 14. We call a signal f ∈ Eπ a computable bandlimited signal if

the coefficients (an)n∈N of the Taylor series (3) form a computable sequence of

computable numbers. By CEπ we denote the set of all signals in Eπ that are

computable.

Note that a signal f ∈ CEπ is completely determined by the computable

sequence (an)n∈N of computable numbers according to the representation (3).

Hence, a program for (an)n∈N gives a complete description of f .

For f1, f2 ∈ CEπ and α1, α2 ∈ Cc, we have α1f1 + α2f2 ∈ CEπ, i.e., CEπ has

a linear structure.

Remark 10. We have CB1
π ( CB2

π ( CEπ, which shows that CEπ is the largest

of these three sets.

Remark 11. For f ∈ B2
π, it follows from the properties of the Fourier transform

f̂ that the family (an)n∈N of Taylor coefficients satisfies

an =
1

2π

∫ π

−π

f̂(ω)(iω)n dω

for all n ∈ N. If f furthermore satisfies f ∈ CB2
π, the Fourier transform f̂ is

a computable signal in L2[−π, π] and the family of coefficients (an)n∈N forms a

computable sequence of computable numbers.

Definition 15. Let f satisfy f ∈ Eπ. If there exists a computable dou-

ble sequence (pm)
m∈N2 of rational polynomials as well as a recursive function

ξ : N2 → N such that

∣
∣f(z)− pm1,m2(z)

∣
∣ <

1

2M

holds true for all z ∈ C,m1,m2,M ∈ N that satisfy |z| ≤ m2 and m1 ≥
ξ(M,m2), then f is referred to as Weierstrass effective. We denote WEπ the

set of Weierstrass effective π-bandlimited entire functions.
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Theorem 1. The sets CEπ and WEπ coincide.

Proof. We start by proving that f ∈ CEπ ⇒ f ∈ WEπ holds true for all f ∈ CEπ.

Let f ∈ CEπ satisfy (3), where (an)n∈N is a computable sequence of computable

numbers with standard description ((rn,m)n,m∈N, ξ). Without loss of generality,

assume that ξ is the identity function, i.e., (rn,m)n,m∈N and (an)n∈N satisfy

|an − rn,m| < 1

2m

for all n,m ∈ N. Since f ∈ CEπ holds true, there exists L ∈ N such that

n
√

|an| ≤ L

is satisfied for all n ∈ N. For K,m ∈ N, z ∈ C, define

fK,m(z) : = f(z)−
K∑

n=0

rn,m
n!

tn

=





K∑

n=0

an − rn,m
n!

tn



+





∞∑

n=K+1

an
n!

tn



 .

The function fK,m characterizes the error that arises when approximating

the signal f by a computable polynomial based on the standard description

((rn,m)n,m∈N, ξ) of (an)n∈N. We will prove the first part of the theorem by

deriving a computable upper bound on fK,m. Set an,m := an − rn,m for all

n,m ∈ N. We have

max
|z|≤J

∣
∣
∣fK,m(z)

∣
∣
∣ ≤





K∑

n=0

|an,m|
n!

Jn



+





∞∑

n=K+1

Ln

n!
Jn





≤





K∑

n=0

1/2m

n!
Jn



+





∞∑

n=K+1

Ln

n!
Jn



 (13)

≤ 1

2m
4J +

∞∑

n=K+1

(
LJ

(1/4)n

)n

= 22J−m +

∞∑

n=K+1

(
4LJ

n

)n

≤ 22J−m +

∞∑

n=K+1

(
4LJ

K + 1
︸ ︷︷ ︸

=:x(L,J)

)n

,
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where the bound on the first sum in (13) follows from the series expansion of

the function x 7→ ex and the bound on the second sum in (13) follows from the

inequality n! ≥ (1/4 · n)n, which in turn follows from Stirling’s approximation

for factorials. The remaining sum converges if x(L, J) is sufficiently close to 0.

In particular,

∞∑

n=K+1

xn = xK+1 1

1− x

holds true for all x ∈ [0, 1). Hence, consider K ∈ N such that K + 1 > 8LJ is

satisfied. Then, we have

max
|z|≤J

∣
∣
∣fK,m(z)

∣
∣
∣ ≤ 22J−m + 2−K .

For M,J ∈ N, z ∈ C, we define

N(M,J) : = 2J +M + 2,

K(M,J) : = max{8LJ,M + 2},

pM,J(z) : =

K(J,M)
∑

n=0

rn,N(J,M)

n!
zn.

Then, (pM,J)M,J∈N is a computable family of polynomials such that

∣
∣f(z)− pM,J(z)

∣
∣ <

1

2M

holds true for all M,J ∈ N, z ∈ C that satisfy |z| ≤ J . Hence, f satisfies

f ∈ WEπ.

It remains to show that f ∈ WEπ ⇒ f ∈ CEπ holds true for all f ∈ WEπ.

Since f is an entire function, there exists a unique sequence (an)n∈N of real

numbers such that (3) holds true. Hence, we can prove the second part of

the theorem by showing that (an)n∈N is indeed a computable sequence of com-

putable numbers, whenever f satisfies f ∈ WEπ. Observe that by Cauchy’s

integral formula, we have

an
n!

=
1

2πi

∮

|z|=1

f(z)

zn+1
dz.
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Assume the pair ((pm)
m∈N2), ξ) satisfies the requirements of Definition 15. Fur-

thermore, assume without loss of generality that ξ(m1,m2) = m1 holds true for

all m1,m2 ∈ N, i.e., (pm)
m∈N2 satisfies

∣
∣f(z)− pm1,m2(z)

∣
∣ <

1

2m1

for all m1,m2 ∈ N, z ∈ C that satisfy |z| ≤ m2. In the following, for m ∈ N,

consider the family (cmk )
K(m)
k=0 of coefficients of pm,1. That is, we have

pm,1(z) =

K(m)
∑

k=0

cmk · zk

for all z ∈ C,m ∈ N. Then, for m ∈ N, z ∈ C, we define

rn,m : =
n!

2πi

∮

|z|=1

pm,1(z)

zn+1
dz = cmn .

We now show that the sequence (rn,m)m∈N converges effectively towards an for

all n ∈ N, with |an − rn,m| ≤ n! · 1/2m satisfied for all m ∈ N. We have

|an − rn,m| ≤ n!

∫ 1/2

−1/2

∣
∣
∣
∣
∣

f
(
ei2πφ

)
− pm,1

(
ei2πφ

)

ei2πφ(n+1)

∣
∣
∣
∣
∣
dφ

< n!

∫ 1/2

−1/2

1/2m dφ

=
n!

2m
,

which proves the assertion made above. Hence, (an)n∈N is a computable se-

quence of computable numbers, making f and element of CEπ.

Corollary 1. If f satisfies f ∈ CEπ, then f is Markov computable.

In other words, if f satisfies f ∈ CEπ, there exists a Turing machine TMf

that computes the mapping x 7→ f(x) for x ∈ Rc. Hence, for all x ∈ Rc, we

have f(x) ∈ Rc.

