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ABSTRACT
Attribute-based encryption (ABE) enables fine-grained access con-

trol on encrypted data and has a large number of practical applica-

tions. This paper presents FABEO: faster pairing-based ciphertext-

policy and key-policy ABE schemes that support expressive policies

and put no restriction on policy type or attributes, and the first

to achieve optimal, adaptive security with multiple challenge ci-

phertexts. We implement our schemes and demonstrate that they

perform better than the state-of-the-art (Bethencourt et al. S&P

2007, Agrawal et al., CCS 2017 and Ambrona et al., CCS 2017) on

all parameters of practical interest.
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1 INTRODUCTION
Attribute-based encryption (ABE) [30, 45] extends classical public-

key encryption to support fine-grained access control on encrypted

data. ABE has applications in a variety of settings including elec-

tronic medical records [5], messaging systems [41], online social

networks [9] and information-centric networking [35]. Companies

like Cloudflare already use ABE to distribute private key storage

across data centers [48].

ABE comes in two variants: ciphertext-policy (CP-ABE) and

key-policy (KP-ABE), depending on whether access policies are

attached to ciphertexts or to keys [12, 30]. In CP-ABE, keys are

associated with sets of attributes, and a key is able to recover the

message hidden in a ciphertext if and only if the set of attributes

satisfy the access policy attached to the ciphertext. For instance,

a policy P could say ‘(Zipcode:90210 OR City:BeverlyHills) AND

(AgeGroup:18-25)’ and an individual A could have a key for Zip-

code:90210, AgeGroup:Over65, in which case A would not be able

to decrypt any message encrypted under P. A KP-ABE is the dual
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of CP-ABE with ciphertexts attached to attribute sets and keys

associated with access policies.

There is by now a vast body of research on ABE realizing a broad

spectrum of trade-offs between efficiency, expressiveness, security

and hardness assumptions. The state of the art for practical ABE

schemes are encapsulated by the following pairing-based schemes:

(i) BSW CP-ABE scheme (Bethencourt, Sahai and Waters [12]), (ii)

FAME CP-ABE and KP-ABE schemes (Agrawal and Chase [2]), and

(iii) ABGW CP-ABE and KP-ABE schemes (Ambrona, Barthe, Gay

and Wee [6]). These schemes simultaneously achieve the following

properties that are highly desirable in practice:

(1) support expressive policies described by boolean formula

and monotone span programs (MSP);

(2) put no restriction on size of policies or attribute sets;

(3) allow any arbitrary string such as street addresses to be used

as an attribute;

(4) achieve the strong and natural notion of adaptive security,

the defacto standard for ABE.

However, these schemes achieve incomparable efficiency guaran-

tees, and deciding which one to deploy requires making complex

performance trade-offs that depend on the policies that arise in the

specific context.

1.1 Our Contributions
Wepresent FABEO, new pairing-based KP-ABE andCP-ABE schemes

achieving properties (1) – (4), with improved efficiency and quan-

titatively stronger security guarantees. FABEO uses asymmetric

(Type-III) prime-order bilinear groups (G1,G2,G𝑇 ) which support

efficient hashing to G1 [24, 46]. Ciphertexts and secret keys in

FABEO comprise mostly of elements in the smaller and faster group

G1, plus 1 or 2 elements in G2. Computation for key generation,

encryption and decryption are mostly carried out in G1, with 2 to

3 pairings for decryption. We prove optimal security bounds for

FABEO against adversaries that get an arbitrary number of cipher-

texts and keys: in particular, when instantiated over the popular

BLS12-381 curve, FABEO achieves close to 128-bit security.

FABEO subsumes BSW, FAME and ABGW on all parameters of

practical interest. We improve upon the ciphertext and key sizes of

all three schemes, as well as the running times. In particular, our

ciphertexts are 66% smaller; encryption is (at least) 33% faster; and

decryption uses fewer pairings. FABEO also supports multi-use of

attributes like in BSW and ABGW (without an a-prior bound during

set-up), with a small additive overhead in the multi-use parameter.

See Table 1 for a property-wise comparison of our schemes against

BSW, FAME, ABGW and other prominent schemes in the literature,

as well as Tables 2 and 3 for a theoretical analysis and comparison

for efficiency.
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Scheme Unrestricted policies Arbitrary attributes Fast decryption Attribute multi-use Security bounds
CP-ABE
BSW [12, §4.2] [2, §D] ✓ ✓ × ✓ 𝑡3/𝑝
Waters [51, §3] [2, §E] ✓ × × ✓ –

ABGW [6, §5.3] ✓ ✓ × ✓ 𝑡4/𝑝
FAME [2, §3] ✓ ✓ ✓ × 𝑡4/𝑝
Ours FABEO [Fig 1] ✓ ✓ ✓ ✓ 𝑡2/𝑝
KP-ABE
GPSW [30, §A.1] [2, §F] ✓ × × ✓ –

ABGW [6, §5.3] ✓ ✓ × ✓ 𝑡4/𝑝
FAME [2, §B] ✓ ✓ ✓ × 𝑡4/𝑝
Ours FABEO [Fig 1] ✓ ✓ ✓ ✓ 𝑡2/𝑝

Table 1: A property-wise comparison of the various ABE schemes we consider. The BSW, Waters and GPSW schemes were
specified using symmetric pairings in the original works; throughout, we refer to the asymmetric variants from [2]. The last
column shows the security bounds on the adversary’s advantage in the multi-ciphertext setting for the adaptively secure
schemes, with dashes indicating selectively secure schemes.

FABEO achieves properties (2) and (3) by hashing attributes to

G1; smaller ciphertext/key sizes and fast decryption via random-

ness reuse (in CP-ABE ciphertexts and KP-ABE keys); and adaptive

security without efficiency penalties by considering “generic” ad-

versaries, a widely accepted model that captures all known attacks.

While each of these techniques is already present in BSW, FAME,

ABGW and prior works, FABEO is the first to combine them in

a single design, along with a novel analysis establishing optimal

security.

Optimal security. Weprove security of our schemes in the generic

bilinear group model (GGM) [14, 43, 47] (as with BSW and ABGW),

where we model the underlying hash function as a random oracle

[11] (as with BSW and FAME). We show that any generic, adaptive

adversary running in time 𝑡 and sees at most 𝑡 ciphertexts and keys

breaks our schemes with probability at most 𝑂 (𝑡2/𝑝), where 𝑝 is

the order of the underlying group. This bound is optimal, since an

adversary can break discrete log with the same probability. Prior

ABE schemes, including BSW, FAME, and ABGW, achieve a bound

of𝑂 (𝑡3/𝑝) or worse, since the security proofs only consider a single
challenge ciphertext, and a hybrid argument is needed to achieve

multi-ciphertext security.

Proof framework and application. In both our CP-ABE and KP-

ABE schemes, the ciphertext ct for 𝑥 and secret key sk for 𝑦 are of

the form:

ct =
(
𝑔
𝑐1𝑥 (s,b)
1

, 𝑔
𝑐2𝑥 (s)
2

, 𝑒 (𝑔1, 𝑔2)𝛼𝑠1 ·𝑀
)
, sk =

(
𝑔
𝑘1𝑦 (𝛼,b,r)
1

, 𝑔
𝑘2𝑦 (r)
2

)
.

Here, s = (𝑠1, . . .) and r are fresh randomness; 𝑔b
1
contains the hash

of every attribute in the universe
1
, and 𝑐1𝑥 , 𝑐

2

𝑥 , 𝑘
1

𝑦, 𝑘
2

𝑦 are simple

functions of degree 1 or 2. Roughly speaking, we show that for

schemes of this form
2
, security for a single ciphertext-key pair

implies optimal, adaptive security against generic adversaries with

an arbitrary number of ciphertexts and keys. Our modular proof

1
Ignoring for now the fact that b has exponential length.

2
The ABGW CP-ABE and KP-ABE schemes we compare with are not of this form

since the 𝑘1𝑦 computes a rational function.

framework extends and generalizes an analogous statement shown

in ABGW in several ways: (i) we allow 𝑐2𝑥 (s) to have arbitrary

length instead of length 1, as is necessary to capture our CP-ABE

scheme and the one below, (ii) we consider security with multiple

ciphertexts, and (iii) we achieve optimal security.

Next, we describe an additional application of our proof frame-

work that pertains to property (1). A limitation of boolean formula

and monotone span programs is they do not capture computation

over data of arbitrary, unbounded size, which arise settings such

as genome sequencing, processing network and event logs, tax re-

turns and virus scanners; such computation are better captured

by regular languages, or deterministic finite automata (DFA). As

a secondary contribution, we prove that Waters’ KP-ABE scheme

for DFA [52] achieves optimal, adaptive security.
3
In this scheme,

𝑐2𝑥 (s) has arbitrary length that grows with 𝑥 . Compared to prior

adaptively secure KP-ABE for DFA [3, 7, 8, 29, 42], we obtain (at

least) a 50% improvement in ciphertext and key sizes as well as

running times.

Implementation and evaluation. We implement FABEO in the

Charm framework [4]. Our experiments validate our theoretical

analysis in Table 2 showing that FABEO improves on the perfor-

mance of BSW, FAME and ABGW, for all of key generation, encryp-

tion and decryption. FABEO compares favorably even against the

Waters CP-ABE [51] and GPSW KP-ABE [30], even though these

schemes do not achieve property (3). See Figure 3 in Section 7 for

the performance of the algorithms of each scheme under various

test cases. Our code is available on GitHub [44] (we plan to also

release our code to open source).

All computations are performed on an ordinary laptop and we

achieve practical results, even for large attribute sets and policies.

Specifically for our CP-ABE with the MNT224 curve, set-up takes

less than 0.02s, and it takes around 0.09s to generate a key for 100

attributes, and 0.18s to encrypt data under a policy that requires all

100 attributes. Decryption then takes only 0.02s. As a comparison,

3
Waters only proved weaker, selective security for his scheme. More precisely, we

consider a variant of Waters’ scheme with smaller keys from [28].
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the ABGW CP-ABE scheme takes 0.63s to generate a key for the

same number of attributes, 0.33s to encrypt and 0.48s to decrypt. In

FAME, decryption takes 0.03s, and key generation and encryption

are slower than ABGW.

Summary of Contributions. To summarize, our contributions are

as follows:

• We present new KP-ABE and CP-ABE schemes for MSP with

improved efficiency guarantees and the first to achieve opti-

mal, adaptive security with multiple challenge ciphertexts.

• We provide a more general and modular framework for prov-

ing optimal ABE security in the GGM.

• We implement our KP-ABE and CP-ABE schemes for MSP

and evaluate their performance for various parameters.

• We present and implement a new KP-ABE for DFA with

optimal, adaptive security in the GGM.

1.2 Discussion and Related Work
We discuss additional context and related works.

Choosing curve parameters. When choosing curve parameters

for a pairing-based scheme, practitioners often base the decisions

on the hardness of the discrete log problem, and ignore the security

bounds provided in security proof for the scheme. This is in part due

to the limited number of pairing-friendly curves that are available

in practice [46], and the possibly prohibitive performance penalty

from using a curve with larger bit security. In particular, there is an

implicit expectation that a scheme instantiated over a curve with

128-bit security should also achieve close to 128-bit security. Our

work takes a step towards rigorously justifying this expectation in

the context of pairing-based ABE.

