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We are delighted to include this article as a
tribute to the always inspiring work of Victor Guillemin.

Abstract. We give inductive conditions that characterize the Schu-

bert positions of subrepresentations of a general quiver representa-

tion. Our results generalize Belkale’s criterion for the intersection

of Schubert varieties in Grassmannians and refine Schofield’s char-

acterization of the dimension vectors of general subrepresentations.

This implies Horn type inequalities for the moment cone associ-

ated to the linear representation of the group G =
∏
xGL(nx)

associated to a quiver and a dimension vector n = (nx).

1. Introduction

Let Q = (Q0, Q1) be a quiver, where Q0 is the finite set of vertices
and Q1 the finite set of arrows. We use the notation a : x→ y for an

arrow a ∈ Q1 from x ∈ Q0 to y ∈ Q0. We allow Q to have cycles and

multiple arrows between two vertices. A dimension vector for Q is a

vector n = (nx)x∈Q0 of nonnegative integers.
To every family of vector spaces V = (Vx)x∈Q0 , we associate the

dimension vector dimV with components (dimV)x = dimVx. The
space of representations of the quiver Q on V is given by

HQ(V) :=
⊕

a:x→y∈Q1

Hom(Vx, Vy), (1.1)

whose elements are families v = (va)a∈Q1 of linearmaps va : Vx → Vy,
one for each arrowa : x→ y. TheLie groupGLQ(V) =

∏
x∈Q0 GL(Vx)

and its Lie algebra glQ(V) =
⊕
x∈Q0 gl(Vx) act naturally on V and

on HQ(V). For g = (gx)x∈Q0 ∈ GLQ(V) and X = (Xx)x∈Q0 ∈ glQ(V),
their actions on u = (ux)x∈Q0 ∈ V are given by gu := (gxux)x∈Q0 and
Xu := (Xxux)x∈Q0 , respectively, while their actions on v = (va)a∈Q1 ∈
HQ(V) are denoted by gvg−1 := (gyvag

−1
x )a : x→y∈Q1 and Xv− vX :=

(Xyva − vaXx)a : x→y∈Q1 , respectively.

We write S ⊆ V if S = (Sx)x∈Q0 is a family of subspaces Sx ⊆ Vx;
its dimension vector is called a subdimension vector for V, i.e., satisfies
dimSx 6 dimVx. The family S is called a subrepresentation of v ∈
HQ(V) if vaSx ⊆ Sy for every arrow a : x → y in Q1; we abbreviate

this condition by vS ⊆ S.
1
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Schofield [24] characterized (inductively) the subdimension vec-

tors α such that any v ∈ HQ(V) has a subrepresentation S with

dim S = α. We call such a dimension vector a Schofield subdimension
vector for V and denote this by α 6Q n, where dimV = n. We also

write α <Q n if in addition at least one of the inequalities αx 6 nx is
strict. As the notation suggests, these relations are transitive.

Consider

GrQ(α,V) :=
∏
x∈Q0

Gr(αx, Vx),

where Gr(αx, Vx) denotes the Grassmannian of subspaces of Vx of
dimension αx. The dimension of GrQ(α,V) is given by

∑
x∈Q0 αxβx,

where βx = dimVx − αx.
Given a representation v ∈ HQ(V) and a dimension vector α, we

define the corresponding quiver Grassmannian by

GrQ(α,V)v := {S ∈ GrQ(α) : vS ⊆ S}.

In this language, a Schofield subdimension vector is a subdimension

vectorα such that GrQ(α,V)v 6= ∅ for every representation v ∈ HQ(V).
In this case, the dimension of each irreducible component of the quiver

Grassmannian GrQ(α,V)v is, for generic v ∈ HQ(V), given by

〈α,β〉 :=
∑
x∈Q0

αxβx −
∑

a:x→y∈Q1

αxβy. (1.2)

Thus, the codimension ofGrQ(α,V)v inGrQ(α,V) is
∑
a:x→y∈Q1 αxβy.

1.1. Schubert varieties andQ-intersection. It is natural to study the

possible Schubert positions of quiver subrepresentations. For this

purpose, we introduce the notion of filtered dimension vector (partly

inspired by the augmented quivers of Derksen-Weyman).

Fix a family F = (Fx)x∈Q0 of (complete) filtrations, where each Fx
is a (complete) filtration on Vx. We call (V,F) a filtered dimension
vector (see §2). Let BQ(V,F) = (Bx)x∈Q0 denote the corresponding

Borel subgroup of GLQ(V), i.e., each Bx ⊆ GL(Vx) is the Borel

subgroup preserving the filtration Fx. Finally, let Ω = (Ωx)x∈Q0
be a Schubert variety in GrQ(α,V), i.e.,Ω is the closure of a BQ(V,F)-
orbit in GrQ(α,V). Then we say thatΩ is Q-intersecting (in V) if the

intersection

Ωv :=Ω ∩GrQ(α,V)v (1.3)

is nonempty for every v ∈ HQ(V). In other words,Ω isQ-intersecting

if every quiver representation on V has a subrepresentation in the

Schubert variety Ω. When Ω = GrQ(α,V) is the largest Schubert

variety, thenΩ is Q-intersecting if and only if α is a Schofield subdi-

mension vector. Thus, Q-intersection is a more refined notion. The
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main result of this article is an inductive family of necessary and

sufficient conditions forΩ to be Q-intersecting (Theorem 1.1 below).

An important example is theHorn quiverHs, which has s+1 vertices
and s arrows:

s+ 1

1 . . . s
(1.4)

Let 0 6 r 6 n, Vx = Cn, and αx = r for x = 1, . . . , s + 1. Then, a

Schubert varietyΩ ⊆ GrQ(α,V) is an (s+1)-tuple of Schubert varieties
Ω1, . . . ,Ωs,Ωs+1 in Gr(r, n). The condition thatΩ is Q-intersecting

is equivalent to the condition that the Schubert homology classes

[Ωx]
s+1
x=1 are intersecting (Example 2.5). Horn [14] suggested necessary

and sufficient conditions for Schubert varieties to intersect. The

validity of Horn’s criterion was established by Knutson-Tao [16] using

a combinatorial approach that established the saturation conjecture

for the Littlewood-Richardson coefficients. Derksen-Weyman [10]

gave an alternative proof using the theory of quiver representations,

which was further simplified by Crawley-Boevey-Geiss [9] (see §1.4

below). Finally, Belkale [2] gave a geometric proof of a strengthened

version of the Horn criterion and the saturation conjecture.

As in [2], our inductive criterion forΩ to beQ-intersecting is based

on a numerical quantity: the expected dimension of the intersection

variety Ωv defined in (1.3). Since the codimension of GrQ(α,V)v
in GrQ(α,V) is generically equal to

∑
a:x→y∈Q1 αxβy, the ‘expected

dimension’ of the intersection is given by

edimQ,F(Ω,V) := dimΩ−
∑

a : x→y∈Q1

αxβy.

It is easy to prove that if Ω is Q-intersecting then, for generic v,
the dimension of the intersection varietyΩv is indeed equal to the

expected dimension. Thus, a necessary condition for Ω to be Q-

intersecting in V is that edimQ,F(Ω,V) > 0. However, this necessary

condition is not sufficient (a simple example is given below in §1.2).

Before giving a complete set of conditions we introduce some

convenient notation. Given a family of subspaces S ⊆ V, we denote

byΩ(S,F) the Schubert variety determined by S, i.e., the closure of the

BQ(V,F)-orbit of S, andwe let edimQ,F(S,V) = edimQ,F(Ω(S,F),V).
We say that S is Q-intersecting in V ifΩ(S,F) is Q-intersecting in V.

That is, for generic v ∈ HQ(V), S is a subrepresentation of some point

in the BQ(V,F)-orbit of v. We denote this condition by S ⊆Q V, and

write S ⊂Q V if at least one Sx is a proper subspace of Vx.
As explained above, a necessary condition for S to beQ-intersecting

in V is that edimQ,F(S,V) > 0. It is also easy to see that the relation

⊆Q is transitive (Lemma 3.9): if T ⊆Q S and S ⊆Q V, then T ⊆Q V.
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Our main result is that these two natural conditions are not only

necessary but also sufficient:

Theorem 1.1. Let V be a family of vector spaces, F a family of filtrations,
and S a family of subspaces of V. Then, S ⊆Q V if and only if

(A) edimQ,F(S,V) > 0,
(B) T ⊂Q V for every T ⊂Q S.

In fact, we obtain slightly stronger results than Theorem 1.1. In

conditions (B), we merely need to consider those T ⊂Q S such that

the generic intersection variety is a point (Theorem 6.1).

Theorem 1.1 generalizes Belkale’s criterion for the intersection of

Schubert varieties in Grassmannians, and we believe that working in

this general context elucidates the arguments. The first ingredient

of our proof is a generalization of Schofield’s numerical computa-

tion [24] of the dimension of certain Ext-groups to the filtered setting

(Theorem 5.1). Here we follow closely (but do not rely on) Schofield’s

argument. We note that an alternative proof of Theorem 5.1 was

recently given by Bertozzi-Reineke [5] using augmented quivers (see

§1.4); however, their results do not imply Theorem 1.1. To obtain the

simple inductive characterization in our main result, Theorem 1.1, we

use an argument on slopes inspired by Harder-Narasimhan filtration,

adapting an argument of Belkale (§6).

1.2. Example. To illustrateTheorem1.1, consider the followingquiver:

1 2

3 4

(1.5)

Let (V,F) be the filtered dimension vector with V1 = V4 = C2 and
V2 = V3 = C3, andwhere Fx is the standardfiltration for every vertex x.
Then there are 172Q-intersecting Schubert varieties, corresponding

to 46 Schofield subdimension vectors.

For example, S = (Ce1,Ce2⊕Ce3,Ce2⊕Ce3,C2) isQ-intersecting,

while Ŝ = (Ce1,Ce2 ⊕ Ce3,Ce1 ⊕ Ce2,C2) is not. This is easy to see

directly, since the associated Schubert varieties are

Ω = ({Ce1},Gr(2, 3),Gr(2, 3), {C2}),

Ω̂ = ({Ce1},Gr(2, 3), {Ce1 ⊕ Ce2}, {C2}),

respectively, and for a generic representation v ∈ HQ(V) the compo-

nent v1→3 does not map e1 into Ce1 ⊕ Ce2. Now, note that

edimQ,F(S,V) = dimΩ− (1+ 1) = (0+ 2+ 2+ 0) − (1+ 1) > 0,

edimQ,F(Ŝ,V) = dim Ω̂− (1+ 1) = (0+ 2+ 0+ 0) − (1+ 1) = 0,
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so condition (A) of Theorem 1.1 is satisfied for both S and Ŝ. Thus,

condition (B) must be violated for Ŝ, so there exists a family T of

proper subspaces which is Q-intersecting in Ŝ, but not in V. Indeed,

the family T = (Ce1,Ce3,Ce2,C2) has this property. We discuss a

more involved example involving Collins’ ‘sun quiver’ [7] in §9.

1.3. An inductive numerical criterion and Horn-type inequalities.
Inductively, Theorem 1.1 translates into the following criterion:

Theorem 1.2. S ⊆Q V if and only if edimQ,F(T,V) > 0 for all T ⊆Q S.

Note that Theorem 1.2 amounts to a finite criterion since the right-

hand side depends only on the Schubert variety determined by T, of

which there are only finitely many. This can be made particularly

concrete by parameterizing the Schubert cells, which also makes the

connection to Belkale’s Horn-type inequalities directly apparent.

Let n = (nx)x∈Q0 be a dimension vector, and let V be the family of

standard complex vector spacesVx = Cnx , equippedwith the standard

filtrations. Any familyK ⊆ [n], by which we mean thatK = (Kx)x∈Q0
consists of subsets Kx ⊆ {1, . . . , nx}, determines a family S = (Sx)x∈Q0
of subspaces Sx = ⊕i∈Kxei, where ei denotes the standard basis

of Vx, with dimension vector k = (kx)x∈Q0 = (|Kx|)x∈Q0 , and hence a

Schubert varietyΩ. Any Schubert variety can be obtained in this way.

It is easy to see that if Kx(1) < · · · < Kx(kx) are the elements of Kx
then the dimension of the Schubert variety determined by K is

dimΩ =
∑
x∈Q0

kx∑
j=1

(Kx(j) − j) .

