
ar
X

iv
:2

00
9.

07
20

4v
4

 [
cs

.I
T

]
 1

4
O

ct
 2

02
1

New Instances of Quadratic APN Functions

Christof Beierle and Gregor Leander

Ruhr University Bochum, Bochum, Germany

Abstract

In a recent work, Beierle, Brinkmann and Leander presented a recursive tree search for

finding APN permutations with linear self-equivalences in small dimensions. In this paper,

we describe how this search can be adapted to find many new instances of quadratic APN

functions. In particular, we found 12,921 new quadratic APN functions in dimension eight,

35 new quadratic APN functions in dimension nine and five new quadratic APN functions

in dimension ten up to CCZ-equivalence. Remarkably, two of the 35 new APN functions in

dimension nine are APN permutations.

Among the 8-bit APN functions, there are three extended Walsh spectra that do not cor-

respond to any of the previously-known quadratic 8-bit APN functions and, surprisingly, there

exist at least four CCZ-inequivalent 8-bit APN functions with linearity 27, i.e., the highest

possible non-trivial linearity for quadratic functions in dimension eight.

Keywords: almost perfect nonlinear, Walsh spectrum, linearity, self-equivalence, EA-

equivalence

1 Introduction

Vectorial Boolean functions are used as S-boxes in many block ciphers and thus belong to the
fundamental building blocks in symmetric cryptography. When such functions are used in actual
cryptographic designs, one has to ensure that they fulfill certain criteria in order to prevent crypt-
analytic attacks. Functions offering the best possible resistance against differential attacks [BS91]
are called almost perfect nonlinear (APN).

Definition 1. [NK92] Let n be a positive integer. A function F : Fn
2 → F

n
2 is called almost perfect

nonlinear (APN) if, for every a ∈ F
n
2 \ {0}, b ∈ F

n
2 , the equation F (x) + F (x + a) = b has at most

2 solutions x ∈ F
n
2 .

This work was funded by Deutsche Forschungsgemeinschaft (DFG); project number 411879806 and by DFG
under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

This is the version accepted to IEEE Transactions on Information Theory. DOI of the final published version:
10.1109/TIT.2021.3120698.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

1

http://arxiv.org/abs/2009.07204v4
https://dx.doi.org/10.1109/TIT.2021.3120698

We know several infinite families of APN functions as well as some sporadic instances. The vast
majority of the known instances corresponds to monomial functions over the finite field F2n or to
functions with algebraic degree 2 over Fn

2 (i.e., quadratic functions). Indeed, at the time of writing,
only a single APN instance is known that is not CCZ-equivalent to a monomial function or to a
quadratic function [EP09]. The linearity is a measure for how well a function can be approximated
by an affine function and is in particular of importance for resistance of block ciphers against linear
cryptanalysis [Mat93]. Interestingly, APN functions often have low linearity as well. While this
is always true for quadratic APN functions in odd dimension n (since those functions are almost
bent [CCZ98]), the situation is more complicated for even values of n. For instance, prior to our
work, two possible values of the linearity and three possible extended Walsh spectra of quadratic
APN functions in dimension n = 8 were known [Ars18, Table 4.2]. Moreover, in dimension n = 6,
we know one quadratic APN instance that admits the highest possible linearity of 2n−1, see the
list in [EP09]. It is an open question whether such a high linearity is also achievable by quadratic
APN functions in higher dimensions [Car18].

A big open problem is to find new instances of APN permutations in even dimensions. Until
now, only a single instance of an APN permutation in even dimension is known, namely for n =
6 [BDMW10]. It is well known that a quadratic APN function in even dimension cannot be a
permutation [SZZ94]. However, the aforementioned permutation is CCZ-equivalent to a quadratic
function. The potential to discover new APN permutations in even dimension that are CCZ-
equivalent to quadratic functions is one motivation to explicitly search for quadratic APN functions.

For n ≤ 5, a complete classification of APN functions up to CCZ-equivalence is known [BL08]
and for n = 6, such a classification is known for APN functions up to algebraic degree three [Lan12].
In 2009, Edel and Pott introduced the switching construction and found new APN functions in
dimensions n ≤ 8 by replacing components of previously-known APN functions [EP09]. This led
to the discovery of new APN functions, bringing up the number of known CCZ-inequivalent APN
functions in dimension n = 7 and n = 8 to 19 and 23, respectively. A breakthrough was achieved by
the works [WTG13] and [YWL14], in which the authors found many new quadratic APN instances in
dimension n = 7 and n = 8. Recently, a new quadratic APN function in dimension 7 was found and
a complete classification of quadratic APN functions in dimension 7 was achieved [KI20b, KI20a].
Excluding our results, there are 491 known APN instances in dimension n = 7 and 8,192 known
APN instances in dimension n = 8 at the time of submission of this manuscript1 in December 2020.
Besides searching for APN instances in fixed dimensions, several infinite families of APN functions
have been found, see [BCV20] for a recent summary.

In [BBL21], the authors utilized a recursive tree search for finding APN permutations with
linear self-equivalences and were able to classify all APN permutations with linear self-equivalences
in dimension n = 6.

1.1 Our Contribution

By adapting the algorithm of [BBL21], we find many new instances of quadratic APN functions.
The search strategy is conceptually very simple. The basic idea is to fix the look-up table of the
APN function F entry by entry. Each time a new entry is fixed, besides checking whether there is a

1In 2021, after the preprint of our work was made public, Yu and Perrin [YP21] found more than 5,400 other new
quadratic APN instances in dimension eight by the same method as in [YWL14], bringing up the total number of
known 8-bit APN instances (including our results) to over 26,500. All of the APN instances found in [YP21] have an
extended Walsh spectrum that was already known prior to our work (i.e., W0,W1, or W2 as defined in Section 4.2).

2

contradiction to the property of being APN, the algorithm further checks whether the values in the
look-up table already imply the existence of a monomial of algebraic degree higher than two in the
algebraic normal form of F . The main difference to the algorithm of [BBL21] is the incorporation
of the check for the existence of high-degree monomials and the removal of the restriction on the
bijectivity of the output function.

By using this approach, also combined with considering linear self-equivalences, we find 12,733
new CCZ-inequivalent quadratic APN functions in dimension n = 8, which is a substantial increase
compared to the 8,192 previously-known APN instances in dimension n = 8.