Achieving adaptive security. There are two main approaches for

realizing adaptive security for ABE schemes in the literature: (1)

prove security against generic adversaries as was done in BSW,

ABGW and this work, and (2) adopt the dual system encryption

framework [7, 40, 50, 53] as used in FAME, which allows us to

base security on SXDH and DLIN (and in some settings, with the

additional use of 𝑞-type assumptions). While the latter yields the-

oretically stronger results, it incurs a huge penalty in efficiency:

for security from 𝑘-LIN (𝑘 = 1 corresponds to SXDH and 𝑘 = 2 to

DLIN), it requires (at least) a factor 𝑘 + 1 blow-up in ciphertext and

key sizes as well as running times for encryption, key generation

and decryption [3, 8, 16]. Moreover, the schemes have a more com-

plex structure, and the security proofs are also substantially more

complex. Another drawback is that the proofs typically require a

hybrid argument over the keys and the ciphertexts, so we cannot

hope for a security bound better than 𝑂 (𝑡4/𝑝).

GGM security. We argue that GGM security is sufficient for most

practical applications. The reasoning is two-fold: First, our under-

standing of pairing curves has advanced substantially over the past

two decades, with increasing adoption (e.g. Cloudflare and ZCash)

as well as on-going standardization [46]. The known attacks fall

broadly into two categories: (1) attacks on discrete log, most no-

tably the exTNFS in [36], rendering the curves unsuitable for any

applications, (2) attacks that are captured by the GGM [19]. In short,

there is in practice no discernible distinction between the standard

assumptions like SXDH and GGM security. Second, it is much eas-

ier to break a real-world system via side channel attacks or poor

security practices (e.g. phishing attacks or weak passwords) than

to come up with an attack outside of the GGM. Indeed, a large

number of recent works also use the GGM to analyze practical

cryptosystems, e.g. [10, 31, 32].

Optimal and tight security. This work falls under a broader cryp-

tographic research agenda of achieving optimal security and tight

security reductions, for instance, recent works on symmetric-key

encryption [33], signature schemes [22] and TLS 1.3 [23, 26]. In

the context of ABE, optimal security was only previously known

in very limited settings, namely identity-based encryption and its

hierachical variant [13, 15, 17, 18, 25, 27, 34, 38]; we clarify that

these works focus on the more challenging goal of basing security

on static assumptions such as DLIN. In particular, these are the only

settings where we know how to carry out a dual system encryption

proof with security bound better than 𝑂 (𝑡4/𝑝).

Benchmarking ABE schemes. Two very recent works [20, 21]

looked into benchmarking pairing-based ABE schemes, focusing

on low-level optimizations (whereas our work focuses on high-level

design as well as new security guarantees and proof techniques): the

first for CP-ABE covering BSW, Waters, and FAME but not ABGW,

and the second for broadcast encryption. Both works highlight

the complexity of effective benchmarking due to incomparable

trade-offs between efficiency, expressiveness, security and hardness

assumptions, which we alluded to at the beginning of the paper. Our

results, together with those in ABGW and the preceding discussion,

support the thesis that one should consider GGM-based schemes

for benchmarking, since we can achieve the strongest notion of

adaptive security without efficiency penalties.

1.3 Technical Overview
Let (G1,G2,G𝑇 ) be an (asymmetric) bilinear group of prime order

𝑝 , along with a pairing 𝑒 : G1 × G2 → G𝑇 and generators 𝑔1, 𝑔2
for G1,G2 respectively. In general, the bit sizes of group elements

in G2 are 2-3 times that of G1 and group operations in G2 take (at
least) twice as much time. In addition, we can securely hash into

G1 at the cost of roughly one exponentiation in G1.

High-level design. We begin with a high-level overview of our

KP-ABE scheme described in Figure 1. An MSP is given by a matrix

M and a function 𝜋 that maps each row of M to an attribute (for

this overview, assume 𝜋 is injective, i.e., no attribute multi-use).

Following [30], we design the ciphertexts and secret keys so that

for each row 𝑖 in M such that 𝜋 (𝑖) appears in the attribute set,

decryption will compute

𝑒 (𝑔1, 𝑔2)𝑠1𝛼𝑖 (1)

where 𝛼𝑖 is a share of the master secret key 𝛼 and 𝑠1 ← Z𝑝 is the

encryption randomness. The values in (1) can then be combined to

recover the blinding factor 𝑒 (𝑔1, 𝑔2)𝑠1𝛼 .
To realize the above invariant, we have(

𝑔
𝑠1
2
,H(𝜋 (𝑖))𝑠1

)
∈ ct,

(
𝑔𝑟
2
, 𝑔
𝛼𝑖
1
H(𝜋 (𝑖))𝑟

)
∈ sk

so thatwe can compute (1) using 𝑒 (𝑔𝛼𝑖
1
H(𝜋 (𝑖))𝑟 , 𝑔𝑠1

2
)/𝑒 (H(𝜋 (𝑖))𝑠1 , 𝑔𝑟

2
).

In addition, we use the same 𝑟 across all the rows inM, to keep the
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Setup(1𝜆) . Run GroupGen(1𝜆) to obtain G B (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) .
Pick 𝛼

$← Z𝑝 and a hash function H : [ |U | +1] → G1. Compute the master

public key as

mpk B (G,H, 𝑒 (𝑔1, 𝑔2)𝛼 )
Let msk B 𝛼 be the master secret key.

KeyGen(msk, S ⊆ U) . Pick 𝑟 $← Z𝑝 . Compute

sk1 B 𝑔𝛼
1
· H( |U | + 1)𝑟 sk2,𝑢 B H(𝑢)𝑟 sk3 B 𝑔𝑟

2

for each 𝑢 ∈ S. Output sk B (sk1, {sk2,𝑢 }𝑢∈S, sk3) .

Enc(mpk, (M, 𝜋 )) . Pick 𝑠1 $← Z𝑝 , v $← Z𝑛2−1
𝑝 , s′ $← Z𝜏𝑝 . Compute

ct1 B 𝑔
𝑠1
2

ct2, 𝑗 B 𝑔
s′ [ 𝑗 ]
2

for 𝑗 ∈ [𝜏 ], as well as

ct3,𝑖 B H( |U | + 1)M𝑖 (𝑠1 ∥v)⊤ · H(𝜋 (𝑖))s′ [𝜌 (𝑖 ) ]

for each row 𝑖 ∈ [𝑛1 ]. Output ct B (ct1, (ct2, 𝑗 )𝑗∈[𝜏 ] , (ct3,𝑖 )𝑖∈[𝑛1 ] ) and
𝑑 B 𝑒 (𝑔1, 𝑔2)𝛼𝑠1 .
Dec(mpk, (M, 𝜋 ), S, ct, sk) . If S satisfies (M, 𝜋 ) , there exist constants

{𝛾𝑖 }𝑖∈𝐼 s.t.
∑

𝑖∈𝐼 𝛾𝑖M𝑖 = (1, 0, . . . , 0) . Reconstruct 𝑑 by computing

𝑒 (sk1, ct1) ·
∏

𝑗∈[𝜏 ] 𝑒 (
∏

𝑖∈𝐼 ,𝜌 (𝑖 )=𝑗 (sk2,𝜋 (𝑖 ) )𝛾𝑖 , ct2, 𝑗 )
𝑒 (∏𝑖∈𝐼 (ct3,𝑖 )𝛾𝑖 , sk3)

and output the result.

Setup(1𝜆) . Run GroupGen(1𝜆) to obtain G B (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) .
Pick 𝛼

$← Z𝑝 and a hash function H : U → G1. Compute the master public

key as

mpk B (G,H, 𝑒 (𝑔1, 𝑔2)𝛼 )
Let msk B 𝛼 be the master secret key.

KeyGen(msk, (M, 𝜋 )) . Pick r′ $← Z𝜏𝑝 , v
$← Z𝑛2−1

𝑝 . Compute

sk1, 𝑗 B 𝑔
r′ [ 𝑗 ]
2

for 𝑗 ∈ [𝜏 ], as well as

sk2,𝑖 B 𝑔
M𝑖 (𝛼 ∥v)⊤
1

· H(𝜋 (𝑖))r′ [𝜌 (𝑖 ) ]

for each row 𝑖 ∈ [𝑛1 ]. Output sk B ( (sk1, 𝑗 )𝑗∈[𝜏 ] , (sk2,𝑖 )𝑖∈[𝑛1 ] ) .

Enc(mpk, S ⊆ U) . Pick 𝑠 $← Z𝑝 . For each 𝑢 ∈ S compute

ct1,𝑢 B H(𝑢)𝑠 ct2 B 𝑔𝑠
2

Output ct B ( (ct1,𝑢 )𝑢∈S, ct2) and 𝑑 B 𝑒 (𝑔1, 𝑔2)𝛼𝑠 .

Dec(mpk, S, (M, 𝜋 ), ct, sk) . If S satisfies (M, 𝜋 ) , there exist constants

{𝛾𝑖 }𝑖∈𝐼 s.t.
∑

𝑖∈𝐼 𝛾𝑖M𝑖 = (1, 0, . . . , 0) . Reconstruct 𝑑 by computing

𝑒 (∏𝑖∈𝐼 (sk2,𝑖 )𝛾𝑖 , ct2)∏
𝑗∈[𝜏 ] 𝑒 (

∏
𝑖∈𝐼 ,𝜌 (𝑖 )=𝑗 (ct1,𝜋 (𝑖 ) )𝛾𝑖 , sk1, 𝑗 )

and output the result.

Figure 1: Our CP-ABE (left) and KP-ABE (right) scheme for monotone span programs (M ∈ Z𝑛1×𝑛2𝑝 , 𝜋 : [𝑛1] → U). We define
𝜌 (𝑖) B |{𝑧 | 𝜋 (𝑧) = 𝜋 (𝑖), 𝑧 ≤ 𝑖}| and 𝜏 = max𝑖∈[𝑛1 ] 𝜌 (𝑖) corresponding to maximum number of times an attribute is used in M.

key size small. This way, we can also carry out decryption using

two pairings
4
. and with most of the computation in the faster group

G1. In contrast,

• BSW uses a different 𝑟𝑖 for each share, namely (𝑔𝑟𝑖
2
,

𝑔
𝛼𝑖
1
H(𝜋 (𝑖))𝑟𝑖 ) ∈ sk (here, we are describing the KP-ABE

analogue of the BSW CP-ABE). This incurs a factor 2 blow-

up in key size, and decryption requires computing a pairing

for each row of M.

• ABGW uses(
𝑔
𝑠−𝑠𝑖
1

, 𝑔
𝑠𝑖 (𝑏1+𝜋 (𝑖)𝑏2)
1

)
∈ ct,

(
𝑔

𝛼𝑖
𝑏
1
+𝜋 (𝑖 )𝑏

2

2
, 𝑔
𝛼𝑖
2

)
∈ sk

where 𝑔
𝑏1
1
, 𝑔
𝑏2
1

comes frommpk. This incurs (at least) a factor
2 blow-up in ciphertext and key sizes, and an extra exponen-

tation per attribute during encryption. Decryption requires

computing a pairing for each attribute.

• FAME replaces 𝑔
𝑠1
2
, 𝑔𝑟

2
with DLIN-tuples in G3

2
in order to

achieve security under the DLIN assumption using the dual

system encryption framework as described in Section 1.2.

Overall, this incurs a factor 3 blow-up in ciphertext and key

sizes, as well as a factor 3-6 blow-up in running time for

encryption and key generation.