Let us writeK ⊆Q [n] to denote that S ⊆Q V. Now, any familyL ⊆ [k]

rise to a family T = (Tx)x∈Q0 of subspaces Tx = ⊕lxj=1eKx(Lx(j)) ⊆ Sx,
where Lx(1) < · · · < Lx(lx) are the elements of Lx and lx = |Lx|. We

may calculate that

edimQ,F(T,V) =
∑
x∈Q0

lx∑
j=1

(Kx(Lx(j)) − j) −
∑

a:x→y∈Q1

lx(ny − ly).

Accordingly, Theorem 1.2 translates into the following inductive

numerical criterion: K ⊆Q [n] if and only if∑
x∈Q0

lx∑
j=1

(Kx(Lx(j)) − j) >
∑

a:x→y∈Q1

lx(ny − ly) (1.6)

for allL ⊆Q [k]. In the case of the Horn quiver, we recognize Belkale’s

inequalities. The criterion in Eq. (1.6) is easy to test numerically.

We note that one may further restrict the families L that need to be

considered (Remark 6.8).



6 V. BALDONI, M. VERGNE, ANDM. WALTER

1.4. A natural Schofield criterion and augmented quivers. As a

particular consequence of Theorem 1.1 we also obtain the following

inductive characterization of Schofield subdimension vectors:

Theorem 1.3. Letα 6 n be dimension vectors. Then,α 6Qn if and only if
(A) 〈α,n− α〉 > 0,
(B) β <Q n for every β <Q α.

Just like for Theorem 1.1, we obtain in fact a slightly stronger

characterization by restricting part (B) to those β’s for which the

generic intersection variety is a point (Theorem 6.9). Theorem 1.3 is

readily translated into the following inductive numerical criterion:

Theorem 1.4. α 6Q n if and only if 〈β,n− β〉 > 0 for all β 6Q α.

We note that Theorem 1.4 does not follow right away from the

Schofield criterion [24], despite the latter looking very similar: α 6Q n
if and only if 〈β,n− α〉 > 0 for all β 6Q α. Note that the condition

on β coincides with ours if and only if 〈β,α− β〉 = 0. Indeed,

it follows from the strengthening of Theorem 1.3 discussed above

that it suffices to restrict to such β in order to characterize Schofield

subdimensionvectors. To obtain thenatural inductive characterization

given in Theorem 1.3 (and its strengthening) or, equivalently, the

numerical criterion of Theorem 1.4, we found it necessary to use a

slope argument (see §6 for the more general filtered setting).

Derksen-Weyman [10] deduced the Horn inequalities for tensor

products using an ‘augmented’ quiver
˜Q associated to Q. To see

the relation, given a filtered dimension vector (V,F), we define

by ñx,i = dim Fx(i) an ordinary dimension vector ñ on an augmented

quiver
˜Q with vertices (x, i) for x ∈ Q0 and i = 1, . . . , `x, where `x

denotes the length of the filtration Fx. Given a family of subspaces

S ⊆ V, consider the subdimension vector α̃ with αx,i = dimSx ∩ Fx,i.
Then, S ⊆Q V if and only if α̃ 6 ˜Q ñ, so one could use Schofield’s

criterion or our inductive conditions for Schofield subdimension

vectors to characterizeQ-intersection. However, the resulting criterion

for Q-intersection is arguably less natural than our Theorem 1.1, and

it is also weaker, since in general there are in general many more

subdimensionvectors
˜β < ˜Q α̃ thanQ-intersecting subfamiliesT ⊂Q S.

We comment on the relation between the two sets in §7.2.

1.5. Applications to representation theory and the moment map.
Anothermotivation to studyQ-intersection comes fromrepresentation

theory and symplectic geometry. Indeed, if K is a compact connected

Lie group, the celebrated [Q,R] = 0 or “quantization commutes with

reduction” conjecture of Guillemin-Sternberg relates the quantization

of aK-HamiltonianmanifoldM to the image of the associatedmoment

map. In their original article, Guillemin-Sternberg established this
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conjecture whenM is a (smooth) compact Kähler manifold [13]. In

the case of a projective varietyM = P(C) associated to an algebraic

cone C invariant under a linear representation of a complex reductive

group G, Mumford’s construction of the geometric quotient directly

describes the action ofG on polynomial functions on C in terms of the

momentmap on C associated to a compact formK ofG [18, Appendix].

In both cases, it follows that the image under the K-moment map

of M (resp. of C) modulo the coadjoint action of K is a rational

convex polytope (resp. a rational convex polyhedral cone), see also

[12, Appendix]. It is in general a difficult problem to describe these

moment polytopes or cones explicitly and effectively.

Here we plainly consider the action of G = GLQ(V) on the com-

plex vector space C = HQ(V). Let CQ(V) denote the polyhedral

cone spanned by the highest weights of irreducible representations

of GLQ(V) that occur with nonzero multiplicity in Sym
∗(HQ(V)), the

space of polynomial functions on HQ(V). Our aim is to describe

this cone by inequalities associated to quiver subrepresentations. It

follows from the general theory described above that CQ(V) is the
moment cone associated with a natural moment map and we will

come back to this point momentarily.

The subcone ΣQ(V) ⊆ CQ(V) generated by the weights of semi-

invariants polynomials is of particular interest for invariant theory and

moduli spaces of quiver representations (see King [15], or Crawley-

Boevey [8] for the double quiver case). Derksen-Weyman [10] and

Schofield-van den Bergh [25] showed thatω = (ωx)x∈Q0 is aweight of

a nonzero semi-invariant polynomial onHQ(V) (that is, a polynomial

that transforms by the character g = (gx) 7→
∏
x det(gx)

ωx
of GLQ(V))

if and only if ∑
x∈Q0

nxωx = 0

and, for all α <Q n, ∑
x∈Q0

αxωx 6 0,

where nx = dimVx for x ∈ Q0. Thus, the cone ΣQ(V) is determined

by inequalities associated to Schofield subdimension vectors.

Similarly, the cone CQ(V) is determined by the Q-intersection of

Schubert varieties and hence by our Theorem 1.1. Choose a Hermitian

structure on Vx, and let U(Vx) be the maximally compact subgroup

of GL(Vx) consisting of unitary operators, with Lie algebra ux. We

may identify

√
−1ux with the space of Hermitian operators on Vx. Let

us choose an orthonormal basis of each Vx, and consider the Weyl

chamber Cx of diagonal Hermitian matrices λx with nonincreasing

real entries λx(1) > . . . > λx(nx). When λx is Z-valued, it determines
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an irreducible representation Vλ of GL(Vx). Thus, the irreducible

representations of GLQ(V) are of the form Vλ =
⊗
x∈Q0 Vλx , where

λ = (λx)x∈Q0 is the highest weight.

The coneCQ(V)has an alternative description in terms of symplectic

geometry. Indeed, a moment map for the action of the maximally

compact subgroup UQ(V) =
∏
x∈Q0 U(Vx) is given by

µ : HQ(V)→
⊕
x

√
−1ux, v = (va)a∈Q1 7→ µ(v) = (µx(v))x∈Q0 ,

where µx(v) is the Hermitian matrix

∑
y,b:y→x vbv

∗
b −

∑
y,a:x→y v

∗
ava.

By the results of Guillemin-Sternberg and Mumford discussed above,

an element λ of the Weyl chamber

∏
xCx is in the cone CQ(V) if and

only if −λ is in the image of the moment map.

We may describe the cone CQ(V) by an inductively defined set of

explicit linear inequalities. Indeed, a general result by Ressayre [21]

(see also [28]) implies that CQ(V) consists of the points λ ∈
∏
xCx

such that ∑
x∈Q0

nx∑
i=1

λx(i) = 0

and, for all K ⊂Q [n], ∑
x∈Q0

∑
i∈Kx

λx(i) 6 0.

Thus, Eq. (1.6) gives a complete and explicit set of linear inequalities

for the moment cone CQ(V). Following an argument of Ressayre [23],

we also compare CQ(V) with the cone Σ ˜Q( ˜V) of weights of semi-

invariants for the augmented quiver
˜Q. We find that the saturation

theorem of Derksen-Weyman [10] implies that the conditions above

are also sufficient for Vλ to appear in Sym
∗(HQ(V)), in other words,

that the semigroup of highest weights is saturated. In summary, we

obtain the following result (see §8):

Theorem 1.5. For any highest weight λ = (λx)x∈Q0 of GLQ(V), the
following are equivalent:

(1) −λ is in the image of the moment map,
(2) λ ∈ CQ(V),
(3) Vλ ⊆ Sym

∗(HQ(V)),
(4)

∑
x∈Q0

∑nx
i=1 λx(i) = 0 and

∑
x∈Q0

∑
i∈Kx λx(i) 6 0 for all K ⊆Q [n].

The equivalence between (1), (2), and (4) holds also when λ is not integral.
Moreover, K ⊆Q [n] if and only if∑

x∈Q0

lx∑
j=1

(Kx(Lx(j)) − j) >
∑

a:x→y∈Q1

lx(ny − ly)
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for all L ⊆Q [k], using the notation of Eq. (1.6).

We previously announced this result in [1]. Recently, Bertozzi-

Reineke [5] gave a similar characterization of the image of the moment

map based on Theorem 5.1, which they proved using augmented

quivers. In §9, we give a minimal complete description of CQ(V) for
the ‘sun quiver’ [7] mentioned above.

1.6. Notation and conventions. All vector spaces will be finite-di-

mensional complex vector spaces. Given a vector space V , we write

dimV for its (complex) dimension and we denote by Gr(r, V) the
Grassmannian of subspaces of dimension r ofV , where 0 6 r 6 dimV .
We use calligraphic and bold letters to denote families of objects

labeled by the vertex set Q0 of a quiver. For example, V = (Vx)x∈Q0
will be a family of vector spaces indexed by Q0, J = (Jx)x∈Q0 a

family of subsets Jx of N = {1, 2, . . . }, and α = (αx)x∈Q0 will be a

family of natural numbers. We write GrQ(α,V) for the product of

GrassmanniansGr(αx, Vx), dimV for the vector of dimensions dimVx,
etc. The total dimension of V is denoted by d(V) =

∑
x∈Q0 dimVx.

Such families of objects naturally inherit operations and relations.

Thus, given α and β, we write α 6 β if αx 6 βx for every x ∈ Q0,
and we define the maps α± β by (α± β)x = αx ± βx. Similarly, if S

and V are families of vector spaces then we write S ⊆ V if Sx ⊆ Vx for
every x ∈ Q0. We write S ⊂ V if S ⊆ V and Sx is a proper subspace

of Vx for at least one x ∈ Q0.

2. Quiver Grassmannians and Q-intersection

Definition 2.1 (Filtered vector space). A (complete) filtration F on a
vector space V is a chain of subspaces

{0} = F(0) ⊆ F(1) ⊆ · · · ⊆ F(i) ⊆ F(i+ 1) ⊆ · · · ⊆ F(`) = V,

such that dim F(i + 1) 6 dim F(i) + 1 for all i = 0, . . . , ` − 1 (i.e., the
dimensions increase by at most one in each step). We call the pair (V, F) a
filtered vector space.

The distinct subspaces in a filtration determines a flag. However,

note that the subspaces F(i) need not be strictly increasing. If S is

a subspace of V , then S inherits the filtration FS(i) := F(i) ∩ S, and
the quotient space V/S inherits the filtration FV/S(i) := (F(i) + S)/S.
We will now consider the analogue definitions for families of vector

spaces and filtrations.

