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Abstract. The comparison of multivariate population means is a central
task of statistical inference . While statistical theory provides a variety
of analysis tools, they usually do not protect individuals’ privacy. This
knowledge can create incentives for participants in a study to conceal
their true data (especially for outliers), which might result in a distorted
analysis. In this paper, we address this problem by developing a hypoth-
esis test for multivariate mean comparisons that guarantees differential
privacy to users. The test statistic is based on the popular Hotelling’s t2-
statistic, which has a natural interpretation in terms of the Mahalanobis
distance. In order to control the type-1-error, we present a bootstrap
algorithm under differential privacy that provably yields a reliable test
decision. In an empirical study, we demonstrate the applicability of this
approach.
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1 Introduction

Over the last decades, the availability of large databases has transformed statis-
tical practice. While data mining flourishes, users are concerned about increasing
transparency vis-à-vis third parties. To address this problem, new analysis tools
have been devised that balance precise inference with solid privacy guarantees.

In this context, statistical tests that operate under differential privacy (DP)
are of interest: Statistical tests are the standard tool to validate hypotheses
regarding data samples and to this day form the spine of most empirical sciences.
Performing tests under DP means determining general trends in the data, while
masking individual contribution. This makes it hard for adversaries to retrieve
unpublished, personal information from the published analysis.

Related Works: In recent years, hypothesis testing under DP has gained
increasing attention. In a seminal work [20] introduces a privatization method,
for a broad class of test statistics, that guarantees DP without impairing asymp-
totic performance. Other theoretical aspects such as optimal tests under DP are
considered in [3]. Besides such theoretical investigations, a number of privatized
tests have been devised to replace classical inference, where sensitive data is at
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stake. For example [11] and [17] consider privatizations of classical goodness of
fit tests for categorical data, tailored to applications in genetic research, where
privacy of study participants is paramount. In a closely related work, [22] use
privatized likelihood-ratio statistics to validate various assumptions for tabular
data. Besides, [19] propose a method for privatizations in small sample regimes.

A cornerstone of statistical analysis is the study of population means and
accordingly this subject has attracted particular attention. For example, [6]
develop a private t-test to compare population means under local differential
privacy, while [16] consider the multivariate case in the global setting. [12] and
[7] construct private confidence intervals for the mean (which is equivalent to
the one-sample t-test) under global DP and [21] suggests a differentially private
ANOVA. Moreover, [4] present privatizations for a number of non-parametric
tests (such as Wilcoxon signed-rank tests) and [10] devise general confidence
intervals for exponential families.

A key problem of statistical inference under DP consists in the fact that
privatization inflates the variance of the test statistics. If this is not taken into
account properly, it can destabilize subsequent analysis and lead to the “dis-
covery” of spurious effects. To address these problems, recent works (such as
[11] and [10]) have employed resampling procedures that explicitly incorporate
the effects of privatization and are therefore more reliable than tests based on
standard, asymptotic theory.

Our Contributions: In this work, we present a test for multivariate mean com-
parisons under pure-DP, based on the popular Hotelling’s t2-statistic. We retrieve
the effect that asymptotic test decisions work under DP, as long as privatizations
are weak, whereas for strong privatizations, they yield distorted results (see Sect.
4 for details). As a remedy, we consider a parametric bootstrap that cuts false
rejections and is provably consistent for increasing sample size. This method can
be extended to other testing problems, is easy to implement (even for non-expert
users) and can be efficiently automatized as part of larger data disseminating struc-
tures. We demonstrate the efficacy of our approach, even for higher dimensions and
strong privatizations, in a simulation study. The proofs of all mathematical results
are deferred to the Appendix. The work most closely related to our paper is [16],
who consider Hotelling’s t2−statistic for approximate DP and propose a test based
on a (heuristic) resampling strategy. In contrast to this paper, we focus on pure-
DP, employ a different privatization mechanism and a parametric bootstrap test,
for which we provide a rigorous proof of its validity (see Sect. 3.2).