While CEπ = WEπ holds true in set-theoretic terms, both CEπ and WEπ have

and individual structure in the sense of computability, which we will discuss in

the following.
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From the proof of Theorem 1, we conclude that there exists a Turing machine

TM which, given any description ((ps)s∈N2 , ξ′) ⇒ f , computes a mapping

((ps)s∈N2 , ξ′) 7→ (an)n∈N,

such that (an)n∈N ⇒ f holds true.

The remainder of this section is dedicated to proving that the converse is not

satisfied. That is, there does not exist a Turing machine that transforms any

description (an)n∈N ⇒ f into a corresponding description ((ps)s∈N2 , ξ′) ⇒ f .

Note that since f is bandlimited, there exists a number L ∈ N such that

n
√

|an| ≤ L

holds true for all n ∈ N. However, no such L can be determined algorithmically

from the sequence (an)n∈N. This observation will play a crucial role in the

subsequent lemma.

Lemma 5. There exists a sequence (fm)m∈N of signals in Eπ that simultaneously

satisfies the following:

(a) For all m ∈ N, we have fm ∈ CEπ (and, consequently, fm ∈ WEπ as well).

(b) There exists a computable double sequence (an,m)n,m∈N of computable

numbers such that (an,m)n∈N ⇒ fm in the sense of Definition 14 holds

true for all m ∈ N.

(c) There does not exist a pair ((pm,s)m∈N,s∈N2 , ξ′(m, ·, ·)) such that

((pm,s)s∈N2 , ξ′(m, ·, ·)) ⇒ fm in the sense of Definition 15 holds true

for all m ∈ N.

Proof. Let A ⊂ N a be a non-recursive set such that there exists g ∈ ∗C1 that

satisfies D(g) = A, i.e., A is recursively enumerable. Fix any n ∈ N such that

D(ϕn) = A holds true and consider the recursive function h : N2 → N that

satisfies

h(m, k) =







min{l : Φ(n,m, l) = 1}, if Φ(n,m, k) = 1,

k, otherwise.
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Using this function, define the computable triple sequence (rm)
m∈N3 of rational

numbers by

rm :=







2−h(m2,m3), if 0 ≤ m1 ≤ 2h(m2,m3) − 1,

0, otherwise,

for all m ∈ N3. Next, we introduce the sequence (am)
m∈N2 of real numbers

defined by

am1,m2
:=







2−k, if supm3∈N
h(m2,m3) = k

and 0 ≤ m1 ≤ 2k − 1,

0, otherwise,

which we will show to be the effective limit of (rm)
m∈N3 in m3 for all m1,m2 ∈

N. In other words, we want to show that (am)
m∈N2 is a computable double

sequence of computable numbers such that for some recursive function ξ : N3 →
N, the pair ((rm)

m∈N3 , ξ) is a standard description of (am)
m∈N2 . The fact that

lim
m3→∞

rm1,m2,m3 = am1,m2

holds true for all m3 ∈ N follows directly from the definitions of (rm)
m∈N3 and

(am)
m∈N2 . It thus only remains to show that the convergence is effective for all

m1,m2 ∈ N. In particular, we want to show that the function ξ : (m1,m2,M) 7→
M + 1 satisfies

∣
∣
∣
∣

(

lim
m3→∞

rm1,m2,m3

)

− rm1,m2,m3

∣
∣
∣
∣
<

1

2M
(14)

for all m1,m2,m3 ∈ N that satisfy m3 ≥ ξ(m1,m2,M). Consider the following

case distinction:

1. Fix m1,m2 ∈ N and assume that there exists k ∈ N such that

supm3∈N h(m2,m3) = k and 2k − 1 < m1 hold true. Then, rm1,m2,m3 = 0

holds true for all m3 ∈ N. Hence, (14) is satisfied trivially.

2. Fix m1,m2 ∈ N and assume that there exists k ∈ N such that

supm3∈N
h(m2,m3) = k and 2k−1 ≥ m1 hold true. Then, for all m3 ∈ N+
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that satisfy m3 < log2(m1 + 1), we have

∣
∣am1,m2 − rm1,m2,m3

∣
∣ =

∣
∣0− 2−k

∣
∣ ≤ 2−(m3−1).

For all m3 ∈ N+ that satisfy log2(m1 + 1) ≤ m3 ≤ k, we have

∣
∣am1,m2 − rm1,m2,m3

∣
∣ =

∣
∣2−m3 − 2−k

∣
∣ < 2−(m3−1).

For all m3 ∈ N+ that satisfy k < m3, we have

∣
∣am1,m2 − rm1,m2,m3

∣
∣ =

∣
∣2−k − 2−k

∣
∣ < 2−(m3−1).

Hence, (14) is satisfied for all m3 ∈ N+.

3. Fix m1,m2 ∈ N and assume that there does not exist k ∈ N such that

supm3∈N h(m2,m3) = k holds true. Then, for all m3 ∈ N+ that satisfy

m3 < log2(m1 + 1), we have

∣
∣am1,m2 − rm1,m2,m3

∣
∣ =

∣
∣0− 0

∣
∣ < 2−(m3−1).

For all m3 ∈ N+ that satisfy log2(m1 + 1) ≤ m3, we have

∣
∣am1,m2 − rm1,m2,m3

∣
∣ =

∣
∣2−m3 − 0

∣
∣ < 2−(m3−1).

Hence, (14) is satisfied for all m3 ∈ N+.

We conclude that (14) is satisfied for all m1,m2,m3 ∈ N that satisfy m3 ≥ M =

ξ(m1,m2,M). Hence, the pair ((rm)
m∈N3 , ξ) is a standard description of the

computable double sequence (am)
m∈N2 of computable numbers. Consider now

the sequence ( ′am)
m∈N2 defined by

′am1,m2
:= m1! · am1,m2

for all m1,m2 ∈ N. Since (am)
m∈N2 is a computable double sequence of com-

putable numbers, so is ( ′am)
m∈N2 . Hence, the sequence (fm)m∈N defined by

fm(z) :=

∞∑

n=0

′an,m
n!

zn =

∞∑

n=0

an,mzn, z ∈ C,
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is a computable sequence of entire functions in the sense of Definition 14, i.e.,

( ′am)
m∈N2 ⇒ (fm)m∈N. Furthermore, we have B(fm) = 0 for all m ∈ N. Thus,

(fm)m∈N satisfies fm ∈ CEπ for all m ∈ N. Defining supl∈N h(m, l) =: k(m), we

have

fm(z) =
2k(m)−1∑

n=0

1

2k(m)
zn, z ∈ C (15)

for all m ∈ N that satisfy m ∈ A, while for all m ∈ N that satisfy m /∈ A, we

have

fm(z) = 0, z ∈ C.

In particular, as follows from (15) by direct calculation, we obtain that

fm(1) = 1A(m) (16)

holds true for all m ∈ N. We now show that (fm)m∈N is not a com-

putable sequence in the sense of Definition 15. That is, there does not exist

a pair ((pm,s)m∈N,s∈N2 , ξ′(m, ·, ·)) consisting of a computable triple sequence

(pm,s)m∈N,s∈N2 of rational polynomials and a recursive function ξ : N3 → N such

that ((pm,s)m∈N,s∈N2, ξ′(m, ·, ·)) ⇒ (fm)m∈N holds true. We show this claim by

contradiction: assume there exists a pair ((pm,s)m∈N,s∈N2, ξ′(m, ·, ·)) such that

((pm,s)m∈N,s∈N2 , ξ′(m, ·, ·)) ⇒ (fm)m∈N holds true. Since (pm,s)m∈N,s∈N2 is a

computable sequence of polynomials, there exists a Turing machine TM that

computes the mapping

m 7→ pm,ξ′(m,1/2,1),1(1).