Searching for new instances of APN functions in dimensions higher than n = 8 is known to
be very hard and resource consuming. Indeed, to the best of our knowledge, previous search
methods have not been very successful in finding new APN instances and the only previously-
known APN instances in dimension n ∈ {9, 10} are either monomial functions, one of the poly-
nomials with coefficients in F2 [YKBL20], or those that come from the infinite families given
in [BCL09b], [BCC+20], [BCC+21], [BC08], [BCL09a], [Tan19], or [BHK20]. Clearly, our approach
becomes less efficient as well. However, we are still able to present 35 new APN instances in dimen-
sion n = 9 and five new APN instances in dimension n = 10. Remarkably, two of the new 9-bit APN
functions are permutations. Until now, the only known APN permutations up to CCZ-equivalence
were the monomial functions in odd dimension n, the binomial family for 3 | n presented in [BCL08]
and the sporadic 6-bit APN permutation found in [BDMW10]. Up to EA-equivalence, the two new
APN permutations can be given in univariate representation over F29 by

x 7→ x3 + ux10 + u2x17 + u4x80 + u5x192,

x 7→ x3 + u2x10 + ux24 + u4x80 + u6x136,

where u ∈ F
∗
29 is an element with minimal polynomial X3 +X + 1 ∈ F2[X].

Among the extended Walsh spectra of the APN functions found for n = 8, there are three that
do not correspond to any of the previously-known quadratic 8-bit APN functions. In particular,
there are four pairwise CCZ-inequivalent APN functions in dimension 8 having linearity 27. One
such example is the APN function

x 7→ x3 + g60x5 + g191x6 + g198x9 + g232x10 + g120x12 + g54x17 + g64x18 + g159x20+

g144x24 + g248x33 + g203x34 + g32x36 + g18x40 + g216x48 + g78x65 + g46x66 + g91x68+

g27x72 + g70x80 + g52x96 + g224x129 + g18x130 + g197x136 + g253x144 + x160

over F28 , where g ∈ F
∗
28 is an element with minimal polynomial X8 +X4 +X3 +X2 + 1 ∈ F2[X].

Finally, we apply the switching construction of Edel and Pott [EP09] to all the known (by the
time of submission of this manuscript) and new quadratic APN instances in dimension n = 7 and
n = 8, which leads to the discovery of another 188 CCZ-inequivalent APN instances in dimension
n = 8. By using sboxU [Per17], we have checked that none of the APN functions we found for
n ∈ {8, 10} are CCZ-equivalent to a permutation.

The source code of our algorithms is publicly available at [cbe]. The look-up tables of the new
APN instances are available in [BL21]. We emphasize that our search method is non-exhaustive,
so we do not make any claim on the completeness of our findings.

3

2 Preliminaries

For a positive integer n, let us denote by F2n the field with 2n elements and let F
n
2 denote the

n-dimensional vector space over F2. Let F
∗
2n denote the set F2n \ {0}. By GL(n,F2) we denote

the group of invertible n × n matrices over F2 and by AGL(n,F2) we denote the group of affine
permutations on F

n
2 . Any such affine permutation can be represented as x 7→ Lx + b for L ∈

GL(n,F2) and b ∈ F
n
2 . To simplify notation, we are going to use elements of GL(n,F2) and the

linear functions that they represent interchangeably throughout this work. In other words, for an
element L ∈ GL(n,F2), we denote the linear function x 7→ Lx by L as well. The symbol In denotes
the identity matrix in GL(n,F2). By diag(M1,M2, . . . ,Mk), we denote the block-diagonal matrix
consisting of the k blocks M1, . . . ,Mk, where M1 corresponds to the upper-left block.

For an element M ∈ GL(n,F2), we denote by ord(M) the multiplicative order of M , which is
defined as the smallest positive integer i such that M i = In. Similarly, for x ∈ F

n
2 , we denote by

ordM (x) the smallest positive integer i for which M i(x) = x. The minimal polynomial of a matrix
M over F2 is defined as the polynomial p ∈ F2[X] of least positive degree such that p(M) = 0.

For a polynomial q = Xn + qn−1X
n−1 + · · ·+ q1X + q0 ∈ F2[X], the companion matrix of q is

defined as the n× n matrix

Comp(q) :=

0 q0
1 0 q1

. . .
. . .

...
1 0 qn−2

1 qn−1

,

which is an element of GL(n,F2) if and only if q0 = 1. For x ∈ F
n
2 , we denote by wt(x) the Hamming

weight of x, which is defined as the number of non-zero coordinates of x.

2.1 Representations of Vectorial Boolean Functions

For a comprehensive introduction to (vectorial) Boolean functions, we refer to [Car21]. Here, we
recall the most important concepts needed in the remainder of the paper. Note that in the following,
we restrict to the case of functions from F

n
2 to itself.

A vectorial Boolean function F : Fn
2 → F

n
2 can be uniquely expressed as a multivariate poly-

nomial in F
n
2 [X1, . . . , Xn]/(X

2
1 + X1, . . . , X

2
n + Xn), called the algebraic normal form (ANF). In

particular, there exist au ∈ F
n
2 such that

F (x1, . . . , xn) =
∑

u∈F
n

2

au

∏

i∈{1,...,n}

xui

i

 .

The algebraic degree of F is defined as max{wt(u) | au 6= 0, u ∈ F
n
2}. The function F is called

affine if it is of algebraic degree at most 1 and it is called quadratic if it is of algebraic degree 2.
The coefficients au of the ANF can be obtained by the so-called binary Möbius transform via

au =
∑

x∈F
n

2
,x�u

F (x), (1)

where the relation x � u holds if and only if, for all i ∈ {1, . . . , n}, we have (ui = 0⇒ xi = 0).

4

Moreover, we can uniquely represent any vectorial Boolean function F : Fn
2 → F

n
2 as a func-

tion from F2n to itself via x 7→ f(x) with f ∈ F2n [X]/(X2n + X). This is called the univariate
representation of F .

The Walsh transform of F at (α, β) ∈ F
n
2 × F

n
2 is defined as the sum

F̂ (α, β) =
∑

x∈F
n

2

(−1)〈α,x〉+〈β,F (x)〉

over the integers, where 〈x, y〉 denotes the inner product of the vectors x, y ∈ F
n
2 , defined as

〈x, y〉 :=
∑n

i=1 xiyi mod 2. The multiset {|F̂ (α, β)| | α, β ∈ F
n
2} is called the extended Walsh

spectrum of F . For β ∈ F
n
2 \ {0}, the function Fβ : x 7→ 〈β, F (x)〉 is called a component of F

and the value maxα∈F
n

2
,β∈F

n

2
\{0} |F̂ (α, β)| is called the linearity of F . The linearity of F can be

understood as a measure of how well a component of F can be approximated by an affine function.
In particular, a linearity of 2n corresponds to the case of F having an affine component.