2 Mathematical Background

In this section, we provide the mathematical context for private mean compar-
isons, beginning with a general introduction into two sample tests. Subsequently,
we discuss Hotelling’s t2-test, which is a standard tool to assess mean deviations.
Finally, we define the notion of differential privacy and consider key properties,
such as stability under post-processing. Readers familiar with any of these topics
can skip the respective section.
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2.1 Statistical Tests for Two Samples

In this work, we are interested in testing statistical hypotheses regarding the
distribution of two data samples (of random vectors) X1, ...,Xn1 and Y1, ..., Yn2 .

Statistical tests are decision rules that select one out of two rivaling hypothe-
ses H0 and H1, where H0 is referred to as the “null hypothesis” (default belief)
and H1 as the “alternative”. To make this decision, a statistical test creates a
summary statistic S := S(X1, ...,Xn1 , Y1, ..., Yn2) from the data and based on
S determines whether to keep H0, or to switch to H1. Typically, the decision
to reject H0 in favor of H1 is made, if S surpasses a certain threshold q, above
which, the value of S seems at odds with H0. In this situation, the threshold q
may or may not depend on the data samples.

Given the randomness in statistical data, there is always a risk of making
the wrong decision. Hypothesis-alternative-pairs (H0,H1) are usually formulated
such that mistakenly keeping H0 inflicts only minor costs on the user, while
wrongly switching to H1 produces major ones. In this spirit, tests are constructed
to keep the risk of false rejection below a predetermined level α, i.e. PH0(S >
q) ≤ α, which is referred to as the nominal level (or type-1-error). Commonly, the
nominal level is chosen as α ∈ {0.1, 0.05, 0.01}. Notice that α can be regarded as
an input parameter of the threshold q = q(α). Even though sometimes an exact
nominal level can be guaranteed, in practice most tests only satisfy an asymptotic
nominal level, i.e. lim supn1,n2→∞ PH0(S > q(α)) ≤ α. Besides controlling the
type-1-error, a reasonable test has to be consistent, i.e. it has to reject H0 if
H1 holds and sufficient data is available. In terms of the summary statistic S,
this means that S increases for larger data samples and transgresses q(α) with
growing probability limn1,n2→∞ PH1(S > q(α)) = 1.

2.2 Hotelling’s t2-Test

We now consider a specific test for the comparison of multivariate means: Sup-
pose that two independent samples of random vectors X1, ...,Xn1 and Y1, ..., Yn2

are given, both stemming from the d-dimensional cube [−m,m]d, where m > 0
and d ∈ N. Furthermore, we assume that both samples consist of independent
identically distributed (i.i.d) observations. Conceptually, each vector corresponds
to the data of one individual and we want to use these to test the ”hypothesis-
alternative”-pair

H0 : μX = μY , H1 : μX �= μY , (2.1)

where μX := E[X1] ∈ R
d, μY := E[Y1] ∈ R

d denote the respective expectations.
A standard way to test (2.1) is provided by Hotelling’s t2-test, which is based
on the test statistic

t2 =
n1n2

n1 + n2
(X̄ − Ȳ )T Σ̂−1(X̄ − Ȳ ) , (2.2)
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where X̄ = 1
n1

∑n1
i=1 Xi and Ȳ = 1

n2

∑n2
i=1 Yi denote the respective sample means

and the pooled sample covariance is given by

Σ̂ =
(n1 − 1)Σ̂X + (n2 − 1)Σ̂Y

n1 + n2 − 2
.

Here, Σ̂X = 1
n1−1

∑n1
i=1(Xi−μX)(Xi−μX)� and Σ̂Y = 1

n2−1

∑n2
i=1(Yi−μY )(Yi−

μY )� denote the sample covariance matrices of X1 and Y1, respectively. Assum-
ing that ΣX = ΣY (a standard condition for Hotelling’s t2-test) Σ̂ is a consistent
estimator for the common covariance.

We briefly formulate a few observations regarding the t2-statistic:

i) In the simple case of d = 1, the t2-statistic collapses to the (squared) statistic
of the better-known two sample t-test.

ii) We can rewrite

t2 =
n1n2

n1 + n2

∥
∥
∥Σ̂−1/2(X̄ − Ȳ )

∥
∥
∥
2

2
.