Then, for all m ∈ N, this Turing machine satisfies

∣
∣fm(1)− TM(m)

∣
∣ <

1

2
. (17)

Since TM furthermore satisfies TM(m) ∈ Q for all m ∈ N, there exists a recur-

sive function g : N → {0, 1} that satisfies

g(m) =







1, if 1/2 < TM(m),

0, otherwise.
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Incorporating (16) and (17), we obtain g = 1A, which, since g is a recursive

function, is a contradiction to the non-recursivity of A.

Theorem 2. There does not exist a Turing machine that computes a mapping

(an)n∈N 7→ ((pm)
m∈N2 , ξ), such that ((pm)

m∈N2 , ξ) ⇒ f holds true for every

signal f ∈ CEπ and every description (an)n∈N ⇒ f .

Proof. The claim is a direct consequence of Lemma 5 by contradiction: as-

sume there exists a Turing machine TM that computes a mapping (an)n∈N 7→
((pm)

m∈N2 , ξ) for (an)n∈N ⇒ f ∈ CEπ, such that ((pm)
m∈N2 , ξ) ⇒ f holds true.

Consider any pair ((fm)m∈N, (an,m)n,m∈N) consisting of a sequence (fm)m∈N of

signals in Eπ and a computable double sequence (an,m)n,m∈N of computable

numbers such that fm ⇒ (an,m)n∈N holds true for all m ∈ N. Then, setting

((pm,s)s∈N2 , ξ′(m, ·, ·)) := TM((an,m)n∈N)

for all m ∈ N yields a pair ((pm,s)m∈N,s∈N2 , ξ′(m, ·, ·)) such that

((pm,s)s∈N2 , ξ′(m, ·, ·)) ⇒ fm holds true for all m ∈ N. Hence, if the Tur-

ing machine TM existed, any sequence (fm)m∈N of signals in Eπ that satisfies

conditions (a) and (b) of Lemma 5 would necessarily violate condition (c).

In Section 8 and Section 9, we will analyze whether B(f) can be computed

for f ∈ CEπ, or, if that is not possible, whether we can at least algorithmically

determine upper and lower bounds for B(f). In Section 10, we will characterize

the bandwidth of computable bandlimited signals with respect to the Zheng-

Weihrauch hierarchy of real numbers. Furthermore, in Section 11, we will relate

the bandwidth of computable bandlimited signals with specific properties to a

number of common computational oracles.

8. Computability of Upper and Lower Bounds

Let f ∈ CEπ. Then we have B(f) ≤ π. As indicated in the introduction,

it was posed as an open question in [16] whether it is possible to compute

meaningful bounds for the number B(f), given that f satisfies f ∈ CEπ. Hence,

we study the following questions:
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1. Let TMBW be a Turing machine with TMBW : CEπ → R+0
c and

TMBW(f) ≥ B(f) for all f ∈ CEπ. What is the output behavior of this

Turing machine?

2. Let TMBW be a Turing machine with TMBW
: CEπ → R+0

c and

TMBW(f) ≤ B(f) for all f ∈ CEπ. What is the output behavior of this

Turing machine?

Question 1 is concerned with finding Turing machines that compute an upper

bound for the actual bandwidth of the input signal. Similarly, Question 2 is

concerned with finding Turing machines that compute a lower bound for the

actual bandwidth of the input signal.

In [17] we have constructed a real-valued signal f1 ∈ CB1
π such that B(f1) 6∈

Rc, i.e. the actual bandwidth B(f1) is not computable. However, for some

practical applications, it might be sufficient to know a non-trivial lower or upper

bound for the number B(f1). In light of this, Questions 1 and 2 are of high

importance. We show in the following that Turing machines that satisfy the

above requirements and yield non-trivial bounds on the number B(f) for at

least some feasible signals f ∈ CEπ cannot exist, proving the corresponding

conjecture from [16] correct.

Theorem 3. Let TMBW be an arbitrary Turing machine such that for all f ∈
CEπ and all (an)n∈N ⇒ f , TMBW computes a mapping

(an)n∈N 7→ ((rn)n∈N, ξ) ⇒ TMBW(f) ∈ Rc

that satisfies TMBW(f) ≥ B(f) for all f ∈ CEπ. Then we have TMBW(f) = π

for all f ∈ CEπ.

Theorem 3 provides an answer to Question 1. Any Turing machine that

computes an upper bound of B(f) for all signals f ∈ CEπ is necessarily trivial

in the sense that it returns the value π for all signals f ∈ CEπ.

Proof of Theorem 3. We do a proof by contradiction and assume that there

exists a Turing machine TMBW with properties as in the theorem and a signal
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f ∈ CEπ such that TMBW(f) < π. Since TMBW(f) ≥ B(f), we also have

B(f) < π. For λ ∈ [0, 1] ∩ Rc, let

fλ(z) = (1− λ)f(z) + λ
sin(πz)

πz
.

We have B(fλ) = π for all λ ∈ (0, 1] ∩ Rc as well as fλ ∈ CEπ for all λ ∈
[0, 1] ∩ Rc, the latter being due to the linear structure of CEπ. Furthermore,

observe that the mapping λ 7→ fλ(z) is computable, i.e., there exists a Turing

machine which, for all λ ∈ [0, 1] ∩ Rc and all ((r′n)n∈N, ξ
′) ⇒ λ computes a

mapping ((r′n)n∈N, ξ
′) 7→ (an)n∈N, such that (an)n∈N ⇒ fλ is satisfied. Hence,

by concatenation, we obtain a computable mapping

((r′n)n∈N, ξ
′) 7→ (an)n∈N 7→ ((rn)n∈N, ξ),

where ((rn)n∈N, ξ) is a standard description of TMBW(f) ∈ Rc, such that

lim
n→∞

r′n = 0 ⇔ lim
n→∞

rn < π

holds true. Since π satisfies π ∈ Rc, there exists a non-negative, monotonically

non-decreasing, computable sequence (sn)n∈N of rational numbers that satisfies

limn→∞ sn = π. For all n ∈ N define

rn := min
{
rξ(m) + 1/2m : m ≤ n

}
− sn.

Then, (rn)n∈N is a monotonically non-increasing, computable sequence of ratio-

nal numbers that satisfies

lim
n→∞

rn < π ⇔ ∃n ∈ N : rn < 0.

Likewise, for n ∈ N define

rn := max
{
r′ξ′(m) − 1/2m : m ≤ n

}
.

Then, (rn)n∈N is a monotonically non-decreasing, computable sequence of ra-

tional numbers that satisfies

lim
n→∞

r′n = 0 ⇔ ∀n ∈ N : rn ≤ 0.
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In summary, we observe that both

λ = 0 ⇔ ∃n ∈ N : rn < 0,

λ > 0 ⇔ ∃n ∈ N : rn > 0

are satisfied. Define

n0 := min{n ∈ N : rn < 0 ∨ rn > 0}.