The difference distribution table (DDT) of a function F : Fn
2 → F

n
2 is the 2n× 2n integer matrix

(where the rows and the columns are indexed by α ∈ F
n
2 and β ∈ F

n
2 , respectively) that contains

|{x ∈ F
n
2 | F (x) + F (x + α) = β}| in the entry in row α and column β. The differential spectrum

of F is defined as the multiset of entries in the DDT of F .

2.2 Equivalence Relations of Vectorial Boolean Functions

Let F,G : Fn
2 → F

n
2 . There are several well-known equivalence relations on vectorial Boolean func-

tions that preserve both the differential spectrum and the extended Walsh spectrum. The function
G is linear-equivalent to F if there exist A,B ∈ GL(n,F2) such that F ◦A = B ◦G. Moreover, G is
extended affine-equivalent (EA-equivalent) to F if there exist A,B ∈ AGL(n,F2) and an affine, not
necessarily invertible, function C : Fn

2 7→ F
n
2 such that F ◦A = B ◦G+ C. The functions F and G

are called CCZ-equivalent [BCP06, CCZ98] if there exists a transformation σ ∈ AGL(2n,F2) such
that ΓG = σ(ΓF), where ΓF := {(x, F (x)) | x ∈ F

n
2} denotes the graph of F . Among the notions

of equivalence listed above, CCZ-equivalence is the most general. An important goal in the study
of APN functions is to classify them up to CCZ-equivalence and the following is a useful result for
quadratic APN functions.

Theorem 1 ([Yos12]). Two quadratic APN functions F,G : Fn
2 → F

n
2 are EA-equivalent if and only

if they are CCZ-equivalent.

Therefore, since our focus is on quadratic APN functions, we are going to separate the functions
we find up to EA-equivalence (which corresponds to CCZ-equivalence in this case) and we only
provide a single representative from each CCZ-equivalence class. Such a CCZ-equivalence class will
also be called an instance throughout this paper, which is represented by one member of the class.

The LE-automorphism group (see [BBL21]) of a function F : Fn
2 → F

n
2 is defined as

AutLE(F) := {diag(A,B) ∈ GL(2n,F2) | A,B ∈ GL(n,F2) and F ◦A = B ◦ F} .

If a function F admits a non-trivial automorphism diag(A,B) ∈ AutLE(F), we also say that F is
linearly self-equivalent with respect to the tuple (B,A). Note that if F : Fn

2 → F
n
2 and G : Fn

2 → F
n
2

are linear-equivalent, we have AutLE(F) ∼= AutLE(G), where ∼= denotes the isomorphism relation of
groups.

5

3 A Recursive Tree Search for Quadratic APN Functions

Our idea for finding new instances of APN functions is to apply a recursive tree search very similar
to [BBL21, Algorithm 1]. The main differences are that in the algorithm given here we drop the
restriction to only search for permutations and we apply an additional filter for skipping branches
within the search tree that lead to functions of algebraic degree higher than two. In this section,
we explain the most basic variant that searches for arbitrary n-bit quadratic APN functions for
n ≥ 2. It is formally specified in Algorithm 1. The algorithm can easily be adapted to only search
for quadratic APN functions admitting a particular LE-automorphism (see Section 4.2).

The global array sbox is initialized to be undefined (⊥) at each entry. This array corresponds
to the look-up table of the APN function F to be constructed. In each iteration of NextVal, the
procedure isComplete first checks whether sbox is already completely defined. If this is the case,
the algorithm has found a quadratic APN function and prints sbox as the solution. Otherwise, the
procedure NextFreePosition is called which selects the next undefined entry x and sets F (x) to
a value y that is randomly selected from among a predefined list of possible choices. The orders
in which those values y are selected at each depth are determined by the Shuffle procedure that
is performed in the beginning. After fixing F (x), the procedure AddPoint checks whether F can
still be both APN and quadratic. If not, the current branch of the search tree is skipped and x
is set to the next possible value y. In case no contradiction to either property is encountered, the
algorithm goes one level deeper.

Note that, since the running time of Algorithm 1 can be very long in cases where no quadratic
APN function is found, we abort and restart after a predetermined amount of time (e.g., 10 seconds
for n = 7).

3.1 APN Check

Each time we set F (x) to a new value y, we need to check that the APN property of F has not already
been violated. This is performed in exactly the same way as in [BBL21]. In particular, the function
addDDTInformation(x) dynamically changes the DDT according to the value set by the current
iteration. The DDT is stored in a global array which is initialized to 0 before calling Algorithm 1.
Similarly, each time we reset F (x) to ⊥, the function removeDDTInformation(x) applies the ap-
propriate changes to the DDT. Note that addDDTInformation(x) returns 1 if the APN property
is not violated by fixing F (x). Otherwise, it returns 0. Similarly, removeDDTInformation(x)
returns 1 if the APN property has not been violated by fixing F (x). Otherwise, it returns 0.

3.2 Algebraic Degree Check

Each time we set F (x) to a new value y, we check whether we can deduce the existence of a monomial
of algebraic degree higher than 2 in the algebraic normal form of F . For this, using Equation (1),
we keep track of the partial sums for all au with wt(u) ≥ 3 in a global array sum and update them
whenever x � u. The check is performed by calling the function addDegreeInformation(x),
which is defined below. The function dynamically changes the global arrays ctr and sum, both of
size 2n, which are initialized to 0 before calling Algorithm 1. Below, the symbol ⊕ denotes the
bitwise XOR operation in order to distinguish it from the addition of integers, denoted +.

1: function addDegreeInformation(x)
2: for u ∈ [1, . . . , 2n − 1] such that wt(u) ≥ 3 and x � u do

6

3: ctr[u]← ctr[u] + 1
4: sum[u]← sum[u]⊕ sbox[x]
5: if ctr[u] = 2wt(u) then ⊲ All x with x � u have been considered
6: if sum[u] 6= 0 then ⊲ We have au 6= 0 in the ANF of F
7: return 0
8: end if

9: end if

10: end for

11: return 1
12: end function

When F (x) is reset to ⊥, we need to restore the values of the arrays ctr and sum by calling the
following procedure.

1: function removeDegreeInformation(x)
2: for u ∈ [1, . . . , 2n − 1] such that wt(u) ≥ 3 and x � u do

3: ctr[u]← ctr[u]− 1
4: sum[u]← sum[u]⊕ sbox[x]
5: if ctr[u] = 2wt(u) − 1 then

6: if sum[u] 6= sbox[x] then
7: return 0
8: end if

9: end if

10: end for

11: return 1
12: end function

3.3 EA-equivalence Check

For each function that we find, we need to check whether it is EA-equivalent to a known instance.
We recall that for two quadratic APN functions, EA-equivalence coincides with CCZ-equivalence.
To perform the check efficiently, we use the following method by Canteaut et al., first explained in
an invited talk at Boolean Functions and their Applications (BFA) 2020 and formally described in
the recent preprint [CCP21].