As a consequence, the t2-statistic is non-negative and assumes high values if
X̄ − Ȳ ≈ μX − μY is large in the norm.

iii) The t2-statistic is closely related to the Mahalanobis distance, which is a
standard measure for multivariate mean comparisons (see [5]).

In order to formulate a statistical test based on the t2-statistic, we consider
its large sample behavior. Under the hypothesis

√
n1n2/(n1 + n2)Σ̂−1/2(X̄ − Ȳ )

follows (approximately) a d-dimensional, standard normal distribution, such that
its squared norm (that is the t2-statistic) is approximately χ2

d distributed (chi-
squared with d degrees of freedom). Now if q1−α denotes the upper α-quantile of
the χ2

d distribution, the test decision ”reject H0 if t2 > q1−α”, yields a consistent,
asymptotic level α-test for any α ∈ (0, 1). For details on Hotelling’s t2-test we
refer to [15].

2.3 Differential Privacy

Differential privacy (DP) has over the last decade become the de facto gold
standard in privacy assessment of data disseminating procedures (see e.g. [9,14]
or [18]). Intuitively, DP describes the difficulty of inferring individual inputs from
the releases of a randomized algorithm. This notion is well suited to a statistical
framework, where a trusted institution, like a hospital, publishes results of a
study (algorithmic releases), but candidates would prefer to conceal participation
(individual inputs). To make this notion mathematically rigorous, we consider
databases x,x′ ∈ Dn, where D is some set, and call them adjacent or neighboring,
if they differ in only one entry.

Definition 2.3.1. A randomized algorithm A : Dn → R is called ε-differentially
private for some ε > 0, if for any measurable event E ⊂ R and any adjacent
x,x′

P(A(x) ∈ E) ≤ eε
P(A(x′) ∈ E) (2.3)

holds.
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Condition (2.3) requires that the distribution of A(x) does not change too
much, if one entry of x is exchanged (where small ε correspond to less change
and thus stronger privacy guarantees). In statistical applications, private algo-
rithms are usually assembled modularly: They take as building blocks some
well-known private algorithms (e.g., the Laplace or Exponential Mechanism),
use them to privatize key variables (empirical mean, variance etc.) and aggre-
gate the privatized statistic. This approach is justified by two stability properties
of DP: Firstly, privacy preservation under post-processing, which ensures that
if A satisfies ε-DP, so does any measurable transformation h(A). Secondly, the
composition theorem that maintains at least

∑k
i=1 εi-DP of a vector (A1, ..., Ak)

of algorithms, where Ai are independent εi-differentially private algorithms. In
the next section, we employ such a modular privatization of the Hotelling’s t2-
statistic for private mean comparison. We conclude our discussion on privacy
with a small remark on the role of the “trusted curator”.

Remark 2.3.1. Discussions of (global) DP usually rely on the existence of some
“trusted curator” who aggregates and privatizes data before publication. In real-
ity this role could be filled by an automatized, cryptographic protocol (secure
multi-party computation), which calculates and privatizes the statistic before
publication without any party having access to the full data set (for details
see [2,13]). This process has the positive side effect that it prevents a curator
from re-privatizing if an output seems too outlandish (overturning privacy in the
process).

3 Privatized Mean Comparison

In this section, we introduce a privatized version tDP of Hotelling’s t2-statistic.
Analogous to the traditional t2-statistic, the rejection rule “tDP > q1−α” yields
in principle a consistent, asymptotic level-α test for H0 (see Theorem 3.1.2).
However, empirical rejection rates often exceed the prescribed nominal level α
for a combination of low sample sizes and high privatization (see Example B).
As a consequence, we devise a parametric bootstrap for a data-driven rejection
rule. We validate this approach theoretically (Theorem 3.2.1) and demonstrate
empirically a good approximation of the nominal level in Sect. 4.

3.1 Privatization of the t2-Statistic

We begin this section by formulating the Assumptions of the following, theoret-
ical results:

Assumption 3.1.1. (1) The samples X1, . . . , Xn1 and Y1, . . . , Yn2 are inde-
pendent, each consisting of i.i.d. observations and are both supported on the
cube [−m,m]d, for some known m > 0.