Definition 2.2 (Filtered dimension vector). Let V = (Vx)x∈Q0 be a
family of vector spaces. A filtration on V is a family F = (Fx)x∈Q0 where
each Fx is a filtration on Vx. We say that the pair (V,F) is a filtered

dimension vector.
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Let S ⊆ V, i.e., Sx ⊆ Vx for every x ∈ Q0. We denote by V/S the

family of vector spaces (Vx/Sx)x∈Q0 . If F is a filtration on V then we

obtain a filtration FS on S and a filtration FV/S on the quotient V/S.
Every filtered dimension vector (V,F) determines a Borel subgroup

of GLQ(V), namely BQ(V,F) =
∏
x∈Q0 Bx, where Bx is the Borel

subgroup of GL(Vx) preserving the filtration Fx. By definition, a

Schubert cell Ω0 = (Ω0x)x∈Q0 is a BQ(V,F)-orbit in GrQ(α,V). Its

closure Ω = (Ωx)x∈Q0 is called a Schubert variety. In other words,

eachΩ0x (Ωx) is a Schubert cell (variety) in Gr(αx, Vx).
We can describe the Schubert varieties more concretely: Let n =

(nx)x∈Q0 be a dimension vector. For x ∈ Q0, let Vx = Cnx , with

standard basis (ej)16j6nx , and consider the standard filtration Fx
corresponding to the Borel subgroup Bx that consists of the upper-
triangular matrices in GL(nx). Let α be a dimension vector such

that α 6 n. Let J = (Jx)x∈Q0 be a family of subsets, where each Jx is
a subset of {1, . . . , nx} of cardinality αx. Then, SJx :=

⊕
j∈Jx Cej is a

subspace of Vx of dimension αx. Let Ω
0(Jx) denote the orbit of SJx

under the action of Bx, andΩ(Jx) its closure. It is easy to see that

Ω(Jx) = {S ∈ Gr(αx, Vx) : dim(S ∩ Fx(Jx(a))) > a for 1 6 a 6 αx},

where Jx(1) < · · · < Jx(αx) are the elements of Jx. Then, Ω(J) =
(Ω(Jx))x∈Q0 is a Schubert variety. Moreover, every Schubert variety

in GrQ(α,V) is of this form. It is easy to verify that

dimΩ(J) =
∑
x∈Q0

dimΩ(Jx), dimΩ(Jx) =

αx∑
a=1

(Jx(a) − a). (2.1)

Definition 2.3. LetV = (Vx)x∈Q0 be a family of vector spaces,α 6 dimV a
dimension vector, and v ∈ HQ(V) a representation. Define the corresponding
quiver Grassmannian as

GrQ(α,V)v := {S ∈ GrQ(α,V) : vS ⊆ S}.

We say that α is Schofield subdimension vector for V if GrQ(α,V)v 6= ∅
for every v ∈ HQ(V).

Quiver Grassmannians have been the subject of intensive research.

We only mention the striking result that, in fact, every projective

variety is a quiver Grassmannian [19]. For particular representations v,
cellular decompositions of GrQ(α,V)v have been studied [6].

We can decompose each quiver Grassmannians into subvarieties

consisting of stable subspaces with fixed Schubert positions. This

gives rise to the central definitions of our article:

Definition 2.4 (Q-intersecting). Let (V,F) be a filtered dimension vector,
α 6 dimV a dimension vector, and Ω ⊆ GrQ(α,V) a Schubert variety.
Given a representation v ∈ HQ(V), define

Ωv := GrQ(α,V)v ∩Ω = {S ∈Ω : vS ⊆ S}.
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We say thatΩ is Q-intersecting in V ifΩv 6= ∅ for every v ∈ HQ(V).

In other words, Ω is Q-intersecting if, for every v ∈ HQ(V), the
Schubert varietyΩ contains a subrepresentation of v. In this case, we

call the varietyΩv for generic v the generic intersection variety.
Clearly, a necessary condition forΩ to beQ-intersecting is that α is

a Schofield subdimension vector. As we will see in Lemma 3.4,Ω is

Q-intersecting if and only ifΩv 6= ∅ for generic v ∈ HQ(V).

Example 2.5 (Horn quiver). For the Horn quiver (1.4) and the constant di-
mension vectorα = (r, . . . , r), the problem of determining theQ-intersection
of Schubert varieties inGrQ(α,V) is equivalent to the problem of determining
the intersection of Schubert classes in Gr(r, n).

Indeed, letΩ1, . . . ,Ωs+1 be Schubert varieties inGr(r, n). By Kleiman’s
moving lemma, the homology classes [Ωx]s+1x=1 are intersecting in Gr(r, n)
if and only if, for every g1, . . . , gs+1 ∈ GL(n) there exists a point S ∈⋂s+1
x=1 gxΩx. Define vx→s+1 := g−1s+1gx for x = 1, . . . , s. Then v =

(vx→s+1)
s
x=1 is a representation ofHs. Now considerΩ = (Ω1, . . . ,Ωs+1),

which is a Schubert variety in GrQ(α,V). Define Sx = g−1x S ∈ Ωx. Then,
S = (Sx)

s+1
x=1 ∈ Ω. Moreover, vx→s+1Sx = Ss+1 for x = 1, . . . , s. This

means that S ∈ Ωv. The set of v so obtained is dense in HQ(V), since
each vx→s+1 can be an arbitrary invertible map Vx → Vs+1. We conclude
thatΩ is Hs-intersecting if and only if the homology classes [Ωx]s+1x=1 are
intersecting in Gr(r, n).

Belkale [2] has determined an inductive criterion for Schubert

classes in Gr(r, n) to intersect. Our aim in this article is to obtain a

similar inductive criterion for when a Schubert varietyΩ = (Ωx)x∈Q0
is Q-intersecting.

3. Expected dimensions

In this section, we define the expected dimension of the generic

intersection variety (Definition 3.5).

Given two families of vector spaces V = (Vx)x∈Q0 and W =
(Wx)x∈Q0 , define

HQ(V,W) :=
⊕

a:x→y∈Q1

Hom(Vx,Wy),

gQ(V,W) :=
⊕
x∈Q0

Hom(Vx,Wx).

If V = W, the spaceHQ(V,V) is simplyHQ(V), introduced previously

in Eq. (1.1), and gQ(V,V) is the Lie algebra glQ(V) of GLQ(V).
If dimV = α and dimW = β then the dimension of HQ(V,W) is

given by

∑
a:x→y∈Q1 αxβy. As it depends only onQ,α, andβ, we also

denote this expression by dimHQ(α,β). Similarly, the dimension
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of gQ(V,W) is
∑
x∈Q0 αxβx. Thus,

〈α,β〉 = dim gQ(V,W) − dimHQ(V,W),

where 〈α,β〉 is the Euler form defined in Eq. (1.2).

The following proposition is well known. We give a proof since we

will below generalize it to compute the generic dimension ofΩv.

Proposition 3.1. Let V be a family of vector spaces and α a Schofield
subdimension vector for V. Then, for generic v ∈ HQ(V), the dimension of
each irreducible component of GrQ(α,V)v is given by dimGrQ(α,V) −
dimHQ(α,β) = 〈α,β〉, where β = dimV− α.

Proof. Define the variety

X := {(T, v) ∈ GrQ(α,V)×HQ(V) : vT ⊆ T}.

The map

p : X→ GrQ(α,V), (T, v) 7→ T

equipsXwith the structure of a vector bundle over GrQ(α,V). Indeed,
let T ∈ GrQ(α,V). We can write V = T ⊕U, choosing for each x ∈ Q0
a complement Ux of Sx in Vx. Thus, dim(U) = β. The fiber p−1(T)
can be identified with

X(T) = {v ∈ HQ(V) : vT ⊆ T}. (3.1)

The right-hand side condition means that v is of the form

v =

(
v00 v01
0 v11

)
,

where v00 ∈ HQ(T), v01 ∈ HQ(U,T), and v11 ∈ HQ(U). Thus, X(T)
is a vector subspace of HQ(V) of codimension dimHQ(T,U) =
dimHQ(α,β). It follows that X is irreducible and of dimension

dimX = dimGrQ(α,V) + dimHQ(V) − dimHQ(α,β). (3.2)

We also have a map

q : X→ HQ(V), (T, v) 7→ v,

whose fibers can be identified with GrQ(α,V)v. If α is a Schofield

subdimension vector then the map q is surjective. By the version

of Sard’s theorem for dominant maps between irreducible varieties,

it follows that the image of q contains a nonempty Zariski-open

subset Z ⊆ HQ(V) such that, for v ∈ Z, each irreducible component

of the fiber GrQ(α,V)v is of dimension equal to dimX− dimHQ(V).
ComparingwithEq. (3.2), weobtain that, for generic v, each irreducible
component of GrQ(α,V)v is of dimension

dimX− dimHQ(V) = dimGrQ(α,V) − dimHQ(α,β) = 〈α,β〉 .

In the last step, we used that dimGr(αx, Vx) = αxβx for x ∈ Q0. �
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In particular, we see that a necessary condition forα to be a Schofield

subdimension vector is that 〈α,β〉 > 0, whereβ = dimV−α. We now

prove an analog of Proposition 3.1 for generic intersection varieties.

Proposition 3.2. Let (V,F) be a filtered dimension vector, α 6 dimV a
dimension vector, andΩ ⊆ GrQ(α,V) a Q-intersecting Schubert variety.
Then, for generic v ∈ HQ(V), the dimension of each irreducible component
ofΩv is given by dimΩ− dimHQ(α,β), where β = dimV− α.

Proof. The proof is entirely similar. This time, we consider

X := {(T, v) ∈Ω×HQ(V) : vT ⊆ T}, (3.3)

which has now the structure of a vector bundle overΩ, with fibers as

in Eq. (3.1). Similarly to Eq. (3.2), it follows that X is an irreducible

variety of dimension

dimX = dimΩ+ dimHQ(V) − dimHQ(α,β).

IfΩ is Q-intersecting, the map

q : X→ HQ(V), (T, v) 7→ v, (3.4)

is surjective. As its fibers can be identified with Ωv, we conclude

as before that the dimension of each irreducible component is, for

generic v, given by dimΩ− dimHQ(α,β). �

Thus, we find that a necessary condition forΩ ⊆ GrQ(α,V) to beQ-

intersecting is that dimΩ−dimHQ(α,β) > 0, where β = dimV−α.
Using Eq. (2.1), the latter condition is easy to evaluate for a Schubert

varietyΩ(J). It amounts to∑
x∈Q0

αx∑
a=1

(Jx(a) − a) −
∑
a:x→y

αx(ny − αy) > 0.

Next, we study Schubert cells and varieties determined by families

of subspaces.

Definition 3.3 (Q-intersecting families of subspaces). Let (V,F) be
a filtered dimension vector, α 6 dimV a dimension vector, and S ∈
GrQ(α,V). We define Ω0(S,F) as the BQ(V,F)-orbit of S, and denote
byΩ(S,F) its closure, which is a Schubert variety.
We say that S is Q-intersecting in V if Ω(S,F) is Q-intersecting in

the sense of Definition 2.4 and denote this condition by S ⊆Q V. We
write S ⊂Q V if in addition at least one subspace is a proper subspace.

The following lemma is similar to [4, Lemma 4.2.4].

Lemma 3.4. Let (V,F) be a filtered dimension vector and S ⊆ V a family of
subspaces. If S is Q-intersecting in V, there exists a nonempty Zariski-open
set of v ∈ HQ(V) such thatΩ0(S,F) contains a subrepresentation of v.

Conversely, ifΩ0(S,F) contains a subrepresentation of v for generic v ∈
HQ(V), then S is Q-intersecting in V.
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Proof. Abbreviate Ω = Ω(S,F) and Ω0 = Ω0(S,F). Consider the

manifold

X0 := {(T, v) ∈Ω0 ×HQ(V) : vT ⊆ T}, (3.5)

which is a nonempty Zariski-open subset of the irreducible variety X
defined in Eq. (3.3). If Ω is Q-intersecting, the map q defined in

Eq. (3.4) is surjective. Thus, it is also dominant on any nonempty

Zariski-open subset of X, hence in particular on X0. It follows that

the image of Eq. (3.4) contains a nonempty Zariski-open subset of

representations v ∈ HQ(V) with the property that Ω0 contains a

subrepresentation of v.
Conversely, suppose thatΩ0 contains a subrepresentation of v for

generic v ∈ HQ(V). Then, since the closure Ω of Ω0 is compact, it

follows thatΩ contains subrepresentations of all v ∈ HQ(V). �

We now define the expected dimension as the expression in Propo-

sition 3.2.

Definition 3.5 (Expected dimension). Let (V,F) be a filtered dimension
vector and S ⊆ V a family of subspaces. We define

edimQ,F(S,V) := dimΩ(S,F) − dimHQ(S,V/S)

and call it the expected dimension of the intersection varietyΩ(S,F)v.

Thus, the following lemma is clear.

Lemma 3.6. Let (V,F) be a filtered dimension vector and S ⊆ V a family of
subspaces. If S is Q-intersecting in V, then edimQ,F(S,V) > 0.

The converse of Lemma 3.6 is not in general true, i.e., we can

have edimQ,F(S,V) > 0 but S is not Q-intersecting. We already saw

an example of this when discussing the quiver (1.5) in §1.