Then, the mapping ((r′n)n∈N, ξ
′) 7→ n0 is recursive and the Turing machine

TM0(((r
′
n)n∈N, ξ

′)) :=







1 if rn0
> 0

0 if rn0 < 0

is well-defined. But TM0 satisfies TM0(((r
′
n)n∈N, ξ

′)) = 0 if and only if

((r′n)n∈N, ξ
′) ⇒ 0 holds true, which is a contradiction to [21, Proposition 0,

p. 14].

Theorem 4. Let TM
BW

be an arbitrary Turing machine such that for all f ∈
CEπ and all (an)n∈N ⇒ f , TMBW computes a mapping

(an)n∈N 7→ ((rn)n∈N, ξ) ⇒ TMBW(f) ∈ Rc

that satisfies TMBW(f) ≤ B(f) for all f ∈ CEπ. Then we have TMBW(f) = 0

for all f ∈ CEπ.

Since zero is the trivial lower bound for B(f), Theorem 4 shows that for

CEπ, it is not possible to construct a Turing machine that computes a non-

trivial lower bound for B(f) for all f ∈ CEπ. Hence, Theorem 4 provides an

answer to Question 2

Proof of Theorem 4. Assume that there exists a Turing machine TMBW with

properties as in the theorem and a signal f ∈ CEπ such that TMBW(f) > 0.

Since TMBW(f) ≤ B(f), we also have B(f) > 0. Let

f(z) =

∞∑

n=0

an
n!

zn, z ∈ C,
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be the power series representation of f . Then the sequence (an)n∈N is a com-

putable sequence of computable numbers, and we have

lim sup
n→∞

n
√

|an| ≤ π.

Let

an(m) =







an, 0 ≤ n ≤ m,

0, n > m.

The sequence (an(m))n∈N,m∈N is a computable double sequence of computable

numbers.

Let A ( N be a recursively enumerable non-recursive set, and φA : N → A a

recursive enumeration of the elements of A, where φA is a one-to-one function,

i.e., for every element m ∈ A there exists exactly one k̂ ∈ N with φA(k̂) = m.

Let

an(m, k) =







an(k̂), if m ∈ {φA(1), . . . , φA(k)},

an(k), otherwise.

Then (an(m, k))n∈N,m∈N,k∈N is a computable triple sequence of computable

numbers. For n,m ∈ N, we will analyze the behavior of the sequence

(an(m, k))k∈N next. For m ∈ A, we have

lim
k→∞

an(m, k) = an(k̂),

where φA(k̂) = m. For m 6∈ A, we have

lim
k→∞

an(m, k) = an.

For n ∈ N, we set

ân(m) =







an(k̂), if m ∈ A,

an, if m 6∈ A,

where φA(k̂) = m.
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Next, we show that there exists a recursive function ξ : N3 → N such that

for all M ∈ N, n ∈ N, and m ∈ N, we have

|ân(m)− an(m, k)| ≤ 2−M

for all k ≥ ξ(M,n,m).

Let n ∈ N and m 6∈ A be arbitrary but fixed. Then, for k ≥ n, we have

an(m, k) = an(k) = an = ân(m).

It follows that for M ∈ N we have

|ân(m)− an(m, k)| = 0 ≤ 2−M ,

for all k ≥ ξ(M,m, n) = n. Let n ∈ N and m ∈ A be arbitrary but fixed. Then,

for k ≥ n, we have: If m ∈ {φA(1), . . . , φA(k)}, i.e., if m = φA(k̂) for k̂ ≤ k,

then we have

an(m, k) = an(k̂) = ân(m),

and it follows that

|ân(m)− an(m, k)| = 0 ≤ 2−M

for all M ∈ N. If m 6∈ {φA(1), . . . , φA(k)}, i.e., if k̂ > k, then we have

an(m, k) = an(k) = an = an(k̂) = ân(m),

where we used that k̂ > k ≥ n in the second to last equality. Hence, for M ∈ N

we have

|ân(m)− an(m, k)| = 0 ≤ 2−M

for all k ≥ ξ(M,m, n) = n.

Combining all partial results, we see that, for all M ∈ N, m ∈ N, n ∈ N, and

k ≥ ξ(M,m, n) we have

|ân(m)− an(m, k)| ≤ 2−M .
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This shows that (ân(m))n∈N,m∈N is a computable double sequence of computable

numbers.

Let

gm(z) =

∞∑

n=0

ân(m)

n!
zn, z ∈ C.

Since

lim sup
n→∞

n
√

|ân(m)| ≤ lim sup
n→∞

n
√

|an| ≤ π,

we see that (gm)m∈N is a computable sequence of computable signals in CEπ.

We now construct a Turing machine TM that consists of two Tur-

ing machines. The fist Turing machine, which we denote by TM1 : N →
{TM stops, TM runs forever} stops for an input m ∈ N if and only if m ∈ A.

The second Turing machine TM2 : N → {TM stops, TM runs forever} works as

follows. For an input m ∈ N, it first computes gm ∈ CEπ. Then it computes

TMBW(gm). We use the fact that there exists a Turing machine TM> that,

given an input λ ∈ Rc, stops if and only if λ > 0 [21, Proposition 0, p. 14]. Our

Turing machine TM2 now starts TM> with TMBW(gm) as an input. Hence,

TM2 will stop if and only if TMBW(gm) > 0. For m ∈ A, gm is a polynomial,

for which we have B(gm) = 0, according to (4). Hence, for m ∈ A, we have

TMBW(gm) = 0. Consequently, TM2 stops if and only if m 6∈ A. Thus, TM,

which runs TM1 and TM2 in parallel, is a Turing machine that, for any input

m ∈ N, can decide whether m ∈ A or m 6∈ A. This implies that the set A is

recursive, which is a contradiction. Hence, TMBW cannot exist.

9. Semi-Decidability

On a related note, one may ask whether, for a given value σ ∈ (0, π) ∩
Rc, it is possible to algorithmically detect if a signal f ∈ CEπ satisfies the

bandwidth condition B(f) > σ. Ideally, we would like to have a Turing machine

TMσ : CEπ → {true, false} that satisfies TMσ(f) = true if and only if B(f) > σ

holds true. However, such a Turing machine cannot exist: relabeling the output-

values of TMσ by "σ" for "true" and "0" for "false", we immediately obtain a
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Turing machine that computes a non-trivial lower bound on B(f) for some

f ∈ CEπ, thereby contradicting Theorem 4.

As discussed in the introduction, another open question was posed in [16],

concerning a weakening of the above problem: Does there exist an algorithm

TMBW>σ that, upon being presented with an input f ∈ CEπ, halts its compu-

tation in a finite number of steps if B(f) > σ holds true, and computes forever

otherwise?

To answer this question we introduce the concept of semi-decidability. We

call a set M ⊂ CEπ semi-decidable if there exists a Turing machine TM : CEπ →
{TM stops, TM runs forever} that, given an input f ∈ CEπ, stops if and only if

f ∈ M. Consequently, the question about the existence of TMBW>σ for some

value σ ∈ (0, π) is equivalent to the question about the semi-decidability of the

set
{
f ∈ CEπ : B(f) > σ

}
.

