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Abstract

With the growing processing power of computing systems
and the increasing availability of massive datasets, machine
learning algorithms have led to major breakthroughs in many
different areas. This development has influenced computer
security, spawning a series of work on learning-based security
systems, such as for malware detection, vulnerability discov-
ery, and binary code analysis. Despite great potential, machine
learning in security is prone to subtle pitfalls that undermine
its performance and render learning-based systems potentially
unsuitable for security tasks and practical deployment.

In this paper, we look at this problem with critical eyes.
First, we identify common pitfalls in the design, implementa-
tion, and evaluation of learning-based security systems. We
conduct a study of 30 papers from top-tier security confer-
ences within the past 10 years, confirming that these pitfalls
are widespread in the current security literature. In an empiri-
cal analysis, we further demonstrate how individual pitfalls
can lead to unrealistic performance and interpretations, ob-
structing the understanding of the security problem at hand.
As a remedy, we propose actionable recommendations to sup-
port researchers in avoiding or mitigating the pitfalls where
possible. Furthermore, we identify open problems when ap-
plying machine learning in security and provide directions
for further research.

1 Introduction

No day goes by without reading machine learning success
stories. The widespread access to specialized computational
resources and large datasets, along with novel concepts and ar-
chitectures for deep learning, have paved the way for machine
learning breakthroughs in several areas, such as the transla-
tion of natural languages [13, 31, 125] and the recognition
of image content [62, 78, 117]. This development has natu-
rally influenced security research: although mostly confined
to specific applications in the past [53, 54, 132], machine
learning has now become one of the key enablers to studying

and addressing security-relevant problems at large in several
application domains, including intrusion detection [43, 93],
malware analysis [69, 88], vulnerability discovery [83, 142],
and binary code analysis [42, 114, 140].

Machine learning, however, has no clairvoyant abilities and
requires reasoning about statistical properties of data across
a fairly delicate workflow: incorrect assumptions and experi-
mental biases may cast doubts on this process to the extent
that it becomes unclear whether we can trust scientific dis-
coveries made using learning algorithms at all [56]. Attempts
to identify such challenges and limitations in specific secu-
rity domains, such as network intrusion detection, started two
decades ago [11, 119, 126] and were extended more recently
to other domains, such as malware analysis and website fin-
gerprinting [3, 72, 104, 112]. Orthogonal to this line of work,
however, we argue that there exist generic pitfalls related to
machine learning that affect all security domains and have
received little attention so far.

These pitfalls can lead to over-optimistic results and, even
worse, affect the entire machine learning workflow, weak-
ening assumptions, conclusions, and lessons learned. As a
consequence, a false sense of achievement is felt that hinders
the adoption of research advances in academia and industry.
A sound scientific methodology is fundamental to support
intuitions and draw conclusions. We argue that this need is
especially relevant in security, where processes are often un-
dermined by adversaries that actively aim to bypass analysis
and break systems.

In this paper, we identify ten common—yet subtle—pitfalls
that pose a threat to validity and hinder interpretation of
research results. To support this claim, we analyze the
prevalence of these pitfalls in 30 top-tier security papers from
the past decade that rely on machine learning for tackling
different problems. To our surprise, each paper suffers from at
least three pitfalls; even worse, several pitfalls affect most of
the papers, which shows how endemic and subtle the problem
is. Although the pitfalls are widespread, it is perhaps more
important to understand the extent to which they weaken
results and lead to over-optimistic conclusions. To this end,
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Figure 1: Common pitfalls of machine learning in computer security.

we perform an impact analysis of the pitfalls in four different
security fields. The findings support our premise echoing the
broader concerns of the community.

In summary, we make the following contributions:

1. Pitfall Identification. We identify ten pitfalls as don’ts
of machine learning in security and propose dos as
actionable recommendations to support researchers in
avoiding the pitfalls where possible. Furthermore, we
identify open problems that cannot be mitigated easily
and require further research effort (§2).

2. Prevalence Analysis. We analyze the prevalence of the
identified pitfalls in 30 representative top-tier security
papers published in the past decade. Additionally, we
perform a broad survey in which we obtain and evaluate
the feedback of the authors of these papers regarding the
identified pitfalls (§3).

3. Impact Analysis. In four different security domains, we
experimentally analyze the extent to which such pitfalls
introduce experimental bias, and how we can effectively
overcome these problems by applying the proposed rec-
ommendations (§4).

Remark. This work should not be interpreted as a finger-
pointing exercise. On the contrary, it is a reflective effort
that shows how subtle pitfalls can have a negative im-
pact on progress of security research, and how we—as
a community—can mitigate them adequately.

2 Pitfalls in Machine Learning

Despite its great success, the application of machine learning
in practice is often non-trivial and prone to several pitfalls,
ranging from obvious flaws to minor blemishes. Overlooking
these issues may result in experimental bias or incorrect con-
clusions, especially in computer security. In this section, we
present ten common pitfalls that occur frequently in security
research. Although some of these pitfalls may seem obvious
at first glance, they are rooted in subtle deficiencies that are
widespread in security research—even in papers presented at
top conferences (see §3 and §4).

We group these pitfalls with respect to the stages of a typi-
cal machine learning workflow, as depicted in Figure 1. For
each pitfall, we provide a short description, discuss its im-
pact on the security domain, and present recommendations.
Moreover, a colored bar depicts the proportion of papers in
our analysis that suffer from the pitfall, with warmer colors
indicating the presence of the pitfall (see Figure 3).

2.1 Data Collection and Labeling

The design and development of learning-based systems usu-
ally starts with the acquisition of a representative dataset. It
is clear that conducting experiments using unrealistic data
leads to the misestimation of an approach’s capabilities. The
following two pitfalls frequently induce this problem and
thus require special attention when developing learning-based
systems in computer security.

P1 - Sampling Bias. The collected data does not suffi-
ciently represent the true data distribution of the underlying
security problem [1, 30, 33].

60% present

Description. With a few rare exceptions, researchers develop
learning-based approaches without exact knowledge of the
true underlying distribution of the input space. Instead, they
need to rely on a dataset containing a fixed number of sam-
ples that aim to resemble the actual distribution. While it is
inevitable that some bias exists in most cases, understanding
the specific bias inherent to a particular problem is crucial to
limiting its impact in practice. Drawing meaningful conclu-
sions from the training data becomes challenging, if the data
does not effectively represent the input space or even follows
a different distribution.

L

Security implications. Sampling bias is highly relevant to
security, as the acquisition of data is particularly challenging
and often requires using multiple sources of varying quality.
As an example, for the collection of suitable datasets for
Android malware detection only a few public sources exist
from which to obtain such data [6, 134]. As a result, it is
common practice to rely on synthetic data or to combine data
from different sources, both of which can introduce bias as we
demonstrate in §4 with examples on state-of-the-art methods
for intrusion and malware detection.



Recommendations. In many security applications, sampling
from the true distribution is extremely difficult and sometimes
even impossible. Consequently, this bias can often only be
mitigated but not entirely removed. In §4, we show that, in
some cases, a reasonable strategy is to construct different
estimates of the true distribution and analyze them individ-
ually. Further strategies include the extension of the dataset
with synthetic data [e.g., 28, 60, 137] or the use of transfer
learning [see 99, 135, 145, 147]. However, the mixing of
data from incompatible sources should be avoided, as it is a
common cause of additional bias. In any case, limitations of
the used dataset should be openly discussed, allowing other
researchers to better understand the security implications of
potential sampling bias.

P2 — Label Inaccuracy. The ground-truth labels required
for classification tasks are inaccurate, unstable, or erro-
neous, affecting the overall performance of a learning-
based system [85, 144].

10% present

Description. Many learning-based security systems are built
for classification tasks. To train these systems, a ground-truth
label is required for each observation. Unfortunately, this
labeling is rarely perfect and researchers must account for
uncertainty and noise to prevent their models from suffering
from inherent bias.