If S is Q-intersecting and edimQ,F(S,V) = 0, this means that the

generic intersection varietyΩ(S,F)v is a finite set of points. We now

consider the important special case when it is a single point.

Definition3.7. Let (V,F) be a filtered dimension vector. We definePQ(V,F)
as the set of subspaces S ⊆ V such that, for generic v ∈ HQ(V), the intersec-
tion varietyΩ(S,F)v is equal to a point.

If S ∈ PQ(V,F) then S isQ-intersecting in V and edimQ,F(S,V) = 0.
But the converse is not usually true, as the following example shows.

Example 3.8. LetW2 be the following quiver:

x1 x2

a1

a2
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Let V = (C2,C2), F the standard filtration, and consider S = (Ce2,Ce2).
Then,Ω(S,F) = Gr(1, 2)×Gr(1, 2) has dimension 2, and

edimQ,F(S,V) = 2− (1+ 1) = 0.

Now let v = (v1, v2) ∈ HW2
(V) = Hom(C2,C2) ⊕Hom(C2,C2). For

generic v, both v1 and v2 are invertible. If L is an eigenvector of v−12 v1,
then we have v1(CL) = v2(CL), which implies that (CL, v1(CL)) is a
subrepresentation of v, and trivially contained inΩ(S,F). Thus, S is also
Q-intersecting. However, v−12 v1 is generically diagonalizable, in which case
there are two such subrepresentations of v. Thus, S is not in PW2

(V,F).

Derksen-Schofield-Weyman [11] have determined the number of

subrepresentations of a general quiver representation in terms of

certain multiplicities.

The following lemma shows that the notion of Q-intersection is

transitive.

Lemma 3.9. Let (V,F) be a filtered dimension vector and T ⊆ S ⊆ V

families of subspaces. Assume that S ⊆Q V and T ⊆Q S, where S is
equipped with the filtration FS. Then, T ⊆Q V.

Proof. Let v ∈ HQ(V) be generic. Since S ⊆Q V, Lemma 3.4 shows

that there exists b ∈ BQ(V,F) such that ṽ = bvb−1 satisfies ṽS ⊆ S.

Since T ⊆Q S, there exists N ∈ Ω(T,FS) such that ṽN ⊆ N. Every

element g ∈ BQ(S,FS) is the restriction of an element h ∈ BQ(V,F)
with hS = S. It follows that Ω(T,FS) is contained in Ω(T,F),
hence N ∈Ω(T,F). It follows that v(b−1N) ⊆ b−1N. Since b−1N still

belongs toΩ(T,F), we see that T ⊆Q V. �

Lemmas 3.6 and 3.9 show that the two conditions (A) and (B) in

Theorem 1.1 are necessary for S to be Q-intersecting in V.

The objective of the following sections is to prove the converse

statement. In fact, we will prove a refinement of Theorem 1.1: In

Theorem 6.1, we will show that in condition (B) it suffices to consider

only those T 6= S such that T ∈ PQ(S,FS). In turn, we obtain simple

Horn conditions for testing Q-intersection (§7). In the case of the

Horn quivers, these conditions can be readily reduced to Belkale’s

conditions for intersecting Schubert classes [2]. This emblematic

example suggested to us the statement of the more general theorem.

4. Ext groups and Schofield Criterium

The proof of Theorem 1.1will be based on computing the dimension

of an Ext group. We first state some easy lemmas about filtered vector

spaces with proofs left to the reader. Given two filtered vector

spaces (V, F) and (W,G), a homomorphism Φ : V → W is a linear

map that respect the two filtrations, i.e., Φ(F(i)) ⊆ G(i) for all i (we
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assume that both filtrations have the same length). We denote the

space of morphisms by gF,G(V,W).

Lemma 4.1. Let (V, F) be a filtered vector space and S ⊆ V a subspace.
Then, the exact sequence 0→ (S, FS)→ (V, F)→ (V/S, FV/S)→ 0 is split.
Lemma 4.2. Let (V, F) and (W,G) be filtered vector spaces and r = dimV .
Let i1 < · · · < ir denote the smallest indices such that dim F(ia) = a
for a = 1, . . . , r. Then, dim gF,G(V,W) =

∑r
a=1 dimG(ia).

Let B(V, F) ⊆ GL(V) be the Borel subgroup associated to F. Its Lie
algebra is b(V, F) = gF,F(V, V) ⊆ gl(V). It is clear that any X ∈ b(V, F)
induces a map Φ ∈ gFS,FV/S(S, V/S).

Lemma 4.3. The map b(V, F)→ gFS,FV/S(S, V/S) is surjective.

Finally, we record the following lemma:

Lemma 4.4. Let (V, F) and (W,G) be filtered vector spaces and let S ⊆ V
and T ⊆W be subspaces. Then:

dim gF,G(V,W) = dim gFS,G(S,W) + dim gFV/S,G(V/S,W),

dim gF,G(V,W) = dim gF,GT (V, T) + dim gF,GW/T (V,W/T).

We now consider families of filtered vector spaces, i.e., filtered

dimension vectors. Given two filtered dimension vectors (V,F)
and (W,G), a homomorphism Φ = (Φx)x∈Q0 consists of a family of

maps Φx ∈ gFx,Gx(Vx,Wx). We denote the space of homomorphisms

by gQ,F,G(V,W). As above, bQ(F,V) = gQ,F,F(V,V) ⊆ glQ(V) is the
Lie algebra of a Borel subgroup of GLQ(V). The following definition

is the filtered analog of Eq. (1.2).

Definition 4.5 (Filtered Euler number). Let (V,F) and (W,G) be two
filtered dimension vectors. We define the filtered Euler number by

eulQ,F,G(V,W) := dim gQ,F,G(V,W) − dimHQ(V,W).

For families of subspaces S ⊆ V and T ⊆ W, Lemma 4.4 implies

that

eulQ,F,G(V,W) = eulQ,FS,G(S,W) + eulQ,FV/S,G(V/S,W), (4.1)

eulQ,F,G(V,W) = eulQ,F,GT
(V,T) + eulQ,F,GW/T

(V,W/T). (4.2)

Filtered Euler numbers can be computed in the following way. For

v = (va)a∈Q1 ∈ HQ(V) and w = (wa)a∈Q1 ∈ HQ(W), consider the
map

δv,w : gQ,F,G(V,W)→ HQ(V,W), Φ 7→ Φv−wΦ, (4.3)

where the right-hand side denotes the element of HQ(V,W) with

componentsΦyva−waΦx for each arrowa : x→ y inQ1, generalizing
our notation for the action of glQ(V) on HQ(V). Define

HomQ,F,G(v,w) := ker(δv,w),
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ExtQ,F,G(v,w) := coker(δv,w),

so that we have a short exact sequence

0→HomQ,F,G(v,w)→gQ,F,G(V,W)→HQ(V,W)→ExtQ,F,G(v,w)→0,

By exactness, the Euler number of this complex is zero, hence

eulQ,F,G(V,W) = dimHomQ,F,G(v,w) − dimExtQ,F,G(v,w)

for any v ∈ HQ(V) and w ∈ HQ(W). Now define

homQ,F,G(V,W) := min

v,w
dimHomQ,F,G(v,w),

extQ,F,G(V,W) := min

v,w
dimExtQ,F,G(v,w),

where the minimizations are over all v ∈ HQ(V) and w ∈ HQ(W).
There exists a Zariski-open subset where both minima are simultane-

ously attained, hence

eulQ,F,G(V,W) = homQ,F,G(V,W) − extQ,F,G(V,W). (4.4)

If S ⊆ V is a family of subspaces then the tangent space at S of

the Schubert cell Ω0(S,F) can be identified with gQ,FS,FV/S
(S,V/S).

Thus:

dimΩ(S,F) = dim gQ,FS,FV/S
(S,V/S),

hence, using Definitions 3.5 and 4.5,

eulQ,FS,FV/S
(S,V/S) = dimΩ(S,F) − dimHQ(S,V/S)

= edimQ,F(S,V).
(4.5)

Our next theorem is the analog of Schofield’s theorem [24] in the

context of filtered dimension vectors:

Theorem 4.6. Let (V,F) be a filtered dimension vector and S ⊆ V a family
of subspaces. Then S ⊆Q V if and only if extQ,FS,FV/S

(S,V/S) = 0.

Proof. AbbreviateΩ0 =Ω0(S,F). Consider again the smooth variety

from Eq. (3.5),

X0 = {(T, v) ∈Ω0 ×HQ(V) : vT ⊆ T},

which is a BQ(V,F)-equivariant vector bundle over the homogeneous

spaceΩ0. Recall from Eq. (3.1) that the fiber X(S) is the vector space
consisting of all elements

v =

(
v00 v01
0 v11

)
(4.6)

with v00 ∈ HQ(S), v01 ∈ HQ(U, S), and v11 ∈ HQ(U), where U is a

complement of S in V. Now consider the map

m : BQ(V,F)× X(S)→ HQ(V), (b, v) 7→ bvb−1.
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Then, S ⊆Q V if and only if the map m is dominant. Since m is a

map between smooth irreducible varieties, it is dominant if and only

if there exists a point (b, v) where the differential is surjective. By

equivariance, we can assume that b = 1. Thus, S ⊆Q V if and only if

the differential ofm at (1, v) is surjective for some v.
This differential can be written as

bQ(V,F)⊕ X(S)→ HQ(V), (X,w) 7→ Xv− vX+w,

where X ∈ bQ(V,F) and w ∈ X(S). In view of Eq. (4.6), this map

is surjective if and only if its ‘component’ bQ(V,F) → HQ(S,U) ∼=
HQ(S,V/S) is surjective. SincebQ(V,F) surjects ontogQ,FS,FV/S

(S,V/S)
by Lemma 4.3, it even suffices to determine when

gQ,FS,FV/S
(S,V/S)→ HQ(S,V/S), Φ 7→ Φv00 − v11Φ

is surjective. But this is exactly the map δv00,v11 from Eq. (4.3). Thus,

we conclude that S ⊆Q V if and only if extQ,FS,FV/S
(S,V/S) = 0. �

5. Calculation of ext

Let (V,F) and (W,G) be filtered dimension vectors. In this section,

we compute the quantity extQ,F,G(V,W) in terms of a minimization

over filtered Euler numbers (Definition 4.5). Using Theorem 4.6,

this reduces the problem of determining Q-intersection to an easy

numerical criterion.

Theorem 5.1. Let (V,F) and (W,G) be filtered dimension vectors. Then,
extQ,F,G(V,W) = − min

S⊆QV
eulQ,FS,G(S,W),

where we minimize over all S ⊆Q V including S = ({0}) and S = V.

The minimization is well-defined, since eulQ,FS,G(S,W) only de-

pends on the BQ(V,F)-orbit of S (i.e., the Schubert cell determined

by S) and there are only finitely many such orbits. The remainder of

this section will be concerned with the proof of Theorem 5.1.

Let v ∈ HQ(V), w ∈ HQ(W), and S ⊆ V a subrepresentation of v.
Consider the surjective map

HQ(V,W)→ HQ(S,W)→ ExtQ,FS,G(v|S, w) (5.1)

where the first arrow is componentwise restriction and the second the

canonical quotient map. The proof of the following lemma is left to

the reader.

Lemma 5.2. The map (5.1) descends to a surjection
ExtQ,F,G(v,w)→ ExtQ,FS,G(v|S, w).

In particular, for any two representations v ∈ HQ(V) and w ∈ HQ(W) we
have that dimExtQ,F,G(v,w) > dimExtQ,FS,G(v|S, w).

Lemma 5.3. Let S ⊆Q V. Then, extQ,F,G(V,W) > extQ,FS,G(S,W).
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Proof. For generic v ∈ HQ(V) and w ∈ HQ(W),

dimExtQ,F,G(v,w) = extQ,F,G(V,W)

and v has a subrepresentation T in the BQ(V,F)-orbit of S (since S is

Q-intersecting). Thus:

extQ,F,G(V,W) = dimExtQ,F,G(v,w) > dimExtQ,FT,G(v|T, w)

> extQ,FT,G(T,W) = extQ,FS,G(S,W).