In [17], this question was studied for signals in B1
π, and it was proved

that the set {f ∈ B1
π : B(f) > σ} is semi-decidable. Next, we show that

{
f ∈ CEπ : B(f) > σ

}
is not semi-decidable.

Theorem 5. For all σ ∈ (0, π) ∩ Rc, the set

{
f ∈ CEπ : B(f) > σ

}
(18)

is not semi-decidable.

Proof. We do a proof by contradiction and assume that there exists σ ∈ (0, π)∩
Rc and a Turing machine TMBW>σ that accepts exactly the set CE>

π (σ). Let

f∗ ∈ CEπ with B(f∗) > σ be arbitrary. Analogous to the proof of Theorem 4,

we construct a computable sequence (gm)m∈N+ of functions in CEπ that satisfies

B(gm) =







B(f∗), if m ∈ N+ \ A,

0, otherwise,

for some recursively enumerable, non-recursive set A ( N+. Then, the Turing

machine TMBW>σ provides an algorithm that semi-decides the set N+\A, which

contradicts the assumption.
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In the broadest sense, the Theorems 3, 4 and 5 yield a fundamental limit

to the capabilities of computer-aided design. Algorithms for automated system

design commonly feature an exit flag functionality, that, upon termination of

the algorithm, indicates whether the computation was successful or not.

In our context, a hypothetical computer-aided design tool might want to

sample a signal with a given sampling rate σ/π. It would return the sampled

signal together with a boolean exit flag that signals whether we had a problem-

atic input signal, having a bandwidth that exceeds σ. However, as Theorem 5

shows, such an exit flag functionality cannot be implemented for signals in CEπ.

10. Structural Properties of the Bandwidth of Computable Signals

The bandwidth of signals in CB1
π is not always a computable number, as was

shown in [16]. Hence, the question arises whether it is possible to characterize

the degree of uncomputability of the elements of B[CBp
π] for 1 ≤ p ≤ +∞ and,

more generally, B[CEπ]. That is, we want to classify the elements of B[CBp
π]

for 1 ≤ p ≤ +∞ and B[CEπ] with respect to the arithmetical hierarchy of real

numbers.

The majority of mathematical models in science and engineering are, in

the final analysis, supposed to yield quantitative results. Despite not having

received much attention in the past, a classification of such models regarding

their arithmetic complexity is highly desirable. Not only does it yield essential

insights concerning the mathematical structure of the model itself, but also

answers whether, given a certain type of computation machine, we can expect

the model to produce meaningful quantitative results in the first place. To

the best of our knowledge, the present work is the first one to yield such a

characterization for a problem from engineering.

As mentioned above, the bandwidth of signals in CB1
π is generally not a

computable number. The proof presented in [16] relies on the construction of a

signal f ∈ CB1
π which exhibits this property. Implicitly, the following assertion

was proven as well (c.f. [16, Theorem 2, p. 7]):
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Lemma 6. Let (rm)m∈N be a bounded, monotonically non-decreasing, com-

putable sequence of positive rational numbers. Then, there exists a signal

f ∈ CB1
σ that satisfies

σ := B(f) = lim
m→∞

rm. (19)

Proof. Consider the indicator function 1[−1/2,1/2] : R 7→ {0, 1} of the real interval

[−1/2, 1/2] in the frequency domain and set f̂a := 1[−1/2,1/2]. Then, we have

fa(t) =
sin
(
t/2
)

πt
.

Consider furthermore the convolution f̂b := f̂a ∗ f̂a of f̂a with itself. We have

f̂b(ω) =







1− |ω|, if |ω| ≤ 1,

0, otherwise,

fb(t) =

(

sin
(
t/2
)

πt

)2

.

Hence, fb satisfies fb(t) ≥ 0 for all t ∈ R and we have

‖fb‖L1 =

∫ +∞

−∞

|fb(t)| dt =
∫ +∞

−∞

fb(t) dt = f̂b(0) = 1.

We conclude that fb satisfies fb ∈ B1
1. It can be shown that fb is also com-

putable in B1
1 [16, Appendix E, p. 16], i.e., fb ∈ CB1

1. We will now consider

signals f c
m that emerge from fb by shortening and shifting in the frequency

domain. For m ∈ N, define

f̂ c
m(ω) : = f̂b

(

2

rm+1 − rm

(

ω − rm+1 + rm
2

))

,

f c
m(t) = ei

rm+1+rm

2 t

(

rm+1 − rm
2

fb

(
(rm+1 − rm)t

2

))

,

whenever rm < rm+1 holds true. If rm = rm+1 holds true instead, set f̂ c
m =

f c
m = 0 (here, 0 refers to the trivial signal in L1). We observe that f c

m satisfies

‖f c
m‖L1 = ‖fb

m‖L1 = 1
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for all m ∈ N that satisfy rm < rm+1 and f̂ c
m satisfies

esssupp f̂ c
m = [rm, rm+1]

for all m ∈ N that satisfy rm < rm+1. Hence, since rm is a rational number for

all m ∈ N, we have f c
m ∈ CB1

rm+1 and B(f c
m) = rm+1 for all m ∈ N that satisfy

rm < rm+1. We now define

fk(t) : =

k∑

m=1

1

m2
· f c

m(t),

f(t) : = lim
k→∞

fk(t),

and, in the following, show that f is indeed a signal f ∈ CB1
σ that satisfies (19).

Define M := {m ∈ N : rm < rm+1}. First, observe that

‖f‖L1 ≤
∞∑

m=1

∥
∥
∥
∥

1

m2
· f c

m

∥
∥
∥
∥
L1

=
∑

m∈M

1

m2
≤ π2

6

is satisfied. Since f̂ c
m(ω) ≥ 0 holds true for all ω ∈ R, we have

B(f) = sup
⋃

m∈M

esssupp f̂ c
m

= sup
⋃

m∈M

[rm, rm+1]

= lim
m→∞

rm+1

It remains to show that f is computable in CB1
σ. Since f c

m is computable in

CB1
σ for all m ∈ N, so is fk for all k ∈ N. Hence, it is sufficient to prove that fk

converges effectively towards f for k → ∞. We have

‖f − fk‖L1 ≤
∞∑

m=k+1

1

m2
· ‖f c

m‖L1

≤
∞∑

m=k+1

1

m2

=
π2

6
−

k∑

m=1

1

m2
,

which is a computable sequence of computable numbers in k that converges

monotonically decreasingly towards 0. Hence, the convergence of fk towards f

is effective and we have f ∈ CB1
σ with f satisfying (19).
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For the full characterization of B[CBp
π] for 1 ≤ p ≤ +∞ we first need another

lemma. Again, the statement was proven in a related form in [16, Theorem 5,

p. 10]: for all σ ∈ (0, π) ∩ Rc and all 1 ≤ p ≤ +∞, the set CBp
π \ CBp

σ is

semi-decidable with respect to CBp
π. That is, for all σ ∈ (0, π) ∩ Rc and all

1 ≤ p ≤ +∞, there exists a Turing machine TM that computes a partial

mapping f 7→ m ∈ N, where D(TM) equals CBp
π \ CBp

σ. Such a Turing machine

exists for all σ ∈ (0, π) ∩ Rc and all 1 ≤ p ≤ +∞, and takes a description of

f ∈ CBp
π. In order to establish the hierarchical characterization of B[CBp

π], we

require the analogous statement for input σ ∈ (0, π) ∩ Rc instead of f ∈ CBp
π.