(2) The covariance matrices

ΣX := E[(X1 − μX)(X1 − μX)T ]; ΣY := E[(Y1 − μY )(Y1 − μY )T ] .

are identical and invertible.
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(3) The sample sizes n1, n2 are of the same order. That is with n := n1 + n2 we
have

lim
n→∞

ni

n
= ξi ∈ (0, 1) i = 1, 2.

We briefly comment on the Assumptions made.

Remark 3.1.1. (1): The assumption of independent observations is common in
the literature on machine learning and justified in many instances. Boundedness
of the data -with some known bound- is an important precondition for standard
methods of privatization (such as the below discussed Laplace Mechanism or the
ED algorithm). Generalization are usually possible (see e.g., [20]) but lie beyond
the scope of this paper.

(2): Invertibility of the covariance matrices is necessary to define the Maha-
lanobis distance. If this assumption is violated, either using another distance mea-
sure (defining a different test) or a prior reduction of dimensions is advisable.

Equality of the matrices ΣX = ΣY is assumed for ease of presentation, but
can be dropped, if the pooled estimate Σ̂ is replaced by the re-weighted version

Σ̂�= :=
n2Σ̂X + n1Σ̂Y

n1 + n2
.

(3): We assume that asymptotically the size of each group is non-negligible. This
assumption is standard in the analysis of two sample tests and implies that the
noise in the estimates of both groups is of equal magnitude. If this was not the
case and e.g. ξ1 = 0 (in practice n1 << n2) it is more appropriate to model the
situation as a one-sample test (as μY is basically known).

Recall the definition of Hotelling’s t2-statistic in (2.2). By construction, we
can express the t2-statistic as a deterministic function of four data dependent
entities: The sample means X̄, Ȳ and the sample covariance matrices Σ̂X , Σ̂Y .
According to the composition- and post-processing theorem of DP (see Sect. 2.3)
we can privatize the t2-statistic by privatizing each of these inputs.

For the privatization of the sample means, we use the popular Laplace Mech-
anism (see [8], p.32): It is well-known that X̄DP := X̄ + Z and Ȳ DP := Ȳ + Z ′

fulfill ε/4-DP, if Z = (Z1, . . . , Zd)T and Z ′ = (Z ′
1, . . . , Z

′
d)

T consist of inde-
pendent random variables Zk ∼ Lap(0, 2md

n1(ε/4) ) and Z ′
k ∼ Lap(0, 2md

n2(ε/4) ) for
k = 1, ..., d.

For the privatization of the covariance matrices Σ̂X , Σ̂Y we employ the
ED Mechanism, specified in the Appendix (which is a simple adaption of the
Algorithm proposed in [1]). We can thus define differentially private estimates
Σ̂DP

X := ED(Σ̂X , ε/4) and Σ̂DP
Y := ED(Σ̂Y , ε/4), both satisfying ε/4-DP. We

point out that the outputs of ED are always covariance matrices (positive semi-
definite and symmetric). Therewith, we can define a privatized pooled sample
covariance matrix as

Σ̂DP :=
(n1 − 1)Σ̂DP

X + (n2 − 1)Σ̂DP
Y

n1 + n2 − 2
+ diag(c1 + c2) ,
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Algorithm 1. Privatized statistics (PS)

Input: means: X̄, Ȳ , covariance matrices: Σ̂X , Σ̂Y ,
privacy level: ε

Output: X̄DP , Ȳ DP , Σ̂DP
X , Σ̂DP

Y

1: function PS(X̄, Ȳ , Σ̂X , Σ̂Y , ε)
2: for i = 1, . . . , d do
3: Generate Zi ∼ Lap(0, 2md

n1ε/4
)

4: Generate Z′
i ∼ Lap(0, 2md

n2ε/4
)

5: end for
6: Set X̄DP := X̄ + (Z1, ..., Zd), Ȳ DP := Ȳ + (Z′

1, ..., Z
′
d)

7: Set Σ̂DP
X = ED(Σ̂X , ε/4), Σ̂DP

Y = ED(Σ̂Y , ε/4)
8: return X̄DP , Ȳ DP , Σ̂DP

X , Σ̂DP
Y

9: end function

where c1 := 2( 2md
n1(ε/4) )