Proposition 1 ([CP20, CCP21]). Let F : Fn
2 → F

n
2 be a quadratic APN function. The ortho-

derivative of F is defined as the unique function ΠF : Fn
2 → F

n
2 with ΠF (0) = 0 such that, for all

α ∈ F
n
2 \ {0}, we have ΠF (α) 6= 0 and

∀x ∈ F
n
2 : 〈ΠF (α), (F (x) + F (x+ α) + F (α) + F (0)〉 = 0.

For two EA-equivalent quadratic APN functions F,G : Fn
2 → F

n
2 , the ortho-derivatives ΠF and

ΠG are linear-equivalent.

Testing two quadratic APN functions for EA-inequivalence (which is the same as CCZ-inequiv-
alence in this case) is now fairly simple. One simply computes the corresponding ortho-derivatives
and evaluates their extendedWalsh spectra and differential spectra. We note that these are (strongly
discriminating) invariants for EA-equivalence. If the two extended Walsh spectra or the two dif-
ferential spectra are different, the ortho-derivatives cannot be linear-equivalent and hence, the two

7

Algorithm 1 QuadraticAPNSearch

Input: Global array sbox of size 2n, initialized to sbox[i] = ⊥, for all i ∈ {0, . . . , 2n − 1}. Global
2-dimensional array P of size 2n × 2n with each P [i] initialized to [0, . . . , 2n − 1] for all i ∈
{0, . . . , 2n − 1}.

Output: Prints an n-bit APN function F of algebraic degree at most two.

1: for i ∈ [0, . . . , 2n − 1] do
2: Shuffle(P [i]) ⊲ Generates a random permutation of P [i]
3: end for

4: sbox[0]← 0
5: addPoint(0)
6: nextVal(0)

7: function nextVal(depth)
8: if isComplete(sbox) then ⊲ Checks if sbox contains no ⊥
9: Print sbox and terminate

10: end if

11: x← nextFreePosition() ⊲ Chooses the smallest i s.t. sbox[i] 6= ⊥
12: for z ∈ [0, . . . , 2n − 1] do
13: y ← P [depth][z]
14: sbox[x]← y
15: b← addPoint(x)
16: if b is equal to 1 then

17: nextVal(depth + 1)
18: end if

19: sbox[x]← ⊥
20: removePoint(x)
21: end for

22: end function

23: function addPoint(c)
24: if addDDTInformation(c) then
25: return addDegreeInformation(c)
26: end if

27: return 0
28: end function

29: function removePoint(c)
30: if removeDDTInformation(c) then
31: removeDegreeInformation(c)
32: end if

33: end function

8

quadratic APN functions cannot be EA-equivalent. The implementation for computing the ortho-
derivative is contained in the latest version of sboxU [Per17]. This method is much more efficient
than checking the code equivalence with Magma [BCP97].

It might be the case that two EA-inequivalent functions are are not identified as such because
their ortho-derivatives might have identical differential and extended Walsh spectra. However, this
does not seem to occur often. For example, all of the previously-known 8,191 quadratic 8-bit APN
instances can be established to be EA-inequivalent by this method. The complete check for all of
those 8,191 APN instances only takes a few minutes on a PC.

We remark that no further effort is needed to test the quadratic APN functions that we find
for CCZ-inequivalence to the non-quadratic monomial APN functions. This is because of the fact
that a quadratic APN function CCZ-equivalent to a monomial function must be EA-equivalent to
a quadratic monomial function [Yos16].

3.4 Results

After running the search for n = 7 for about 72 CPU hours, we found most of the quadratic APN
instances, including the recently discovered APN function presented in [KI20b]. For higher values
of n, this direct approach is not very efficient and so we consider linear self-equivalences in the
following.

4 Considering LE-Automorphisms

We now describe the method for searching for quadratic APN functions with non-trivial LE-
automorphisms in small dimension n and apply it to n ∈ {7, 8, 9, 10}. Again, the algorithm is
similar to the one presented in [BBL21] where the focus was on APN permutations of arbitrary
algebraic degree.

4.1 Canonical classes of LE-Automorphisms

If we consider n-bit functions F with non-trivial elements in AutLE(F) and are only interested
in a classification of such F up to linear-equivalence,2 we can significantly reduce the number of
matrix pairs (B,A) that we need to consider. The following ideas and reductions have already been
presented in [BBL21] with a focus on the case of F being a permutation.

Lemma 1 ([BBL21]). Let F : Fn
2 → F

n
2 have a non-trivial automorphism in AutLE(F). There exist

A,B ∈ GL(n,F2) with F ◦A = B ◦ F such that either

1. ord(A) = ord(B) = p for p prime, or

2. B = In and ord(A) = p for p prime, or

3. A = In and ord(B) = p for p prime.

Two elements M,M ′ ∈ GL(n,F2) are called similar, denoted M ∼ M ′, if there exists P ∈
GL(n,F2) such that M ′ = P−1MP . Similarity is an equivalence relation on GL(n,F2) and we can
find a representative of each equivalence class by the so-called rational canonical form.

2We cannot use EA-equivalence here because the property of admitting a non-trivial LE-automorphism is not
invariant under EA-equivalence.

9

Lemma 2. (Rational Canonical Form)[DF04, Page 476] Every element M ∈ GL(n,F2) is similar
to a unique M ′ ∈ GL(n,F2) of the form M ′ = diag(Comp(qr),Comp(qr−1), . . . ,Comp(q1)) for
polynomials qi such that qr | qr−1 | · · · | q1. This matrix M ′ is called the rational canonical form of
M , denoted RCF(M).

If we want to collect all LE-automorphisms in order to classify all functions F : Fn
2 → F

n
2 that

admit a non-trivial linear self-equivalence up to linear-equivalence, we can without loss of generality
assume that A and B are in rational canonical form. The following definition and lemma allow us
to reduce the search space even further.

Definition 2 ([BBL21]). Let A,B,C,D ∈ GL(n,F2) be of order p for p prime. The tuple (A,B)
is said to be power-similar to the tuple (C,D), denoted (A,B) ∼p (C,D), if there exists a positive
integer i such that A ∼ Ci and B ∼ Di.

Power-similarity defines an equivalence relation on the ordered pairs of matrices in GL(n,Fn
2)

of the same prime order and the following holds.

Lemma 3 ([BBL21]). Let F : Fn
2 → F

n
2 with diag(A,B) ∈ AutLE(F) for A,B ∈ GL(n,F2) being of

prime order p. For every (B̃, Ã) power-similar to (B,A), there is a function G linear-equivalent to

F such that diag(RCF(Ã),RCF(B̃)) ∈ AutLE(G).