Our CP-ABE scheme is conceptually the dual of our KP-ABE, though

algebraically more intricate and less intuitive (the same holds for

BSW, FAME, and ABGW). Briefly, instead of (1), decryption com-

putes 𝑒 (𝑔1, 𝑔2)𝜇𝑖𝑏
′𝑟
where 𝜇𝑖 is a share of the encryption random-

ness 𝑠1; 𝑔
𝑏′
1

is specified in the public key; and 𝑟 comes from key

generation randomness. These values can then be combined to

4
by writing

∏
𝑖 (𝑒 (𝑔1, 𝑔2)𝑠1𝛼𝑖 )𝛾𝑖 as 𝑒 (∏𝑖 (𝑔

𝛼𝑖
1
H(𝜋 (𝑖))𝑟 )𝛾𝑖 , 𝑔𝑠1

2
) ·

𝑒 (∏𝑖 (H(𝜋 (𝑖))𝑠1 )𝛾𝑖 , 𝑔𝑟2 )−1

compute 𝑒 (𝑔1, 𝑔2)𝑠1𝑏
′𝑟
, which is in turn used to recover the blinding

factor 𝑒 (𝑔1, 𝑔2)𝑠1𝛼 . Our CP-ABE scheme is the same as the AC17-

LU-OK and AC17-LU-CP schemes in the independent work [21],

which asserts selective security under 𝑞-type assumptions without

a formal security proof.

Proof strategy. Weprovide a unified proof security of our KP-ABE

and CP-ABE schemes in the GGM, where we model H as a random

oracle. At a high level, we follow the framework in [6]. Both our

KP-ABE and CP-ABE schemes have the following structure where

the ciphertext is associated with a label 𝑥 and the secret key with a

label 𝑦 (𝑥 is an attribute set for KP-ABE and a policy for CP-ABE,

and vice-versa for 𝑦)

ct𝑥 =

(
𝑔
𝑐1𝑥 (s⊗b)
1

, 𝑔
𝑐2𝑥 (s)
2

, 𝑒 (𝑔1, 𝑔2)𝛼𝑠1 ·𝑀
)
, sk𝑦 =

(
𝑔
𝑘1𝑦 (𝛼,r,b⊗r)
1

, 𝑔
𝑘2𝑦 (r)
2

)
.

where
5

• s = (𝑠1, . . .) and r are random vectors over Z𝑝 corresponding

to randomnness for encryption and key generation;

• 𝑔b
1
contains the hash of every attribute in the universe, along

with 𝑔𝑏
′

1
for our CP-ABE (note that the length of b is expo-

nential, but the 𝑐1𝑥 , 𝑘
1

𝑦 only depend on a polynomial number

of entries of b);
• 𝑐1𝑥 , 𝑐

2

𝑥 , 𝑘
1

𝑦, 𝑘
2

𝑦 are linear functions over Z𝑝 (therefore 𝑐1𝑥 and

𝑘1𝑦 computes degree 2 functions of s, b, r, 𝛼);

• decryption uses the pairing to compute 𝑒 (𝑔1, 𝑔2)𝑐
1

𝑥 (s⊗b) ⊗𝑘2𝑦 (r)

and 𝑒 (𝑔1, 𝑔2)𝑘
1

𝑦 (𝛼,r,b⊗r) ⊗𝑐2𝑥 (s)
, followed by additional linear

5
The tensor product u ⊗ v of two vectors u = (𝑢1,𝑢2, . . .) and v = (𝑣1, 𝑣2, . . .) is a
vector (𝑢1𝑣1,𝑢1𝑣2, . . .) containing all pairwise products of the entries in 𝑢 and 𝑣.
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computation in the exponent to recover the blinding factor

𝑒 (𝑔1, 𝑔2)𝛼𝑠1 .
We refer to ABE schemes with the above structure as a PES-ABE

(PES is short for pair encoding schemes [7]). Towards proving GGM

security, we consider notions of symbolic security for PES-ABE,

where an adversary sees abstract expressions for group elements

in the form of polynomials. The proof of security of our KP-ABE

and CP-ABE schemes follows the following modular framework:

Step 1. We show that our KP-ABE and CP-ABE schemes satisfy the

syntax of a PES-ABE and (1,1) symbolic security, a relaxation

of ABE security where the adversary is selective
6
and only

receives a single ciphertext and single secret key.

Step 2. We prove that any PES-ABE satisfying (1,1) symbolic secu-

rity also satisfies strong symbolic security, where the adver-

sary is still selective but can see the public key as well as an

arbitrary number of ciphertexts and secret keys.

Step 3. We prove that any PES-ABE satisfying strong symbolic se-

curity is adaptively secure in the GGM with optimal security.

We now describe the key differences between our framework

and the one in ABGW:

• The syntax for PES-ABE is different: (i) both ct𝑥 and sk𝑦
contain elements from both G1 and G2, and (ii) we generate

𝑔b
1
using a random oracle.

• We introduce a strengthening of (1,1) symbolic security

where we essentially require that all of [𝛼𝑐1𝑥 (s)]𝑇 are pseu-

dorandom, and not just [𝛼𝑠1]𝑇 . Our notion is also weaker in

that the proof only needs to reason about the terms

𝑒 (𝑔1, 𝑔2)𝑐
1

𝑥 (s⊗b) ⊗𝑘2𝑦 (r)
and 𝑒 (𝑔1, 𝑔2)𝑘

1

𝑦 (𝛼,r,b⊗r) ⊗𝑐2𝑥 (s)
.

• The ABGW KP-ABE and CP-ABE schemes for MSP do not

satisfy the syntax of a PES-ABE since 𝑘2𝑦 computes rational

functions with linear functions b in the denominator and

therefore proving security of these schemes require directly

establishing strong symbolic security;

• The analogue of strong symbolic securty in ABGW in Steps

2 and 3 considers only a single challenge ciphertext.

• We achieve a security bound of 𝑂 (𝑡2/𝑝) in Step 3, whereas

ABGW achieves 𝑂 (𝑡3/𝑝). Our proof crucially relies on the

fact that 𝑐1𝑥 , 𝑐
2

𝑥 , 𝑘
1

𝑦, 𝑘
2

𝑦 compute functions of degree at most 2

in the inputs so that we only need to apply Schwartz-Zippel

to constant-degree polynomials. The proof in ABGW applies

Schwartz-Zippel to polynomials of degree 𝑡 in order to “clear

the denominators” across 𝑡 keys.

2 PRELIMINARIES
Wewill first fix some notation that we will use throughout the paper.

For integers𝑚, 𝑛 where𝑚 < 𝑛, [𝑚,𝑛] denotes the set𝑚,𝑚 + 1, ..., 𝑛.
For𝑚 = 1, we simply write [𝑛]. For a prime 𝑝 , let Z𝑝 denote the set

[0, 𝑝 − 1], where addition and multiplication are computed modulo

𝑝 . For a set S, 𝑠 $← S denotes that 𝑠 is sampled uniformly and

independently at random from S. 𝑦 ← A(𝑥1, 𝑥2, . . .) denotes that
on input 𝑥1, 𝑥2, . . . the probabilistic algorithm A returns 𝑦. AO
denotes that algorithmA has access to oracle O. An adversary is a

probabilistic algorithm. A probabilistic algorithm is called efficient

6
In this overview, we use selective to refer to an adversary that specifies all of its

ciphertext and key queries in advance.

or PPT if its running time is bounded by some polynomial in the

length of its input.

We use lower case bold-face letters for row vectors, where ∥
denotes concatenation of row vectors. v[𝑖] denotes the 𝑖-th coor-

dinate of the vector v. Given a vector v of polynomials of length

𝑚 over Z𝑝 , we write span
(
v
)
to denote {v · e⊤ : e ∈ Z𝑚𝑝 }. Formal

variables are marked with a tilde. We write ṽ ← Var𝑛 to pick 𝑛

formal variables.

2.1 Pairing Groups
LetGroupGen be a PPT algorithm that takes a security parameter 1

𝜆

as input and returns a group descriptionG B (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2),
where 𝑝 is a prime of Θ(𝜆) bits, G1, G2 and G𝑇 are cyclic groups

of order 𝑝 , 𝑒 : G1 × G2 → G𝑇 is a non-degenerate bilinear map

(also called pairing) and 𝑔1 resp.𝑔2 or generators of G1 resp.G2.
The generator 𝑔𝑇 of G𝑇 can be computed as 𝑒 (𝑔1, 𝑔2). We require

that the group operations in G1, G2, G𝑇 and the bilinear map 𝑒 are

computable in deterministic polynomial time in 𝜆. In this work, we

only consider asymmetric (or Type-III) pairing groups where there

exists no efficiently computable homomorphism between G1 and
G2. In some cases we will use implicit representation of group ele-

ments: for a vector v over Z𝑝 , we define [v]1 B 𝑔v𝑠 for 𝑠 ∈ {1, 2,𝑇 },
where exponentiation is carried out component-wise.

2.2 Attribute-based Encryption
Throughout the paper, we will use a KEM-style definition of ABE.

However note that it is implied by the corresponding definition in

the PKE setting.

Syntax. An attribute-based encryption (ABE) scheme for some

class P consists of four algorithms:

Setup(1𝜆, P) → (mpk,msk). The setup algorithm gets as input

the security parameter 1
𝜆
and class description P. It outputs

the master public key mpk and the master secret key msk.
We assume mpk defines the key space K .

Enc(mpk, 𝑥) → (ct𝑥 , 𝑑). The encryption algorithm gets as input

mpk and an input 𝑥 . It outputs a ciphertext ct𝑥 and an en-

capsulated key 𝑑 ∈ K .
KeyGen(mpk,msk, 𝑦) → sk𝑦 . The key generation algorithm gets

as input mpk, msk and 𝑦 ∈ P. It outputs a secret key sk𝑦 .
Dec(mpk, 𝑥,𝑦, ct𝑥 , sk𝑦) → 𝑚. The decryption algorithm gets as

input sk𝑦 and ct𝑥 such that P(𝑥,𝑦) = 1 along with mpk. It
outputs a key 𝑑 .

Correctness. For all input 𝑥 and 𝑦 with P(𝑥) = 1, we require

Pr

Dec(mpk, 𝑥,𝑦, ct𝑥 , sk𝑦) = 𝑑 :

(mpk,msk) ← Setup(1𝜆, P)
sk𝑦 ← KeyGen(mpk,msk, 𝑦)
(ct𝑥 , 𝑑) ← Enc(mpk, 𝑥)

 = 1.

Many-Ciphertext CPA Security. We define security by a game

between a challenger and an adversary A. The challenger picks a

random challenge bit 𝛽 and provides the following oracles to A.

• Setup oracle Ompk: This oracle can only be queried once

and it must be the first query. The challenger runs Setup to

obtain (msk,mpk) and outputs mpk to A.
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• Ciphertext (or challenge) oracle Oct: On the 𝑖-th query, A
provides𝑥𝑖 ∈ X. The challenger runs (ct𝑖 , 𝑑 (0)𝑖 ) ← Enc(mpk, 𝑥𝑖 ),
chooses a random key 𝑑

(1)
𝑖

$← K and outputs (ct𝑖 , 𝑑 (𝛽)𝑖
).

• Secret key oracle Osk: On the 𝑗-th query,A provides𝑦 𝑗 ∈ Y.
The challenger runs sk𝑗 ← KeyGen(msk, 𝑦 𝑗 ) and outputs

sk𝑗 .
Oct and Osk can be queried adaptively and an arbitrary polynomial

number of times. Finally, A outputs a bit 𝛽 ′. We say that A wins

the game if 𝛽 = 𝛽 ′ and P(𝑥𝑖 , 𝑦 𝑗 ) = 0 for all queries 𝑥𝑖 and 𝑦 𝑗 .