The first inequality is Lemma 5.2 and the equality at the end follows

from BQ(V,F)-invariance. �

Proof of Theorem 5.1. It follows from Lemma 5.3 and Eq. (4.4) that, for

every S ⊆Q V,

extQ,F,G(V,W) > − eulQ,FS,G(S,W). (5.2)

Wewill prove by induction over the dimension ofV that there always

exists S ⊆Q V that saturates the inequality. If homQ,F,G(V,W) = 0
then Eq. (4.4) shows that equality holds for S = V. This also covers

the base case of the induction (i.e., the case that d(V) = 0). We can

therefore assume that homQ,F,G(V,W) > 0. Consider:

Y := {(Φ, v,w) : Φ ∈ HomQ,F,G(v,w), v ∈ HQ(V), w ∈ HQ(W)}

(Example 5.6 below shows that Y need not be irreducible.) Consider

the projection

q : Y→ HQ(V)×HQ(W), (Φ, v,w) 7→ (v,w).

Let Z denote the nonempty Zariski-open subset of (v,w) ∈ HQ(V)×
HQ(W)where dimHomQ,F,G(v,w) = homQ,F,G(V,W). Then, Yq :=
q−1(Z) is a vector bundle overZwithfiber ofdimensionhomQ,F,G(V,W).
Since Z is Zariski-open, it follows that Yq is a smooth irreducible

variety of dimension

dimYq = dimZ+ homQ,F,G(V,W)

= dimHQ(V) + dimHQ(W) + homQ,F,G(V,W).
(5.3)

For each x ∈ Q0, let δx denote the minimal dimension of ker(Φx)
as we vary (Φ, v,w) ∈ Yq. There exists a nonempty Zariski-open

subset of Yq where the minimum is obtained for every x ∈ Q0. It

follows that δ = (δx)x∈Q0 is the dimension vector of a family of

subspaces ker(Φ) ⊆ V.

In fact, δ is a Schofield subdimension vector. Indeed, by con-

struction, for generic v there exists (w,Φ) such that (v,w) ∈ Z,
Φ ∈ HomQ,F,G(v,w), and dimkerΦ = δ. The condition Φv = wΦ
implies that ker(Φ) is a subrepresentation of v. Moreover, δ 6= dimV,

since homQ,F,G(V,W) > 0 by assumption.

We can further consider the subspaces ker(Φx) ∩ Fx(i) for each x ∈
Q0 and i and similarly minimize their dimensions. We thus obtain a
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Zariski-open subset ofYq such that ker(Φ) belongs to a fixed Schubert

cellΩ0(S,F) of GrQ(δ,V). We call S a generic kernel subrepresentation.
Note that S ⊂Q V, arguing as before.

Claim5.4. homQ,F,G(V,W) = eulQ,FS,FV/S
(S,V/S)+eulQ,FV/S,G(V/S,W).

Claim 5.5. homQ,FS,G(S,W) > homQ,FS,FV/S
(S,V/S).

We will prove these two claims below. As a consequence,

extQ,F,G(V,W) − extQ,FS,G(S,W)

= homQ,F,G(V,W) − eulQ,F,G(V,W) − homQ,FS,G(S,W) + eulQ,FS,G(S,W)

= homQ,F,G(V,W) − eulQ,FV/S,G(V/S,W) − homQ,FS,G(S,W)

= eulQ,FS,FV/S
(S,V/S) − homQ,FS,G(S,W)

6 eulQ,FS,FV/S
(S,V/S) − homQ,FS,FV/S

(S,V/S)

= − extQ,FS,FV/S
(S,V/S) 6 0

Here we used Eq. (4.4), Eq. (4.1), Claim 5.4, Claim 5.5, and again

Eq. (4.4) (in this order). Thus, we obtain that extQ,F,G(V,W) 6
extQ,FS,G(S,W). Since the reverse inequality also holds by Lemma 5.3,

we obtain the following fundamental formula:

extQ,F,G(V,W) = extQ,FS,G(S,W). (5.4)

This readily allows us to conclude the proof of the theorem.

Since S ⊂Q V, by induction, there exists T ⊆Q S such that1

extQ,FS,G(S,W) = − eulQ,FT,G(T,W).

By Eq. (5.4), it follows that

extQ,F,G(V,W) = − eulQ,FT,G(T,W).

Thus, Eq. (5.2) is saturated for T. Since also T ⊆Q V by Lemma 3.9,

this concludes the proof. �

Proof of Claim 5.4. AbbreviateΩ0 =Ω0(S,F). Consider the variety

Yp = {(Φ, v,w) ∈ Y : kerΦ ∈Ω0}.
Here we do not assume that (v,w) belong to Z, so it does not follow
that Yp is contained in Yq. However, Yp ∩ Yq is a nonempty Zariski-

open subset of both varieties. Consider

V = {Φ ∈ gQ,F,G(V,W) : kerΦ ∈Ω0}.

This is aBQ(V,F)-equivariant bundle over the homogeneous spaceΩ0.
Thefibers canbe identifiedwith the injectivemaps ingQ,FV/S,G(V/S,W)

1In fact, we may construct such a T via a cascade of generic kernel subrepre-

sentations. If homQ,FS,G(S,W) = 0 then extQ,FS,G(S,W) = − eulQ,FS,G(S,W), so
we can choose T = S. Otherwise, we continue recursively with a generic kernel

subrepresentation for the pair (S,W).
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(by construction, this is a nonempty open subset). Thus, V is a smooth

irreducible variety of dimension

dimV = dimΩ0 + dim gQ,FV/S,G(V/S,W). (5.5)

We claim that the projection

p : Yp → V, (Φ, v,w) 7→ Φ

defines a vector bundle. To see this, consider the fiber at some Φ
with kerΦ = S (by equivariance, this is without loss of generality),

which consists of the (v,w) such that Φv = wΦ. To implement this

condition, choose a complement T of S in V and denote M = ΦT.

Then we have vS ⊆ S, while on T, Φ is an isomorphism onto M, so

we find that w(m) = Φ(v(Φ−1(m))) for allm ∈M. If we also choose

a complement N ofM inW then we can write

v =

(
v00 v01
0 v11

)
, w =

(
w00 w01
0 w11

)
.

with respect to V = S⊕ T and W = M⊕N, where w00 is determined

by v00 (and Φ); all other entries are completely arbitrary. Thus, the

fibers of p are vector spaces of dimension

dimHQ(V) − dimHQ(S,V/S)

+dimHQ(W) − dimHQ(V/S,W),
(5.6)

and we obtain that Yp is a vector bundle over the smooth irreducible

variety V, hence itself smooth and irreducible. Combining Eqs. (5.5)

and (5.6), we find that

dimYp = dimΩ0 + dim gQ,FV/S,G(V/S,W) + dimHQ(V)

− dimHQ(S,V/S) + dimHQ(W) − dimHQ(V/S,W).

Since Yp ∩ Yq is a nonempty Zariski-open subset of both irreducible

varieties, this is also the dimension of Yq. Comparing with Eq. (5.3),

homQ,F,G(V,W) = dimΩ0 + dim gQ,FV/S,G(V/S,W)

− dimHQ(S,V/S) − dimHQ(V/S,W)

and using Definition 4.5 and Eq. (4.5) we obtain Claim 5.4. �

Proof of Claim 5.5. Let s ∈ HQ(S) and w ∈ HQ(W) such that

dimHomQ,FS,G(s,w) = homQ,FS,G(S,W).

Here, w can vary in an open subset of HQ(W). Thus, by definition

of the generic kernel subrepresentation S, there exists v ∈ HQ(V)
and Φ ∈ HomQ,F,G(v,w) such that (v,w) ∈ Z and kerΦ ∈Ω0(S,F).
By BQ(V,F)-equivariance, we may assume that kerΦ = S.
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Since S is a subrepresentation of v, we can consider the quotient

maps v̄ : V/S → V/S and
¯Φ ∈ HomQ,FV/S,G(v̄, w). The latter is injec-

tive, so composition with
¯Φ defines an injective map

HomQ,FS,FV/S
(s, v̄) ↪→ HomQ,FS,G(s,w).

Thus:

dimHomQ,FS,G(s,w) > dimHomQ,FS,FV/S
(s, v̄)

> homQ,FS,FV/S
(S,V/S),

which concludes the proof. �

Example 5.6. Consider the quiverW2 from Example 3.8. Let V = (C,C)
and chooseF to be the standard filtration. Then we can identifyHQ(V) = C2
and gQ,F,F = C2. Given (v1, v2), (w1, w2) ∈ HQ(V) and (Φ1, Φ2) ∈
gQ,F,F, the condition that Φ ∈ HomQ,F,F(v,w) means that

Φ2v1 = w1Φ1 and Φ2v2 = w2Φ1.

Thus, the variety Y in the proof of Theorem 5.1 is
Y = {Φ1 = Φ2 = 0} ∪ {v1w2 − v2w1 = 0, Φ2v1 = w1Φ1}

so Y has two irreducible components, each of dimension 4.

Remark 5.7. In the minimization of Theorem 5.1, we only need to consider
families of subspaces S that can arise as generic kernel subrepresentations, as
well as possibly S = ({0}) and S = V. In many examples, this allows to a
priori restrict the minimization to families with particular properties.

For example, suppose that dimVx = dimVy and dimWx = dimWy for
one or more arrows a : x→ y ∈ A. Then, for generic v ∈ HQ(V) and w ∈
HQ(W), the corresponding components va and wa are isomorphisms,
soΦy = waΦxv

−1
a and dimkerΦx = dimkerΦy. Thus, in this case we

can restrict the minimization to subspaces S that satisfy dimSx = dimSy
for each such arrow.

6. Proof of the main theorem

In this section, wewill establish Theorem 1.1. In fact, wewill prove a

refined version, which asserts that we only need to consider subspaces

for which the generic intersection variety consists of a single point:

Theorem 6.1. Let (V,F) be a filtered dimension vector and S a family of
subspaces as above. Then, S ⊆Q V if and only if

(A) edimQ,F(S,V) > 0,
(B) T ⊂Q V for every T ∈ PQ(S,FS), T 6= S.

We will need some intermediate results to prove Theorem 6.1. To

test if some S is Q-intersecting, we need to in principle consider

generic representations in HQ(V). We first show that there exists a

universal representation that tests Q-intersection.
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Lemma 6.2. There exists a nonempty Zariski-open set of v∗ ∈ HQ(V) with
the following property: For every S ⊆ V, we have that S ⊆Q V if and only if
there exists T ∈Ω0(S,F) such that v∗T ⊆ T.

We say that v∗ is detecting Q-intersection in V.

Proof. Consider the finitely many Schubert cells of the Grassmanni-

ans GrQ(α,V), where α ranges over all dimension vectors α 6 dimV.

For each Schubert cellΩ0, denote byΩ its closure and define

HΩ0

Q = {v ∈ HQ(V) : ∃T ∈Ω0 such that vT ⊆ T}.

By Lemma 3.4, ifΩ is Q-intersecting then HΩ0

Q contains a nonempty

Zariski-open set, while it is otherwise not Zariski-dense. Thus,

H∗Q =
⋂

Ω 6⊆QV

HΩ0

Q

c

∩
⋂

Ω⊆QV

HΩ0

Q

contains a nonemptyZariski-open set. By construction, every v∗ ∈ H∗Q
is detecting Q-intersection in V. �

Next, we show that we can by an optimization procedure construct

Schubert cells for which the generic intersection variety consists of a

single point only. Recall that d(N) =
∑
x∈Q0 dimNx denotes the total

dimension of a family of vector spaces.

Definition 6.3 (Slope). Let (V,F) and (W,G) be filtered dimension vectors.
We define the slope of a nonzero subquotient N of V by

σ(N) :=
1

d(N)
eulQ,FN,G(N,W),

where FN denotes the filtration induced by F on N.

Forfixed v ∈ HQ(V), consider the set of subrepresentations of arbitrary
dimension,

S(v) := {S ⊆ V : vS ⊆ S}.

Note that S(v) is closer under vector space sum and intersection.

Proposition 6.4. Let (V,F) and (W,G) be filtered dimension vectors and
let v∗ ∈ HQ(V) be an element detecting Q-intersection in V. Define σ∗ =
min({0}) 6=S∈S(v∗) σ(S) and d∗ = max({0}) 6=S∈S(v∗),σ(S)=σ∗ d(S). Then there
exists a unique family S∗ ∈ S(v∗) such that σ(S) = σ∗ and d(S) = d∗.

We call S∗ the maximin subrepresentation for v∗; it isQ-intersecting in V.