Security implications. For many relevant security problems,
such as detecting network attacks or malware, reliable labels
are typically not available, resulting in a chicken-and-egg
problem. As a remedy, researchers often resort to heuristics,
such as using external sources that do not provide a reliable
ground-truth. For example, services like VirusTotal are com-
monly used for acquiring label information for malware but
these are not always consistent [144]. Additionally, changes
in adversary behavior may alter the ratio between different
classes over time [3, 92, 144], introducing a bias known as
label shift [85]. A system that cannot adapt to these changes
will experience performance decay once deployed.

Recommendations. Generally, labels should be verified
whenever possible, for instance, by manually investigating
false positives or a random sample [e.g., 122]. If noisy la-
bels cannot be ruled out, their impact on the learning model
can be reduced by (i) using robust models or loss functions,
(ii) actively modeling label noise in the learning process, or
(iii) cleansing noisy labels in the training data [see 55, 67, 84].
To demonstrate the applicability of such approaches, we em-
pirically apply a cleansing approach in Appendix A. Note that
instances with uncertain labels must not be removed from the
test data. This represents a variation of sampling bias (P1) and
data snooping (P3), a pitfall we discuss in detail in §2.2. Fur-
thermore, as labels may change over time, it is necessary to
take precautions against label shift [85], such as by delaying
labeling until a stable ground-truth is available [see 144].

2.2 System Design and Learning

Once enough data has been collected, a learning-based se-
curity system can be trained. This process ranges from data
preprocessing to extracting meaningful features and building
an effective learning model. Unfortunately, flaws and weak
spots can be introduced at each of these steps.

P3 — Data Snooping. A learning model is trained with

data that is typically not available in practice. Data snoop-

ing can occur in many ways, some of which are very subtle

and hard to identify [1].
C——

57% present

Description. It is common practice to split collected data
into separate training and test sets prior to generating a learn-
ing model. Although splitting the data seems straightforward,
there are many subtle ways in which test data or other back-
ground information that is not usually available can affect the
training process, leading to data snooping. While a detailed
list of data snooping examples is provided in the appendix
(see Table 8), we broadly distinguish between three types of
data snooping: test, temporal, and selective snooping.

Test snooping occurs when the test set is used for experi-
ments before the final evaluation. This includes preparatory
work to identify useful features, parameters, and learning al-
gorithms. Temporal snooping occurs if time dependencies
within the data are ignored. This is a common pitfall, as the
underlying distributions in many security-related problems
are under continuous change [e.g., 87, 104]. Finally, selective
snooping describes the cleansing of data based on information
not available in practice. An example is the removal of out-
liers based on statistics of the complete dataset (i.e., training
and test) that are usually not available at training time.

Security implications. In security, data distributions are of-
ten non-stationary and continuously changing due to new
attacks or technologies. Because of this, snooping on data
from the future or from external data sources is a prevalent
pitfall that leads to over-optimistic results. For instance, sev-
eral researchers have identified temporal snooping in learning-
based malware detection systems [e.g., 4, 8, 104]. In all these
cases, the capabilities of the methods are overestimated due
to mixing samples from past and present. Similarly, there are
incidents of test and selective snooping in security research
that lead to unintentionally biased results (see §3).

Recommendations. While it seems obvious that training,
validation, and test data should be strictly separated, this data
isolation is often unintentionally violated during the prepro-
cessing stages. For example, we observe that it is a common
mistake to compute tf-idf weights or neural embeddings over
the entire dataset (see §3). To avoid this problem, test data
should be split early during data collection and stored sepa-
rately until the final evaluation. Furthermore, temporal depen-
dencies within the data should be considered when creating



the dataset splits [4, 87, 104]. Other types of data snoop-
ing, however, are challenging to address. For instance, as the
characteristics of publicly available datasets are increasingly
exposed, methods developed using this data implicitly lever-
age knowledge from the test data [see 1, 90]. Consequently,
experiments on well-known datasets should be complemented
with experiments on more recent data from the considered
application domain.

P4 — Spurious Correlations. Artifacts unrelated to the
security problem create shortcut patterns for separating
classes. Consequently, the learning model adapts to these
artifacts instead of solving the actual task.

20% present

Description. Spurious correlations result from artifacts that
correlate with the task to solve but are not actually related
to it, leading to false associations. Consider the example of
a network intrusion detection system, where a large fraction
of the attacks in the dataset originate from a certain network
region. The model may learn to detect a specific IP range
instead of generic attack patterns. Note that while sampling
bias is a common reason for spurious correlations, these can
also result from other factors, as we discuss in more detail in
Appendix A.

Security implications. Machine learning is typically applied
as a black box in security. As a result, spurious correlations
often remain unidentified. These correlations pose a problem
once results are interpreted and used for drawing general con-
clusions. Without knowledge of spurious correlations, there is
a high risk of overestimating the capabilities of an approach
and misjudging its practical limitations. As an example, §4.2
reports our analysis on a vulnerability discovery system in-
dicating the presence of notable spurious correlations in the
underlying data.

Recommendations. To gain a better view of the capa-
bilities of a learning-based systems, we generally recom-
mend applying explanation techniques for machine learn-
ing [see 59, 79, 133]. Despite some limitations [e.g., 66, 75,
127], these techniques can reveal spurious correlations and
allow a practitioner to assess their impact on the system’s
capabilities. As an example, we show for different security-
related problems how explainable learning can help to identify
this issue in §4. Note that spurious correlations in one setting
may be considered a valid signal in another, depending on
the objective of the learning-based system. Consequently, we
recommend clearly defining this objective in advance and
validating whether correlations learned by the system com-
ply with this goal. For example, a robust malware detection
system should pick up features related to malicious activity
rather than other unrelated information present in the data.

PS5 - Biased Parameter Selection. The final parameters

of a learning-based method are not entirely fixed at training

time. Instead, they indirectly depend on the test set.
[

10% present

Description. Throughout the learning procedure, it is com-
mon practice to generate different models by varying hy-
perparameters. The best-performing model is picked and its
performance on the test set is presented. While this setup is
generally sound, it can still suffer from a biased parameter
selection. For example, over-optimistic results can be easily
produced by tuning hyperparameters or calibrating thresholds
on the test data instead of the training data.

Security implications. A security system whose parameters
have not been fully calibrated at training time can perform
very differently in a realistic setting. While the detection
threshold for a network intrusion detection system may be
chosen using a ROC curve obtained on the test set, it can
be hard to select the same operational point in practice due
the diversity of real-world traffic [119]. This may lead to
decreased performance of the system in comparison to the
original experimental setting. Note that this pitfall is related
to data snooping (P3), but should be considered explicitly as
it can easily lead to inflated results.

Recommendations. This pitfall constitutes a special case
of data snooping and thus the same countermeasures apply.
However, in practice fixing a biased parameter selection can
often be easily achieved by using a separate validation set for
model selection and parameter tuning. In contrast to general
data snooping, which is often challenging to mitigate, strict
data isolation is already sufficient to rule out problems when
determining hyperparameters and thresholds.

2.3 Performance Evaluation

The next stage in a typical machine-learning workflow is the
evaluation of the system’s performance. In the following, we
show how different pitfalls can lead to unfair comparisons
and biased results in the evaluation of such systems.

P6 - Inappropriate Baseline. The evaluation is con-
ducted without, or with limited, baseline methods. As a re-
sult, it is impossible to demonstrate improvements against
the state of the art and other security mechanisms.

I ! ! ., —
20% present

Description. To show to what extent a novel method im-
proves the state of the art, it is vital to compare it with pre-
viously proposed methods. When choosing baselines, it is
important to remember that there exists no universal learn-
ing algorithm that outperforms all other approaches in gen-
eral [136]. Consequently, providing only results for the pro-
posed approach or a comparison with mostly identical learn-
ing models, does not give enough context to assess its impact.
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Figure 2: ROC and precision-recall curve as two performance measures for
the same scores, created on an artificial dataset with an imbalanced class
ratio. Only the precision-recall curve conveys the true performance.
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Security implications. An overly complex learning method
increases the chances of overfitting, and also the runtime
overhead, the attack surface, and the time and costs for de-
ployment. To show that machine learning techniques provide
significant improvements compared to traditional methods, it
is thus essential to compare these systems side by side.