Definition 2.1. An ABE scheme is adaptively many-ciphertext

secure if for all efficient A,

AdvABE,A (𝜆) B
��
Pr[𝛽 = 𝛽 ′] − 1

2

��
is negligible in 𝜆.

Boolean formulae and MSP. Boolean formulae are a common way

to model access control. A (monotone) boolean formula consists of

and and or gates, where each input is associated with an attribute

in the universe of attributes denoted byU. Monotone means that

an authorized user who acquires more attributes will not lose any

privileges. Let S ⊆ U be a set of attributes. We say that S satisfies

a boolean formula if we set all inputs of the formula that map to

an attribute in S to true and the others to false and the formula

evaluates to true.

Monotone span programs (MSP) are a more general class of func-

tions and include boolean formulae. We encode an access structure

by a policy (M, 𝜋), where M ∈ Z𝑛1×𝑛2𝑝 and 𝜋 : [𝑛1] → U. Note

that we can compute (M, 𝜋) for any (monotone) boolean formula

in polynomial time [39]. Then every row M𝑖 corresponds to an

input to the formula and the number of columns is the same as the

number of and gates. If the mapping 𝜋 is not injective, we use the

notation 𝜌 (𝑖) B |{𝑧 | 𝜋 (𝑧) = 𝜋 (𝑖), 𝑧 ≤ 𝑖}| to denote the 𝜌 (𝑖)-th
occurrence of attribute 𝜋 (𝑖).

Let S ⊆ U be a set of attributes and 𝐼 = {𝑖 | 𝑖 ∈ [𝑛1], 𝜋 (𝑖) ∈ S}
be the indices of rows inM that are associated with S. We say that

(M, 𝜋) accepts S if the vector (1, 0, . . . , 0) lies in the span of rows

associated with S. This means, there exist constants 𝛾𝑖 ∈ Z𝑝 for

𝑖 ∈ 𝐼 such that

∑
𝑖∈𝐼 𝛾𝑖M𝑖 = (1, 0, . . . , 0). These constants can be

computed in time polynomial in the size of M. On the contrary,

(M, 𝜋) does not accept S if there exist a vector w ∈ Z𝑛2𝑝 such that

w is orthogonal to all rows M𝑖 for 𝜋 (𝑖) ∈ S, but not to (1, 0, . . . , 0).
That means ⟨w,M𝑖 ⟩ = 0. W.l.o.g. we can set w[1] = 1.

Polynomials. Let 𝑝 be a prime and 𝑛 ∈ N. We denote the set of

multi-variate polynimals over Z𝑝 with indeterminates 𝑥1, . . . , 𝑥𝑛
by Z𝑝 [𝑥1, . . . , 𝑥𝑛].

3 PES-ABE
We consider PES-ABE, which is a standard ABE scheme augmented

with 3 deterministic algorithms Setup
0
, Enc0, KeyGen0 used in

Setup, Enc, KeyGen, Dec respectively, where:

• Setup
0
(1𝜆,X,Y) outputs 𝑛 ∈ N,

• Enc0 (𝑥) outputs linear functions 𝑐1 : Z𝑤𝑛𝑝 → Z𝑤1

𝑝 ,

𝑐2 : Z𝑤𝑝 → Z
𝑤2

𝑝 ,

• KeyGen
0
(𝑦) outputs linear functions 𝑘1 : Z1+𝑚+𝑚𝑛𝑝 → Z𝑚1

𝑝 ,

𝑘2 : Z𝑚𝑝 → Z
𝑚2

𝑝 ,

and

• Setup(1𝜆): RunG B (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2) ← GroupGen(1𝜆),
𝑛 ← Setup

0
. Pick𝛼

$← Z𝑝 and a hash functionH : [𝑛] → G1
Output

mpk B (G,H, [𝛼]𝑇 ), msk B 𝛼

Using H, we implictly define b ∈ Z𝑛𝑝 via [b[𝑖]]1 = H(𝑖).
• Enc: Run (𝑐1, 𝑐2) ← Enc0 (𝑥). Pick s← Z𝑤𝑝 . Compute [c1]1 :=
𝑐1 ( [s ⊗ b]1), [c2]2 := 𝑐2 ( [s]2) where c2 [1] = s[1]. Output

ct B ( [c1]1, [c2]2), kem B [𝛼s[1]]𝑇
• KeyGen: Run (𝑘1, 𝑘2) ← KeyGen

0
(𝑦). Pick r ← Z𝑚𝑝 . Com-

pute [k1]1 := 𝑘1 ( [𝛼]1, [r]1, [b ⊗ r]1), [k2]2 := 𝑘2 ( [r]2). Out-
put

sk B ( [k1]1, [k2]2)
Note that Enc and KeyGen compute the linear functions 𝑐1, 𝑘1 “in

the exponent” since it only knows [b]1 and not b. We also require

that 𝑐1, 𝑘1 depend only on a polynomial number of entries in b,
so that Enc,KeyGen only need to make a polynomial number of

calls to H to compute [𝑐1 (s⊗ b)]1 and [𝑘1 (𝛼, r, b⊗ r)]1 respectively.
Depending on the application, some of these calls to H can also be

pre-computed.

Remark 1 (Decryption). Note that we can augment PES-ABE
with an additional deterministic algorithm Dec0 used in Dec where

• Dec0 (𝑥,𝑦) outputs e ∈ Z𝑤1𝑚2

𝑝 , e′ ∈ Z𝑤2𝑚1

𝑝 ;
• Dec(mpk, 𝑥,𝑦, ct = ( [c1]1, [c2]2), sk = ( [k1]1, [k2]2): Run
(e, e′) ← Dec0 (𝑥,𝑦). Compute [k1 ⊗ c2]𝑇 , [c1 ⊗ k2]𝑇 using
𝑒 , and output [(k1 ⊗ c2) · e⊤ + (c1 ⊗ k2) · e′⊤]𝑇 .

It would then follow from ABE correctness that if P(𝑥,𝑦) = 1, (k1 ⊗
c2) · e⊤ + (c1 ⊗ k2) · e′⊤ = 𝛼s[1]. We omit Dec0 in our presentation
and instead, specify and analyze Dec for correctness directly. This
does not affect our security notions and proofs which only refer to
Enc,KeyGen, Enc0,KeyGen0.

4 SYMBOLIC SECURITY OF PES-ABE
Following previous work [3, 6], we define symbolic security for PES-

ABE, where we replace the inputs (𝛼, b, s, r) ← Z𝑝×Z𝑛𝑝×Z𝑤𝑝 ×Z𝑚𝑝 to

the linear functions (𝑐1, 𝑐2, 𝑘1, 𝑘2) with vectors of formal variables

(𝛼, ˜b, s̃, r̃) ← Var × Var𝑛 × Var𝑤 × Var𝑚

In particular, 𝑐1 (s̃ ⊗ ˜b), 𝑐2 (s̃), 𝑘1 ( ˜b ⊗ r̃), 𝑘2 (r̃) are now (vectors of)

polynomials in Z𝑝 [𝛼, ˜b, s̃, r̃].

4.1 Definitions
Fix 𝑥 ∈ X, 𝑦 ∈ Y. ABE correctness tells us that if P(𝑥,𝑦) = 1, then

𝛼 s̃[1] ∈ span
(
𝑐1 (s̃ ⊗ ˜b) ⊗ 𝑘2 (r̃)∥𝑘1 (𝛼, r̃, ˜b ⊗ r̃) ⊗ 𝑐2 (s̃)

)
On the other hand, if P(𝑥,𝑦) = 0, it should be the case that

𝛼 s̃[1] ∉ span

(
𝑐1 (s̃ ⊗ ˜b) ⊗ 𝑘2 (r̃)∥𝑘1 (𝛼, r̃, ˜b ⊗ r̃) ⊗ 𝑐2 (s̃)

)
Our basic formulation of symbolic security stipulates something

stronger, wherewe basically replace𝛼 s̃[1] with𝛼⊗𝑐2 (s̃) and require
𝑐2 (s̃) [1] = s̃[1]. In the special case where 𝑐2 (s̃) = s̃[1] (as is the
case when𝑤2 = 1), these two requirements are equivalent.
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Definition 4.1 ((1, 1) Symbolic Security). For all 𝑥 ∈ X, 𝑦 ∈ Y
such that P(𝑥,𝑦) = 0: we have

span

(
𝛼 ⊗ c2

)
∩ span

(
c1 ⊗ k2 ∥ k1 ⊗ c2

)
= {0}

where

(𝛼, ˜b) ← Var × Var𝑛

(c1, c2) := (𝑐1 (s̃ ⊗ ˜b), 𝑐2 (s̃)), s̃← Var𝑤 , (𝑐1, 𝑐2) ← Enc0 (𝑥)
(k1, k2) := (𝑘1 (𝛼, r̃, ˜b ⊗ r̃), 𝑘2 (r̃)), r̃← Var𝑚,

(𝑘1, 𝑘2) ← KeyGen
0
(𝑦) .

The symbolic property captured by this definitionwill be required to

prove many-ciphertext CPA security of our ABE scheme. To capture

the ABE security experiment more closely, we extend the definition

such that it also include many secret keys, many ciphertexts as

well as the public key. Also we consider that in the ABE security

experiment the adversary may ask for the same 𝑥 or 𝑦 multiple

times. In Lemma 4.3 below, we show that this stronger symbolic

property is actually implied by the weaker one above.

Definition 4.2 (Strong Symbolic Security). For all 𝑄ct, 𝑄sk ∈ N,
𝑋 ∈ X𝑄ct , 𝑌 ∈ Y𝑄sk

such that P(𝑋 [𝑖], 𝑌 [ 𝑗]) = 0 for all 𝑖 ∈ [𝑄ct],
𝑗 ∈ [𝑄sk], we have

span

(
𝛼 ⊗ c2𝑋

)
∩ span

(
𝛼 ∥ (1∥ ˜b∥c1𝑋 ∥k

1

𝑌 ) ⊗ (1∥c
2

𝑋 ∥k
2

𝑌 )
)
= {0}

where

(𝛼, ˜b) ← Var × Var𝑛

(c1𝑖 , c
2

𝑖 ) := (𝑐
1 (s̃𝑖 ⊗ ˜b), 𝑐2 (s̃𝑖 )),

s̃𝑖 ← Var𝑤 , (𝑐1𝑖 , 𝑐
2

𝑖 ) ← Enc0 (𝑋 [𝑖]),∀𝑖 ∈ [𝑄ct],
(k1𝑗 , k

2

𝑗 ) := (𝑘
1 (𝛼, r̃𝑗 , ˜b ⊗ r̃𝑗 ), 𝑘2 (r̃𝑗 )),

r̃𝑗 ← Var𝑚, (𝑘1𝑗 , 𝑘
2

𝑗 ) ← KeyGen
0
(𝑌 [ 𝑗]),∀𝑗 ∈ [𝑄sk],

c1𝑋 := (c1
1
∥ · · · ∥c1𝑄ct

), c2𝑋 := (c2
1
∥ · · · ∥c2𝑄ct

)

k1𝑌 := (k1
1
∥ · · · ∥k1𝑄sk

), k2𝑌 := (k2
1
∥ · · · ∥k2𝑄sk

) .

4.2 Relations
Now we can establish the desired implication in the following

lemma.

Lemma 4.3. If a PES-ABE scheme satisfies (1, 1) symbolic secu-
rity (Definition 4.1), then it also satisfies strong symbolic security
(Definition 4.2).