Proof. Existence is clear, so we only argue for uniqueness. Suppose for

sake of finding a contradiction that S1 and S2 are two distinct families

of subspaces with the desired maximin property. Consider the short

exact sequence

0→ S1 ∩ S2 → S1 → S1/(S1 ∩ S2)→ 0.
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If S1 ∩ S2 6= ({0}) then

σ(S1) =
d(S1 ∩ S2)

d(S1)
σ(S1 ∩ S2) +

d(S1/(S1 ∩ S2))

d(S1)
σ(S1/(S1 ∩ S2))

as follows from Eq. (4.1). Thus, σ(S1) is a convex combination of

slopes. By minimality, σ(S1) 6 σ(S1 ∩ S2), hence we find that

σ(S1) > σ(S1/(S1 ∩ S2)). (6.1)

This inequality also holds when S1 ∩ S2 = ({0}). Next, consider

0→ S2 → S1 + S2 → (S1 + S2)/S2 → 0.

Since S1 6= S2, d(S1+S2) > d(S2), soσ(S1+S2) > σ(S2) by extremality.

Thus, by the same argument,

σ((S1 + S2)/S2) > σ(S2) = σ(S1).

Together with Eq. (6.1), we obtain

σ((S1 + S2)/S2) > σ(S1/(S1 ∩ S2)).

As vector spaces, both quotients are isomorphic and hence have the

same dimension vector and total dimension. Thus, it follows from

the definition of the slope and filtered Euler number that

dim gQ,F1,G((S1 + S2)/S2,W) > dim gQ,F2,G(S1/(S1 ∩ S2),W),

where we abbreviate the induced filtrations by F1 and F2. However,

the natural isomorphism that interprets each
¯Φ : (S1 + S2)/S2 →W

as a map S1/(S1 ∩ S2)→W restricts to an injection

gQ,F1,G((S1 + S2)/S2,W) ↪→ gQ,F2,G(S1/(S1 ∩ S2),W),

since if Φ : S1 + S2 →W is a representative of some
¯Φ then Φ((S1 +

S2) ∩ F(i)) ⊆ G(i) implies that Φ(S1 ∩ F(i)) ⊆ G(i) for all i. This is
the desired contradiction. �

Lemma 6.5. In the situation of Proposition 6.4, the slope σ∗ and dimen-
sion d∗ of the maximin subrepresentation do not depend on the choice of v∗.
Moreover, the maximin subrepresentations obtained by varying v∗ are all in
the same Schubert cell.

Proof. Consider another v# ∈ HQ(V) that detects Q-intersection and

let S#
denote the corresponding maximin subrepresentation. Since S∗

is Q-intersecting, there exists some T ∈Ω0(S∗,F) such that v#T ⊆ T.

Then σ(T) = σ(S∗), since the Euler number only depends on the

Schubert cell, and hence σ(S∗) > σ(S#). Running the argument in

reverse, we obtain that σ(S∗) = σ(S#). We similarly find that d(S∗) =
d(S#), so S# = T ∈Ω0(S∗,F), which confirms the last statement. �

Proposition 6.6. In the situation of Proposition 6.4, the maximin subrepre-
sentation S∗ is in PQ(V,F).
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Proof. We abbreviateΩ =Ω(S∗,F). It suffices to argue thatΩv# is a
single point for every v# ∈ HQ(V) that is detecting Q-intersection (a

nonempty Zariski-open set according to Lemma 6.2). We will show

thatΩv# = {S#}, where S#
denotes the maximin subrepresentation.

Indeed, S#
is a subrepresentation of v# and, by Lemma 6.5, belongs

to the same Schubert cell as S∗, so S# ∈ Ωv# . Conversely, suppose

that T ∈ Ωv# . Since it is in the same Grassmannian as S#
, we have

that d(T) = d(S#) and dimHQ(T,W) = dimHQ(S
#,W). Moreover,

dim gQ,FT,G(T,W) 6 dim gQ,F#

S,G
(S#,W). (6.2)

Indeed, since T is in the closure of the BQ(V,F)-orbit of S
#
, it is

clear that, for each x ∈ Q0 and i, dim Tx ∩ Fx(i) > dimS#x ∩ Fx(i), so
Eq. (6.2) follows from Lemma 4.2. Thus, σ(T) 6 σ(S#) and d(T) =
d(S#). As a consequence, T = S#

by the uniqueness of the maximin

subrepresentation. We conclude that Ωv# = {S#}, as we set out to

prove. �

We thus obtain the following result, which strengthens the main

conclusion of Theorem 5.1.

Corollary 6.7. Let (V,F) and (W,G) be filtered dimension vectors such
that extQ,F,G(V,W) > 0. Then there exists a family T∗ ∈ PQ(V,F) such
that eulQ,FT∗ ,G(T

∗,W) < 0.

Proof. Let v∗ ∈ HQ(V) be an element detecting Q-intersection. By

Theorem 5.1, there exists T ⊆Q V such that eulQ,FT,G(T,W) < 0.
Thus, S(v∗) contains an element of negative slope. As a consequence,

the maximin subrepresentation T∗ also has negative slope, hence

negative Euler number. By Proposition 6.6, it belongs to PQ(V,F). �

We now prove the main result of this article.

Proof of Theorem 6.1. As discussed before, Lemmas 3.6 and 3.9 show

that if S isQ-intersecting in V then (A) and (B) are necessarily satisfied.

Wenowprove the converse. Suppose thatS isnotQ-intersecting inV.

By Theorem 4.6, this means that extQ,FS,FV/S
(S,V/S) > 0. Therefore,

Corollary 6.7 shows that there exists T ∈ PQ(S,FS) such that

eulQ,FT,FV/S
(T,V/S) < 0. (6.3)

If T = S, this filtered Euler number equals edimQ,F(S,V) (Eq. (4.5)),
so (A) is violated. We will therefore assume that T ⊂ S. In this case,

edimQ,F(T,V) = eulQ,FT,FV/T
(T,V/T)

= eulQ,FT,FV/T
(T,V/T) − edimQ,FS

(T, S)

= eulQ,FT,FV/T
(T,V/T) − eulQ,FT,FS/T

(T, S/T)

= eulQ,FT,FV/S
(T,V/S) < 0,
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where the first equality is Eq. (4.5), the second equality holds be-

cause T ∈ PQ(S,FS) and so edimQ,FS
(T, S) = 0 (see discussion below

Definition 3.7), the next steps are Eq. (4.5) and Eq. (4.2), and we finally

used Eq. (6.3). Thus, edimQ,F(T,V) < 0, which by Lemma 3.6 implies

that T is not intersecting in V. This shows that (B) is violated. �

Remark 6.8. One can in specific cases further constrain the families T that
need to be considered in condition (B) of Theorem 6.1 by careful inspection of
themaximin construction and usingRemark 5.7. For example, wemay always
restrict to T that satisfy dim Tx = dim Ty for every arrow a : x→ y ∈ Q1
such that dimSx = dimSy and dimVx = dimVy.
To see this, recall that the subspaces T were produced by applying Corol-

lary 6.7 to S and V/S. In the proof of Corollary 6.7, we first invoked
Theorem 5.1 to obtain an element T ⊆Q S with eulQ,FT,FV/S

(T,V/S) < 0
and then used the maximin construction of Proposition 6.4 to find an element
in PQ(S,FS)with negative Euler number. Since dimVx/Sx = dimVy/Vy,
we may by Remark 5.7 assume that dim Tx = dim Ty for each arrow as above.
We would like to restrict the maximin construction to the subset S ′ ⊆ S(v∗)
consisting of families that satisfy this dimension condition. For generic v∗
that detect Q-intersection in S, S ′ is closed under vector space sum and
intersection, as follows by a similar argument as given in Remark 5.7. Thus,
the same proofs as given above allow us to conclude that there exists a unique
maximin subrepresentation T∗ (with possibly different σ∗ < 0 and d∗ > 0)
which is an element of PQ(S,FS) and moreover satisfies dim T∗x = dim T∗y
for each arrow as above.
In the case of the Horn quiver, this optimization recovers Belkale’s condi-

tions for intersections of Schubert classes of the Grassmannian (§7).
By the same reasoning, but working with families of subspaces

without filtrations, one can prove a refined version of Schofield’s

theorem [24]. To state the result, write α 6Q n if α is a Schofield

subdimension vector ofn, anddefinePQ(α) as the set of subdimension

vectors β 6 α such that GrQ(β,α)v is a point for generic v ∈ HQ(α).

Theorem 6.9. Let α be a subdimension vector of some dimension vector n.
Then, α 6Q n if and only if

(A) 〈α,n− α〉 > 0,
(B) β 6Q n for every β ∈ PQ(α), β 6= α.

7. Horn conditions for Q-intersection

Theorem 6.1 can readily be translated into a recursive algorithm

for deciding Q-intersection that only involves the easily computable

expected dimensions (Definition 3.5).

Definition 7.1 (Horn set). Let (V,F) be a filtered dimension vector. We
define HornQ(V,F) inductively as the set of S ⊆ V such that, if S 6= V,

(A) edimQ,F(S,V) > 0,
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(B) edimQ,F(T,V) > 0 for every T ∈ HornQ(S,FS) such that T 6= S

and edimQ,FS
(T, S) = 0.

Theorem 7.2 (Horn conditions). Let (V,F) be a filtered dimension vector
and S ⊆ V a family of subspaces. Then, S ⊆Q V if and only if S ∈
HornQ(V,F).
Proof. This follows by induction over the total dimension of S. Indeed,

suppose that we have proved the result for any T ⊂ S. Then the

‘if‘ follows from Theorem 6.1, while the ‘only if’ is a consequence of

Lemmas 3.6 and 3.9. �

It is clear that in condition (B) of Definition 7.1 we only need

to consider subspaces T that belong to PQ(S,F). However, it is

much harder to check membership in PQ(S,FS) (i.e., whether the

generic intersection variety is a point) than to compute the expected

dimension and check that edimQ,FS
(T, S) = 0 (i.e., whether the generic

intersection variety is a finite set of points).

7.1. Combinatorial Horn conditions. Since the property of being

Q-intersecting only depends on the Schubert cell, we can also give

a combinatorial version of the above characterization. We will work

in the following setup: For every finite subset J = {i1 < · · · < i`} ⊆
N, define the vector space V(J) =

⊕
j∈JCej and the filtration F(J)

with elements F(J)(a) =
⊕a
k=1Cejk for a = 1, . . . , `. Thus, every

collection J = (Jx)x∈Q0 of finite subsets Jx ⊆ N defines a family of

vector spaces V(J) and a family of filtrations F(J), i.e., a filtered

dimension vector.

We will write K ⊆ J if K = (Kx)x∈Q0 is a family of subsets Kx ⊆ Jx
for every x ∈ Q0. In this case,V(K) is a family of subspaces ofV(J). As

discussed on p. 10, every Schubert cell in a Grassmannian ofV(J) is the
Borel orbit of some family of the form V(K). Let us also writeΩ(K)
for the corresponding Schubert variety defined by V(K).
We write K ⊆Q J if V(K) is Q-intersecting in V(J), and we abbrevi-

ate the expected dimension by edimQ(K, J) = edimQ,F(J)(V(K),V(J)).
Using Eq. (2.1), the expected dimension can be computed as follows:

edimQ(K, J) =
∑
x∈Q0

∑
j∈Kx

(
pj(Jx) − pj(Kx)

)
−

∑
a:x→y∈Q1

|Kx|
(
|Jy|− |Ky|

)
,

(7.1)

where we write px(S) for the position of an element x in a set S in

increasing order, i.e., px(S) = 1 for the smallest element x ∈ S, etc.
We obtain a simple practical criterion for deciding Q-intersection:

Definition 7.3 (Combinatorial Horn set). Let J = (Jx)x∈Q0 be a family
of finite subsets of N. We define HornQ(J) as the set of K ⊆ J such that,
if K 6= J,
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(A) edimQ(K, J) > 0,
(B) edimQ(L, J) > 0 for every L ∈ HornQ(K) that satisfies L 6= K

and edimQ(L,K) = 0.
Theorem 7.4 (Combinatorial Horn conditions). Let J = (Jx)x∈Q0 be a
family of finite subsets of N and K ⊆ J a family of subsets. Then, K ⊆Q J

if and only if K ∈ HornQ(J). Moreover, if K ⊆Q J then the generic
intersection variety is of dimension edimQ(K, J).
It is straightforward to incorporate the optimizations discussed

in Remarks 5.7 and 6.8 into this criterion. Given a family J that

satisfies |Jx| = |Jy| for every arrow x → y in some subset A ⊆ Q1,
define HornQ,A(J) inductively as the set ofK ⊆ J satisfying the same

dimension condition (i.e., |Kx| = |Ky| for every arrow x→ y ∈ A) and,
if K 6= J,

(A) edimQ(K, J) > 0,
(B) edimQ(L, J) > 0 for every L ∈ HornQ,A(K) with L 6= K and

edimQ(L,K) = 0.