Recommendations. Instead of focusing solely on complex
models for comparison, simple models should also be consid-
ered throughout the evaluation. These methods are easier to
explain, less computationally demanding, and have proven to
be effective and scalable in practice. In §4, we demonstrate
how using well-understood, simple models as a baseline can
expose unnecessarily complex learning models. Similarly,
we show that automated machine learning (AutoML) frame-
works [e.g., 48, 70] can help finding proper baselines. While
these automated methods can certainly not replace experi-
enced data analysts, they can be used to set the lower bar
the proposed approach should aim for. Finally, it is critical
to check whether non-learning approaches are also suitable
for the application scenario. For example, for intrusion and
malware detection, there exist a wide range of methods using
other detection strategies [e.g., 45, 102, 111].

P7 — Inappropriate Performance Measures. The cho-
sen performance measures do not account for the con-
straints of the application scenario, such as imbalanced
data or the need to keep a low false-positive rate.

33% present

Description. A wide range of performance measures are
available and not all of them are suitable in the context of se-
curity. For example, when evaluating a detection system, it is
typically insufficient to report just a single performance value,
such as the accuracy, because true-positive and false-positive
decisions are not observable. However, even more advanced
measures, such as ROC curves, may obscure experimental
results in some application settings. Figure 2 shows an ROC
curve and a precision-recall curve on an imbalanced dataset
(class ratio 1:100). Given the ROC curve alone, the perfor-
mance appears excellent, yet the low precision reveals the
true performance of the classifier, which would be impractical
for many security applications.

Furthermore, various security-related problems deal with
more than two classes, requiring multi-class metrics. This set-
ting can introduce further subtle pitfalls. Common strategies,
such as macro-averaging or micro-averaging are known to
overestimate and underestimate small classes [51].

Security implications. Inappropriate performance measures
are a long-standing problem in security research, particularly
in detection tasks. While true and false positives, for instance,
provide a more detailed picture of a system’s performance,
they can also disguise the actual precision when the preva-
lence of attacks is low.

Recommendations. The choice of performance measures in
machine learning is highly application-specific. Hence, we
refrain from providing general guidelines. Instead, we rec-
ommend considering the practical deployment of a learning-
based system and identifing measures that help a practitioner
assess its performance. Note that these measures typically
differ from standard metrics, such as the accuracy or error, by
being more aligned with day-to-day operation of the system.
To give the reader an intuition, in §4.1, we show how different
performance measures for an Android malware detector lead
to contradicting interpretations of its performance.

P8 — Base Rate Fallacy. A large class imbalance is ig-

nored when interpreting the performance measures leading

to an overestimation of performance.
\ ] =

10% present

Description. Class imbalance can easily lead to a misinter-
pretation of performance if the base rate of the negative class
is not considered. If this class is predominant, even a very
low false-positive rate can result in surprisingly high num-
bers of false positives. Note the difference to the previous
pitfall: while P7 refers to the inappropriate description of
performance, the base-rate fallacy is about the misleading in-
terpretation of results. This special case is easily overlooked
in practice (see §3). Consider the example in Figure 2 where
99 % true positives are possible at 1 % false positives. Yet, if
we consider the class ratio of 1:100, this actually corresponds
to 100 false positives for every 99 true positives.

Security implications. The base rate fallacy is relevant in
a variety of security problems, such as intrusion detection
and website fingerprinting [e.g., 11, 72, 100]. As a result, it
is challenging to realistically quantify the security and pri-
vacy threat posed by attackers. Similarly, the probability of
installing malware is usually much lower than is considered
in experiments on malware detection [104].

Recommendations. Several problems in security revolve
around detecting rare events, such as threats and attacks. For
these problems, we advocate the use of precision and recall as
well as related measures, such as precision-recall curves. In
contrast to other measures, these functions account for class
imbalance and thus resemble reliable performance indicators



for detection tasks focusing on a minority class [38, 118].
However, note that precision and recall can be misleading if
the prevalence of the minority class is inflated, for example,
due to sampling bias [104]. In these cases, other measures like
Matthews Correlation Coefficient (MCC) are more suitable to
assess the classifier’s performance [29] (see §4). In addition,
ROC curves and their AUC values are useful measures for
comparing detection and classification approaches. To put
more focus on practical constraints, we recommend consider-
ing the curves only up to tractable false-positive rates and to
compute bounded AUC values. Finally, we also recommend
discussing false positives in relation to the base rate of the neg-
ative class, which enables the reader to get an understanding
of the workload induced by false-positive decisions.

2.4 Deployment and Operation

In the last stage of a typical machine-learning workflow, the
developed system is deployed to tackle the underlying security
problem in practice.

P9 — Lab-Only Evaluation. A learning-based system is
solely evaluated in a laboratory setting, without discussing
its practical limitations.

17% present

Description. As in all empirical disciplines, it is common
to perform experiments under certain assumptions to demon-
strate a method’s efficacy. While performing controlled exper-
iments is a legitimate way to examine specific aspects of an
approach, it should be evaluated in a realistic setting whenever
possible to transparently assess its capabilities and showcase
the open challenges that will foster further research.

Security implications. Many learning-based systems in se-
curity are evaluated solely in laboratory settings, overstat-
ing their practical impact. A common example are detection
methods evaluated only in a closed-world setting with limited
diversity and no consideration of non-stationarity [15, 71].
For example, a large number of website fingerprinting attacks
are evaluated only in closed-world settings spanning a limited
time period [72]. Similarly, several learning-based malware
detection systems have been insufficiently examined under
realistic settings [see 5, 104].

Recommendations. It is essential to move away from a lab-
oratory setting and approximate a real-world setting as ac-
curately as possible. For example, temporal and spatial re-
lations of the data should be considered to account for the
typical dynamics encountered in the wild [see 104]. Similarly,
runtime and storage constraints should be analyzed under
practical conditions [see 15, 112, 130]. Ideally, the proposed
system should be deployed to uncover problems that are not
observable in a lab-only environment, such as the diversity
of real-world network traffic [see 119]—although this is not
always possible due to ethical and privacy constraints.

P10 - Inappropriate Threat Model. The security of ma-
chine learning is not considered, exposing the system to a
variety of attacks, such as poisoning and evasion attacks.

17% present

Description. Learning-based security systems operate in a
hostile environment, which should be considered when de-
signing these systems. Prior work in adversarial learning has
revealed a considerable attack surface introduced by machine
learning itself, at all stages of the workflow [see 18, 101].
Their broad attack surface makes these algorithms vulnerable
to various types of attacks, such as adversarial preprocessing,
poisoning, and evasion [e.g., 19, 20, 25, 105, 108].

Security implications. Including adversarial influence in
the threat model and evaluation is often vital, as systems
prone to attacks are not guaranteed to output trustworthy and
meaningful results. Aside from traditional security issues, it is
therefore essential to also consider machine learning-related
attacks. For instance, an attacker may more easily evade a
model that relies on only a few features than a properly regu-
larized model that has been designed with security considera-
tions in mind [40], although one should also consider domain-
specific implications [105]. Furthermore, semantic gaps in
the workflow of machine learning may create blind spots for
attacks. For example, imprecise parsing and feature extraction
may enable an adversary to hide malicious content [131].

Recommendations. In most fields of security where
learning-based systems are used, we operate in an adversarial
environment. Hence, threat models should be defined precisely
and systems evaluated with respect to them. In most cases, it
is necessary to assume an adaptive adversary that specifically
targets the proposed systems and will search for and exploit
weaknesses for evasion or manipulation. Similarly, it is cru-
cial to consider all stages of the machine learning workflow
and investigate possible vulnerabilities [see 18, 26, 39, 101].
For this analysis, we recommend focusing on white-box at-
tacks where possible, following Kerckhoff’s principle [73]
and security best practices. Ultimately, we like to stress that
an evaluation of adversarial aspects is not an add-on but rather
a mandatory component in security research.