The proof follows the high-level strategy laid out in [6, Theo-

rem 4.1] with two main differences: (i) the proof of Claim 2 where

we handle 𝑤2 > 1 (see also Remark 2) and (ii) Step 2 where we

handle many-ciphertext security.

Proof. Fix a PES-ABE satisfying (1, 1) symbolic security as well

as𝑄sk, 𝑄ct, 𝑋,𝑌 satisfying the conditions in Definition 4.2. We want

to show that

span

(
𝛼 ⊗ c2𝑋

)
∩ span

(
𝛼 ∥ (1∥ ˜b∥c1𝑋 ∥k

1

𝑌 ) ⊗ (1∥c
2

𝑋 ∥k
2

𝑌 )
)
= {0} (2)

The proof proceeds in three steps.

Step 1. First, we show that for all 𝑖 ∈ [𝑄ct],

span

(
𝛼 ⊗ c2𝑖

)
∩ span

(
c1𝑖 ⊗ k2𝑌 ∥ k

1

𝑌 ⊗ c2𝑖
)
= {0}

The proof proceeds by contradiction. Suppose on the contrary that

there exist 𝑖∗ ∈ [𝑄ct], e∗ ∈ Z𝑤2

𝑝 , e𝑗 ∈ Z𝑤1𝑚2

𝑝 , e′
𝑗
∈ Z𝑚1𝑤2

𝑝 for all

𝑗 ∈ [𝑄sk] such that e∗ ≠ 0 and

(𝛼 ⊗ c2𝑖∗ ) · e
∗⊤ =

∑
𝑗 ∈[𝑄sk ]

(c1𝑖∗ ⊗ k2𝑗 ) · e
⊤
𝑗 + (k

1

𝑗 ⊗ c2𝑖∗ ) · e
′
𝑗
⊤
. (3)

We claim that {e𝑗 , e′𝑗 }𝑗 ∈[𝑄sk ] then satisfies

• Claim 1: (c1
𝑖∗ ⊗ k2

𝑗
) · e⊤

𝑗
+ (𝑘1

𝑗
(0, r̃𝑗 , ˜b ⊗ r̃𝑗 ) ⊗ c2

𝑖∗ ) · e
′⊤
𝑗

= 0

for all 𝑗 ∈ [𝑄sk].
• Claim 2: there exists 𝑗∗ ∈ [𝑄sk], 𝝁 ∈ Z𝑤2

𝑝 such that 𝝁 ≠ 0
and (𝛼 ⊗ c2

𝑖∗ ) · 𝝁
⊤ = (𝑘1

𝑗∗ (𝛼, 0, 0) ⊗ c2
𝑖∗ ) · e

′⊤
𝑗∗ .

Combining the two claims with the fact that k1
𝑗∗ = 𝑘1

𝑗∗ (0, r̃𝑗∗ , ˜b ⊗
r̃𝑗∗ ) + 𝑘1𝑗∗ (𝛼, 0, 0), we have

(𝛼 ⊗ c2𝑖∗ ) · 𝝁
⊤ = (c1𝑖∗ ⊗ k2𝑗∗ ) · e

⊤
𝑗∗ + (k

1

𝑗∗ ⊗ c2𝑖∗ ) · e
′⊤
𝑗∗ .

which contradicts (1, 1) symbolic security since P(𝑋 [𝑖∗], 𝑌 [ 𝑗∗]) = 0.

It remains to establish Claims 1 and 2 to complete the proof:

• Fix 𝑗 ∈ [𝑄sk]. Claim 1 follows from evaluating (3) on 𝛼 =

0, r̃𝑗 ′ = 0 ∀𝑗 ′ ∈ [𝑄sk] \ { 𝑗}.
• Next, evaluating (3) on r̃𝑗 = 0 ∀𝑗 ∈ [𝑄sk] yields

0 ≠ (𝛼 ⊗ c2𝑖∗ ) · e
∗⊤ =

∑
𝑗 ∈[𝑄sk ]

(𝑘1𝑗 (𝛼, 0, 0) ⊗ c2𝑖∗ ) · e
′⊤
𝑗 .

Therefore, there exists 𝑗∗ ∈ 𝑌 such that (𝑘1
𝑗∗ (𝛼, 0, 0) ⊗ c2

𝑖∗ ) ·
e′⊤
𝑗∗ ≠ 0. Moreover, since the polynomial 𝑘1

𝑗∗ (𝛼, 0, 0) is linear
in 𝛼 , there exists 𝝁 ≠ 0 such that (𝑘1

𝑗∗ (𝛼, 0, 0) ⊗ c2
𝑖∗ ) · e

′⊤
𝑗∗ =

(𝛼 ⊗ c2
𝑖∗ ) · 𝝁

⊤
and Claim 2 follows.

Step 2. We show that

span

(
𝛼 ⊗ c2𝑋

)
∩ span

(
c1𝑋 ⊗ k2𝑌 ∥ k

1

𝑌 ⊗ c2𝑋
)
= {0} .

As in the previous step, the proof proceeds by contradiction. Sup-

pose the above statement is false, which means there exist {e∗
𝑖
∈

Z𝑤2

𝑝 , e𝑖 ∈ Z𝑄sk ·𝑤1𝑚2

𝑝 , e′
𝑖
∈ Z𝑄sk ·𝑚1𝑤2

𝑝 }𝑖∈[𝑄ct ] and 𝑖∗ ∈ [𝑄ct] such
that∑
𝑖∈[𝑄ct ]

(𝛼 ⊗ c2𝑖 ) · e
∗⊤
𝑖 =

∑
𝑖∈[𝑄ct ]

(c1𝑖 ⊗ k
2

𝑌 ) · e
⊤
𝑖 + (k

1

𝑌 ⊗ c
2

𝑖 ) · e
′⊤
𝑖 , (4)

and e∗
𝑖∗ ≠ 0. We evaluate (4) on s̃𝑖′ = 0 ∀𝑖 ′ ∈ [𝑄ct] \ {𝑖∗} and get

(𝛼 ⊗ c2𝑖∗ ) · e
∗⊤
𝑖∗ = (c1𝑖∗ ⊗ k2𝑌 ) · e

⊤
𝑖∗ + (k

1

𝑌 ⊗ c2𝑖∗ ) · e
′⊤
𝑖∗ .

That is, span

(
𝛼 ⊗ c2

𝑖∗
)
∩ span

(
c1
𝑖∗ ⊗ k2

𝑌
∥k1
𝑌
⊗ c2

𝑖∗
)
≠ {0}, which

contradicts what we showed in Step 1.

Step 3. We now prove (2), which also proceeds by contradiction.

Suppose on the contrary that

span

(
𝛼 ⊗ c2𝑋

)
∩ span

(
𝛼 ∥(1∥ ˜b∥c1𝑋 ∥k

1

𝑌 ) ⊗ (1∥c
2

𝑋 ∥k
2

𝑌 )
)
≠ {0} .

Then there exist e∗ ∈ Z𝑄ct ·𝑤2

𝑝 , e𝑃𝐾 ∈ Z2+𝑛𝑝 , e𝑋 ∈ Z𝑄ct · (𝑤1+𝑤2+𝑤1𝑤2+𝑛𝑤2)
𝑝 ,

e𝑌 ∈ Z𝑄sk · (𝑚1+𝑚2+𝑚1𝑚2+𝑛𝑚2)
𝑝 , e𝑋𝑌 ∈ Z𝑄ct ·𝑄sk · (𝑤1𝑚2+𝑚1𝑤2)

𝑝 such
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that

(𝛼 ⊗ c2𝑋 ) · e
∗⊤ = (1∥𝛼 ∥ ˜b) · e⊤𝑃𝐾 + (c

1

𝑋 ∥c
2

𝑋 ∥c
1

𝑋 ⊗ c2𝑋 ∥ ˜b ⊗ c2𝑋 ) · e
⊤
𝑋

+ (k1𝑌 ∥k
2

𝑌 ∥k
1

𝑌 ⊗ k2𝑌 ∥ ˜b ⊗ k2𝑌 ) · e
⊤
𝑌 (5)

+ (c1𝑋 ⊗ k2𝑌 ∥k
1

𝑌 ⊗ c2𝑋 ) · e
⊤
𝑋𝑌

and e∗ ≠ 0. First, we look at the first three terms on the RHS of (5):

• Evaluating (5) on 𝛼 = 0, r̃𝑌 = 0, and s̃𝑋 = 0 yields (1∥0∥ ˜b) ·
e⊤
𝑃𝐾

= 0.

• Evaluating (5) on 𝛼 = 0, r̃𝑌 = 0 yields (1∥0∥ ˜b) · e⊤
𝑃𝐾
+

(c1
𝑋
∥c2
𝑋
∥c1
𝑋
⊗ c2

𝑋
∥ ˜b ⊗ c2

𝑋
) · e⊤

𝑋
= 0.

• Evaluating (5) on s̃𝑋 = 0 yields (1∥𝛼 ∥ ˜b) ·e⊤
𝑃𝐾
+(k1

𝑌
∥k2
𝑌
∥k1
𝑌
⊗

k2
𝑌
∥ ˜b ⊗ k2

𝑌
) · e⊤

𝑌
= 0.

Subtracting the first equality from the sum of the second and third

implies that the sum of the first three terms on the RHS of (5) is 0.

This means

(𝛼 ⊗ c2𝑋 ) · e
∗⊤ = (c1𝑋 ⊗ k2𝑌 ∥k

1

𝑌 ⊗ c2𝑋 ) · e
⊤
𝑋𝑌

which contradicts what we showed in Step 2. □

Remark 2 (handling 𝑤1 > 1). In the proof of the analogue of
Claim 2 in [6], they start with

𝛼c2𝑖∗ [1] =
∑

𝑗 ∈[𝑄sk ]
(𝑘1𝑗 (𝛼, 0, 0) ⊗ c2𝑖∗ ) · e

′⊤
𝑗 .

They show that if 𝑤2 = 1 (a requirement mentioned in the proof7

but not in the theorem statement), then there exists 𝑗∗ ∈ 𝑌 such
𝜇 · c2

𝑖∗ [1] = 𝑘1
𝑗∗ (1, 0, 0) ⊗ c2

𝑖∗ · e
′⊤
𝑗∗ and 𝜇 ≠ 0. However, if we allow

𝑤2 > 1, then this claim does not hold in general. In particular, it could
be that for all 𝑗 , c2

𝑖∗ [1] only appears in a linear combination with
other elements of c2

𝑖∗ , which then all together sum up to c2
𝑖∗ [1]. For

this reason, we need to strengthen our definition accordingly.

5 OPTIMAL ABE SECURITY IN THE GGM
We prove symbolic security of PES-ABE implies optimal, adaptive

security in the generic group model (GGM). For that, we first recall

the generic group model.

5.1 Generic Group Model
In the generic group model, an adversary can perform group oper-

ations only via oracle access. We adopt the model by Maurer [43]

extended to the pairing group setting, where apart from the group

operation, the adversary can also compute the pairing via an oracle.

A third party implements the pairing group and maintains a list

for G1, G2 and G𝑇 . Each list stores group elements of queries by

the adversary. Depending on the query, one or multiple entries

are appended to the different lists. The adversary can access each

entry of the lists by a handle, which is a list index 𝑖 ∈ N and a list

identifier 𝑠 ∈ {1, 2,𝑇 }. It can also perform equality queries to check

if two entries of the same list contain the same group element.