Then, the elements of HornQ,A(J) are precisely the Q-intersecting

subfamilies of J that satisfy the dimension condition.

We now specialize our result to the Horn quiver Hs from (1.4) and

constant dimension vectors (corresponding to the choice where A
contains all arrows of Hs). Thus, let J denote a family of s+ 1 subsets
of N, each of cardinality n, and K ⊆ J a collection of subsets, each

of cardinality 0 6 r 6 n. If we identify each V(Jx) ∼= Cn, each V(Kx)
determines a Schubert variety Ω(Kx) in Gr(r, n). As explained in

Example 2.5, the Schubert classes [Ω(Kx)]x=1,...,s+1 are intersecting
if and only if K ⊆Hs J. Thus, we obtain the following necessary and

sufficient condition for Schubert varieties in Gr(r, n) to intersect:

Definition 7.5 (Belkale’s Horn set). Let J denote a family of s+ 1 subsets
of N, each of cardinality n, and 1 6 r 6 n. We define Belkales(r, J) as the
set of K ⊆ J such that each Kx has cardinality r and,

(A) edimHs(K, J) > 0,
(B) edimHs(L, J) > 0 for every L ∈ Belkales(d,K) where 1 6 d < r

and edimHs(L,K) = 0.
Note that for the quiver Hs, J = (Jx) with Jx = {1, . . . , n} for all x,

and K ⊆ J such that each Kx has cardinality r, Eq. (7.1) simplifies to

edimHs(K, J) =

(
s+1∑
x=1

r∑
a=1

(
Kx(a) − a

))
− sr(n− r),

where Kx(1) < · · · < Kx(r) denote the elements of Kx. This coincides
with Belkale’s definition of the expected dimension [2].

Theorem 7.6 (Belkale). Let 1 6 r 6 n, J a family of s + 1 subsets of N,
each of cardinality n, and K ⊆ J a family of subsets, each of cardinality r.
Then, K ⊆Hs J if and only if K ∈ Belkales(r, J).
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In his original proof [2], Belkale constructs an element T ⊂Q Vwith

constant dimT, by a ‘cascade construction’ of generic kernels (a priori

different from the one we used) such that T fails to satisfy the Horn

conditions if the Schubert classes are not intersecting. Belkale’s proof

has been simplified by Sherman [26], as explained in [4].

7.2. Relation to augmented quivers. We now discuss the relation

between our criterion and the construction of Derksen-Weyman in

more detail (cf. §1.4).

Consider a quiver Q and a dimension vector n, and define J =
(Jx)x∈Q0 by Jx = {1, . . . , nx}. Inspired by Derksen-Weyman [10],

define an augmented quiver ˜Q in the following way. For each vertex

x ∈ Q0, introduce additional vertices (x, i) for i = 1, . . . , nx − 1, and
add arrows

(x, 1) −→ . . . −→ (x, nx − 1) −→ (x, nx) = x.

Define the dimension vector ñwith components ñx,i = i. Note that ñ
coincides with n on Q. Given a family of subsets K ⊆ J, we can

similarly associate a subdimension vector α̃ by α̃x,i = |Kx ∩ {1, . . . , i}|.
Then the correspondence between our picture and the augmented

quiver picture is as follows: K ⊆Q J if and only if α̃ 6 ˜Q ñ, that is, if
and only if α̃ is a Schofield subdimension vector of ñ.

Thus, one can also determine if K ⊆Q J by using Schofield’s induc-

tive criterion for subdimension vectors of the augmented quiver
˜Q.

This is not obviously equivalent to our Theorems 1.1 and 6.1, which

apply to Q directly. Indeed, even using our refinement of Schofield’s

criterion (Theorem 6.9), one would a priori need to test Schofield

subdimension vectors in P ˜Q(α̃), which in general is a much larger set

than PQ(V(K),F(K)).
As an easy example, consider the quiver Q with a single arrow,

a→ b. For K = ({1, 2}, {1, 2}), the set PQ(V(K),F(K)) has 7 elements,

namely the following subfamilies of K:

(∅, ∅), (∅, 1), (∅, 12), (1, 2), (1, 12), (2, 1), (12, 12),
where we write 12 instead of {1, 2} etc. to improve readability. In

contrast, for the extended quiver (a, 1)→ (a, 2)→ (b, 2)← (b, 1) and
the dimension vector α̃ = (1, 2, 2, 1) corresponding to K, there are 12

Schofield subdimension vectors in P ˜Q(α̃):

(0, 0, 0, 0), (0, 0, 1, 1), (0, 0, 2, 0), (0, 0, 2, 1),

(0, 1, 1, 1), (0, 2, 2, 0), (0, 2, 2, 1), (1, 1, 1, 0),

(1, 1, 2, 0), (1, 1, 2, 1), (1, 2, 2, 0), (1, 2, 2, 1).

Indeed, while every L ∈ PQ(V(K),F(K)) produces an element
˜β ∈

P ˜Q(α̃) by ˜βx,i = |Lx ∩ {1, . . . , i}|, it is clear that only elements with

˜βx,i 6 ˜βx,i+1 6 ˜βx,i + 1 (7.2)



30 V. BALDONI, M. VERGNE, ANDM. WALTER

can arise in this way.

While Theorem 6.1 is not a consequence of Schofield’s theorem, it is

possible to give an alternative proof using the augmented quiver con-

struction, staying purely in the realm of ordinary dimension vectors.

Indeed, using similar arguments as in Remarks 5.7 and 6.8 one can

prove a refined version of Schofield’s theorem (or Theorem 6.9) for

dimension vectors of the form α̃ and ñ, stating that in order to deter-

mine whether α̃ 6 ˜Q ñ, it suffices to consider
˜β ∈ P ˜Q(α̃) that satisfy

Eq. (7.2) and hence arise from some family L ∈ PQ(V(K),F(K)).

8. Applications to Representation Theory

In this section, we recall that the Q-intersecting Schubert vari-

eties determine a complete set of inequalities characterizing the

cone CQ(V) generated by the highest weights of irreducible GLQ(V)-
representations that appear in the space of polynomial functions

onHQ(V), as mentioned previously in §1.5. Applying an argument

of Ressayre, we also show that the semigroup of highest weights

is saturated. Together, we obtain Theorem 1.5 as announced in the

introduction.

We largely follow the notation of §7.1. Consider a quiver Q and

a dimension vector n, and define J = (Jx)x∈Q0 by Jx = {1, . . . , nx}.
Let V = V(J). It is easy to see that, if the quiver Q has no cycles,

then the action of GLQ(V) on the space Sym
∗(HQ(V) of polynomial

functions onHQ(V) decomposes with finite multiplicities. A basis for

the Cartan subalgebra of gl(Vx) is given by the diagonal matrices hx,i
for i = 1, . . . , nx such that hx,iej = δi,jej for j = 1, . . . , nx. Con-

sider zx =
∑nx
i=1 hx,i. Then, z = (zx)x∈Q0 is in z =

⊕
x∈Q0 Rzx, the

center of glQ(V), and acts by zero in the infinitesimal action of glQ(V)
on HQ(K). We label the dominant weights for GLQ(V) by a collec-

tion λ = (λx)x∈Q0 , where each λx is a function {1, . . . , nx} → Z such

that λx(i) > λx(j) for all 1 6 i 6 j 6 nx. Let Vλ denote the irreducible

representation of GLQ(V) with highest weight λ. We decompose:

Sym
∗(HQ(V)) =

⊕
λ

m(λ)Vλ.

Note that Vλ occurs with nonzero multiplicity (i.e.,m(λ) > 0) if and
only if there exists a nonzero homogeneous polynomial P onHQ(V)
which is semi-invariant byBQ(V,F)withweight λ. The coneCQ(V) is,
by definition, the cone generated by the dominant weights λ such that

m(λ) > 0. As discussed in §1.5, results of Guillemin-Sternberg [12,13]

and Mumford [18, Appendix] identify the cone CQ(V)with the image

of a moment map modulo the coadjoint action.

The following result can be proved in more general situations using

Ressayre’s dominant pairs [21] (see also [28]). We give a short proof

in our context.
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Proposition 8.1. Let J = (Jx)x∈Q0 , where Jx = {1, . . . , nx}, andV = V(J).
Letλ such thatVλ occurs with nonzero multiplicity in Sym∗(HQ(V)). Then,∑

x∈Q0

nx∑
j=1

λx(j) = 0, (8.1)

and for every Q-intersecting family of subsets K ⊆Q J we have that∑
x∈Q0

∑
k∈Kx

λx(k) 6 0. (8.2)

Proof. The first claim follows immediately from the fact that the

element z ∈ glQ(V) acts trivially on Sym
∗(HQ(V)).

For the second claim, let K be a Q-intersecting family of subsets as

above and let P be an arbitrary nonzero homogeneous polynomial

that is semi-invariant by BQ(V,F) with weight λ. Let S = V(K)
and T = V(Kc), where each (Kc)x = Kcx, the complement of Kx
in Jx = {1, . . . , nx}. Consider the vector space from Eq. (3.1):

X(S) = {v ∈ HQ(V) : vS ⊆ S}

Since S isQ-intersecting, the BQ(V,F)-orbit ofX(S) is dense inHQ(V)
(Lemma 3.4). Thus, since P is nonzero and semi-invariant by BQ(V,F),
there must exist v ∈ X(S) such that P(v) 6= 0. As an element of X(S),
it is necessarily of the form

v =

(
v00 v01
0 v11

)
,

where v00 ∈ HQ(S), v01 ∈ HQ(T, S), and v11 ∈ HQ(T). Now consider

the elementH = (Hx)x∈Q0 in the Cartan subalgebra of glQ(V) defined
by Hx =

∑
j∈Kx hx,j for x ∈ Q0. That is, each Hx is of the form

Hx =

(
I 0
0 0

)
with respect to the direct sum Vx = Sx ⊕ Tx. The orbit of v by the

natural action of the one-parameter subgroup exp(−tH) of GLQ(V)
is given by vt = (exp(−tHy)va exp(tHx))a : x→y∈Q1 . Thus,

lim

t→∞ vt =
(
v00 0
0 v11

)
.

On the other hand, P has weight λ, so

P(vt) = e
〈λ,H〉tP(v).

We conclude that 〈λ, H〉 6 0, for otherwise the limit would not exist.

This inequality is exactly Eq. (8.2). �

Conversely, geometric invariant theory [22] implies that if λ satisfies
the conditions in Eqs. (8.1) and (8.2) then it is an element ofCQ(V) (see



32 V. BALDONI, M. VERGNE, ANDM. WALTER

also [28]). Equivalently, in this case there exists a positive integerN > 1
such thatm(Nλ) > 0.

In fact, we can chooseN = 1, meaning that the semigroup of highest

weights is saturated. For the Horn quiver, this was proved first by

Knutson-Tao [16] and then by Derksen-Weyman [10]. A geometric

proof was given by Belkale [2] (see also [4]). We thank Ressayre for

explaining to us that, for a general quiver, this also follows from

the Derksen-Weyman saturation theorem [10], which asserts that,

for a quiver Q without cycles, the semigroup of weights of semi-

invariants is saturated (i.e., whenever there exists a semi-invariant

of weight Nω for some weightω and integer N > 1, then there also

exists a semi-invariant of weightω).

Indeed, augment the quiver Q to a quiver
˜Q and consider the fam-

ily
˜V = (Cnx,i) of vector spaces with dimension vector ñ, as in §7.2. To

every family ω̃ = (ω̃x,i) of integers, we can associate aweight λ(ω̃) =
(λx) for GLQ(V) by λx(i) =

∑nx
j=i ω̃(x,j). Using the Cauchy formula for

the decomposition of

⊗nx−1
i=1 Sym

∗(Hom(Ci,Ci+1)) under the action
of

∏nx
i=1GL(i), it is easy to see that if there exists a semi-invariant of

weight ω̃ for H ˜Q( ˜V), then necessarily ω̃x,i > 0 for i = 1, . . . , nx − 1
and every x ∈ Q0. Thus, the corresponding λ(ω̃) is a dominant

weight. Conversely, any dominant weight λ can be written in this

form for some ω̃. Furthermore, λ(ω) is in CQ(V) if and only if

ω̃ ∈ Σ ˜Q( ˜V). Consequently, the semigroup of highest weights for

HQ(V) is saturated, since the semigroup of weights of semi-invariants

for H ˜Q( ˜V) is saturated. The proof sketched above is similar to the

Derksen-Weyman proof of the Horn inequalities [10], which has been

further simplified in [9].

