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Abstract

Entanglement resources can increase transmission rates substantially.
Unfortunately, entanglement is a fragile resource that is quickly degraded
by decoherence effects. In order to generate entanglement for optical
communication, the transmitter and the receiver first prepare entangled
spin-photon pairs locally, and then the photon at the transmitter is sent to
the receiver through an optical fiber or free space. Without feedback, the
transmitter does not know whether the entangled photon has reached the
receiver. The present work introduces a new model of unreliable entan-
glement assistance, whereby the communication system operates whether
entanglement assistance is present or not. While the sender is ignorant,
the receiver knows whether the entanglement generation was successful.
In the case of a failure, the receiver decodes less information. In this man-
ner, the effective transmission rate is adapted according to the assistance
status. Regularized formulas are derived for the classical and quantum
capacity regions with unreliable entanglement assistance, characterizing
the tradeoff between the unassisted rate and the excess rate that can be
obtained from entanglement assistance.
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Introduction

Quantum channels represent the physical evolution of a non-isolated system and
provide a mathematical description for a noisy transmission medium, such as
an optical fiber. The channel capacity is the ultimate characteristic for commu-
nication throughput, i.e. the optimal transmission rate with an asymptotically
vanishing error for a given noisy channel. Generally speaking, quantum com-
munication and security protocols can be categorized as either entanglement-
assisted or unassisted. Entanglement resources are instrumental in a wide va-
riety of quantum network frameworks, such as physical-layer security1, inter-
ferometry2, sensor networks3;4, and communication complexity5. Furthermore,
the data rate can be significantly higher when the communicating parties are
provided with entangled particles6;7, as has recently been demonstrated in ex-
periments8. Unfortunately, entanglement is a fragile resource that is quickly
degraded by decoherence effects9.

In order to generate entanglement in an optical communication system, the
transmitter may prepare an entangled pair of photons locally, and then send one
of them to the receiver10. Such generation protocols are not always successful,
as photons are easily absorbed before reaching the destination. Therefore, prac-
tical systems require a back channel, to inform the transmitter whether the
entanglement has been established to a satisfying degree of quality. In the case
of a failure, the protocol is to be repeated. The backward transmission may re-
sult in a delay, which in turn leads to a further degradation of the entanglement
resources. In this work, we propose a new principle of operation: Communica-
tion with unreliable entanglement assistance. In our model, the communication
system operates on a rate that is adapted to the status of the entanglement
assistance, whether the assistance exists or not. Hence, feedback and repetition
are not required.

Driven by new applications such as Industry 4.0, Vehicle-to-Everything (V2
X), and the Tactile Internet11, future communication systems such as those
beyond the fifth generation of mobile networks (5G) will significantly differ from
both existing wireless and wired networks. Quantum communication networks
are expected to play an important role in the communication infrastructure of
the modern digital society. Such systems will have a more involved network
structure and will impose more diverse and challenging quality-of-service (QoS)
requirements on the network resilience and reliability, service availability, delay,
security, privacy, and many others. Some of theses new requirements can only
be met by using quantum communication12. The deployment requirements will
go beyond those of the traditional systems, e.g. the Tactile Internet will allow
not only the control of data, but also of physical and virtual objects. With
such critical applications comes the need to address the trustworthiness of the
system and its services.

Resilience and reliability are core elements of trustworthiness and have been
identified as key challenges for future communication systems13. Furthermore,
resilience and reliability cannot necessarily be verified automatically on digital
hardware, i.e. on Turing machines14. It is not Turing decidable whether an at-
tacker can perform a denial-of-service attack or not. Thus, it is also not Turing
decidable whether a communication system is trustworthy or not13. Therefore,
it is fundamentally important to achieve entirely new approaches for resilience
by design and for reliability by design. Here, we develop the theory for reliabil-
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ity by design for entanglement-assisted point-to-point quantum communication
systems.

Communication through quantum channels can carry classical or quantum
information. For classical communication, the Holevo-Schumacher-Westmoreland
(HSW) Theorem provides a regularized formula for the classical capacity of a
quantum channel without assistance15;16. Although calculation of such a for-
mula is intractable in general, it provides computable lower bounds, and there
are special cases where the capacity can be computed exactly. The reason for
this difficulty is that the Holevo information is super-additive17. A similar
difficulty occurs with transmission of quantum information. The regularized
formula for the quantum capacity is given in terms of the coherent informa-
tion18. The entanglement-assisted classical capacity and quantum capacity of
a noisy quantum channel were fully characterized by Bennett et al.6;7 in terms
of the quantum mutual information, in analogy to Shannon’s capacity formula
for a classical channel19. The tradeoff between transmission, leakage, key, and
entanglement rates is studied extensively in the literature as well20–28.