That is, we want to show that for all f ∈ CBp
π and all 1 ≤ p ≤ +∞, there exists

a Turing machine that semi-decides the set {σ ∈ (0, π) ∩ Rc : σ < B(f)} for

input σ ∈ (0, π) ∩Rc.

Lemma 7. For all f ∈ CBp
π and all 1 ≤ p ≤ +∞, the set {σ ∈ (0, π)∩Rc : σ <

B(f)} is semi-decidable with respect to the set (0, π) ∩ Rc.

Proof. If f satisfies f ∈ CBp
π for some 1 < p ≤ +∞, then there exists a signal

f ′ ∈ CB1
π that satisfies B(f) = B(f ′) [16, Proof of Theorem 5, p. 10]. Hence,

without loss of generality, we can assume that f ∈ CB1
π holds true. Since f

satisfies f ∈ CB1
π, the Fourier transform f̂ of f is Turing computable on the

interval (−π, π]. In particular, this implies the existence of a Turing machine

TM that computes a mapping

σ 7→ ((rm)m∈N, ξ)

for σ ∈ (0, π) ∩Rc, where ((rm)m∈N, ξ) is a standard description of the number

x(σ) := max
{
f̂(ω) : ω ∈ [−π,−σ) ∪ (σ, π]

}
∈ Rc.

Then, x(σ) satisfies x(σ) > 0 if and only if σ < B(f) holds true. Consider the

computable sequence ( ′rm)m∈N of rational numbers that satisfies

′rm := rm − 2−ξ(m).

We have limm→∞
′rm = x(σ) as well as ′rm ≤ x(σ) for all m ∈ N. Hence, there

exists an m ∈ N such that ′rm > 0 holds true if and only if σ satisfies σ < B(f).
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Finally, we conclude the existence a Turing machine TM′ that computes the

mapping

σ 7→ min{m ∈ N : ′rm > 0}

for input σ ∈ (0, π) ∩ Rc. The Turing machine TM′ then satisfies D(TM′) =

{σ ∈ (0, π) ∩ Rc : σ < B(f)}, which is the required property.

We will now use the above results to prove the full characterization of B[CBp
π]

for 1 ≤ p ≤ +∞ with respect to the arithmetical hierarchy of real numbers.

Theorem 6.

1. If f satisfies f ∈ CBp
π for 1 ≤ p ≤ +∞, then B(f) satisfies B(f) ∈ Σ1.

2. If x satisfies x ∈ Σ1 ∩ [0, π] then there exists f ∈ CB1
π such that B(f) = x

holds true.

Hence, the set B[CBp
π] coincides with the set Σ1 ∩ [0, π] for all 1 ≤ p ≤ +∞.

Proof.

1. From Lemma 7, we know that there exists a Turing machine TM that

computes a mapping σ 7→ m ∈ N for input σ ∈ (0, π) ∩Rc, such that

D(TM) = {σ ∈ (0, π) ∩ Rc : σ < B(f)}

holds true. In the following, we consider for all m ∈ N3 the rational

number

q(m) := (−1)m3
m1

m2
.

Since Q is a subset of Rc, Lemma 7 implies the existence of a recursive

function g′′ : N3 → N, such that

D(g′′) ∩
{

m ∈ N3 : q(m) ∈ (0, π)
}

=
{

m ∈ N3 : q(m) ∈ D(TM)
}
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holds true. Since both 0 and π are computable numbers, the set (0, π)∩Q

is recursive in the following sense: there exists a total recursive mapping

g′ : N → N such that

q(∐3g
′(n)) ∈ (0, π)

holds true for all n ∈ N and for all σ ∈ (0, π) ∩ Q, there exists an n ∈ N

such that

q(∐3g
′(n)) = σ

holds true. Define g(n) := g′′(∐3g
′(n)) for all n ∈ N. Then, g is a recursive

function that satisfies

D(g) = {n ∈ N : q(∐3g
′(n)) ∈ (0, B(f))},

g[N] = (0, B(f)) ∩Q.

We have sup(0, B(f)) ∩ Q = sup{q ∈ Q : q < B(f)}, where {q ∈ Q : q <

B(f)} is the Dedekind cut of B(f). Hence, g satisfies sup g[N] = B(f).

Now consider k ∈ N such that g = ϕk and define the set

Q(l) :=
{

q(∐3g
′(̟1(m))) : m ∈ {1, . . . , l},

Ψ(k ◦ ∐2(m)) = 1
}

.

Then, we have Q(l) ⊆ Q(l + 1) for all l ∈ N as well as

∞⋃

l=1

Q(l) = g[N] = (0, B(f)) ∩Q,

and the monotonically non-decreasing, computable sequence (rm)m∈N of

rational numbers, defined by

rm :=







maxQ(m), if Q(m) 6= ∅,

0, otherwise,

for all m ∈ N, satisfies supm∈N
rm = B(f).
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2. If x satisfies x ∈ Σ1, then, per definition, there exists a computable se-

quence ( ′rm)m∈N of rational numbers that satisfies

sup
m∈N

( ′rm) = x.

Now, for all m ∈ N, define

rm := max
(
{rk : k ≤ m} ∪ {0}

)
.

Then, (rm)m∈N is a non-negative, computable sequence of rational num-

bers that converges monotonically non-decreasingly towards x. Hence, the

claim follows from Lemma 6.

As Theorem 6 shows, the computability properties of B[CBp
π] do (for p ≥ 1)

not depend on the actual value of p. In other words, the computability behavior

of signals in CB∞
π is not getting any more benevolent if the requirements on

the signal decay for t → ∞ in the time domain are strengthened. However,

a transition between hierarchical levels does occur when the class of allowed

signals is expanded from CB∞
π to CEπ, as we will see in the following.

Theorem 7.

1. If f satisfies f ∈ CEπ, then B(f) satisfies B(f) ∈ Π2.

2. If x satisfies x ∈ Π2 ∩ [0, π] then there exists f ∈ CEπ such that B(f) = x

holds true.

Hence, the set B[CEπ] coincides with the set Π2 ∩ [0, π].

Proof.

1. By (4), there exists a computable sequence (am)m∈N of computable num-

bers such that B(f) = lim supm→∞
m
√

|am| holds true. Define bm :=

m
√

|am| for all n ∈ N. Then, (bm)m∈N is a computable sequence of com-

putable numbers and

B(f) = lim sup
m→∞

(bm)
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holds true. In the following, we employ a technique applied by

Zheng and Weihrauch. By definition, we have

lim sup
m→∞

(bm)

= lim
m1→∞

(
sup

{
bm2

: m2 ∈ N,m1 ≤ m2

})

= lim
m1→∞

(
sup

{
bm1+m2

: m2 ∈ N}
)

Observe that
{
bm1+1+m2

: m2 ∈ N} ⊆
{
bm1+m2

: m2 ∈ N} is satisfied

for all m1 ∈ N, and hence sup
{
bm1+m2

: m2 ∈ N} is monotonically non-

increasing in m2. Thus,

lim sup
m→∞

(bm)

= lim
m1→∞

(
sup

{
bm1+m2

: m2 ∈ N}
)

= inf
m1∈N

(
sup

{
bm1+m2

: m2 ∈ N}
)

= inf
m1∈N

sup
m2∈N

(
bm1+m2

)

holds true. For all m1,m2 ∈ N, define ′bm1,m2
:= bm1+m2 . Then, ( ′bm)

m∈N2

is a computable double sequence of computable numbers that satisfies

B(f) = inf
m1∈N

sup
m2∈N

(
′bm
)
.