3 Prevalence Analysis

Once we understand the pitfalls faced by learning-based secu-
rity systems, it becomes necessary to assess their prevalence
and investigate their impact on scientific advances. To this
end, we conduct a study on 30 papers published in the last
ten years at ACM CCS, IEEE S&P, USENIX Security, and
NDSS, the top-4 conferences for security-related research in
our community. The papers have been selected as represen-
tative examples for our study, as they address a large variety
of security topics and successfully apply machine learning to
the corresponding research problems.



I Not present Partly present (but discussed) [ Present (but discussed) Unclear from text

Does not apply Partly present I Present
109% 90.% 80.% 70.% 60.% 50.% 40.% 30.% 20.% 10.% O:%
Sampling Bias NG 3 I
Label Inaceuracy - — 4 3 2 SN

Data Stooping [NNNNENNNN 4 R
Spurious Coneations 2 1
Biased Parameters _ 16 2 _
Tnappropriate Basclne - 2
tnappropriate Mossures g A
Base Rate Fallocy S 2 6 -
Lab-Only Evatuation N 2
Tnapproprate Threat Mocel - S 31 I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Figure 3: Stacked bar chart showing the pitfalls suffered by each of the 30 papers analyzed. The colors of each bar show the degree to which a pitfall was present,
and the width shows the proportion of papers in that group. The number at the center of each bar shows the cardinality of each group.

In particular, our selection of top-tier papers covers the fol- Assessment criteria. For each paper, pitfalls are coarsely
lowing topics: malware detection [9, 34, 88, 104, 121, 138]; classified as either present, not present, unclear from text, or
network intrusion detection [43, 93, 113, 115]; vulnerabil- does not apply. A pitfall may be wholly present throughout
ity discovery [42,49, 50, 83]; website fingerprinting at- the experiments without remediation (present), or it may not
tacks [44, 100, 110, 116]; social network abuse [22, 95, 120]; (not present). If the authors have corrected any bias or have
binary code analysis [14, 32, 114]; code attribution [2, 23]; narrowed down their claims to accommodate the pitfall, this
steganography [17]; online scams [74]; game bots [80]; and is also counted as not present. Additionally, we introduce
ad blocking [68]. partly present as a category to account for experiments that

do suffer from a pitfall, but where the impact has been par-
tially addressed. If a pitfall is present or partly present but
acknowledged in the text, we moderate the classification as
discussed. If the reviewers are unable to rule out the pres-
ence of a pitfall due to missing information, we mark the
publication as unclear from text. Finally, in the special case
of P10, if the pitfall does not apply to a paper’s setting, this is
considered as a separate category.

Review process. Each paper is assigned two independent
reviewers who assess the article and identify instances of the
described pitfalls. The pool of reviewers consists of six re-
searchers who have all previously published work on the topic
of machine learning and security in at least one of the con-
sidered security conferences. Reviewers do not consider any
material presented outside the papers under analysis (aside
from appendices and associated artifacts, such as datasets or

source code). Once both reviewers have completed their as- Observations. The aggregated results from the prevalence
signments, they discuss the paper in the presence of a third analysis are shown in Figure 3. A bar’s color indicates the
reviewer that may resolve any disputes. In case of uncertainty, degree to which a pitfall is present, and its width shows the
the authors are given the benefit of the doubt (e.g., in case proportion of papers with that classification. The number
of a dispute between partly present and present, we assign of affected papers is noted at the center of the bars. The
partly present). most prevalent pitfalls are sampling bias (P1) and data snoop-
Throughout the process, all reviewers meet regularly in ing (P3), which are at least partly present in 90 % and 73 %
order to discuss their findings and ensure consistency between of the papers, respectively. In more than 50 % of the papers,
the pitfalls’ criteria. Moreover, these meetings have been we identify inappropriate threat models (P10), lab-only eval-
used to refine the definitions and scope of pitfalls based on uations (P9), and inappropriate performance measures (P7)
the reviewers’ experience. Following any adaptation of the as at least partly present. Every paper is affected by at least
criteria, all completed reviews have been re-evaluated by the three pitfalls, underlining the pervasiveness of such issues in
original reviewers—this occurred twice during our analysis. recent computer security research. In particular, we find that
While cumbersome, this adaptive process of incorporating dataset collection is still very challenging: some of the most
reviewer feedback ensures that the pitfalls are comprehensive realistic and expansive open datasets we have developed as a
in describing the core issues across the state of the art. We community are still imperfect (see §4.1).
note that the inter-rater reliability of reviews prior to dispute Moreover, the presence of some pitfalls is more likely to
resolution is o0 = 0.832 using Krippendorff’s alpha, where be unclear from the text than others. We observe this for

o > 0.800 indicates confidently reliable ratings [77]. biased parameter selection (P5) when no description of the



hyperparameters or tuning procedure is given; for spurious
correlations (P4) when there is no attempt to explain a model’s
decisions; and for data snooping (P3) when the dataset split-
ting or normalization procedure is not explicitly described in
the text. These issues also indicate that experimental settings
are more difficult to reproduce due to a lack of information.

Feedback from authors. To foster a discussion within our
community, we have contacted the authors of the selected
papers and collected feedback on our findings. We conducted
a survey with 135 authors for whom contact information has
been available. To protect the authors’ privacy and encourage
an open discussion, all responses have been anonymized.

The survey consists of a series of general and specific
questions on the identified pitfalls. First, we ask the authors
whether they have read our work and consider it helpful for
the community. Second, for each pitfall, we collect feedback
on whether they agree that (a) their publication might be af-
fected, (b) the pitfall frequently occurs in security papers,
and (c) it is easy to avoid in most cases. To quantitatively
assess the responses, we use a five-point Likert scale for each
question that ranges from strongly disagree to strongly agree.
Additionally, we provide an option of prefer not to answer
and allow the authors to omit questions.

We have received feedback from 49 authors, yielding a
response rate of 36 %. These authors correspond to 13 of the
30 selected papers and thus represent 43 % of the considered
research. Regarding the general questions, 46 (95 %) of the
authors have read our paper and 48 (98 %) agree that it helps
to raise awareness for the identified pitfalls. For the specific
pitfall questions, the overall agreement between the authors
and our findings is 63 % on average, varying depending on
the security area and pitfall. All authors agree that their paper
may suffer from at least one of the pitfalls. On average, they
indicate that 2.77 pitfalls are present in their work with a
standard deviation of 1.53 and covering all ten pitfalls.

When assessing the pitfalls in general, the authors espe-
cially agree that lab-only evaluations (92 %), the base rate
fallacy (77 %), inappropriate performance measures (69 %),
and sampling bias (69 %) frequently occur in security pa-
pers. Moreover, they state that inappropriate performance
measures (62 %), inappropriate parameter selection (62 %),
and the base rate fallacy (46 %) can be easily avoided in prac-
tice, while the other pitfalls require more effort. We provide
further information on the survey in Appendix B.

In summary, we derive three central observations from this
survey. First, most authors agree that there is a lack of aware-
ness for the identified pitfalls in our community. Second, they
confirm that the pitfalls are widespread in security literature
and that there is a need for mitigating them. Third, a consis-
tent understanding of the identified pitfalls is still lacking. As
an example, several authors (44 %) neither agree nor disagree
on whether data snooping is easy to avoid, emphasizing the
importance of clear definitions and recommendations.

Takeaways. We find that all of the pitfalls introduced in §2
are pervasive in security research, affecting between 17 %
and 90 % of the selected papers. Each paper suffers from
at least three of the pitfalls and only 22 % of instances are
accompanied by a discussion in the text. While authors may
have even deliberately omitted a discussion of pitfalls in some
cases, the results of our prevalence analysis overall suggest a
lack of awareness in our community.

Although these findings point to a serious problem in re-
search, we would like to remark that all of the papers analyzed
provide excellent contributions and valuable insights. Our
objective here is not to blame researchers for stepping into
pitfalls but to raise awareness and increase the experimental
quality of research on machine learning in security.