The theory of uncertain cooperation was first introduced to classical in-
formation theory in 2014 by Steinberg29, and further investigated by Huleihel
and Steinberg30. Our framework is inspired by Steinberg’s model29. The clas-
sical models of unreliable cooperation mainly focus on dynamic resources in
multi-user settings, such as the multiple-access channel31 and the broadcast
channel32–34. Other approaches for unreliable communication links include the
outage analysis35;36, automatic repeat request (ARQ)37;38, and cognitive ra-
dios39. Our focus here, however, is on a point-to-point quantum channel and
the reliability of static resources.

In this paper, we consider communication of either classical or quantum
information over a quantum channel, while Alice and Bob are provided with
unreliable entanglement resources, as the communicating parties are uncertain
about the availability of entanglement assistance. Specifically, Alice wishes to
send two messages, at rates R and R′. She encodes both messages using her
share of the entanglement resources, as she does not know whether Bob will have
access to the entangled resources. Bob has two decoding procedures. If the en-
tanglement assistance has failed to reach Bob’s location, he performs a decoding
operation to recover the first message alone. Hence, the communication system
operates on a rate R. Whereas if Bob has entanglement assistance, he decodes
both messages, hence the overall transmission rate is R+R′. In other words, R
is a guaranteed rate, and R′ is the excess rate of information that entanglement
assistance provides. We define the capacity region as the set of all rate pairs
(R,R′) that can be achieved with asymptotically vanishing decoding errors. We
establish a regularized characterization for the classical and quantum capacity
regions. We are developing reliability by design. If the entanglement resource is
unreliable, then the rate R can be guaranteed regardless. For the applications
mentioned above, this is of central importance, because absolutely critical data
can be transmitted at rate R and the communication does not break down.

The communication design makes a compromise. In general terms, the ex-
treme options are to use the entanglement resources to the fullest extent, or
ignore them completely. A communication protocol that relies heavily on the
entanglement resources reaps the benefits of entanglement to a high extent, if
the assistance is present. However, if the entanglement generation fails, then
the transmission rate will be very low. That is, the excess rate R′ will be close
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Figure 1: Super-dense coding with unreliable entanglement assistance. The
blue lines indicate the bits and qubits that are affected when the entanglement
resources fail to reach Bob’s location.

to optimal, while the guaranteed rate R will be low. If the designer decides
to sacrifice excess rate and reduce R′, i.e. reduce the gain from the entangle-
ment resources, then we can guarantee a higher transmission rate. Our results
characterize the optimal tradeoff.

Consider the simple scenario of a noiseless qubit channel idA→B , for which
we have two elementary communication methods:

1. Send one classical bit of information.

2. Employ the super-dense coding protocol in order to send two classical bits,
as illustrated in Figure 1.

The first method is optimal without assistance, while the second is optimal
when entanglement assistance is present. If Alice follows the super-dense coding
protocol, but the entanglement resources do not reach Bob’s location, then
Bob measures a qubit that has no correlation with the information bits. In
the framework of unreliable entanglement assistance, Method 2 achieves a zero
guaranteed rate and an excess rate of two information bits per transmission.
Suppose that Alice employs time division: She sends (1 − λ)n transmissions
using Method 1, and λn transmissions following Method 2, where 0 ≤ λ ≤ 1.
Hence, the communication system operates on a guaranteed rate of R = 1 − λ
information bits per transmission, and an excess rate of R′ = 2λ information
bits per transmission. We show that the time division region is optimal for the
noiseless qubit channel. Nevertheless, we demonstrate that time division can be
strictly sub-optimal for a noisy channel.

1 Definitions and Related Work

1.1 Notation and Information Measures

The quantum state of a systemA is a density operator ρ on the Hilbert spaceHA.
The set of all such density operators is denoted by S (HA). A measurement of a
quantum system is a set of operators {Λj} that forms a positive operator-valued
measure (POVM), i.e. Λj � 0 and

∑
j Λj = 1, where 1 is the identity operator.
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According to the Born rule, if the system is in state ρ, then the probability of
the measurement outcome j is given by Tr(Λjρ). The trace distance between

two density operators ρ and σ is ‖ρ− σ‖1, where ‖F‖1 = Tr(
√
F †F ).