That is, ( ′bm)
m∈N2 is a second order upper ZW description of B(f). The

claim then follows by Lemma 1.

2. Consider a computable sequence (rm)
m∈N2 of rational numbers that satis-

fies infm1∈N
supm2∈N

(rm) = x. Without loss of generality, we can assume

that rm is non-negative for all m ∈ N2. Following Lemma 2, there exists

a Turing machine that computes a mapping (rm)
m∈N2 7→ ( ′rm)m∈N such

that ( ′rm)m∈N is a non-negative computable sequence of rational numbers

that satisfies lim supm→∞( ′rm) = x. We define am := ( ′rm)m for all m ∈ N.

Then (am)m∈N is a computable sequence of rational numbers, and hence
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a computable sequence of computable numbers as well. By (4), the signal

f(z) =

∞∑

m=0

am
m!

zm =

∞∑

m=0

( ′rmz)m

m!
, z ∈ C,

then satisfies B(f) = x.

Remark 12. Observe that the proof of the second statement of Theorem 7 is

constructive and all involved operations can, in principle, be computed by a Tur-

ing machine. Hence if we have a hypothetical Taylor signal generator available,

i.e., a machine that maps a non-negative, π-bounded, computable sequence of

rational numbers ( ′rm)m∈N to the “analog” signal
∑∞

m=1
( ′rmz)m/m! = f(z), we

can in principle build an apparatus that receives a second order upper ZW de-

scription of a number x as an input and returns an analog signal f that satisfies

B(f) = x.

For 1 ≤ p ≤ +∞ and f ∈ CBp
π, there exists a monotonically non-decreasing,

computable sequence of rational numbers (rn)n∈N, such that limn→∞ rn = B(f)

is satisfied. As Theorem 7 shows, this does not hold true for signals f ∈ CEπ,

even if the monotonicity requirement is made void. Assume for some signal

f ∈ CEπ, there exists a computable sequence (rn)n∈N of rational numbers such

that limn→∞ rn = B(f) holds true. For all m1,m2 ∈ N, define

′rm1,m2
:= rm1+m2 .

Then, ( ′rm1,m2)m1,m2∈N is a computable double sequence of rational numbers

that satisfies

inf
m1∈N

sup
m2∈N

( ′rm1,m2) = sup
m1∈N

inf
m2∈N

( ′rm1,m2) = B(f).

Hence, we have B(f) ∈ Π2 ∩ Σ2 = ∆2. But, since B[CEπ] = Π2 ∩ [0, π] and

(Π2∩[0, π])\Σ2 6= ∅ hold true, there exist signals f ∈ CEπ that satisfy B(f) /∈ ∆2.

Hence, for these signals, there cannot exist computable sequences (rn)n∈N of

rational numbers that satisfy limn→∞ rn = B(f).
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11. Bandwidth Computation and Oracle Machines

In this section, we consider bandlimited signals in the context of oracle com-

putations. A machine OM that computes a function g ∈ C∗(A) for an arbitrary,

non-recursive set A ( N is referred to as an oracle machine. In particular, we

refer to the oracle machine

OMT : n 7→ 1AΦ
T
(n)

as totality oracle, and to the members

OMH,n : m 7→ 1D(ϕn)(m)

of the family (OMH,n)n∈N as halting oracles.

The properties of oracle computations and their relation to non-recursive

sets have been intensively studied in the relevant literature; for a comprehensive

introduction, we refer to [24]. Hence, any relation to a real world problem from

science or engineering is interesting for the field of theoretical computer science.

Furthermore, it yields another perspective on the degree of uncomputability

present in the problem.

In the following, we want to relate the problem of computing the bandwidth

of a bandlimited signal to these oracles. Therefore, we consider two hypothetical

devices that operate on the set CEπ:

• The device σO< evaluates the mapping

f 7→







1, if B(f) < 1/2,

0, otherwise.

In other words, the device σO< decides, for a signal f ∈ CEπ, whether B(f)

is smaller than 1/2 or not. Hence, σO< yields a non-trivial bound on B(f).

• For x ∈ (0, 4], we denote by A[x] ⊆ N the unique countably infinite set

that satisfies

x = 4 ·
∑

m∈A[x]

1

2m
.
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Furthermore, we set An[x] := {m ∈ A[x] : m ≤ n + 2}. The device O≈

then evaluates the mapping

(f, n) 7→ x[An[B(f)]].

Hence, the device O≈ yields an approximation of the number B(f) which

is accurate up to n-binary places.

Additionally, we consider a device G which, for (an)n∈N ⇒ f , evaluates the

mapping (an)n∈N 7→ f . That is, G maps the description (an)n∈N of f to the

actual signal f ∈ CEπ according to (3).

In the following, we will investigate the computational strength of the oracle

machines σO< and O≈. Given the fact that B[CEπ] = Π2 ∩ [0, π] and AΦ
T ∈ Π0

2

hold true, it may not be surprising that σO< and O≈ are at least as strong as

the totality oracle OMT.

Theorem 8. There exists a Turing machine TM which, for n ∈ N, computes a

mapping n 7→ (an)n∈N, such that

σO<(G(TM(n))) = OMT(n)

holds true for all n ∈ N.

Proof. Consider the runtime function Ψ : N3 → {0, 1}. For n ∈ N fixed, define

the computable double sequence ( ′′rn,m)
m∈N2 of rational numbers by setting

′′rn,m := Ψ(n,m1,m2)

for all m ∈ N2. Then, the sequence ( ′′rn,m)
m∈N2 satisfies

sup
m2∈N

( ′′rn,m) =







1, if m1 ∈ D(gn),

0, otherwise,

for all n,m1 ∈ N, and hence

inf
m1∈N

sup
m2∈N

( ′′rn,m) =







1, if D(gn) = N,

0, otherwise,
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for all n ∈ N. Following Lemma 2, there exists a Turing machine which computes

a mapping ( ′′rn,m)
m∈N2 7→ ( ′rn,m)m∈N, such that ( ′rn,m)m∈N is a computable

sequence of rational numbers that satisfies

lim sup
m→∞

( ′rn,m) = inf
m1∈N

sup
m2∈N

( ′′rn,m).

Consider the mapping ξ : M 7→ 1 and define the computable double sequence

(rn,m)
m∈N2 of rational numbers via

rn,m1,m2
:=
(

′rn,m1

)m1

for all n,m1,m2 ∈ N. The pair ((rn,m)
m∈N2 , ξ) is the standard description of a

computable sequence (an,m)m∈N of computable numbers that satisfies

lim sup
m→∞

m

√

|an,m| = lim sup
m→∞

( ′rn,m) =







1, if D(gn) = N,

0, otherwise.

.