In game G0 in Figure 2, we model the ABE security game from

Section 2.2 in the GGM. That is, the adversary also gets access

to oracles Ompk, Oct and Osk. On each query, the corresponding

oracle returns the current length of all modified lists from which

7
On page 662, they wrote "since we assumed 𝑤1 = 0". Here, 𝑐2 (s̃) corresponds to
−→
𝑆 = (𝑆0, . . . , 𝑆𝑤

1
) in [6].

the adversary can deduce the corresponding handles since length

of ciphertexts and secret keys follow from the definition of the

scheme. Furthermore, we model the hash function in our scheme

as random oracle, so we additionally provide an oracle H, which
also modify the lists. The adversary can then use these indices in

further group operation and equality queries as described above.

5.2 Security
The following theorem states that symbolic security implies optimal,

adaptive security in GGM.

Theorem 5.1. Let 𝜆 ∈ N be the security parameter andA be an ad-
versary that on input (1𝜆, 𝑝) makes𝑄add,𝑄pair,𝑄ct,𝑄sk,𝑄eq queries
to oracles Oadd, Opair, Oct, Osk, Oeq and 𝑄H queries to the random
oracle H. If PES-ABE is (1,1) symbolically secure (Definition 4.1), then
it is adaptively Many-CT secure in the GGM. In particular,

AdvGGMABE,A (𝜆) ≤
3 · (𝑄H + (𝑤 ′ + 1) ·𝑄ct +𝑚′ ·𝑄sk +𝑄add +𝑄pair)2

𝑝

where𝑤 ′ B 𝑤1 +𝑤2 and𝑚′ B 𝑚1 +𝑚2.

We provide the games for the proof in Figure 2. The full proof

can be found in the full version of the paper. In fact, it is similar to

that in [6, Theorem 3.3]. The latter only considers single-ciphertext

ABE security, and achieves an additional loss of 𝑄sk, since they

apply Schwartz-Zippel to polynomials of degree 𝑄sk in order to

handle rational fractions arising in their schemes.

6 OUR SCHEMES: PUTTING EVERYTHING
TOGETHER

We now show that the FABEO CP-ABE and KP-ABE schemes for

monotone span programs described in Figure 1 satisfy the PES-ABE

framework and (1, 1) symbolic security described in Section 2.2.

Combined with the statements from Lemma 4.3 and Theorem 5.1,

this establishes optimal, adaptive security of our CP-ABE and KP-

ABE schemes in GGM (Corollaries 6.1 and 6.2).

6.1 CP-ABE
Our CP-ABE scheme is shown in Figure 1. It builds upon the pair

encoding scheme 11 in [7] and that in Appendix B.1 in [3] and

extends them by attribute hashing and multi-use of attributes. In

particular, we can describe the underlying PES-ABE as follows.

• Setup
0
. Output 𝑛 B |U| + 1.

• Enc0 (M, 𝜋). Set𝑤 = 𝑛1 + 𝜏 ,𝑤1 = 𝑛1,𝑤2 = 𝜏 + 1, and output

(𝑐1, 𝑐2) where we parse s as (𝑠1∥v∥s′) and
𝑐1 (s ⊗ b) B (M𝑖 (𝑠1∥v)⊤ · b[|U| + 1] + s′[𝜌 (𝑖)] · b[𝜋 (𝑖)])𝑖∈[𝑛1 ] ,

𝑐2 (𝑠1) B (𝑠1∥s′)
• KeyGen

0
(S). Set𝑚 = 1,𝑚1 = |S| + 1,𝑚2 = 1, and output

(𝑘1, 𝑘2) where we parse r as (𝑟 ) and
𝑘1 (𝛼, r, b ⊗ r) B (𝛼 + 𝑟b[|U| + 1] ∥(𝑟b[𝑢])𝑢∈S),

𝑘2 (r) B (𝑟 )

Correctness. Let ct = (ct1, (ct2, 𝑗 )𝑗 ∈[𝜏 ] , (ct3,𝑖 )𝑖∈[𝑛1 ] ) be a cipher-
text for (M, 𝜋) and sk = (sk1, (sk2,𝑢 )𝑢∈S, sk3) be a secret key for

S as defined in Figure 1. Further let b[𝑢] such that H(𝑢) = 𝑔
b[𝑢 ]
1
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Games {G𝜇 }𝜇∈[0,𝑄eq ]

00 𝑖 = 𝑗 B 0, 𝜈 B 0, 𝑋 = 𝑌 = H B ∅
01 for 𝑠 ∈ {1, 2,𝑇 }: 𝐿𝑠 B ∅, 𝐿∼𝑠 B ∅
02 𝛽

$← {0, 1}
03 𝛽′ ← AOmpk,Oadd,Opair,Oct,Osk,Oeq,H (1𝜆, 𝑝)
04 return J𝛽 = 𝛽′K and JP(𝑋 [𝑖 ], 𝑌 [ 𝑗 ]) = 0 ∀𝑖 ∈ [𝑄ct ], 𝑗 ∈ [𝑄sk ]K
Ompk � first query, only once

05 𝑛 ← Param, (𝛼, b) $← Z𝑝 × Z𝑛𝑝 , (𝛼̃, ˜b) ← Var × Var𝑛

06 𝐿1 .append(1), 𝐿2 .append(1), 𝐿𝑇 .append(𝛼)

07 𝐿∼
1
.append(1), 𝐿∼

2
.append(1), 𝐿∼𝑇 .append(𝛼̃)

08 return |𝐿1 |, |𝐿2 |, |𝐿𝑇 |
Oadd (𝑠 ∈ {1, 2,𝑇 }, 𝑖′, 𝑗 ′ ∈ N)
09 𝐿𝑠 .append(𝐿𝑠 [𝑖′] + 𝐿𝑠 [ 𝑗 ′])
10 𝐿∼𝑠 .append(𝐿∼𝑠 [𝑖′] + 𝐿∼𝑠 [ 𝑗 ′])
11 return |𝐿𝑠 |
Opair (𝑖′, 𝑗 ′ ∈ N)
12 𝐿𝑇 .append(𝐿1 [𝑖′] · 𝐿2 [ 𝑗 ′])
13 𝐿∼

𝑇
.append(𝐿∼

1
[𝑖′] · 𝐿∼

2
[ 𝑗 ′])

14 return |𝐿𝑇 |
Oeq (𝑠 ∈ {1, 2,𝑇 }, 𝑖′, 𝑗 ′)
15 𝜈 B 𝜈 + 1
16 if 𝜈 ≤ 𝜇 : return 𝐿∼𝑠 [𝑖′] = 𝐿∼𝑠 [ 𝑗 ′]
17 return 𝐿𝑠 [𝑖′] = 𝐿𝑠 [ 𝑗 ′]

Oct (𝑥 ∈ X)
18 (𝑐1

𝑖
(s̃𝑖 ⊗ ˜b), 𝑐2

𝑖
(s̃𝑖 )) ← Enc0 (𝑥)

19 s𝑖
$← Z𝑤𝑝 , s̃𝑖 ← Var𝑤

20 𝑑
(0)
𝑖
B 𝛼s𝑖 [1], 𝑑 (1)𝑖

B 𝜔𝑖
$← Z𝑝

21 ˜𝑑
(0)
𝑖
B 𝛼̃ s̃𝑖 [1], ˜𝑑 (1)𝑖

B 𝜔̃𝑖 ← Var

22 𝐿1 .append(𝑐1𝑖 (s𝑖 ⊗ b)), 𝐿2 .append(𝑐2𝑖 (s𝑖 )), 𝐿𝑇 .append(𝑑
(𝛽 )
𝑖
)

23 𝐿∼
1
.append(𝑐1𝑖 (s̃𝑖 ⊗ ˜b)), 𝐿∼

2
.append(𝑐2𝑖 (s̃𝑖 )), 𝐿∼𝑇 .append( ˜𝑑

(𝛽 )
𝑖
)

24 𝑋 .append(𝑥) , 𝑖 B 𝑖 + 1
25 return |𝐿1 |, |𝐿2 |, |𝐿𝑇 |
Osk (𝑦 ∈ Y)
26 (𝑘1

𝑗
(𝛼̃, r̃𝑗 , ˜b ⊗ r̃𝑗 ), 𝑘2𝑗 (r̃𝑗 )) ← KeyGen

0
(𝑦)

27 r𝑗
$← Z𝑚𝑝 , r̃𝑗 ← Var𝑚

28 𝐿1 .append(𝑘1𝑗 (𝛼, r𝑗 , b ⊗ r𝑗 )), 𝐿2 .append(𝑘2𝑗 (r𝑗 ))

29 𝐿∼
1
.append(𝑘1𝑗 (𝛼̃, r̃𝑗 , ˜b ⊗ r̃𝑗 )), 𝐿∼2 .append(𝑘2𝑗 (r̃𝑗 ))

30 𝑌 .append(𝑦) , 𝑗 B 𝑗 + 1
31 return |𝐿1 |, |𝐿2 |
H(𝑢)

32 𝐿1 .append(b[𝑢 ]) , 𝐿∼1 .append( ˜b[𝑢 ])
33 H B H ∪ {𝑢 }
34 return |𝐿1 |

Figure 2: Games G𝜇 for 𝜇 ∈ [0, 𝑄eq] for the proof of Theorem 5.1. Note that the games only differ in oracle Oeq (which depends
on 𝜇). Here, G0 corresponds to the GGM experiment that makes only use of components in light gray frames, whereas G𝑄eq

makes only use of components in dark gray frames.W.l.o.g.we assume that no query toOadd,Opair,Oeq contains indices 𝑖 ′, 𝑗 ′ ∈ N
which exceed the size of the involved lists.

and 𝑏 ′ such that H( |U| + 1) = 𝑔𝑏
′

1
. If S satisfies (M, 𝜋), then there

exist constants (𝛾𝑖 )𝑖∈[𝑛1 ] such that

∑
𝑖∈𝐼 𝛾𝑖M𝑖 = (1, 0, . . . , 0) and

decryption computes

(1) 𝑒 (𝑔𝛼
1
· H( |U| + 1)𝑟 , 𝑔𝑠1

2
) = [𝛼𝑠1 + 𝑏 ′𝑟𝑠1]𝑇

(2)

∏
𝑗 ∈[𝜏 ] 𝑒 (

∏
𝑖∈𝐼 ,𝜌 (𝑖)=𝑗 H(𝜋 (𝑖))𝛾𝑖𝑟 , 𝑔

s′ [ 𝑗 ]
2
)

= [𝑟 ∑𝑗 ∈[𝜏 ]
∑
𝑖∈𝐼 ,𝜌 (𝑖)=𝑗 𝛾𝑖b[𝜋 (𝑖)]s′[ 𝑗]]𝑇

(3) 𝑒 (∏𝑖∈𝐼 (H( |U| + 1)𝛾𝑖M𝑖 (𝑠1 ∥v)⊤ · H(𝜋 (𝑖))𝛾𝑖 s′ [𝜌 (𝑖) ] ), 𝑔𝑟
2
)

= [𝑏𝑟 ′
∑
𝑖∈𝐼

𝛾𝑖M𝑖 ((𝑠1∥v)⊤︸                ︷︷                ︸
=𝑠1

]𝑇 · [𝑟
∑
𝑖∈𝐼

𝛾𝑖b[𝜋 (𝑖)]s′[𝜌 (𝑖)]]𝑇︸                            ︷︷                            ︸
=(2)

Note that by definition of 𝜌 , (2) and the second term of (3) are the

same. Thus computing (1) · (2)/(3) yields 𝑑 = [𝛼𝑠1]𝑇 .