Given a bipartite state ρAB on HA⊗HB , define the quantum mutual infor-
mation as

I(A;B)ρ = H(ρA) +H(ρB)−H(ρAB) , (1)

where H(ρ) ≡ −Tr[ρ log(ρ)] is the von Neumann entropy of the state ρ. Fur-
thermore, conditional quantum entropy and mutual information are defined
by H(A|B)ρ = H(ρAB) − H(ρB) and I(A;B|C)ρ = H(A|C)ρ + H(B|C)ρ −
H(A,B|C)ρ, respectively. The coherent information is then defined as

I(A〉B)ρ = −H(A|B)ρ . (2)

The maximally entangled state between two systems of dimension d is denoted
by |ΦAB〉 = 1√

d

∑d−1
j=0 |j〉A ⊗ |j〉B , where {|j〉A} and {|j〉B} are respective or-

thonormal bases.
We also use the following notation conventions. Calligraphic letters X , Y, Z,

. . . are used for finite sets. Lowercase letters x, y, z, . . . represent constants and
values of classical random variables, and uppercase letters X,Y, Z, . . . represent
random variables. We use xj = (x1, x2, . . . , xj) to denote a sequence of letters
from X , and [i : j] for the index set {i, i+ 1, . . . , j}, where j > i.

1.2 Quantum Channel

A quantum channel maps a state at the sender system to a state at the receiver
system. Formally, a quantum channel NA→B : S (HA)→ S (HB) is defined by
a linear, completely positive, trace preserving map NA→B . In the Stinespring
representation, a quantum channel is specified by NA→B(ρA) = TrE(UρAU

†),
where the operator U is an isometry, i.e. U†U = 1. We assume that the
quantum channel has a product form: If An = (A1, . . . , An) are sent through n
channel uses, then the input state ρAn undergoes the tensor product mapping
NAn→Bn ≡ N⊗nA→B . The sender and the receiver are often referred to as Alice
and Bob.

1.3 Coding with Unreliable Assistance

We give coding definitions for communication with unreliable entanglement re-
sources. We denote Alice and Bob’s entangled systems by GA and GB , respec-
tively.

1.3.1 Classical Codes

Definition 1. A (2nR, 2nR
′
, n) classical code with unreliable entanglement as-

sistance consists of the following: Two message sets [1 : 2nR] and [1 : 2nR
′
],

where 2nR, 2nR
′

are assumed to be integers, a pure entangled state ΨGA,GB , a

collection of encoding maps Fm,m
′

GA→An : S (HGA) → S (H⊗nA ) for m ∈ [1 : 2nR]

and m′ ∈ [1 : 2nR
′
], and two decoding POVMs DBnGB = {Dm,m′} and D∗Bn =

{D∗m}. We denote the code by (F ,Ψ,D,D∗).
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Figure 2: Illustration of unreliable entanglement assistance that is controlled by
an imaginary switch. The quantum systems of Alice and Bob are marked in red
and blue, respectively. Alice encodes the messages m and m′ by applying the

encoding map Fm,m
′

GA→An to the system GA, which is entangled with GB . The
model assumes that entanglement assistance may fail to reach Bob. Thus, there
are two scenarios: (a) “On”: Bob performs a measurement DBnGB in order to
estimate m and m′. (b) “Off”: Bob performs a measurement D∗Bn to estimate
m, and does not recover m′, as he cannot access GB .

The communication scheme is depicted in Figure 2. The sender Alice has
the systems GA, A

n and the receiver Bob has the system Bn, and possibly GB
as well, where GA and GB are entangled. The model captures two scenarios, i.e.
when entanglement assistance is present or absent. This is illustrated in Figure 2
by an imaginary switch that controls the assistance. Without assistance, Bob
is only required to decode one message, and given entanglement assistance, he
should recover both messages.

Specifically, Alice chooses two classical messages, m ∈ [1 : 2nR] and m′ ∈ [1 :

2nR
′
]. She applies the encoding channel Fm,m

′

GA→An to her share of the entangled
state ΨGA,GB , and then transmits An over n channel uses of NA→B . Bob
receives the channel output Bn. If the entanglement assistance is present, i.e.
Bob has access to the entanglement resource GB , then he should recover both
messages. He combines the output with the entangled system GB , and performs
the POVM DBnGB = {Dm,m′} to obtain an estimate (m̂, m̂′).