2, c2 := 2( 2md
n2(ε/4) )

2 are corrections accounting for variance
increase, due to the mean privatizations. Finally, we can formulate a privatized
version of the Hotelling’s t2-statistic as follows:

tDP =
n1n2

n1 + n2
(X̄DP − Ȳ DP )T [Σ̂DP ]−1(X̄DP − Ȳ DP ) (3.1)

=
n1n2

n1 + n2

∥
∥
∥[Σ̂DP ]−1/2(X̄DP − Ȳ DP )

∥
∥
∥
2

2

Theorem 3.1.1. The privatized t2-statistic tDP is ε-differentially private.

In the one dimensional case, the covariance privatization by ED boils down
to an application of the Laplace Mechanism and tDP has a simple closed form.

Example 3.1.1. (Privatization in d = 1) Assume that d = 1. Then the data
X1, . . . , Xn1 and Y1, . . . , Yn2 originates from the interval [−m,m] and we can
write the privatized test statistic as

tDP =
n1n2

n1 + n2

(X̄DP − Ȳ DP )2

(σDP )2
,

where

(σDP )2 :=
(n1 − 1)(|σ̂X + L1|) + (n2 − 1)(|σ̂Y + L2|)

n1 + n2 − 2

+ 2
( 2m

n1(ε/4)

)2

+ 2
( 2m

n2(ε/4)

)2

.

Here, L1 and L2 follow a centered Laplace distribution, with variance specified
in the Appendix. Note that the privatization of σ̂2

X and σ̂2
Y is conforming with

the privatization of Algorithm ED (see Appendix), since the first (and only)
eigenvalue is the sample variance itself, while privatization of eigenvectors is a
non-issue for d = 1.
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As for the non-privatized t2-statistic, we can prove under H0 that tDP approxi-
mates a χ2

d-distribution as n1, n2 → ∞. This means that (at least for large sample
sizes) the perturbations introduced by the Laplace noise and the ED-algorithm
are negligible.

Algorithm 2. Privatized Hotelling’s t2-test (PHT)

Input: means: X̄DP , Ȳ DP , covariance matrices: Σ̂DP
X , Σ̂DP

Y , quantile: q

Output: choice ∈ {0, 1} coding for acceptation (0) or rejection (1) of H0

1: function PHT(X̄DP , Ȳ DP , Σ̂DP
X , Σ̂DP

Y , q)
2: Compute tDP (defined in 3.1)
3: Define choice = 0
4: if tDP > q then
5: Set choice = 1
6: end if
7: return choice
8: end function

Theorem 3.1.2. The decision rule “reject if

tDP > q1−α (3.2)

(Algorithm 2)” where q = q1−α is the (1 − α)-quantile of χ2
d distribution, yields

a consistent, asymptotic level-α test for the hypotheses (2.1).

Theorem 3.1.2 underpins the assertion that “asymptotically, privatizations
do not matter”. Yet in practice, privatizations can have a dramatic impact on
the (finite sample) performance of tests.

3.2 Bootstrap

In this section, we consider a modified rejection rule for H0, based on tDP , that
circumvents the problem of inflated type-1-error (see Example B). Privatizations
increase variance and therefore tDP is less strongly concentrated than t2, leading
to excessive transgressions of the threshold q1−α. Consequently, to guarantee an
accurate approximation of the nominal level, a different threshold is necessary.

Hypothetically, if we knew the true distribution of tDP under H0, we could
analytically calculate the exact α-quantile qexact

1−α and use the rejection rule
“tDP > qexact

1−α ”. Of course, in practice, these quantiles are not available, but
we can use a parametric bootstrap to approximate qexact

1−α by an empirical ver-
sion q∗

1−α calculated from the data. In Algorithm 3 we describe the systematic
derivation of q∗

1−α.
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Algorithm 3. Quantile Bootstrap (QB)

Input: Covariance matrices: Σ̂DP
X , Σ̂DP

Y , sample sizes: n1,n2, bootstrap iterations: B

Output: Empirical 1 − α quantile of tDP : q∗
1−α.