We now define TM : n 7→ TM(n) := (an,m)m∈N. Then, by (4), the signal

f(n) := G(TM(n)) satisfies

B(f) =







1, if D(gn) = N,

0, otherwise.

Consequently, for all n ∈ N, we have 1/2 < B(f) if and only if ϕn is a total

function. Hence, σO<(G(TM(n))) = OMT(n) holds true for all n ∈ N.

Theorem 9. There exist a f ∈ CEπ as well as a Turing machine TM which,

for n ∈ N and x ∈ Q, computes a mapping (x, n) 7→ m ∈ {0, 1}, such that

TM(O≈(f, n), n) = OMT(n)

holds true for all n ∈ N.

Proof. We have x[AΦ
T] ∈ Π2, c.f. Lemma 4. Hence, by Theorem 7, there exists a

signal f ∈ CEπ such that B(f) = x[AΦ
T] holds true. Observe that for all n ∈ N,

we have D(ϕn) = N if and only if

n ∈ An[x[A
Φ
T]] = An[B(f)]

53



is satisfied. In particular, D(ϕn) = N holds true if and only if the nth binary

place of 4 · x[An[B(f)]] equals one. Hence, with O≈(f, n) = x[An[B(f)]], we

have B(f) = x[AΦ
T] if and only if

O≈(f, n) · 2n+2 − ⌊O≈(f, n) · 2n+1⌋ · 2
︸ ︷︷ ︸

=:g(O≈(f,n),n)

= 1.

Defining

TM(O≈(f, n), n) :=







1, if g(O≈(f, n), n) = 1,

0, otherwise,

yields the required Turing machine.

The remainder of this section will be dedicated to relating the set CB∞
π to

the family of halting oracles (OMH,n)n∈N as halting oracles.

Theorem 10. Let f satisfy f ∈ CB∞
π . There exists a Turing machine TM that

computes a mapping

(
(OMH,n)n∈N, f,m

)
7→ q ∈ Q,

such that |B(f)− q| < 2−m holds true for all m ∈ N.

Proof. The proof again employs the dyadic expansion of the number B(f).

Without loss of generality we assume B(f) ∈ [0, 1] ∩ Σ1. There exists a Tur-

ing machine TM′ that computes a mapping f 7→ (rl)l∈N, such that (rl)l∈N is a

monotonically non-decreasing, computable sequence of rational numbers, such

that liml→∞ rl = B(f) holds true, c.f. [17] for details. Denote by Al the largest

subset of N such that x[Al] ≤ B(f) holds true and define

A :=
⋃

l∈N

Al.

Then, we have B(f) = x[A] as well as Al ⊆ Al+1 for all l ∈ N. Furthermore,

the set A is recursively enumerable and the mapping (rl)l∈N 7→ g, where g is

a recursive function that satisfies D(g) = A, can be computed by a Turing
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machine. Using the family (OMH,n)n∈N of halting oracles, we can now compute

the set

Bm := {k ∈ N : k ≤ m+ 1, k ∈ D(g)}.

For all m ∈ N, we have

Bm = {k ∈ A : k ≤ m+ 1}.

Since A contains the dyadic expansion of B(f), we have |B(f) − x[Bm]| <

2−m.

Remark 13. For f ∈ CEπ such that B(f) ∈ ∆2 holds true, the family

(OMH,n)n∈N allows for the computation of B(f) as well, c.f. [32, Lemma 5.4,

p. 58]. However, the dependency on f is non recursive, since the description

(an)n∈N in the sense of Definition 14 is not a feasible input.

12. Conclusion

In the previous chapters, we have considered different descriptions for the

signal classes CBp
π for 1 ≤ p ≤ +∞ and CEπ, and showed that B(CBp

π) =

Σ1∩ [0, π] and B(CEπ)∩ [0, π] hold true for all p that satisfy 1 ≤ p ≤ +∞, which

is a full characterization of B(CBp
π) and B(CEπ) in terms of the arithmetical

hierarchy of real numbers. In the scope of our analysis, we were able to confirm

all conjectures posed in [17]:

1. There exist signals f ∈ CEπ such that no computable sequence (rn)n∈N of

rational numbers satisfies limn→∞ rn = B(f).

2. For signals f ∈ CEπ and numbers σ ∈ (0, π) ∩ Rc, the set {f ∈ CEπ :

B(f) > σ} is not semi-decidable.

3. If TMBW and TMBW are Turing machines such that for all signals f in

CEπ that satisfy B(f) ≤ π, we have

TMBW(f) ≤ B(f) ≤ TMBW(f),
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then TMBW and TMBW necessarily return trivial values, i.e., TMBW(f) =

0 and TMBW(f) = π holds true for all feasible signals f .

Last but not least, we showed that the problem of computing the bandwidth

of a signal f ∈ CEπ is at least as hard as computing a totality oracle for the

set of recursive functions. Computing the bandwidth of a signal f ∈ CBp
π, for

1 ≤ p ≤ +∞, on the other hand, can be reduced to computing a halting oracle.

It is interesting to note that some of the questions can be positively answered

for CB2
π. For example, the set

{
f ∈ CB2

π : B(f) > σ
}

is semi-decidable. Further,

for f ∈ CB2
π, we can find a computable monotonically increasing sequence of

lower bounds for B(f) that converges to B(f). The restrictions that we have

in the time and frequency domain for signals in CB1
π and CB2

π make it possible

that important signal processing problems, such as those above, can be algo-

rithmically solved. In contrast, signals in CEπ have—except for a simple growth

condition—no such restrictions.

Questions of computability have not received much attention in control the-

ory and signal processing so far. Recent results have shown that there are

important problems that cannot be solved on a digital computer. For example,

problems can occur in the computation of the Fourier transform [13], the Fourier

series [35], and the spectral factorization [36], as well as in downsampling and

the computation of the bandlimited interpolation [37].

In [38], conditions were analyzed under which the computability of a discrete-

time signal implies the computability of the corresponding continuous-time sig-

nal. The computability of the actual bandwidth was studied in [17] and [16]. In

[17] it was shown that there exist signals f ∈ CB2
π for which the actual band-

width B(f) is not computable. In contrast to [17], we study the most general

class of bandlimited signals in this paper and the question whether upper and

lower bounds can be algorithmically determined.

The problem of computing the period of a periodic computable continuous

function is similar to the problem studied in this paper. In Shor’s famous al-

gorithms for factorizing natural numbers and computing the discrete logarithm
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[39], the core task—and the only part that has to be implemented on a univer-

sal quantum computer—is the computation of the period of certain computable

continuous functions. Interestingly, all candidates for a “post-quantum cryptog-

raphy” that already failed, were broken by quantum algorithms that compute

the period of certain functions. It seems as if finding periods of functions is the

only class of well-investigated mathematical problems for which it was possible

to develop quantum algorithms that have a substantial complexity advantage

over the best known classical algorithms.

As indicated in the introduction, our results contribute to the problem of un-

derstanding the differences between different approaches for computation. Since

the problem of sampling analog signals inherently involves analog technology,

the question arises if, for example, an analog or neuromorphic computer could

solve the bandwidth estimation problem up to any accuracy. To answer ques-

tions of this kind, it is important to understand the mathematical structure

behind the different approaches for computation. The authors believe that this

topic will gain further importance in the future.
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