Otherwise, if entanglement assistance is absent, then Bob does not have
GB , and he is only required to recover m. Hence, he performs the measurement
DBn = {D∗m} to obtain an estimate ˆ̂m of the first message alone. In the presence
of entanglement assistance, the conditional probability of error given that the
messages m and m′ were sent, is

P
(n)
e|m,m′(F ,Ψ,D) = 1− Tr

[
Dm,m′(N⊗nA→B ⊗ id)(Fm,m′ ⊗ id)(ΨGA,GB )

]
(3)

and without assistance,

P
∗(n)
e|m,m′(F ,Ψ,D∗) = 1− Tr

[
D∗mN⊗nA→B Fm,m

′
(ΨGA)

]
. (4)

Notice that the encoded input remains the same, since Alice does not know
whether entanglement assistance is present or not. Therefore, the error depends
on m and m′ in both cases.

Given ε > 0, we say that the code is a (2nR, 2nR
′
, n, ε) classical code if

the error probabilities are bounded by ε. That is, P
(n)
e|m,m′(F ,Ψ,D) ≤ ε and
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Figure 3: Heralded entanglement generation.

P
∗(n)
e|m,m′(F ,Ψ,D∗) ≤ ε for all m ∈ [1 : 2nR] and m′ ∈ [1 : 2nR

′
]. A rate pair

(R,R′) is called achievable if for every ε > 0 and sufficiently large n, there exists
a (2nR, 2nR

′
, n, ε) code with unreliable entanglement assistance.

The classical capacity region CEA*(N ) with unreliable entanglement assis-
tance is defined as the set of achievable rate pairs.

Remark 1. It is important to note that unreliable assistance is not equivalent
to noisy assistance, which was considered by Zhuang et al.26. In particular,
we do not associate a statistical model to the availability of the entanglement
resources. Instead, we consider a rate region that reflects the tradeoff between
the guaranteed rate and the excess rate. The guaranteed rate R corresponds to
information that Bob recovers whether the entanglement assistance is present or
not, while the excess rate R′ represents the additional information that is sent
if entanglement assistance is present. In other words, the rate R represents the
worst-case scenario, whereas R′ is associated with the best-case scenario. As
opposed to the average performance that is considered in the statistical model26,
we provide a worst-case best-case performance analysis. We would also like to
emphasize that we only account for two extreme cases, i.e. either the entire
entanglement resources are available or not at all.

Remark 2. In practical systems, heralded entanglement generation guarantees
that Bob knows whether the procedure was successful or not. Thus, our as-
sumption that Bob knows whether the entangled resource is present or absent
is a practical one. Specifically, in optical communication, both Alice and Bob
prepare an entangled photon pair or spin-photon pair locally, see Figure 3. Let
us denote the pairs by |ΦGAPA〉 and |ΦGBPB 〉, respectively, where PA and PB
represent photons. In order to generate entanglement with Bob, Alice transmits
the photon PA. If the photon transmission was successful, then Bob has the two
photons PA and PB in his lab, as well as the quantum system GB . In this case,
a Bell measurement on PA and PB eliminates the photons, but the remaining
systems of Alice and Bob, GA and GB , become entangled. If the photon has
not reached Bob, then the measurement outcome indicates so.

1.3.2 Quantum Codes

Next, we give a definition of a quantum code with unreliable entanglement
assistance.

Definition 2. A (2nQ, 2nQ
′
, n) quantum code with unreliable entanglement as-

sistance consists of the following: A product Hilbert space HM ⊗ HM̄ with
dimensions |HM | = 2nQ and |HM̄ | = 2n(Q+Q′), a pure entangled state ΨGA,GB ,
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an encoding channel FGAMM̄→An : S (HGA ⊗ HM ⊗ HM̄ ) → S (H⊗nA ), and
two decoding channels D

BnGB→M̃ : S (H⊗nB ⊗HGB )→ S (HM̄ ) and D∗
Bn→M̂ :