4 Impact Analysis

In the previous sections, we have presented pitfalls that are
widespread in the computer security literature. However, so
far it remains unclear how much the individual pitfalls could
affect experimental results and their conclusions. In this sec-
tion, we estimate the experimental impact of some of these
pitfalls in popular applications of machine learning in security.
At the same time, we demonstrate how the recommendations
discussed in §2 help in identifying and resolving these prob-
lems. For our discussion, we consider four popular research
topics in computer security:

¢ §4.1: mobile malware detection (P1, P4, and P7)

* §4.2: vulnerability discovery (P2, P4, and P6)

* §4.3: source code authorship attribution (P1 and P4)
¢ §4.4: network intrusion detection (P6 and P9)

Remark. For this analysis, we consider state-of-the-art ap-
proaches for each security domain. We remark that the
results within this section do not mean to criticize these
approaches specifically; we choose them as they are rep-
resentative of how pitfalls can impact different domains.
Notably, the fact that we have been able to reproduce the
approaches speaks highly of their academic standard.

4.1 Mobile Malware Detection

The automatic detection of Android malware using machine
learning is a particularly lively area of research. The design
and evaluation of such methods are delicate and may exhibit
some of the previously discussed pitfalls. In the following,
we discuss the effects of sampling bias (P1), spurious correla-
tions (P4), and inappropriate performance measures (P7) on
learning-based detection in this context.

Dataset collection. A common source of recent mobile data
is the AndroZoo project [6], which collects Android apps from
a large variety of sources, including the official GooglePlay
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Figure 4: The probability of sampling malware from Chinese markets is
significantly higher than for GooglePlay. This can lead to sampling biases in
experimental setups for Android malware detection.

store and several Chinese markets. At the time of writing
it includes more than 11 million Android applications from
18 different sources. As well as the samples themselves, it
includes meta-information, such as the number of antivirus
detections. Although AndroZoo is an excellent source for
obtaining mobile apps, we demonstrate that experiments may
suffer from severe sampling bias (P1) if the peculiarities of
the dataset are not taken into account. Please note that the
following discussion is not limited to the AndroZoo data, but
is relevant for the composition of Android datasets in general.

Dataset analysis. In the first step, we analyze the data distri-
bution of AndroZoo by considering the origin of an app and
the number of antivirus detections of an Android app. For our
analysis, we broadly divide the individual markets into four
different origins: GooglePlay, Chinese markets, VirusShare,
and all other markets.

Figure 4 shows the probability of randomly sampling from
a particular origin depending on the number of antivirus detec-
tions for an app. For instance, when selecting a sample with
no constraints on the number of detections, the probability of
sampling from GooglePlay is roughly 80 %. If we consider a
threshold of 10 detections, the probability that we randomly
select an app from a Chinese market is 70 %. It is very likely
that a large fraction of the benign apps in a dataset are from
GooglePlay, while most of the malicious ones originate from
Chinese markets, if we ignore the data distribution.

Note that this sampling bias is not limited to Andro-
Zoo. We identify a similar sampling bias for the DREBIN
dataset [9], which is commonly used to evaluate the perfor-
mance of learning-based methods for Android malware detec-
tion [e.g., 9, 58, 146].

Experimental setup. To get a better understanding of this
finding, we conduct experiments using two datasets: For the
first dataset (D), we merge 10,000 benign apps from Google-
Play with 1,000 malicious apps from Chinese markets (Anzhi
and AppChina). We then create a second dataset (D;) using
the same 10,000 benign applications, but combine them with
1,000 malware samples exclusively from GooglePlay. All ma-
licious apps are detected by at least 10 virus scanners. Next,
we train a linear support vector machine [47] on these datasets
using two feature sets taken from state-of-the-art classifiers
(DREBIN [9] and OPSEQS [91]).

Table 1: Comparison of results for two classifiers when merging benign
apps from GooglePlay with Chinese malware (D) vs. sampling solely from
GooglePlay (D). For both classifiers, the detection performance drops signif-
icantly when considering apps only from GooglePlay. The standard deviation
of the results ranges between 0-3%.

DREBIN OPSEQS

Metric D Dy A D Dy A

Accuracy 0994 0980 —-14% 0972 0948 -25%
Precision 0968 0930 -39% 0.822 0.713 —133%
Recall 0.964 0846 —12.2% 0.883 0.734 —169%
F1-Score 0970 088 —87% 0.851 0.722 —-152%
MCC[89] 0963 0.876 —-9.0% 0.836 0.695 —16.9%

Results. The recall (true positive rate) for DREBIN and
OPSEQS drops by more than 10 % and 15 %, respectively,
between the datasets D and D;, while the accuracy is only
slightly affected (see Table 1). Hence, the choice of the per-
formance measure is crucial (P7). Interestingly, the URL
play.google.com turns out to be one of the five most dis-
criminative features for the benign class, indicating that the
classifier has learned to distinguish the origins of Android
apps, rather than the difference between malware and benign
apps (P4). Although our experimental setup overestimates
the classifiers’ performance by deliberately ignoring time de-
pendencies (P3), we can still clearly observe the impact of
the pitfalls. Note that the effect of temporal snooping in this
setting has been demonstrated in previous work [4, 104].

4.2 Vulnerability Discovery

Vulnerabilities in source code can lead to privilege escalation
and remote code execution, making them a major threat. Since
the manual search for vulnerabilities is complex and time con-
suming, machine learning-based detection approaches have
been proposed in recent years [57, 83, 141]. In what follows,
we show that a dataset for vulnerability detection contains
artifacts that occur only in one class (P4). We also find that
VulDeePecker [83], a neural network to detect vulnerabili-
ties, uses artifacts for classification and that a simple linear
classifier achieves better results on the same dataset (P6). Fi-
nally, we discuss how the preprocessing steps proposed for
VulDeePecker make it impossible to decide whether some
snippets contain vulnerabilities or not (P2).

Dataset collection. For our analysis we use the dataset pub-
lished by Li et al. [83], which contains source code from
the National Vulnerability Database [36] and the SARD
project [37]. We focus on vulnerabilities related to buffers
(CWE-119) and obtain 39,757 source code snippets of which
10,444 (26 %) are labeled as containing a vulnerability.

Dataset analysis. We begin our analysis by classifying a
random subset of code snippets by hand to spot possible ar-
tifacts in the dataset. We find that certain sizes of buffers
seem to be present only in one class throughout the samples
considered. To investigate, we extract the buffer sizes of char



Table 2: Different buffer sizes in the Vulnerability Dataset used by Li et al.
[83] with their number of occurrences and relative frequency in class 0.

Buffer size Occurrences
Total In class 0
3 70 53 (75.7 %)
32 116 115 (99.1 %)
100 6,364 4,315 (67.8%)
128 26 24 (92.3 %)
1,024 100 96 (96.0 %)

arrays that are initialized in the dataset and count the number
of occurrences in each class. We report the result for class 0
(snippets without vulnerabilities) in Table 2 and observe that
certain buffer sizes occur almost exclusively in this class. If
the model relies on buffer sizes as discriminative features for
classification, this would be a spurious correlation (P4).

Experimental setup. We train VulDeePecker [83], based on
a recurrent neural network [65], to classify the code snippets
automatically. To this end, we replace variable names with
generic identifiers (e.g., INT2) and truncate the snippets to
50 tokens, as proposed in the paper [83]. An example of this
procedure can be seen in Figure 5 where the original code
snippet (top) is transformed to a generic snippet (bottom).

We use a linear Support Vector Machine (SVM) with bag-
of-words features based on n-grams as a baseline for VulDeeP-
ecker. To see what VulDeePecker has learned we follow the
work of Warnecke et al. [133] and use the Layerwise Rele-
vance Propagation (LRP) method [12] to explain the predic-
tions and assign each token a relevance score that indicates
its importance for the classification. Figure 5 (bottom) shows
an example for these scores where blue tokens favor the clas-
sification and orange ones oppose it.