1: function QB(Σ̂DP
X , Σ̂DP

Y , n1,n2, B)
2: for i = 1, . . . , B do

3: Sample X̄∗ ∼ N (0,
Σ̂DP

X
n1

) and Ȳ ∗ ∼ N (0,
Σ̂DP

Y
n2

)
4: for k = 1, . . . , d do
5: Generate Zk ∼ Lap(0, 2md

n1(ε/4)
)

6: Generate Z′
k ∼ Lap(0, 2md

n2(ε/4)
)

7: end for
8: Define X̄DP∗ := X̄∗ + (Z1, ..., Zd)
9: Define Ȳ DP∗ := Ȳ ∗ + (Z′

1, ..., Z
′
d)

10: Define tDP
i

∗
:= n1n2

n1+n2

∥
∥
∥[Σ̂DP ]−1/2(X̄DP∗ − Ȳ DP∗)

∥
∥
∥

2

2
11: end for
12: Sort statistics in ascending order: (tDP

(1)

∗
, ..., tDP

(B)

∗
) = sort((tDP

1
∗
, ..., tDP

B
∗
))

13: Define q∗
1−α := tDP ∗

(�(1−α)B�)
14: return q∗

1−α

15: end function

Algorithm 3 creates B bootstrap versions tDP
1

∗
, ..., tDP

B
∗, that mimic the

behavior of tDP . So, e.g., X̄DP∗ (in tDP
i

∗) has a distribution close to that of
X̄DP (in tDP ), which, if centered, is approximately normal with covariance
matrix ΣX/n1. As a consequence of this parallel construction, the empirical
1 − α-quantile q∗

1−α is close to the true (1 − α)-quantile of the distribution of
tDP , at least if the number B of bootstrap replications is sufficiently large. In
practice, the choice of B depends on α (where small α require larger B), but
our simulations suggest that for a few hundred iterations the results are already
reasonable even for nominal levels as small as 1%.

Theorem 3.2.1. The decision rule “reject if

tDP > q∗
1−α (3.3)

(Algorithm 2)”, where q∗
1−α is chosen by Algorithm 3, yields a consistent, asymp-

totic level-α test in the sense that

lim
B→∞

lim
n1,n2→∞PH0(t

DP > q∗
1−α) = α,

(level α) and
lim

n1,n2→∞PH1(t
DP > q∗

1−α) = 1

(consistency).

4 Simulation

In this section we investigate the empirical properties of our methodology by
means of a small simulation study.
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Data Generation: In the following, the first sample X1, ...,Xn1 is drawn from the
uniform distribution on the d-dimensional cube [−√

3,
√

3]d, whereas the second
sample Y1, ..., Yn2 is uniformly drawn from the shifted cube [−√

3 + a/
√

d,
√

3 +
a/

√
d]d. Here, a ≥ 0 determines the mean difference of the two samples. In

particular a = 0 corresponds to the hypothesis μX = μY = (0, ..., 0)T , whereas
for a > 0, ‖μX − μY ‖2 = a. We also point out that both samples have the same
covariance matrix ΣX = ΣY = Idd×d. As a consequence, deviations in each
component of μX − μY have equal influence on the rejection probability.

Parameter Settings: In the following we discuss various settings: We consider
different group sizes n, between 102 and 105, privacy levels ε = 1/10, 1/2, 1, 5
and dimensions d = 1, 10, 30. The nominal level α is fixed at 5% and the number
of bootstrap samples is consistently B = 200. All below results are based on
1000 simulation runs.

Empirical Type-1-Error: We begin by studying the behavior of our test deci-
sions under the null hypothesis (a = 0). In Table 1 we report the empirical
rejection probabilities for the bootstrap test (3.3) (top) and the asymptotic test
(3.2) (bottom). The empirical findings confirm our theoretical results from the
previous Section.

On the one hand, we observe that the bootstrap test approximates the
nominal-level reasonably well (compare Theorem 3.2.1), even in scenarios with
small sample size and high dimensions. In contrast, the validity of the asymptotic
test (3.2) depends on the negligibility of privatization effects (see discussion of
Theorem 3.1.2). Consequently, it works best for large ε and large sample sizes.
However, for higher dimensions d, the asymptotic approach breaks down quickly,
in the face of more noise by privatizations and thus stronger digressions from
the limiting distribution.