S (H⊗nB )→ S (HM ).
The sender Alice has the systems GA,M, M̄,An and the receiver Bob has

the systems Bn, M̂, M̃ , and possibly GB , where GA and GB are entangled. We
think of M and M̄ as quantum message systems. Alice has a product state
θM ⊗ ξM̄ . Let |θMK〉 ⊗ |ξM̄K̄〉 be a purification of Alice’s state, while K, K̄
are arbitrary purifying systems. Alice encodes the input state by applying the
encoding channel FGAMM̄→An to M , M̄ , and to her share of the entangled
state ΨGA,GB , and transmits the system An over n channel uses of NA→B .
Bob receives the channel output systems Bn. If the entanglement assistance
is present, then he combines the output with the entangled system GB , and
applies the decoding channel D

BnGB→M̃ . Otherwise, if entanglement assistance
is absent, then he performs D∗

Bn→M̂ .

Given ε > 0, the code is said to be a (2nQ, 2nQ
′
, n, ε) quantum code with

unreliable entanglement assistance if the trace distance between the original
state and the resulting state at the receiver is bounded by ε in each scenario,
i.e.

1

2

∥∥ξM̄K̄ −DN⊗nA→BF (θMK ⊗ ξM̄K̄ ⊗ΨGA,GB )
∥∥

1
≤ ε , (5)

and

1

2

∥∥θMK −D∗N⊗nA→BF (θMK ⊗ ξM̄K̄ ⊗ΨGA)
∥∥

1
≤ ε , (6)

where ‖·‖1 denotes the trace norm. Observe that the second error depends on
the entangled state only through the reduced state of GA, since the receiver does
not have access to GB in the scenario of absent assistance. A rate pair (Q,Q′)
is said to be achievable if for every ε > 0 and sufficiently large n, there exists
a (2nQ, 2nQ

′
, n, ε) code with unreliable entanglement assistance. The quantum

capacity region QEA*(N ) is defined in a similar manner as before.

In the following remark, we discuss the relation between the classical and
quantum formulations above. In many communication models in the literature,
it does not matter whether the messages are chosen by the sender Alice, or
given to her by an external source. However, in the quantum model, there is a
fundamental distinction between the general task of sub-space transmission and
remote state preparation, as we explain below.

Remark 3. In the classical code in Definition 1, if entanglement assistance is
present, then Bob decodes the composite message m̄ = (m,m′). Hence, the
overall transmission rate with entanglement assistance is REA = R+R′. In the
quantum code in Definition 2, M and M̄ are two independent systems of dimen-
sions 2nQ and 2n(Q+Q′). Hence, the overall quantum rate with entanglement
assistance is QEA = Q + Q′. In some applications of quantum error correc-
tion, Alice receives the system M from another source, and does not prepare
it herself. While Alice can perform any operation on this system, she does not
necessarily know its state in this case. Due to the no-cloning theorem, Alice
cannot duplicate a general state of M either. Thus, our definition of quantum
transmission with unreliable entanglement describes a more restricted problem.
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1.4 Related Work

We briefly review known results without assistance and with reliable entangle-
ment assistance. We denote the corresponding classical and quantum capacities
with reliable entanglement assistance by CEA(N ) and QEA(N ), and without
assistance by C(N ) and Q(N ), respectively.

Define the following information measures: The channel Holevo information

χ(N ) ≡ max
pX(x),|ψxA〉

I(X;B)ω ,

ωXB ≡
∑
x∈X

pX(x) |x〉〈x| ⊗ N (ψxA) , |X | ≤ |HA|2 , (7)

and the channel coherent information

Ic(N ) ≡ max
|φA1A〉

I(A1〉B)ω ,

ωA1B ≡ (id⊗N )(|φA1A〉〈φA1A|) , |HA1 | ≤ |HA| . (8)

Observe that the Holevo information is maximized over ensembles of pure states,
while the quantum capacity is maximized over entangled states. We will see the
implications of those properties in the results section. The classical capacity
theorem and the quantum capacity theorem are given below.