Results. To see whether VulDeePecker relies on artifacts,
we use the relevance values for the entire training set and
extract the ten most important tokens for each code snippet.
Afterwards we extract the tokens that occur most often in this
top-10 selection and report the results in Table 3 in descending
order of occurrence.

While the explanations are still hard to interpret for a hu-
man we notice two things: Firstly, tokens such as “(’, ‘],

1| data = new char[10+1];

2| char source[10+1] = SRC_STRING;

3| memmove (data, source, (strlen(source) + 1) *
sizeof (char));

1| VARO = new char [ INTO # INT1 ] ;

2| char VARl [ INTO + INT1 ] = VAR2 ;

3| memmove ( VARO , VARl , ( strlen ( VARl ) + INT1 )
* sizeof ( char ) ) ;

Figure 5: Top: Code snippet from the dataset. Bottom: Same code snippet
after preprocessing steps of VulDeePecker. Coloring indicates importance
towards classification according to the LRP [12] method.

Table 3: The 10 most frequent tokens across samples in the dataset.

Rank  Token Occurrence Rank  Token Occurrence
1 INT1 70.8 % 6 char 38.8 %
2 ( 61.1% 7 ] 32.1%
3 * 47.2 % 8 + 31.1%
4 INT2 45.7 % 9 VARO 28.7 %
5 INTO 38.8% 10 , 26.0 %

and ‘,’ are among the most important features throughout
the training data although they occur frequently in code from
both classes as part of function calls or array initialization.
Secondly, there are many generic INT* values which fre-
quently correspond to buffer sizes. From this we conclude
that VulDeePecker is relying on combinations of artifacts in
the dataset and thus suffers from spurious correlations (P4).

To further support this finding, we show in Table 4 the
performance of VulDeePecker compared to an SVM and an
ensemble of standard models, such as random forests and Ad-
aBoost classifiers, trained with the AutoSklearn library [48].
We find that an SVM with 3-grams yields the best perfor-
mance with an 18x smaller model. This is interesting as
overlapping but independent substrings (n-grams) are used,
rather than the true sequential ordering of all tokens as for
the RNN. Thus, it is likely that VulDeePecker is not exploit-
ing relations in the sequence, but merely combines special
tokens—an insight that could have been obtained by training
a linear classifier (P6). Furthermore, it is noteworthy that both
baselines provide significantly higher true positive rates, al-
though the AUC-ROC of all approaches only slightly differs.

Finally, we discuss the preprocessing steps proposed by Li
et al. [83] as seen in the example of Figure 5. By truncating the
code snippets to a fixed length of 50, important information
is lost. For example, the value of the variable SRC_STRING
and thus its length is unknown to the network. Likewise, the
conversion of numbers to INT0 and INTI results in the same
problem for the data variable: after the conversion it is not
possible to tell how big the buffer is and whether the content
fits into it or not. Depending on the surrounding code it can
become impossible to say whether buffer overflows appear or
not, leading to cases of label inaccuracy (P2).

4.3 Source Code Author Attribution

The task of identifying the developer based on source code
is known as authorship attribution [23]. Programming habits
are characterized by a variety of stylistic patterns, so that

Table 4: Performance of Support Vector Machines and VulDeePecker on
unseen data. The true-positive rate is determined at 2.9 % false positives.

Model # parameters AUC TPR
VulDeePecker 1.2x10° 0.984 0818
SVM 6.6 x 10* 0.986  0.963

AutoSklearn 8.5x 103 0.982  0.894
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Figure 6: Shared source code over all files per author. A majority tend to
copy code snippets across challenges, leading to learned artifacts.

state-of-the-art attribution methods use an expressive set of
such features. These range from simple layout properties to
more unusual habits in the use of syntax and control flow. In
combination with sampling bias (P1), this expressiveness may
give rise to spurious correlations (P4) in current attribution
methods, leading to an overestimation of accuracy.

Dataset collection. Recent approaches have been tested on
data from the Google Code Jam (GCJ) programming compe-
tition [2, 7, 23], where participants solve the same challenges
in various rounds. An advantage of this dataset is that it en-
sures a classifier learns to separate stylistic patterns rather
than merely overfitting to different challenges. We use the
2017 GCIJ dataset [107], which consists of 1,632 C++ files
from 204 authors solving the same eight challenges.

Dataset analysis. We start with an analysis of the aver-
age similarity score between all files of each respective pro-
grammer, where the score is computed by difflib’s Sequence-
Matcher [106]. Figure 6 shows that most participants copy
code across the challenges, that is, they reuse personalized
coding templates. Understandably, this results from the na-
ture of the competition, where participants are encouraged
to solve challenges quickly. These templates are often not
used to solve the current challenges but are only present in
case they might be needed. As this deviates from real-world
settings, we identify a sampling bias in the dataset.

Current feature sets for authorship attribution include these
templates, such that models are learned that strongly focus on
them as highly discriminative patterns. However, this unused
duplicate code leads to features that represent artifacts rather
than coding style which are spurious correlations.

Experimental setup. Our evaluation on the impact
of both pitfalls builds on the attribution methods by
Abuhamad et al. [2] and Caliskan et al. [23]. Both represent
the state of the art regarding performance and comprehensive-
ness of features.

We implement a linter tool on top of Clang, an open-source
C/C++ front-end for the LLVM compiler framework, to re-
move unused code that is mostly present due to the tem-
plates. Based on this, we design the following three experi-
ments: First, we train and test a classifier on the unprocessed
dataset (7}) as a baseline. Second, we remove unused code
from the respective test sets (77), which allows us to test how
much the learning methods focus on unused template code.
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Figure 7: Accuracy of authorship attribution after considering artifacts. The
accuracy drops by 48 % if unused code is removed from the test set (77);
After retraining (73), the average accuracy still drops by 6 % and 7 %.

Finally, we remove unused code from the training set and
re-train the classifier (75).

Results. Figure 7 presents the accuracy for both attribution
methods on the different experiments. Artifacts have a sub-
stantial impact on the attribution accuracy. If we remove un-
used code from the test set (77), the accuracy drops by 48 %
for the two approaches. This shows both systems focus con-
siderably on the unused template code. After retraining (7>),
the average accuracy drops by 6 % and 7 % for the methods of
Abuhamad et al. [2] and Caliskan et al. [23], demonstrating
the reliance on artifacts for the attribution performance.

Overall, our experiments show that the impact of sampling
bias and spurious correlations has been underestimated and
reduces the accuracy considerably. At the same time, our
results are encouraging. After accounting for artifacts, both
attribution methods select features that allow for a more re-
liable identification. We make the sanitized dataset publicly
available to foster further research in this direction.

4.4 Network Intrusion Detection

Detecting network intrusions is one of the oldest problems
in security [41] and it comes at no surprise that detection of
anomalous network traffic relies heavily on learning-based
approaches [27, 81, 82, 93]. However, challenges in collect-
ing real attack data [46] has often led researchers to generate
synthetic data for lab-only evaluations (P9). Here, we demon-
strate how this data is often insufficient for justifying the
use of complex models (e.g., neural networks) and how us-
ing a simpler model as a baseline would have brought these
shortcomings to light (P6).

Dataset collection. We consider the dataset released
by Mirsky et al. [93], which contains a capture of Internet of
Things (IoT) network traffic simulating the initial activation
and propagation of the Mirai botnet malware. The packet cap-
ture covers 119 minutes of traffic on a Wi-Fi network with
three PCs and nine IoT devices.

Dataset analysis. First, we analyze the transmission volume
of the captured network traffic. Figure 8 shows the frequency
of benign and malicious packets across the capture, divided
into bins of 10 seconds. This reveals a strong signal in the
packet frequency, which is highly indicative of an ongoing
attack. Moreover, all benign activity seems to halt as the attack



Table 5: Comparing KITSUNE [93], an autoencoder ensemble NIDS, against
a simple baseline, boxplot method [129], for detecting a Mirai infection.