For the dimensions that we consider in this work, i.e., n ≤ 10, we can efficiently generate all
rational canonical forms as block-diagonal matrices of the form given in Lemma 2. By applying
the above Lemmas 1 and 3 to a fixed dimension n, we obtain a reduced number of tuples (B,A) to
consider. We call those canonical classes of LE-automorphisms.

n = 7 All linear-equivalence classes of functions F : Fn
2 → F

n
2 that admit a non-trivial linear self-

equivalence can be obtained by considering 128 canonical classes for pairs (B,A): 56 classes with
ord(A) = ord(B) being prime, 36 classes with B = In and ord(A) being prime, and 36 classes with
A = In and ord(B) being prime.

n = 8 All linear-equivalence classes of functions F : Fn
2 → F

n
2 that admit a non-trivial linear self-

equivalence can be obtained by considering 157 canonical classes for pairs (B,A): 75 classes with
ord(A) = ord(B) being prime, 41 classes with B = In and ord(A) being prime, and 41 classes with
A = In and ord(B) being prime.

n = 9 All linear-equivalence classes of functions F : Fn
2 → F

n
2 that admit a non-trivial linear self-

equivalence can be obtained by considering 217 canonical classes for pairs (B,A): 111 classes with
ord(A) = ord(B) being prime, 53 classes with B = In and ord(A) being prime, and 53 classes with
A = In and ord(B) being prime.

n = 10 All linear-equivalence classes of functions F : Fn
2 → F

n
2 that admit a non-trivial linear

self-equivalence can be obtained by considering 401 canonical classes for pairs (B,A): 247 classes
with ord(A) = ord(B) being prime, 77 classes with B = In and ord(A) being prime, and 77 classes
with A = In and ord(B) being prime.

The tuples (B,A) and their corresponding class indices can be found along with our source code
at [cbe].

10

4.2 Finding quadratic APN functions in the canonical classes

If we are searching for APN functions (not necessarily quadratic) with non-trivial LE-automor-
phisms, we do not have to check all of the canonical classes, as outlined in the following two
lemmas. For a matrix M ∈ GL(n,F2), let us denote by FixM := {x ∈ F

n
2 |Mx = x} the set of fixed

points of M , which is a linear subspace of Fn
2 .

Lemma 4. Let A,B ∈ GL(n,F2). If B has strictly less fixed points than A and (|FixB|, |FixA|) /∈
{(1, 2), (2, 4)}, no function F : Fn

2 → F
n
2 with F ◦A = B ◦ F can be APN.

Proof. Let F be such that F ◦ A = B ◦ F . For all x ∈ FixA, we have F (x) = B(F (x)), thus
{F (x) | x ∈ FixA} ⊆ FixB. Since FixA and FixB are linear subspaces of Fn

2 , if |FixB| < |FixA|, the
image of the restriction of F on the subspace FixA (with dimFixA = k) is contained in a subspace
of smaller dimension ℓ < k, where ℓ = dimFixB . If F is APN, this would imply the existence of an
APN function H on F

k
2 whose image set is contained in F

ℓ
2 × {0}

k−ℓ. The APN function H must
therefore have a component constant and equal to zero, more precisely, it must have 2k−ℓ − 1 of
them. According to [Car21, Proposition 161], this is not possible, unless k ≤ 2. Since the cases of
(ℓ, k) ∈ {(0, 1), (1, 2)} are excluded in the statement of the lemma, we only need to consider the
case of (ℓ, k) = (0, 2). In this case, we have that H : F2

2 → F
2
2 is constant and equal to zero, so H is

not an APN function.

The following lemma is a direct consequence of [CHP17, Lemma 5] and states that classes of
the form (In, A) only need to be considered if the cycle decomposition of A (where A is considered
as a permutation on the set Fn

2) consists of a large number of cycles.

Lemma 5. Let A ∈ GL(n,F2) and let F : Fn
2 → F

n
2 be an APN function with F ◦ A = F . Let us

denote by c be the number of distinct cycles of A. If n is even, we have c ≥ 2n+2
3 , and, if n is odd,

we have c ≥ 2n+1
3 .

Proof. For an n-bit function F with F ◦ A = F , we have for the image size |{F (x) | x ∈ F
n
2}| ≤ c.

From [CHP17, Lemma 5] (see also [Car20] for a more recent discussion of this result), if F is APN,
we have

c ≥

⌈
22n

3 · 2n − 2

⌉
,

where the term on the right-hand side is equal to 2n+2
3 if n is even and 2n+1

3 if n is odd.

For the remaining (non-trivial) canonical classes of LE-automorphisms in dimensions n = 7 and
n = 8 not excluded by Lemmas 4 and 5 (i.e., 53 classes for n = 7 and 67 classes for n = 8) and for
most of3 the remaining (non-trivial) canonical classes of LE-automorphisms in dimensions n = 9
and n = 10, we performed a randomized tree search for quadratic APN functions similar to the
search described in Algorithm 1. The main difference is that, once we fix an element F (x) = y,
we fix F (Ai(x)) = Bi(y), i ∈ {1, . . . , ordA(x) − 1} as well. Moreover, if A and B have an identical
number of fixed points, we set the restriction of F on FixA to an APN function before invoking
the recursion. More precisely, let F be a quadratic APN function with F ◦ A = B ◦ F , where
dimFixA = dimFixB = k. Let further πA : Fk

2 → FixA and πB : Fk
2 → FixB be (vector space)

isomorphisms. Then, there exists an APN function G : Fk
2 → F

k
2 of algebraic degree at most two

3We did not perform any search if |FixA| ≥ 28. For this reason, we excluded 2 and 7 of the remaining (non-trivial)
canonical classes of LE-automorphisms in the search in dimension n = 9 and n = 10, respectively.

11

such that, for all x ∈ F
k
2 , we have F (πA(x)) = πB(G(x)). It is not clear whether we can choose G

up to EA-equivalence. However, in our randomized search, we only select G from a predetermined
list of EA-representatives. For example, if k = 6, we choose one of 13 quadratic APN instances
uniformly at random. We refer to our source code for the lists of EA-representatives from which
we choose for each fixed k. Note that our algorithm might terminate without returning a quadratic
APN function although one exists. This is the case if the chosen G does not yield a quadratic
n-bit APN function, while another choice of G would. However, we do not know whether this can
happen.

Special cases There are some special cases of classes for which we slightly modify the algorithm.
Those cases are the LE-automorphisms for which 1 < |FixA| < |FixB|. If 2 = |FixA| < |FixB|
with FixA = {0, x}, we set F (x) = 0 in the beginning before calling NextVal(0). However, if
2 < |FixA| < |FixB|, we do not set any points in the beginning besides F (0) = 0. Instead, we first
select those positions x for which ordA(x) > 1 in NextFreePosition() and the fixed points of A
last. This allows us to fix large cycles first.