Theorem 1. The classical capacity of a quantum channel NA→B without assis-
tance is given by15;16

C(N ) = lim
k→∞

1

k
χ
(
N⊗k

)
. (9)

Theorem 2. The quantum capacity of a quantum channel NA→B without assis-
tance is given by18;41–43

Q(N ) = lim
k→∞

1

k
Ic(N⊗k) . (10)

Next, consider communication with reliable entanglement assistance. The
entanglement-assisted capacity formula turns out to be the quantum analog of
Shannon’s classical formula6;7. Define

I(N ) = max
|φA1A〉

I(A1;B)ω ,

ωA1B ≡ (id⊗N )(|φA1A〉〈φA1A|) , |HA1
| ≤ |HA| . (11)

Theorem 3. The classical capacity and the quantum capacity of a quantum
channel NA→B with reliable entanglement assistance are given by6;7

CEA(N ) = I(N ) , (12)

QEA(N ) =
1

2
I(N ) . (13)

The classical capacity and the quantum capacity have different units, i.e.
CEA(N ) is measured in classical information bits per channel use, whereas
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QEA(N ) in information qubits per channel use. Nonetheless, the capacity val-
ues satisfy QEA(N ) = 1

2CEA(N ), given reliable entanglement assistance. This
relation can be inferred from the fundamental single-unit protocols. Specifi-
cally, super-dense coding44 is a well known communication protocol whereby
two classical bits are transmitted using a single use of a noiseless qubit channel
and a maximally entangled pair. In the other direction, by employing the tele-
portation protocol45, qubits can be sent at half the rate of classical bits given
entanglement resources.

2 Results

We establish a regularized characterization for the capacity region with unreli-
able entanglement assistance, for the transmission of either classical information
or quantum information.

2.1 Classical Communication

Let NA→B be a given channel, and define

REA*(N ) =
⋃

pX , ϕA0A1
, F(x)

{
(R,R′) : R ≤ I(X;B)ω

R′ ≤ I(A1;B|X)ω

}
(14)

with

ωXA1A =
∑
x∈X

pX(x) |x〉〈x| ⊗ (id⊗F (x)
A0→A)(ϕA1A0

) , (15)

ωXA1B = (id⊗NA→B)(ωXA1A) . (16)

Intuitively, the classical variable X is associated with the classical message m,
which Bob decodes whether there is entanglement assistance or not. The refer-
ence system A0 can be thought of as Alice’s share of the entanglement resources.
Since the resources are pre-shared before communication takes place, the entan-
gled state ϕ is non-correlated with the messages. Alice encodes the message m′

using the encoding operator F (x). Before we state the capacity theorem, we
give the following lemma. The property below simplifies the computation of the
above region and the achievability proof as well.

Lemma 4. The union in (14) is exhausted by pure states |φA0A1〉 and with the

cardinality of |X | ≤ |HA|2 + 1.

The restriction to pure states is based on state purification, while the alpha-
bet bound follows from the Fenchel-Eggleston-Carathéodory lemma46, using
similar arguments that Yard et al.47 use. The details are given in Appendix B.
Our main result on classical communication with unreliable entanglement assis-
tance is stated below.

Theorem 5. The classical capacity region of a quantum channel NA→B with
unreliable entanglement assistance satisfies

CEA*(N ) =

∞⋃
n=1

1

n
REA*(N⊗n) . (17)

10



The proof of Theorem 5 is given in Appendix C. In general, there is a trade-
off between the rates R and R′, and we cannot necessarily achieve the maximum
rate for both of them simultaneously. Intuitively, the excess rate R′ that is pro-
vided by entanglement assistance depends on the level of entanglement between
the ancilla A1 and the channel input A, or equivalently, on how entanglement-
breaking the encoding map is. We give a more precise explanation below.

In the region formula in (14), we have a union over the probability distribu-

tions pX , states ϕA0A1
, and collections of mappings {F (x)

A0→A}x∈X . The bound-
ary of this region is attained by optimizing over these objects. Observe that in
order for R′ to achieve the entanglement-assisted capacity, we may set ϕA0A1 as

the entangled state that attains the maximum in (11), and take F (x)
A0→A to be

the identity map. Since the output has no correlation with X, this assignment
achieves the rate pair (R,R′) = (0, CEA(N )) (cf. (11) and (14)).

To maximize the unassisted rate, set an encoding channel F (x)
A0→A that out-

puts the pure state |ψxA〉 that is optimal in (7), i.e.

F (x)(ϕA1A0
) = ϕA1

⊗ ψxA . (18)

Such an assignment achieves (R,R′) = (χ(N ), 0) (cf. (7) and (14)). In other
words, the Holevo information is achieved for an entanglement-breaking encoder.

To illustrate our results, we give an example.