Symbolic Security. We need to show that for all (M, 𝜋) ∈ X,
S ∈ Y such that P((M, 𝜋),S) = 0, it holds that

span

(
𝛼 ⊗ (𝑠1∥s̃′)

)
∩ span

(
(M𝑖 (𝑠1, ṽ)⊤ ˜𝑏 ′ + s̃′[𝜌 (𝑖)] ˜b[𝜋 (𝑖)])𝑖∈[𝑛1 ] ⊗ 𝑟 ∥

(𝛼 + 𝑟 ˜𝑏 ′∥(𝑟 ˜b[𝑢])𝑢∈S) ⊗ (𝑠1∥s̃′)
)
= {0} ,

where we define
˜𝑏 ′ B ˜b[|U| + 1].

We prove this property by contradiction. So assume there exists

e∗ ∈ Z2𝑝 , e, e′(1) , e′(2) , e′(3) such that e∗ ≠ 0 and

(𝛼 ⊗ (𝑠1∥s̃′)) · e∗⊤ = (M𝑖 (𝑠1∥ṽ)⊤ ˜𝑏 ′𝑟 + s̃′[𝜌 (𝑖)] ˜b[𝜋 (𝑖)]𝑟 )𝑖∈[𝑛1 ] · e
⊤

+ ((𝛼 + 𝑟 ˜𝑏 ′) ⊗ (𝑠1∥s̃′)) · e′(1)⊤

+ ({𝑟 ˜b[𝑢]𝑠1}𝑢∈S) · e′(2)⊤ + ({𝑟 ˜b[𝑢] ⊗ s̃′}𝑢∈S) · e′(3)⊤

Now we use the fact that P((M, 𝜋),S) = 0. Recall that this means

that there exists a vector w ∈ Z𝑛2𝑝 such that ⟨w,M𝑖 ⟩ = 0 for all

𝜋 (𝑖) ∈ S and that w[1] = 1. So evaluating on (𝑠1∥ṽ) = w gives us

(𝛼 ⊗ (1∥s̃′)) · e∗⊤ = (s̃′[𝜌 (𝑖)] ˜b[𝜋 (𝑖)]𝑟 )𝑖∈[𝑛1 ],𝜋 (𝑖) ∈S · e
⊤

+ (M𝑖w⊤ ˜𝑏 ′𝑟 + s̃′[𝜌 (𝑖)] ˜b[𝜋 (𝑖)]𝑟 )𝑖∈[𝑛1 ],𝜋 (𝑖)∉S · e
⊤

+ ((𝛼 + 𝑟 ˜𝑏 ′) ⊗ (1∥s̃′)) · e′(1)⊤

+ (𝑟 ˜b[𝑢])𝑢∈S · e′(2)⊤ + (𝑟 ˜b[𝑢] ⊗ s̃′)𝑢∈S · e′(3)⊤

where we split e into two vectors e ∈ Z |S |𝑝 and e ∈ Z𝑛1−|S |𝑝 , captur-

ing those rows of M that belong to 𝑢 ∈ S and those that do not be-

long to an attribute in S. Note that the monomials {𝑟 ˜b[𝑢] ⊗ s̃′}𝑢∈S
only appear in the first and the last term. By definition of 𝜌 , the

monomials s̃′[𝜌 (𝑖)] ˜b[𝜋 (𝑖)]𝑟 in the first term are mutually distinct.

Thus, we must have e[𝑖] = −e′(3) [ 𝑗] for all 𝑖 ∈ [𝑛1] such that

𝜋 (𝑖) ∈ S and unique indices 𝑗 , while all other entries in e′(3) must

be 0. Further looking at monomials on the RHS, s̃′[𝜌 (𝑖)] ˜b[𝜋 (𝑖)]𝑟
for 𝜋 (𝑖) ∉ S and 𝑟 ˜b[𝑢] for 𝑢 ∈ S are also mutually distinct and

only appear in one of the terms, thus e as well as e′(2) must be 0.
Therefore, the following equation must be satisfied

(𝛼 ⊗ (1∥s̃′)) · e∗⊤ = ((𝛼 + 𝑟 ˜𝑏 ′) ⊗ (1∥s̃′)) · e′(1)⊤ ,

which leads to a contradiction that e∗ ≠ 0 since 𝑟 ˜𝑏 ′ only appears

on the RHS.

Corollary 6.1. Let 𝜆 ∈ N be the security parameter andA be an
adversary that on input (1𝜆, 𝑝) makes 𝑄op group operation queries
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Figure 3: Running times for CP-ABE (top) and KP-ABE (bottom) schemes. We use one-use formulas (i.e., 𝜏 = 1). In particular,
for 100 attributes, CP-ABE decryption takes 0.016s in FABEO and 0.032s in FAME, and KP-ABE decryption takes 0.011s in
FABEO and 0.031s in FAME.

to oracles Oadd and Opair, as well as 𝑄ct, 𝑄sk queries to oracles Oct,
Osk, and 𝑄H queries to the random oracle H. CP-ABE is adaptively
secure in the GGM such that

AdvGGMCP-ABE,A (𝜆) ≤
3 · (𝑄H + (𝑛1 + 3) ·𝑄ct + (|S| + 2) ·𝑄sk +𝑄op)2

𝑝
,

where |S| is the maximum size of the attribute sets queried to Osk
and 𝑛1 is the maximum number of rows of M queried to Oct.

6.2 KP-ABE
Our KP-ABE scheme is shown in Figure 1. The proof of correctness

and symbolic security are similar to that of the CP-ABE scheme

and can be found in the full version of the paper.

Corollary 6.2. Let 𝜆 ∈ N be the security parameter andA be an
adversary that on input (1𝜆, 𝑝) makes 𝑄op group operation queries
to oracles Oadd and Opair, as well as 𝑄ct, 𝑄sk queries to oracles Oct,
Osk, and 𝑄H queries to the random oracle H. KP-ABE is adaptively
secure in the GGM such that

AdvGGMKP-ABE,A (𝜆) ≤
3 · (𝑄H + (|S| + 2) ·𝑄ct + (𝑛1 + 1) ·𝑄sk +𝑄op)2

𝑝
,

where |S| is the maximum size of the attribute sets queried to Oct
and 𝑛1 is the maximum number of rows of M queried to Osk.

7 IMPLEMENTATION AND EVALUATION
We use two metrics to compare our scheme with prior work, the

first is in terms of efficiency and the second is in terms of tightness.

7.1 Efficiency
We implemented several ABE schemes in Python 2.7.12 using the

Charm 0.43 framework [4] and the MNT224 curve for pairings.
8

We ran the schemes on a Lenovo Thinkpad Yoga X1 laptop with a

1.80GHz Intel Core i7-10510U CPU and 16GB RAM. Our implemen-

tation extends the code of Agrawal and Chase [1] and we provide

the implementation on GitHub [44]. In particular, we compare the

CP-ABE and KP-ABE schemes described in Table 1.

All schemes are implemented in the asymmetric setting. Agrawal

and Chase already transferred the original constructions of BSW,

Waters and GPSW that use symmetric bilinear maps to the asym-

metric setting [2, Appendices D-F]. Apart from our schemes, we

additionally implement the unbounded CP-ABE and KP-ABE of

ABGW.

In our experiment, we use access policies of the form “Attr1 and
Attr2 and ... and Attr𝑁 ” for 𝑁 ∈ {10, 20, . . . , 100} without re-use
(i.e., 𝜏 = 1). This way, |S| = 𝑛1 = 𝑛2 B 𝑁 and all attributes

8
The implementations in FAME and ABGW also use the Charm framework. Unfortu-

nately, the PBC library used in Charm does not support BLS12-381.
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Key generation Encryption Decryption
G1 G2 G1 G2 G1 G𝑇

Schemes Mul Exp Hash Mul Exp Mul Exp Hash Mul Exp Mul Mul Pair

BSW 𝑚 + 1 𝑚 + 2 𝑚 - 𝑚 - 𝑛1 𝑛1 - 𝑛1 + 1 - 2𝐼 + 1 2𝐼 + 1
Waters 1 𝑚 + 1 - - 1 𝑛1 2𝑛1 - - 𝑛1 + 1 𝐼 𝐼 + 2 𝐼 + 2
FAME 6𝜏𝑚 + 9 9𝜏𝑚 + 9 6𝜏𝑚 + 6 - 3 6𝑛1𝑛2 + 3𝑛1 6𝑛1 6𝑛1 + 6𝑛2 - 3 6𝐼 + 3 6 6

ABGW - - - - 2𝑚 + 1 2𝑛1 5𝑛1 - - - 2𝐼 𝐼 + 2 𝐼 + 2
Ours 1 𝑚 + 2 𝑚 + 1 - 1 𝑛1 2𝑛1 𝑛1 + 1 - 𝜏 + 1 2𝐼 𝜏 + 2 𝜏 + 2
GPSW - - - - 𝑛1 - 𝑚 - - - - 𝐼 𝐼

FAME 9𝑛1𝑛2 + 3𝑛1 9𝑛1 + 3𝑛2 6𝑛1 + 6𝑛2 - 3 3𝜏𝑚 6𝜏𝑚 6𝜏𝑚 - 3 6𝐼 6 6

ABGW - - - - 2𝑛1 2𝑚 3𝑚 + 1 - - - - 2𝐼 2𝐼

Ours 𝑛1 2𝑛1 𝑛1 - 𝜏 - 𝑚 𝑚 - 1 2𝐼 𝜏 + 1 𝜏 + 1
Table 2: Number of group operations in G1 and G2 for key generation and encryption of CP-ABE (top) and KP-ABE (bottom)
schemes.𝑚 denotes the number of attributes in the setS,𝑛1 and𝑛2 are the number of rows and columns of theMSPmatrix and 𝜏
denotes themaximumnumber ofmulti-use. 𝐼 denotes the number of attributes used in decryption (counted withmultiplicity).
Note that 𝜏 ≤ 𝐼 . The experiments and most comparison in the text consider 𝜏 = 𝜏 = 1.

are used in decryption. As [2], we first convert the policies into

a Boolean formula and then to an MSP using the Lewko-Waters’

method [39]. This way, the matrix M has only entries in {0, 1,−1}
and the reconstruction coefficients are always 0 or 1, reducing the

number of exponentiations.

In Figure 3, we show the average running times for the key gen-

eration, encryption and decryption algorithms. All our experiments

compute the average time in 20 executions. It is worth noting that

each algorithm of our two schemes performs better or compara-

tively the same as all the others. These results are supported by our

theoretical overview in Table 2 which lists the number of multipli-

cations and exponentiations for each group as well as the number

of hashing and pairing operations. Recall also that exponentiation

in G2 is much slower than in G1 and the pairing operation is com-

paratively expensive. Additionally, we provide the number of group

elements of secret keys and ciphertexts in Table 3. Since in general

elements inG2 are about 2 to 3 times the size of elements inG1, our
keys and ciphertexts always achieve the same size or even improve

considerably upon the other schemes.

One-use restriction. FAME has a one-use restriction described

in [2, Section 4]. A common way to work around this problem is

to make 𝜏 copies of each attribute, for some 𝜏 chosen at set-up
9
;

this way, FAME can support 𝜏-use MSPs. The downside of this

transformation is that in the CP-ABE, the size of the keys grow by a

factor of 𝜏 though encryption and decryption time are not affected.