Table 1. Empirical type-1-error

d =1 d =10 d =30

ε n1 = n2

102 103 104 105 102 103 104 105 102 103 104 105

test (3.3) 0.1 0.052 0.046 0.051 0.048 0.058 0.05 0.068 0.063 0.04 0.057 0.056 0.062

0.5 0.054 0.05 0.059 0.05 0.039 0.06 0.057 0.052 0.054 0.054 0.06 0.056

1 0.053 0.05 0.054 0.053 0.048 0.061 0.038 0.069 0.048 0.063 0.056 0.054

5 0.041 0.053 0.043 0.053 0.055 0.053 0.056 0.051 0.044 0.05 0.062 0.052

test (3.2) 0.1 0.738 0.676 0.328 0.093 1 1 1 1 1 1 1 1

0.5 0.4 0.154 0.055 0.058 1 1 1 0.891 1 1 1 1

1 0.24 0.063 0.057 0.044 1 1 0.993 0.428 1 1 1 1

5 0.054 0.047 0.045 0.039 0.990 0.933 0.181 0.062 1 1 0.999 0.301

Empirical Power: Next we consider the power of our test. Given the poor per-
formance of the asymptotic test (3.2) in higher dimensions (the key interest
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of this paper) we restrict our analysis to the bootstrap test (3.3) for the sake
of brevity. In the following, we consider the alternative for a = 1. Recall that
‖μX − μY ‖2 = a is independent of the dimension. However, we expect more
power in low dimensions due to weaker privatization. In Fig. 1, we display a
panel of empirical power curves, each graphic reflecting a different choice of the
privacy parameter (ε = 1/10, 1/2, 1, 5) and each curve corresponding to a dif-
ferent dimension (d = 1, 10, 30). The group size is reported in logarithmic scale
on the x-axis and the rejection probability on the y-axis. As might be expected,
low dimensions and weak privatizations (i.e., large ε) are directly associated
with a sharper increase of the power curves and smaller sample sizes to attain
high power. For instance, moving from ε = 1/2 (high privatization) to the less
demanding ε = 5 (low privatization) means that a power of 90% is attained with
group sizes that are about an order of magnitude smaller. Similarly, increasing
dimension translates into lower power: To attain for ε = 0.1 and d = 30, high
power requires samples of a few ten thousand observations (see Fig. 1(a)). Even
though such numbers are not in excess of those used in related studies (see e.g.
[6]) nor of those raised by large tech cooperations, this trend indicates that com-
paring means of even higher dimensional populations might require (private)
pre-processing to reduce dimensions.

Fig. 1. Simulated power of the bootstrap test (3.3) under a uniform alternative for
ε = 0.1, 0.5, 1, 5 and different group sizes.
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5 Conclusion

In this paper, we have considered a new way to test multidimensional mean
differences under the constraint of differential privacy. Our test employs a priva-
tized version of the popular Hotelling’s t2-statistic, together with a bootstraped
rejection rule. While strong privacy requirements always go hand in hand with
a loss in power, the test presented in this paper respects the nominal level α
with high precision, even for moderate sample sizes, high dimensions and strong
privatizations. The empirical advantages are underpinned by theoretical guaran-
tees for large samples. Given the easy implementation and reliable performance,
the test can be used as an automatized part of larger analytical structures.
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A Proofs

For the proofs, we refer to the arxiv version (see https://arxiv.org/abs/2110.
07996).