Detector AUC TPR TPR
(FPR at 0.001)  (FPR at 0.000)

KITSUNE [93] 0.968 0.882 0.873

Simple Baseline [129] 0.998 0.996 0.996

commences, after 74 minutes, despite the number of devices
on the network. This suggests that individual observations
may have been merged and could further result in the system
benefiting from spurious correlations (P4).

Experimental setup. To illustrate how severe these pit-
falls are, we consider KITSUNE [93], a state-of-the-art deep
learning-based intrusion detector built on an ensemble of au-
toencoders. For each packet, 115 features are extracted that
are input to 12 autoencoders, which themselves feed to an-
other, final autoencoder operating as the anomaly detector.

As a simple baseline to compare against KITSUNE, we
choose the boxplot method [129], a common approach for
identifying outliers. We process the packets using a 10-second
sliding window and use the packet frequency per window as
the sole feature. Next, we derive a lower and upper threshold
from the clean calibration distribution: t;,, = Q1 — 1.5-IQR
and Tp;gp, = Q3+ 1.5-1QR. During testing, packets are marked
as benign if the sliding window’s packet frequency is between
Tjow and Tpen, and malicious otherwise. In Figure 8, these
thresholds are shown by the dashed gray lines.

Results. The classification performance of the autoencoder
ensemble compared to the boxplot method is shown in Ta-
ble 5. While the two approaches perform similarly in terms
of ROC AUC, the simple boxplot method outperforms the
autoencoder ensemble at low false-positive rates (FPR). As
well as its superior performance, the boxplot method is ex-
ceedingly lightweight compared to the feature extraction and
test procedures of the ensemble. This is especially relevant as
the ensemble is designed to operate on resource-constrained
devices with low latency (e.g., IoT devices).

Note this experiment does not intend to show that the box-
plot method can detect an instance of Mirai operating in the
wild, nor that KITSUNE is incapable of detecting other attacks,
but to demonstrate that an experiment without an appropriate
baseline (P6) is insufficient to justify the complexity and over-
head of the ensemble. The success of the boxplot method also
shows how simple methods can reveal issues with data gen-
erated for lab-only evaluations (P9). In the Mirai dataset the
infection is overly conspicuous; an attack in the wild would
likely be represented by a tiny proportion of network traffic.

4.5 Takeaways

The four case studies clearly demonstrate the impact of the
considered pitfalls across four distinct security scenarios. Our
findings show that subtle errors in the design and experimen-
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Figure 8: Frequency of benign vs malicious packets in the Mirai dataset [93].
The Gray dashed lines show the thresholds that define normal traffic calcu-
lated using the simple baseline (boxplot method [129]). The span of clean
data used for calibration is highlighted by the light blue shaded area.

tal setup of an approach can result in misleading or erroneous
results. Despite the overall valuable contributions of the re-
search, the frequency and severity of pitfalls identified in top
papers clearly indicate that significantly more awareness is
needed. Additionally, we show how pitfalls apply across mul-
tiple domains, indicating a general problem that cannot be
attributed to only one of the security areas.

5 Limitations and Threats to Validity

The preceding identification and analysis of common pitfalls
in the security literature has been carried out with utmost
care. However, there are some limitations that are naturally
inherent to this kind of work. Even though these do not affect
the overall conclusion of our analysis, we discuss them in the
following for the sake of completeness.

Pitfalls. Although some pitfalls may seem obvious at first,
our prevalence analysis indicates the opposite. This lack
of awareness obstructs progress, and it will persist until ad-
dressed by the community. Furthermore, we cannot cover
all ten pitfalls in detail, as our focus is on a comprehensive
overview. Finally, some pitfalls cannot always be prevented,
such as sampling bias, label inaccuracy, or lab-only settings.
For example, it is likely not possible to test an attack in a
real environment due to ethical considerations. In such cases,
simulation is the only option. As outlined in §2, corrective
measures may even be an open problem, yet awareness of
pitfalls is a first step towards amending experimental practices
and ultimately devising novel methods for mitigating them.

Prevalence analysis. For the prevalence analysis, we
skimmed all papers of top security conferences in the last
10 years and identified 30 papers that use machine learning
prominently (e.g., mentioned in the abstract or introduction).
Even though this selection process is not entirely free from
bias, the identified pitfalls are typical for this research branch
and the respective papers are often highly cited.

Moreover, a pitfall is only counted if its presence is clear
from the text or the associated artifacts, such as code or data.
Otherwise, we decide in favor of the paper and consider a
pitfall as not present. Despite this conservative assignment,
our analysis underlines the prevalence of pitfalls.

Impact analysis. Four exemplary research works are cho-
sen from security areas in which the authors of this paper



have also published research. This biased selection, however,
should be acceptable, as we intend to empirically demonstrate
how pitfalls can affect experimental results.

6 Related Work

Our study is the first to systematically and comprehensively
explore pitfalls when applying machine learning to security. It
complements a series of research on improving experimental
evaluations in general. In the following, we briefly review this
related work and point out key differences.

Security studies. Over the last two decades, there have been
several studies on improving experiments in specific security
domains. For example, Axelsson [11], McHugh [90], and Car-
denas et al. [24] investigate issues with the evaluation of in-
trusion detection systems, covering special cases of sampling
bias (P1), the base rate fallacy (P8), and inappropriate per-
formance measures (P7). Sommer and Paxson [119] extend
this work and specifically focus on the application of machine
learning for network intrusion detection. They identify further
issues, such as semantic gaps with anomaly detection (P4)
and unrealistic evaluation baselines (P6).

In a similar strain of research, Rossow et al. [112] de-
rive guidelines for conducting experiments with malware.
Although this study does not investigate machine learning
explicitly, it points to experimental problems related to some
of the issues discussed in this paper. The study is expanded
upon by a series of work examining variants of sampling bias
in malware analysis (P1), such as temporally inconsistent data
splits and labels [e.g., 4, 92, 104, 144] as well as unrealistic
goodware-to-malware ratios [e.g., 5, 104]. Aghakhani et al.
[3] study the limits of static features for malware classification
in the presence of packed samples.

Das et al. [35] show that security defenses relying on hard-
ware performance counters are ineffective in realistic set-
tings (P9). Similarly, for privacy-preserving machine learn-
ing, Oya et al. [98] find that most location privacy approaches
fail when applied to real-world distributions (P9). For authen-
tication, Sugrim et al. [123] propose appropriate measures
to evaluate learning-based authentication systems (P7), and
finally, for system security, van der Kouwe et al. [130] point
to frequent benchmarking flaws (P1, P6, and P7).

Our study builds on this research but provides an orthogo-
nal and comprehensive view of the problem. Instead of focus-
ing on specific domains, we are the first to generally explore
pitfalls and recommendations when applying machine learn-
ing in computer security. Hence, our work is not limited to
certain problems but applicable to all security domains.

Adpversarial learning studies. Another branch of research
has focused on attacking and defending learning algo-
rithms [18, 39, 101]. While a number of powerful attacks
have emerged from this research such as evasion, poisoning,
and inference attacks, the corresponding defenses have of-

ten suffered from limited robustness [10]. To counteract this
imbalance, Carlini et al. [26] identify several pitfalls that af-
fect the evaluation of defenses and discuss recommendations
on how to avoid them. In a similar vein, Biggio et al. [21]
propose a framework for security evaluations of pattern classi-
fiers under attack. Both works are closely related to pitfall P10
and provide valuable hints for evaluating the robustness of
defenses. However, while we also argue that smart and adap-
tive adversaries must always be considered when proposing
learning-based solutions in security, our study is more general.

Machine learning studies. Finally, a notable body of work
has explored recommendations for the general use of machine
learning. This research includes studies on different forms of
sampling bias and dataset shift [94, 124, 128] as well as on
the general implications of biased parameter selection [63],
data snooping [76], and inappropriate evaluation methods [38,
52, 61]. An intuitive overview of issues in applied statistics is
provided by Reinhart [109].

Our work builds on this analysis; however, we focus exclu-
sively on the impact of pitfalls prevalent in security. Conse-
quently, our study and its recommendations are tailored to the
needs of the security community, and aim to push forward the
state of the art in learning-based security systems.