Deterministic search It is possible to slightly modify the randomized algorithm to perform a
deterministic search. In particular, we run the search for all possible choices of k-bit APN instances
G of algebraic degree at most two and do not abort after a predetermined amount of time or if
a solution is found. Similarly as it was done in the exhaustive search presented in [BBL21], we
call NextVal(depth + 1) only if F is the smallest representative (up to some previously-defined
ordering) in the set {CB ◦ F ◦ CA | CA ∈ CA, CB ∈ CB}, where CA (resp., CB) is a subset of all
elements in GL(n,F2) that commute with A (resp., B) and whose restriction on FixA (resp., FixB)
is the identity. Formally, CA ⊆ {M ∈ GL(n,F2) | MA = AM and ∀x ∈ FixA : Mx = x} (similarly
for CB). Note that this method does not necessarily result in an exhaustive search as it is not clear
whether we can select G up to EA-equivalence.

For each canonical class of LE-automorphisms, before starting the randomized search, we first
check whether the deterministic search terminates in short time (i.e., a few minutes to hours). If
this is the case, we do not invoke the randomized search.

Results for n = 7 The only APN functions found are those which are EA-equivalent to univariate
polynomials with coefficients in F2. Quadratic APN polynomials with coefficients in F2 have already
been classified for n = 7, see [YKBL20].

Results for n = 8 To the best of our knowledge, by the time of submission of this manuscript in
December 2020 and excluding our results, there are 8,192 known instances of 8-bit APN functions,
i.e., the 23 instances listed in [EP09], the 8,157 instances constructed by the QAM method [YWL13,
YWL14], the 10 instances presented in [WTG13], and the two instances from the Taniguchi fam-
ily [Tan19]. With our approach, we find 12,733 new instances of quadratic APN functions. In
particular, we find quadratic APN functions within 9 different classes of LE-automorphisms (see
Table 1). For each canonical class of LE-automorphisms that could not be directly excluded by
Lemma 4 or Lemma 5, we performed the search for a few CPU days at most.4

The extended Walsh spectra of all of those 12,733 new instances belong to one of the six spectra
W0, . . . ,W5 listed below. By a : m, we indicate that the value a occurs with multiplicity m in

4Note that for a lot of classes, the search terminates immediately without solutions.

12

the multiset. APN functions in dimension n = 8 having W0,W1, or W2 as their extended Walsh
spectrum are already known. There was no previously-known APN function with extended Walsh
spectrum W3,W4, or W5.

W0 = {0 : 16320, 16 : 43520, 32 : 5440} (classical spectrum)

W1 = {0 : 15600, 16 : 44544, 32 : 5120, 64 : 16}

W2 = {0 : 14880, 16 : 45568, 32 : 4800, 64 : 32}

W3 = {0 : 14160, 16 : 46592, 32 : 4480, 64 : 48} (new)

W4 = {0 : 13440, 16 : 47616, 32 : 4160, 64 : 64} (new)

W5 = {0 : 12540, 16 : 48640, 32 : 4096, 128 : 4} (new)

Certainly, W5 is the most interesting extended Walsh spectrum since it corresponds to 8-
bit functions with linearity 27 and we found four such instances of quadratic APN functions.
Whether quadratic n-bit APN functions with linearity 2n−1 exist was mentioned as an open prob-
lem in [Car18]. Before now, besides the trivial cases in dimension n ≤ 4, we only knew one such
instance in dimension n = 6, see [EP09].

Table 1: For all class indices (no.) in dimension 8 for which we find solutions, this table gives
a lower bound on the number of distinct EA-equivalence classes of quadratic APN functions that
admit the particular LE-automorphism, separated by their extended Walsh spectra. The numbers
in parentheses indicate the number of instances that are not contained in the previously known
8,192 instances of APN functions.

no. W0 W1 W2 W3 W4 W5

1 1 (0)
2 1 (0)
21 9 (9)
31 7 (4) 1 (1) 2 (2)
38 3 (0)
51 24 (20)
55 9,093 (9,090) 3,065 (3,065) 299 (297) 146 (146) 25 (25) 4 (4)
56 103 (79) 2 (2) 1 (1)
113 26 (0)

In Class 1 (up to a change of basis), the matrix A corresponds to multiplication by a non-zero
field element α ∈ F2n of multiplicative order 17 and the matrix B corresponds to multiplication by
α3. Thus, as a solution, we find the APN function x 7→ x3. Similarly, in Class 2, the matrix A
corresponds to multiplication by a non-zero field element α ∈ F2n of multiplicative order 17 and the
matrix B corresponds to multiplication by α9. Therefore, as a solution, we find the APN function
x 7→ x9.

Class 56 corresponds to those functions F whose univariate representation only contains coeffi-
cients in the subfield F24 .

Let ζ3 ∈ F
∗
28 \ {1} be a third root of unity. Class 113 corresponds to those functions F for which

F (x) = F (ζ3x). Class 51 corresponds to the linear self-equivalence where A is the multiplication by

13

ζ3 and B is similar to the block diagonal matrix diag(I2,Comp(X3 +1),Comp(X3 + 1)) and Class
55 corresponds to the linear self-equivalence where A is the multiplication by ζ3 and B is similar to
the block-diagonal matrix diag(I5,Comp(X3+1)). Note that in both cases, B does not correspond

to multiplication by a finite field element or to a linear mapping of the form x 7→ x2i .
Let ζ5 ∈ F

∗
28 \ {1} be a fifth root of unity. Class 38 corresponds to those functions F for which

ζ5(F (x)) = F (ζ5x). Class 31 corresponds to the linear self-equivalence where A is the multiplication
by ζ5 and B is similar to the block-diagonal matrix diag(I3,Comp(X5 + 1)). Again, B does not

correspond to multiplication by a finite field element or to a linear mapping of the form x 7→ x2i .
Class 21 corresponds to the linear self-equivalence given by A = B = diag(I1,Comp(X7 + 1)).

Results for n = 9 To the best of our knowledge, by the time of submission, the only known
APN instances for n = 9 either correspond to polynomials with coefficients in F2 [YKBL20], to
the (generalized) isotopic shift construction [BCC+20, BCC+21], or to the infinite families given
in [BCL09a, BCL09b]. The only APN permutations in dimension nine known so far are CCZ-
equivalent to monomial functions. We applied our search for n = 9 and found 35 new APN
instances, two of them being permutations. Up to linear-equivalence, those two instances of APN
permutations F1, F2 admit a linear self-equivalence of the form Fi(u

5x) = uFi(x), where u ∈ F
∗
23 .