Let us discuss which among the inequalities in Eq. (8.2) are irre-

dundant. In a general setting, geometric conditions for irredundancy

were given by Ressayre in [21] and, in more detail for the particular

case of quivers, in [20]. For K to define an irredundant inequality, it

must satisfy two conditions:

(R1) V(K) belongs to PQ(V,F), i.e., the intersection varietyΩ(K)v
is generically reduced to a point,

(R2) dimCQ(V(K)) + dimCQ(V(K
c)) = dimCQ(V) − 1, whereKc

denotes the family of complements Kcx of Kx in Jx = {1, . . . , nx}.

For the Horn quiver Hs, condition (R2) is a consequence of (R1), but

not in general (see end of §9).

In practice, it can be difficult to determine when conditions (R1)

and (R2) are satisfied. It is often easier to use accelerated Fourier-

Motzkin elimination on the complete (but, in general, redundant) set of

inequalities associated to Q-intersectingΩ(K) with edimQ(K, J) = 0
to obtain a complete set of irredundant inequalities characterizing the

cone CQ(V) (see also [28]).
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The cone ΣQ(V) is, by definition, the intersection of CQ(V) with z∗.
Here, we embed z∗ into the dual of the Lie algebra of the maximal

torus of GLQ(V) viaω 7→ λ, where λx(1) = · · · = λx(nx) = ωx. We

note that, for a general quiver Q, this intersection can be reduced

to {0}. We can characterize ΣQ(V) by restricting a complete set of

defining inequalities of the cone CQ(V) to z∗, such as our Eqs. (8.1)

and (8.2). If K = (Kx) is a family of subsets Kx ⊆ {1, . . . , nx} and λ as

above, then

∑
k∈Kx λx(k) = |Kx|ωx. Moreover, if K is Q-intersecting,

then αx = |Kx| defines a Schofield subdimension vector α, and any

Schofield subdimension vector of n can be obtained in this way. It

follows that the cone ΣQ(V) is determined by the inequalities∑
x∈Q0

αxωx 6 0,

where α ranges over all Schofield subdimension vectors of n, together
with the equation ∑

x∈Q0

nxωx = 0.

In this way, we recover the description of ΣQ(V) due to Derksen-

Weyman [10] and Schofield-van den Bergh [25]. Irredundant inequal-

ities are described in [10] when n is a Schur root.

9. Sun Quiver

We now discuss the ‘sun quiver’ introduced in [7]:

1

2

3

4

5

6

The sun quiver has a discrete rotation symmetry (x 7→ x + 2) and a

reflection symmetry that interchanges 2↔ 6 and 3↔ 5.
The family J = ({1, 2}, . . . , {1, 2}) and its dimension vector (2, . . . , 2)

respect both symmetries. We use Theorem 7.4 to compute the Q-

intersecting subfamilies K ⊆Q J. Up to symmetry, there are 113

subfamilies, corresponding to 39 Schofield subdimension vectors.

The latter are given by the following list:

(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 2), (0, 0, 0, 1, 0, 1),

(0, 0, 0, 1, 0, 2), (0, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 2), (0, 0, 0, 2, 0, 2),

(0, 0, 0, 2, 1, 2), (0, 0, 0, 2, 2, 2), (0, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 2),

(0, 1, 0, 1, 1, 1), (0, 1, 0, 1, 1, 2), (0, 1, 0, 2, 0, 2), (0, 1, 0, 2, 1, 2),

(0, 1, 0, 2, 2, 2), (0, 1, 1, 1, 0, 2), (0, 1, 1, 1, 1, 1), (0, 1, 1, 1, 1, 2),
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(0, 1, 1, 2, 0, 2), (0, 1, 1, 2, 1, 1), (0, 1, 1, 2, 1, 2), (0, 1, 1, 2, 2, 2),

(0, 2, 0, 2, 0, 2), (0, 2, 0, 2, 1, 2), (0, 2, 0, 2, 2, 2), (0, 2, 1, 1, 1, 2),

(0, 2, 1, 2, 1, 2), (0, 2, 1, 2, 2, 2), (0, 2, 2, 2, 2, 2), (1, 1, 1, 1, 1, 1),

(1, 1, 1, 1, 1, 2), (1, 1, 1, 2, 1, 2), (1, 1, 1, 2, 2, 2), (1, 2, 1, 2, 1, 2),

(1, 2, 1, 2, 2, 2), (1, 2, 2, 2, 2, 2), (2, 2, 2, 2, 2, 2).

Up to symmetry, there are 59Q-intersecting subfamiliesK that satisfy

the condition edimQ(K, J) = 0. They are given by

(∅, ∅, ∅, ∅, ∅, ∅), (∅, ∅, ∅, ∅, ∅, 1), (∅, ∅, ∅, ∅, ∅, 12),
(∅, ∅, ∅, 1, ∅, 1), (∅, ∅, ∅, 1, ∅, 12), (∅, ∅, ∅, 1, 2, 2),
(∅, ∅, ∅, 2, 1, 2), (∅, ∅, ∅, 1, 2, 12), (∅, ∅, ∅, 2, 1, 12),
(∅, ∅, ∅, 12, ∅, 12), (∅, ∅, ∅, 12, 1, 12), (∅, ∅, ∅, 12, 12, 12),
(∅, 1, ∅, 1, ∅, 1), (∅, 1, ∅, 1, ∅, 12), (∅, 1, ∅, 1, 2, 2),
(∅, 1, ∅, 2, 1, 2), (∅, 1, ∅, 1, 2, 12), (∅, 1, ∅, 2, 1, 12),
(∅, 1, ∅, 12, ∅, 12), (∅, 1, ∅, 12, 1, 12), (∅, 1, ∅, 12, 12, 12),
(∅, 1, 2, 2, ∅, 12), (∅, 2, 1, 2, ∅, 12), (∅, 1, 2, 2, 2, 2),
(∅, 2, 1, 2, 2, 2), (∅, 2, 2, 1, 2, 2), (∅, 1, 2, 2, 2, 12),
(∅, 2, 1, 2, 2, 12), (∅, 2, 2, 1, 2, 12), (∅, 2, 2, 2, 1, 12),
(∅, 1, 2, 12, ∅, 12), (∅, 2, 1, 12, ∅, 12), (∅, 1, 2, 12, 1, 2),
(∅, 1, 2, 12, 2, 1), (∅, 2, 1, 12, 1, 2), (∅, 1, 2, 12, 1, 12),
(∅, 2, 1, 12, 1, 12), (∅, 1, 2, 12, 12, 12), (∅, 2, 1, 12, 12, 12),
(∅, 12, ∅, 12, ∅, 12), (∅, 12, ∅, 12, 1, 12), (∅, 12, ∅, 12, 12, 12),
(∅, 12, 1, 2, 2, 12), (∅, 12, 2, 1, 2, 12), (∅, 12, 1, 12, 1, 12),
(∅, 12, 1, 12, 12, 12), (∅, 12, 12, 12, 12, 12), (2, 2, 2, 2, 2, 2),

(1, 2, 2, 2, 2, 12), (2, 1, 2, 2, 2, 12), (2, 2, 1, 2, 2, 12),

(1, 2, 2, 12, 1, 12), (2, 1, 2, 12, 1, 12), (1, 2, 2, 12, 12, 12),

(2, 1, 2, 12, 12, 12), (1, 12, 1, 12, 1, 12), (1, 12, 1, 12, 12, 12),

(1, 12, 12, 12, 12, 12), (12, 12, 12, 12, 12, 12),

wherewe againwrite 12 instead of {1, 2} etc. to improve readability. For

example, (1, 2, 2, 12, 1, 12) and (2, 1, 2, 12, 1, 12) are two (inequivalent)

subfamilies that both correspond to the Schofield subdimension

vector (1, 1, 1, 2, 1, 2).
We now compute the polyhedral cone characterizing the highest

weights λ that appear in Sym
∗(HQ(V)), where V = (C2, . . . ,C2). It is

defined by the constraints in Proposition 8.1 and the Weyl chamber

inequalities λx(1) > λx(2) for each vertex x. The resulting cone has 36

extreme rays and 75 faces. In addition to theWeyl chamber inequalities

and the constraint

∑6
x=1

∑2
a=1 λx(a) = 0, a minimal complete set of
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defining inequalities is (up to symmetry) given by the following list

λ1(1) + λ2(2) + λ6(2) 6 0,

λ1(2) + λ2(1) + λ6(2) 6 0,

λ1(1) + λ2(2) + λ3(2) + λ4(2) + λ6(2) 6 0,

λ1(2) + λ2(1) + λ3(2) + λ4(2) + λ6(2) 6 0,

λ1(2) + λ2(1) + λ4(2) + λ5(2) + λ6(2) 6 0,

|λ1|+ |λ2|+ |λ6| 6 0,

λ1(1) + |λ2|+ λ3(1) + λ4(2) + λ6(2) 6 0,

λ1(1) + |λ2|+ λ3(2) + λ4(1) + λ6(2) 6 0,

λ1(2) + |λ2|+ λ3(2) + λ4(1) + λ6(1) 6 0,

λ1(1) + |λ2|+ λ3(2) + λ4(2) + λ5(2) + λ6(2) 6 0,

λ1(1) + λ2(2) + λ3(2) + |λ4|+ λ5(2) + λ6(2) 6 0,

λ1(2) + |λ2|+ λ3(2) + λ4(1) + λ5(2) + λ6(2) 6 0,

|λ1|+ |λ2|+ λ3(1) + λ4(2) + λ5(2) + |λ6| 6 0,

|λ1|+ |λ2|+ λ3(2) + λ4(1) + λ5(2) + |λ6| 6 0,

together with λx(2) > 0 for odd x and λx(1) 6 0 for even x. We com-

puted these inequalities using Fourier-Motzkin elimination starting

from the conditions in Proposition 8.1 for Q-intersecting families K

with expected dimension zero and the Weyl chamber inequalities.

The above list coincides with Collins’ updated result [7], obtained

by using the isomorphism between CQ(V) and Σ ˜Q( ˜V) described in

§8 and the Derksen-Weyman description of irredundant inequalities

for Σ ˜Q( ˜V) in terms of decompositions into Schur roots.

In this simple case, it is also feasible to apply (and verify) Ressayre’s

criterion for irredundancy. All familiesK listed above satisfyRessayre’s

condition (R1) onp. 32, except for the familyK = ({2}, {2}, {2}, {2}, {2}, {2}),
which leads to a variety Ω(K)v which generically consists of two

points. (Generically, the composition v−11→6v5→6v
−1
5→4v3→4v

−1
3→2v1→2

has two one-dimensional eigenspaces S1, each of which gives rise to a

point S ∈Ω(K)v.) The corresponding inequality
∑
x λx(2) 6 0 indeed

follows by adding the Weyl chamber inequalities λx(2) − λx(1) 6 0 to
the equation

∑
x λx(1) + λx(2) = 0.

It is also not hard to see that ifK is a family for which the undirected

subgraph of the sun quiver obtained by erasing the vertices corre-

sponding to empty sets (i.e., Kx = ∅) is a disconnected graph, then K

(and alsoKc) do not satisfy Ressayre’s condition (R2) for irredundancy.

For example, the inequalities λ4(1) 6 0 and λ6(1) 6 0 are irredun-

dant inequalities associated to (∅, ∅, ∅, {1}, ∅, ∅) and (∅, ∅, ∅, ∅, ∅, {1})),
respectively. In contrast, the family K = (∅, ∅, ∅, {1}, ∅, {1}) satisfies
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condition (R1) but not condition (R2), and the corresponding inequal-

ity λ4(1) + λ6(1) 6 0 is redundant.
In general, a priori conditions for irredundancy such as given by

Belkale-Kumar [3], Derksen-Weyman [10], Knutson-Tao-Woodward [17],

and Ressayre [21] are given in terms of Schubert calculus (for GL(n),
equivalently, in terms of Littlewood-Richardson coefficients) and are

hard to test in practice.
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