Similarly, in the KP-ABE, the ciphertexts and encryption time grow

by a factor of 𝜏 . We explicitly account for 𝜏 when describing FAME

in our comparison tables. For applications where 𝜏 may be large

and fast decryption is paramount, we can apply the same transfor-

mation to our schemes so that decryption only requires 2-3 pairings.

For this reason, the experiments and most comparison in the text

consider 𝜏 = 𝜏 = 1. A follow-up to FAME by Tomida, Kawahara and

Nishimaki (TKN) [49] shows how to remove the one-use restriction

using techniques from [37], paying a multiplicative factor 𝜏 in the

9
For FAME and more generally, “unbounded” ABE schemes, this parameter could also

be chosen on on a per-key basis during key generation for CP-ABE, or a per-ciphertext

basis during encryption for KP-ABE

number of pairings required for decryption, and a much larger

security loss in the reduction to DLIN. The TKN scheme essentially

coincides with FAME when 𝜏 = 1, and for larger 𝜏 , remains at least

2-3 times less efficient than FABEO. All of our experiments are for

𝜏 = 1, hence the omission of TKN.

7.2 Bit Security based on Tightness
Whereas considering multiple secret key queries in the security

definition is considered standard in terms of ABE security, we

additionally consider many ciphertext or challenge queries in our

security proof. The two definitions are polynomially equivalent,

but the non-trivial implication from one to many ciphertexts incurs

a security loss linear in the number of ciphertext queries. On the

contrary, if the security loss is only constant, we say that the bound

is tight, as is the case for our bounds. The security loss plays an

important role in choosing the system parameters of the scheme,

e.g., the size of the underlying pairing group which provides a

determined level of security, which is usually stated in bits. Further,

we can define the success ratio of an adversary A by its advantage

Adv and its running time 𝑡 . For 𝜆-bit security, we then require

that Adv/𝑡 ≤ 2
−𝜆

. From this value, we can then deduce whether a

concrete instantiation provides the desired security level.

In Table 4, we compute the bit security of our scheme, as well

as ABGW, FAME and BSW in different scenarios, that is we use

different numbers of secret key and ciphertext queries. The running

time 𝑡 captures the offline time of an adversary, e.g. to perform

group operations or also to evaluate a hash function (thus including

random oracle queries). We assume 𝑡 to be rather large, whereas

secret key and ciphertext queries are considered online running
time and therefore considerably lower. The advantage also depends

on the order of the underlying group and for our comparison we

assume 𝑝 = 2
256

. Since a discrete logarithm attack on the elliptic

curve group yields a bound𝑂 (𝑡2/𝑝), this parameter choice is based

on a security level of around 128 bit and this should be the target

for the bit security of the ABE schemes as well.

We consider four different scenarios from small-scale to large-

scale adversaries, based on the running time 𝑡 ∈ {240, 260, 280, 2128}.
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Key size Ciphertext size
Schemes G1 G2 G1 G2
BSW 𝑚 + 1 𝑚 𝑛1 𝑛1 + 1
Waters 𝑚 + 1 1 𝑛1 𝑛1 + 1
FAME 3𝜏𝑚 + 3 3 3𝑛1 3

ABGW - 𝑚 + 2 3𝑛1 -

Ours 𝑚 + 1 1 𝑛1 𝜏 + 1
GPSW - 𝑛1 𝑚 -

FAME 3𝑛1 3 3𝜏𝑚 3

ABGW - 2𝑛1 2𝑚 -

Ours 𝑛1 𝜏 𝑚 1

Table 3: Key and ciphertext sizes of CP-ABE (top) and KP-
ABE (bottom) schemes. The columns G1 and G2 denote the
number of elements in the respective group (in general,
|G2 | ≥ 2|G1 |).𝑚 denotes the number of attributes in the setS,
𝑛1 and 𝑛2 are the number of rows and columns of the MSP
matrix and 𝜏 denotes the maximum number of multi-use.
The experiments consider 𝜏 = 𝜏 = 1.

For each scenario, we choose the number of secret key queries 𝑄sk
and ciphertexts 𝑄ct accordingly, once for 𝑄ct = 𝑄sk and once for

𝑄sk < 𝑄ct, since in practice an adversary may easily observe a large

number of ciphertexts, rather than a large number of keys.

Evaluation. We omit Waters and GSPW here as those schemes

are only selectively secure. The numbers in Table 4 are based on

the security bounds stated in the corresponding papers as well as

an additional hybrid argument on the number of ciphertexts as

mentioned above. All schemes meet the target bound in a small

to medium-scale scenario. When we increase 𝑡 to 2
80

or 2
128

, both

ABGW and FAME cannot meet the target anymore and therefore

should not be used for applications in large-scale scenarios. BSW

still achieves 78 resp. 88 bits, which may be sufficient for some

applications. Due to the tight bound, our scheme meets the target

of 128 bits in all scenarios.

8 EXTENSIONS
In this section, we briefly describe howwe can extend our definition

of PES-ABE to capture more schemes, e.g., ABE for deterministic

finite automata (DFA).

8.1 A variant of PES-ABE
We want to capture PES-ABE schemes as in ABGW with Setup

0
,

Enc0, KeyGen0 as before, except:

mpk := ( [b]1, [𝛼]𝑇 ),
msk := (b, 𝛼),
ct := ( [c1]1, [c2]1),
sk := ( [k1]2, [k2]2)

For such schemes, we impose an additional constraint on 𝑘1, 𝑘2 as

with ABGW, namely that r = (r′∥r′′) and 𝑘1 (𝛼, r′′, b ⊗ r′), 𝑘2 (r′)
(that is, we removed r′, b ⊗ r′′ from the input to 𝑘1 and r′′ from the

Resources Bit Security
𝑡 𝑄sk 𝑄ct ABGW FAME BSW Ours

2
40

2
20

2
20

2
−176

2
−176

2
−196

2
−216

2
40

2
10

2
30

2
−176

2
−176

2
−196

2
−216

2
60

2
30

2
30

2
−136

2
−136

2
−166

2
−196

2
60

2
20

2
40

2
−136

2
−136

2
−156

2
−196

2
80

2
40

2
40

2
−96

2
−96

2
−136

2
−176

2
80

2
30

2
50

2
−96

2
−96

2
−126

2
−176

2
128

2
40

2
40

2
−48

2
−48

2
−88

2
−128

2
128

2
30

2
50

2
−48

2
−48

2
−78

2
−128

Table 4: Bit security of ABE schemes depending on the ad-
versary’s running time 𝑡 and number of secret key queries
𝑄sk and ciphertext queries 𝑄ct. Bit security is defined as
Adv/𝑡 , where we use 𝑝 = 2

256. The values coincide for CP-
ABE and KP-ABE schemes. For ABGW and FAME we use
Adv = 𝑂 (𝑄ct𝑄sk𝑡

2/𝑝), for BSW we use Adv = 𝑂 (𝑄ct𝑡
2/𝑝) and

for ours we use Adv = 𝑂 (𝑡2/𝑝).

input to 𝑘2).10 This way, we can ensure that span

(
k1
)
∩ span

(
k2
)
=

{0}, which we will need in the proof of strong symbolic security.

Strong Symbolic Security (Variant). For all 𝑄ct, 𝑄sk ∈ N, 𝑋 ∈
X𝑄ct , 𝑌 ∈ Y𝑄sk

such that P(𝑋 [𝑖], 𝑌 [ 𝑗]) = 0 for all 𝑖 ∈ [𝑄ct], 𝑗 ∈
[𝑄sk], we have

span

(
𝛼 ⊗ c2𝑋

)
∩ span

(
𝛼 ∥ (1∥ ˜b∥c1𝑋 ∥c

2

𝑋 ) ⊗ (1∥k
1

𝑌 ∥k
2

𝑌 )
)
= {0} ,

where 𝑋,𝑌, c1
𝑋
, c2
𝑋
, k1
𝑌
, k2
𝑌
are as in Definition 4.2.

Claim 1. If PES-ABE satisfies (1, 1)-symbolic security (Defini-
tion 4.1), then it also satisfies the variant of strong symbolic security.

The proof of this claim is deferred to the full version of the paper.

8.2 ABE for DFA
We consider the ABE scheme for DFAs in [28, equation (1)] (building

on [52]). Recall that a DFA is specified by a tuple (𝑄, Σ, 𝛿, 𝐹 ) where
the state space is [𝑄] := {1, 2, . . . , 𝑄}; 1 is the unique start state;
𝐹 ⊆ [𝑄] is the set of accept states, and 𝛿 : [𝑄] × Σ → [𝑄] is the
state transition function.

We provide a self-contained overview of our ABE scheme for

DFA in the full version of the paper. In the following, we describe

the underlying PES-ABE.

• Setup
0
. Output𝑛 B 3+|Σ|, where we parse b as (𝑤start,𝑤end

,

𝑧, {𝑤𝜎 }𝜎 ∈Σ).
• Enc0 (𝑥). Set 𝑤 = ℓ + 1, 𝑤1 = ℓ + 2, 𝑤2 = ℓ + 1, and output

(𝑐1, 𝑐2) where we parse s as (𝑠ℓ , 𝑠0, 𝑠1, . . . , 𝑠ℓ−1) and

𝑐1 (s ⊗ b) B (𝑠0𝑤start ∥ {𝑠𝑖−1𝑧 + 𝑠𝑖𝑤𝑥𝑖 }𝑖∈[ℓ ] ∥ 𝑠ℓ𝑤end
),

𝑐2 (s) B (s)

10
ABGW refers to r′ as the non-lone variables and r′′ as the lone variables. Also, ABGW

considers a more general setting for 𝑐1, 𝑐2 with s = (s′ ∥s′′) and 𝑐2 (s′), 𝑐1 (s′′, b ⊗
s′) . To the best of our knowledge, none of the existing ABE schemes exploit this

generalization.
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Key size Ciphertext size
Schemes G1 G2 G1 G2
Waters - 3𝑄 |Σ| + 2|𝐹 | + 2 2ℓ + 3 -

Ours - 𝑄 |Σ| +𝑄 + |𝐹 | + 1 2ℓ + 3 -

Table 5: Key and ciphertext sizes of ABE schemes for DFA.

• KeyGen
0
(𝑄, Σ, 𝛿, 𝐹 ). Set𝑚 = 2𝑄 ,𝑚1 = 1 +𝑄 +𝑄 · |Σ| + |𝐹 |,

𝑚2 = 𝑄 , and output (𝑘1, 𝑘2) where we parse r = (r′∥r′′) B
({𝑟𝑢 }𝑢∈[𝑄 ] ∥ {𝑑𝑢 }𝑢∈[𝑄 ] ) and

𝑘1 (𝛼, r′′, b ⊗ r′) B (𝑑1 +𝑤start𝑟1 ∥ {−𝑑𝑢 + 𝑧𝑟𝑢 }𝑢∈[𝑄 ] ∥
{𝑑𝛿 (𝑢,𝜎) +𝑤𝜎𝑟𝑢 }𝑢∈[𝑄 ],𝜎 ∈Σ ∥
{𝛼 − 𝑑𝑢 +𝑤end

𝑟𝑢 }𝑢∈𝐹 )
𝑘2 (r) B (r′)

In applications, think of ℓ ≫ |Σ|, 𝑄 . We note that our scheme

differs from Waters’ scheme in that we reuse 𝑟𝑢 for all the transi-

tions starting from 𝑢 instead of a fresh 𝑟𝑢,𝜎 for each (𝑢, 𝜎). This
modification yields a smaller secret key (cf. Table 5).
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