7 Conclusion

We identify and systematically assess ten subtle pitfalls in
the use of machine learning in security. These issues can
affect the validity of research and lead to overestimating the
performance of security systems. We find that these pitfalls
are prevalent in security research, and demonstrate the impact
of these pitfalls in different security applications. To support
researchers in avoiding them, we provide recommendations
that are applicable to all security domains, from intrusion and
malware detection to vulnerability discovery.

Ultimately, we strive to improve the scientific quality of
empirical work on machine learning in security. A decade
after the seminal study of Sommer and Paxson [119], we
again encourage the community to reach outside the closed
world and explore the challenges and chances of embedding
machine learning in real-world security systems.

Additional material

For interested readers, we provide supplementary material for
the paper at http://dodo-mlsec.org.
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A Appendix: Pitfalls

As a supplement to this paper, we provide further details on
the identified pitfalls and our recommendations in this section.

Label inaccuracy. Noisy labels are a common problem in
machine learning and a source of bias. In contrast to sam-
pling bias, however, there exist different, practical methods
for mitigating label noise [e.g., 96, 139]. To demonstrate this
mitigation, we employ the readily available method by North-
cutt et al. [96] that cleans noisy instances in the training data.
We follow the setup from Xu et al. [139] and randomly flip
9.7 % of the labels in the DREBIN training dataset. We then
train an SVM on three datasets: the correctly-labelled dataset,
its variant with noisy labels, and the cleansed dataset.

Table 6 shows the F1-score, Precision, and Recall for the
three datasets. Due to label noise, the F1-score drops from
0.95 to 0.73 on the second dataset. Yet, it increases to 0.93
once data cleansing is applied. This result is comparable to
the method by Xu et al. [139] who report an F1-score of 0.84
after repairing labels. In addition, we check the detection
performance of noisy labels. 84 % of the flipped labels are
correctly detected, while only 0.2 % of the original labels
are falsely flagged as incorrect. Our experiment indicates
that available methods for reducing label noise can provide
sufficient quality to mitigate label inaccuracy in practice.

Table 6: Performance with label noise in the DREBIN dataset

Scenario F1-Score  Precision  Recall
Correctly-labelled dataset 0.955 0.900 0.928
Noisy dataset 0.727 0.340 0.942

Cleansed dataset 0.933 0.889 0.855

Data snooping. As discussed in §2, there exist several vari-
ants of data snooping where information that is not available
in practice is unintentionally used in the learning process.
Table 8 provides a list of common types for test, temporal
and spatial snooping to better illustrate these cases. We rec-
ommend using this table as a starting point when vetting a
machine-learning workflow for the presence of data snooping.

Spurious correlations. Various extraneous factors, includ-
ing sampling bias and confounding bias [16, 103], can intro-
duce spurious correlations. In the case of confounding bias, a
so-called confounder is present that coincidentally correlates
with the task to solve. Depending on the used features, the
confounder introduces artifacts that lead to false associations.
In the case of sampling bias, the correlations result from dif-
ferences between the sampled data and the true underlying
data distribution.

Spurious correlations are challenging to identify, as they
depend on the application domain and the concrete objec-
tive of the learning-based system. In one setting a correlation
might be a valid signal, whereas in another it spuriously cre-
ates an artificial shortcut leading to over-estimated results.
Consequently, we recommend systematically analyzing pos-
sible factors that can introduce these correlations. In some
cases, it is then possible to explicitly control for unwanted
extraneous factors that introduce spurious correlations, thus
eliminating their impact on the experimental outcome. In
other disciplines, different techniques have been proposed to
achieve this goal [e.g., 16, 64, 86, 97, 143], which, however,
often build on information not available to security practition-
ers. For instance, several methods [e.g., 64, 143] can correct
sampling bias if the selection probability for each observa-
tion is known or can be estimated. In security research this is
rarely the case.

As a remedy, we encourage the community to continuously
check for extraneous factors that affect the performance of
learning-based systems in experiments. However, this is a non-
trivial task, as the factors contributing to the correlations are
highly domain-specific. As recommended in §2, explanation
techniques for machine learning can be a powerful tool in
this setting to enable tracing predictions back to individual
features, thereby exposing the learned correlations.

Sampling bias. Often it is extremely difficult to acquire
representative data and thus some bias is unavoidable. As an
example of how to tackle this problem, we investigate this
pitfall for Android malware detection. In particular, we control

Table 7: Detection performance on data from different origins

Origin F1-Score  Precision  Recall
GooglePlay 0.879 0.914 0.846
Anzhi 0.838 0.881 0.801
AppChina 0.807 0.858 0.762
AndroZoo 0.885 0.922 0.852




Table 8: Overview of data snooping groups and types

Group Types

Description

Test Snooping Preparatory work

K-fold cross-validation

Normalization

Embeddings

If the test set is used for any experiments except for the evaluation of the final model, the learning setup
benefits from additional knowledge that would not be available in practice. This includes steps to find
features or limit the number of features through feature selection on the entire dataset.

Another type of snooping occurs if researchers tune the hyperparameters by using k-fold cross-validation
with the final test set for evaluation, and report these results.

Normalization factors, such as tf-idf, are computed on the complete dataset, i.e., before splitting the
dataset into training and test set.

Similarly, embeddings for deep neural networks are derived from the complete dataset, instead of just
using the training data.

Temporal Snooping Time dependency

Aging datasets

Time dependencies within the data are not considered, so that samples are detected with features that
would not be available at training time in a realistic setting (e.g., features of new malware variants [104]).

The usage of well-known datasets from prior work can also introduce a bias. Researchers may implicitly
incorporate prior knowledge by using previous insights from these publicly available datasets.

Selective Snooping Cherry-picking

Survivorship bias

Data is cleaned based on information that is usually not available in practice. For instance, applications
are filtered out that are not detected by a sufficiently large number of AV scanners.

A group of samples is already filtered out. This bias overlaps with sampling bias (P1). For example,
using only applications, which a dynamic analysis system can successfully process and removing all

others from the dataset, also introduces a survivorship bias.

for one source of sampling bias to prevent our classifier from
picking up on spurious correlations, rather than detecting
malware. To this end, we construct individual datasets that
exclusively contain only apps from one specific market each,
instead of training on the overall, large dataset of Android
apps. This ensures that the classifier learns to detect malware
instead of capturing differences between the markets. For this
experiment, we use the three largest markets in AndroZoo
(GooglePlay, Anzhi, and AppChina) with 10,000 benign and
1,000 malicious apps each, and train DREBIN on all datasets.

The results are depicted in Table 7. The detection perfor-
mance varies across the datasets, with an F1-score ranging
from 0.807 to 0.879. However, if we ignore the origin of
the apps and randomly sample from the complete Andro-
Zoo dataset, we obtain the best F1-score of 0.885, indicating
a clear sampling bias. This simple experiment demonstrates
how controlling for a source of bias can help to better estimate
the performance of a malware detector. While the example is
simple and specific to Android malware, it is easily transfer-
able to other sources and scenarios.

B Appendix: Prevalence Analysis

Here, we provide additional details on the author survey dis-
cussed in §3. Note that the supplementary material contains
further information regarding the chosen papers.

Details of author survey. In addition to the discussion of
the survey conducted in §3, Figure 9 provides an overview of
the authors’ responses grouped by pitfall. Each bar indicates
the agreement of the authors, with colors ranging from warm
(strongly disagree) to cold (strongly agree).

Agreement between authors and reviewers.
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Figure 9: Survey results regarding the different pitfalls.

Data collection and ethics. Our institution does not require
a formal IRB process for the survey conducted in this work.
However, we contacted the ethical review board of our institu-
tion and achieved approval from its chair for conducting the
survey. Moreover, we designed the survey in accordance with
the General Data Protection Regulation of the EU, minimizing
and anonymizing data where possible. All authors approved
to a consent form that informed them about the purpose of
the study, the data we collect, and included an e-mail address
to contact us in case of questions.
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