Functions fulfilling this self-equivalence can be characterized by the property that their univari-
ate representation does not contain monomials xj with j 6= 3 mod 7. Interestingly, this property
is also fulfilled by the “Kim mapping”, i.e., the function

K : F26 → F26 , x 7→ x3 + x10 + gx24,

where g is an element in F
∗
26 with minimal polynomial X6 + X4 + X3 + X + 1 ∈ F2[X]. It was

shown in [BDMW10] that K is CCZ-equivalent to an APN permutation.

Results for n = 10 To the best of our knowledge, by the time of submission, the only known APN
instances for n = 10 are either monomial functions or those that come from the infinite families
given in [BC08], [BCL09a], [Tan19], and [BHK20] (see the instances 10.1–10.17 in the list available at
https://boolean.h.uib.no/mediawiki/index.php/CCZ-inequivalent_representatives_from_

the_known_APN_families_for_dimensions_up_to_11).5 We applied our approach for n = 10 and
found 5 APN instances that are CCZ-inequivalent to the known 17 instances that come from infinite
families.

The look-up tables of all of the new APN instances that we found in dimension n ∈ {8, 9, 10}
are available in [BL21].

5 Further APN Instances from the Switching Construction

In [EP09], the authors presented the switching construction which potentially allows to generate
CCZ-inequivalent APN functions from a given APN function by replacing one of its components.
Using this method, they found the only known APN instance that is not CCZ-equivalent to a
monomial function or to a quadratic function.

5accessed October 6, 2021. As noted in the disclaimer, not all instances of the family given in [BCC+20] could
have been checked. Therefore, it could be possible that our instances are coming from that family.

14

https://boolean.h.uib.no/mediawiki/index.php/CCZ-inequivalent_representatives_from_the_known_APN_families_for_dimensions_up_to_11
https://boolean.h.uib.no/mediawiki/index.php/CCZ-inequivalent_representatives_from_the_known_APN_families_for_dimensions_up_to_11

Definition 3. Two functions F,G : Fn
2 → F

n
2 are said to be switching neighbours if there exists

a Boolean function f : Fn
2 → F2 and a non-zero vector v ∈ F

n
2 such that, for all x ∈ F

n
2 , we have

G(x) = F (x) + vf(x).

It has been shown in [EP09, Theorem 3] that, if F : Fn
2 → F

n
2 is an APN function, all APN

functions that are switching neighbours of F can be found by simple linear algebra. Indeed, for a
non-zero vector v ∈ F

n
2 , to find all functions f : Fn

2 → F2 such that F + vf is an APN function, one
can collect all tuples (x, y, x+ y, a), x, y, a ∈ F

n
2 for which F (x) + F (x + a) + F (y) + F (y + a) = v

holds and for each such tuple include the linear equation

fx + fx+a + fy + fy+a = 0

to the system to solve, where the unknowns are fz ∈ F2 for z ∈ F
n
2 . Any solution (fz)z∈Fn

2
of this

linear system corresponds to a function f with f(z) = fz, z ∈ F
n
2 such that F + vf is APN.

We applied this method to all of the known (by the time of submission of this manuscript) and
new APN instances for n = 7 and n = 8. For n = 8, we found 188 new APN instances in this way.
All of those functions are quadratic. The look-up tables of those 188 functions are also available in
the dataset [BL21].

6 Conclusion

We performed a recursive search for quadratic APN functions in small dimension and we have
shown that quadratic APN functions with linearity 2n−1 exist for the case of n = 8. Further,
we found two previously unknown APN permutations in dimension n = 9. An open question is
whether APN functions with linearity 2n−1 also exist in any even dimension n > 8. To answer this
question, it would be interesting to generalize one of the four eight-bit APN functions with high
linearity presented in this work to an infinite family. Another question is whether the list of known
extended Walsh spectra of quadratic APN functions in dimension n = 8 is complete. Finally, the
problem of classifying the new APN permutations in dimension n = 9 into infinite families remains
open. In this direction, it would be interesting to analyze similarities between the Kim function
and the two new APN permutations.

Acknowledgment

We thank the associate editor and the anonymous reviewers for their detailed and helpful comments.
We further thank Léo Perrin for pointing us to the idea of using the ortho-derivative for checking
EA-equivalence of our found functions.

References

[Ars18] R. Arshad. Contributions to the theory of almost perfect nonlinear functions. PhD
thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2018.

[BBL21] C. Beierle, M. Brinkmann, and G. Leander. Linearly self-equivalent APN permutations
in small dimension. IEEE Trans. Inf. Theory, 67(7):4863–4875, 2021.

15

[BC08] L. Budaghyan and C. Carlet. Classes of quadratic APN trinomials and hexanomials
and related structures. IEEE Trans. Inf. Theory, 54(5):2354–2357, 2008.

[BCC+20] L. Budaghyan, M. Calderini, C. Carlet, R. S. Coulter, and I. Villa. Constructing APN
functions through isotopic shifts. IEEE Trans. Inf. Theory, 66(8):5299–5309, 2020.

[BCC+21] L. Budaghyan, M. Calderini, C. Carlet, R. S. Coulter, and I. Villa. Generalized isotopic
shift construction for APN functions. Des. Codes Cryptogr., 89(1):19–32, 2021.

[BCL08] L. Budaghyan, C. Carlet, and G. Leander. Two classes of quadratic APN binomials
inequivalent to power functions. IEEE Trans. Inf. Theory, 54(9):4218–4229, 2008.

[BCL09a] L. Budaghyan, C. Carlet, and G. Leander. Constructing new APN functions from
known ones. Finite Fields Their Appl., 15(2):150–159, 2009.

[BCL09b] L. Budaghyan, C. Carlet, and G. Leander. On a construction of quadratic apn func-
tions. In 2009 IEEE Information Theory Workshop, pages 374–378. IEEE, 2009.

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997.

[BCP06] L. Budaghyan, C. Carlet, and A. Pott. New classes of almost bent and almost perfect
nonlinear polynomials. IEEE Trans. Information Theory, 52(3):1141–1152, 2006.

[BCV20] L. Budaghyan, M. Calderini, and I. Villa. On equivalence between known families of
quadratic APN functions. Finite Fields Their Appl., 66:101704, 2020.

[BDMW10] K. A. Browning, J. F. Dillon, M. T. McQuistan, and A. J. Wolfe. An APN permutation
in dimension six. Finite Fields: theory and applications, 518:33–42, 2010.