B Effects of Privatization - Example

In most instances, privatizing a test statistic has no influence on its asymptotic
behavior, s.t. rejection rules based on asymptotic quantiles remain theoretically
valid. However, empirical studies demonstrate, that in practice even moderate
privacy levels can lead to inflated type-1-errors – in our case because the quantiles
of the χ2

d-distribution do not provide good approximations for those of tDP .
To illustrate this effect we consider the case d = 1, discussed in Example

3.1.1 for samples of sizes n1 = n2 = 500, both of which drawn according to
the same density, f(t) ∝ exp(−2t2) on the interval [−1, 1]. We simulate the
quantile functions (inverse of the distribution function) of χ2

1 and tDP respec-
tively for privacy levels ε = 1, 4. Figure 2 indicates that for moderate privacy
guarantees (ε = 4) the distribution of tDP is close to that of the χ2

1, s.t. for
instance PH0(t

DP > q0.95) ≈ 6.8% (where again q1−α is the α quantile of the χ2
1-

distribution). This approximation seems reasonable, but it deteriorates quickly
for smaller ε. Indeed, for ε = 1 we observe that PH0(t

DP > q0.95) ≈ 18.9%, which
is a dramatic error. This effect is still more pronounced in higher dimensions and
much larger sample sizes are needed to mitigate it (for details see Table 1).

https://arxiv.org/abs/2110.07996
https://arxiv.org/abs/2110.07996
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Fig. 2. Simulated quantile functions for χ2
1 (red) and tDP (blue) for privacy levels ε = 4

(left) and ε = 1 (right)

Summarizing this discussion, we recommend to use Hotelling’s t2-test (3.2)
based on the privatized statistic tDP with the standard (asymptotic) quantiles
only in situations where sample sizes are large, the dimension is small and privati-
zations are weak. In all other cases, specifically for larger dimension and stronger
privatization, the quantiles have to be adapted to avoid inflated rejection errors
under the null hypothesis.

C Algorithms

In the following, we will state two algorithms which describe the covariance pri-
vatization. Here, Algorithm 5 ED is used for the privatization, while Algorithm
4 describes the eigenvector sampling process. In Algorithm 5 ED the privatiza-
tion budget is not supposed to be separated (for eigenvalues and eigenvectors)
in the case d = 1 (as eigenvector privatization is unnecessary for d = 1). For
more details, see [1].

Algorithm 4. Eigenvector sampling
Input: C̃ ∈ R

q×q, privacy parameter ε

Output: Eigenvector u.

1: function Sample(C̃,ε)
2: Define A := − ε

4
C̃ + ε

4
λ̂1Iq, where λ̂1 denotes the largest eigenvalue of C.

3: Define Ω = Iq + 2A/b, where b satisfies
∑q

i=1
1

b+2λi(A)
= 1.

4: Define M := exp(−(q − b)/2)(q/b)q/2 .
5: Set ANS = 0
6: while ANS = 0 do
7: Sample X ∼ Nq

(

0, Ω−1
)

and set u := z/ ‖z‖2.

8: With probability exp(−uT Au)

M(uT Ωu)q/2
ANS = 1

9: return u.
10: end while
11: end function
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Algorithm 5. Covariance estimation with algorithm ED
Input: Ĉ ∈ R

d×d, privacy parameter ε, sample size n

Output: Privatized covariance matrix Σ̂DP

1: Separate the privacy budget uniformly in d + 1 parts, i.e. each step ε
d+1

2: function ED(Ĉ,ε,n)

3: Initialize C1 := nĈ
dm2 , P1 := Id.

4: Privatize the eigenvalue vector by (λ̄1, . . . , λ̄d)T =
∣
∣
∣
∣
(λ̂1, . . . , λ̂d)T +

(

Lap
(

2
(ε/(d+1))

)

, . . . , Lap
(

2
(ε/(d+1))

))T
∣
∣
∣
∣
.

5: for i = 1, . . . , d − 1 do
6: Sample ūi ∈ Sd−i with ūi := Sample(Ĉ, ε

d+1
) and let v̄i := P T

i ūi.

7: Find an orthonormal basis Pi+1 ∈ R
(d−i)×d orthogonal to v̄1, . . . , v̄i.

8: Let Ci+1 := Pi+1ĈP T
i+1 ∈ R

(d−i)×(d−i).
9: end for

10: Sample ūd ∈ S0 proportional to fCd(u) = exp
(

( εi
4

)uT Cdu
)

and let v̄d := P T
d ūd.

11: CED :=
∑d

i=1 λ̄iv̄iv̄
T
i .

12: return Σ̂DP = 1
n
CED

13: end function
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