[BHK20] L. Budaghyan, T. Helleseth, and N. Kaleyski. A new family of APN quadrinomials.
IEEE Trans. Inf. Theory, 66(11):7081–7087, 2020.

[BL08] M. Brinkmann and G. Leander. On the classification of APN functions up to dimension
five. Des. Codes Cryptogr., 49(1-3):273–288, 2008.

[BL21] C. Beierle and G. Leander. New instances of quadratic apn functions in small dimen-
sion. Dataset, Version 2.1, 2021. DOI: 10.5281/zenodo.4738942.

[BS91] E. Biham and A. Shamir. Differential cryptanalysis of des-like cryptosystems. J.
Cryptology, 4(1):3–72, 1991.

[Car18] C. Carlet. Characterizations of the differential uniformity of vectorial functions by the
Walsh transform. IEEE Trans. Inf. Theory, 64(9):6443–6453, 2018.

[Car20] C. Carlet. Bounds on the nonlinearity of differentially uniform functions by means
of their image set size, and on their distance to affine functions. Cryptology ePrint
Archive, Report 2020/1529, 2020. https://eprint.iacr.org/2020/1529.

[Car21] C. Carlet. Boolean Functions for Cryptography and Coding Theory. Cambridge Uni-
versity Press, 2021.

16

https://eprint.iacr.org/2020/1529

[cbe] cbe90. cbe90/quadratic apn: Tree Search for Quadratic APN Functions v1.0. Software,
Zenodo, 2020. DOI: 10.5281/zenodo.4305864.

[CCP21] A. Canteaut, A. Couvreur, and L. Perrin. Recovering or testing extended-affine equiv-
alence. CoRR, abs/2103.00078, 2021.

[CCZ98] C. Carlet, P. Charpin, and V. Zinoviev. Codes, bent functions and permutations
suitable for des-like cryptosystems. Des. Codes Cryptogr., 15(2):125–156, 1998.

[CHP17] C. Carlet, A. Heuser, and S. Picek. Trade-offs for s-boxes: Cryptographic properties
and side-channel resilience. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi,
editors, Applied Cryptography and Network Security - 15th International Conference,
ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings, volume 10355 of Lecture
Notes in Computer Science, pages 393–414. Springer, 2017.

[CP20] A. Canteaut and L. Perrin. How to take a function apart with SboxU. The 5th
International Workshop on Boolean Functions and their Applications (BFA), invited
talk, 2020.

[DF04] D. S. Dummit and R. M. Foote. Abstract algebra. John Wiley and Sons, Inc., 2004.

[EP09] Y. Edel and A. Pott. A new almost perfect nonlinear function which is not quadratic.
Adv. Math. Commun., 3(1):59–81, 2009.

[KI20a] K. Kalgin and V. Idrisova. The classification of quadratic apn functions in 7 vari-
ables. Cryptology ePrint Archive, Report 2020/1515, 2020. https://eprint.iacr.

org/2020/1515.

[KI20b] K. Kalgin and V. Idrisova. On secondary and cyclic approaches to search for quadratic
apn functions. The 11th SEquences and Their Applications (SETA), 2020.

[Lan12] P. Langevin. Classification of APN cubics in dimension 6 over GF(2). http://

langevin.univ-tln.fr/project/apn-6/apn-6.html, 2012. accessed October 6,
2021.

[Mat93] M. Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor, Ad-
vances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of
of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, volume
765 of Lecture Notes in Computer Science, pages 386–397. Springer, 1993.

[NK92] K. Nyberg and L. R. Knudsen. Provable security against differential cryptanalysis.
In Ernest F. Brickell, editor, Advances in Cryptology - CRYPTO ’92, 12th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 16-20,
1992, Proceedings, volume 740 of Lecture Notes in Computer Science, pages 566–574.
Springer, 1992.

[Per17] L. Perrin. sboxU. GitHub repository, 2017. Availabe via https://github.com/lpp-

crypto/sboxU.

17

https://eprint.iacr.org/2020/1515
https://eprint.iacr.org/2020/1515
http://langevin.univ-tln.fr/project/apn-6/apn-6.html
http://langevin.univ-tln.fr/project/apn-6/apn-6.html
https://github.com/lpp-crypto/sboxU
https://github.com/lpp-crypto/sboxU

[SZZ94] J. Seberry, X. M. Zhang, and Y. Zheng. Relationships among nonlinear criteria (ex-
tended abstract). In Alfredo De Santis, editor, Advances in Cryptology - EUROCRYPT
’94, Workshop on the Theory and Application of Cryptographic Techniques, Perugia,
Italy, May 9-12, 1994, Proceedings, volume 950 of Lecture Notes in Computer Science,
pages 376–388. Springer, 1994.

[Tan19] H. Taniguchi. On some quadratic APN functions. Des. Codes Cryptogr., 87(9):1973–
1983, 2019.

[WTG13] G. Weng, Y. Tan, and G. Gong. On quadratic almost perfect nonlinear functions and
their related algebraic object. International Workshop on Coding and Cryptography
(WCC), 2013.

[YKBL20] Y. Yu, N. Kaleyski, L. Budaghyan, and Y. Li. Classification of quadratic apn functions
with coefficients in F2 for dimensions up to 9. Finite Fields and Their Applications,
68:101733, 2020.

[Yos12] S. Yoshiara. Equivalences of quadratic apn functions. J. Algebr. Comb., 35(3):461–475,
2012.

[Yos16] S. Yoshiara. Equivalences of power apn functions with power or quadratic apn func-
tions. J. Algebr. Comb., 44(3):561–585, 2016.

[YP21] Y. Yu and L. Perrin. Constructing more quadratic apn functions with the qam method.
The 6th International Workshop on Boolean Functions and their Applications (BFA),
2021.

[YWL13] Y. Yu, M. Wang, and Y. Li. A matrix approach for constructing quadratic APN
functions. Cryptology ePrint Archive, Report 2013/007, 2013. https://eprint.iacr.
org/2013/007.

[YWL14] Y. Yu, M. Wang, and Y. Li. A matrix approach for constructing quadratic APN
functions. Des. Codes Cryptogr., 73(2):587–600, 2014.

18

https://eprint.iacr.org/2013/007
https://eprint.iacr.org/2013/007

	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Representations of Vectorial Boolean Functions
	2.2 Equivalence Relations of Vectorial Boolean Functions

	3 A Recursive Tree Search for Quadratic APN Functions
	3.1 APN Check
	3.2 Algebraic Degree Check
	3.3 EA-equivalence Check
	3.4 Results

	4 Considering LE-Automorphisms
	4.1 Canonical classes of LE-Automorphisms
	4.2 Finding quadratic APN functions in the canonical classes

	5 Further APN Instances from the Switching Construction
	6 Conclusion