Example 1. Consider the qubit depolarizing channel

N (ρ) = (1− ε)ρ+ ε
1

2
, (19)

with ε ∈ [0, 1]. The classical capacity without assistance is given by C(N ) =
1−H2

(
ε
2

)
, and it is achieved with a symmetric distribution over the ensemble

{|0〉, |1〉}, where H2(t) ≡ −t log(t) − (1 − t) log(1− t) is the binary entropy
function48. On the other hand, the classical capacity with reliable entanglement
assistance is given by CEA(N ) = 2−H

(
1− 3ε

4 ,
ε
4 ,

ε
4 ,

ε
4

)
, and it is achieved with

a maximally entangled input state6.
A natural compromise is to mix the strategies above. Let Z be an indepen-

dent random bit that chooses between the strategies, where Z ∼ Bernoulli(λ) for
a given λ ∈ [0, 1]. That is, we define F (x,z) by F (x,0)(ρA) = ψxA and F (x,1) = id.
Plugging X̃ ≡ (X,Z), we obtain the time-division achievable region,

REA*(N ) ⊇
⋃

0≤λ≤1

{
(R,R′) : R ≤ (1− λ)C(N )

R′ ≤ λCEA(N )

}
. (20)

Next, we numerically compute an achievable region that outperforms the
time-division bound. Instead of using a classical mixture of the strategies, we
use quantum superposition. Define a non-normalized vector,

|uβ〉 ≡
√

1− β |0〉 ⊗ |0〉+
√
β |Φ〉 . (21)

Then, set

|φA0A1
〉 ≡ 1

‖uβ‖
|uβ〉 , (22)

pX =

(
1

2
,

1

2

)
, (23)

F (x)(ρ) ≡ XxρXx , (24)

11



Figure 4: Achievable classical rate regions for the depolarizing channel with
unreliable entanglement assistance, for a depolarization probability ε = 1

2 .

where X is the bitflip Pauli operator. Observe that for β = 0, the input state
is F (x)(|0〉〈0|) = |x〉〈x|, which achieves the classical capacity without assistance.
On the other hand, for β = 1, the parameter x chooses one of two Bell states.

Figure 4 depicts the resulting region for a depolarization probability of ε = 1
2 .

The triangular region below the dashed red line is the time-division bound,
which is obtained by a classical mixture, whereas the solid blue line indicates

the achievable region corresponding to the superposition state
|uβ〉
‖uβ‖ , as in (21).

For a noiseless qubit channel, time division is optimal.

Corollary 6. The classical capacity region of a noiseless qubit channel with
unreliable entanglement assistance is given by the time-division region, i.e.

CEA*(id) =
⋃

0≤λ≤1

{
(R,R′) : R ≤ 1− λ

R′ ≤ 2λ

}
. (25)

Proof. As explained in the introduction, to achieve the rate pair (R,R′) =
(1−λ, 2λ), Alice and Bob simply perform super-dense coding repeatedly, over a
fraction of λ of the block, and communicate over the 0-1 basis in the remaining
part. To show the converse part, let (R,R′) ∈ 1

nREA*(N⊗n) (see (16)), hence

R ≤ 1

n
I(X;Bn)ω =

1

n
[H(Bn)ω −H(Bn|X)ω]

≤ 1− 1

n
H(Bn|X)ω (26)

and

R′ ≤ 1

n
I(A1;Bn|X)ω

≤ 1

n
· 2H(Bn|X)ω . (27)

12



The last inequality holds since the quantum conditional entropy satisfies |H(B|
A)ρ| ≤ H(B)ρ in general, hence H(Bn|A1X)ω =

∑
x pX(x)H(Bn|A1, X =

x)ω ≥ −
∑
x pX(x)H(Bn|X = x)ω = −H(Bn|X)ω. The converse part for the

corollary follows, as we define λ ≡ 1
nH(Bn|X)ω.

2.2 Quantum Communication

Consider quantum communication over NA→B with unreliable entanglement
assistance. Define

LEA*(N ) =
⋃

ϕA1A2A

 (Q,Q′) :
Q ≤ min{I(A1〉B)ω , H(A1|A2)ω} ,
Q+Q′ ≤ 1

2I(A2;B)ω

 (28)

with

ωA1A2B = (id⊗NA→B)(ϕA1A2A) . (29)

Theorem 7. The quantum capacity region of a quantum channel NA→B with
unreliable entanglement assistance satisfies

QEA*(N ) =

∞⋃
n=1

1

n
LEA*(N⊗n) . (30)

The proof of Theorem 7 is given in Appendix D.

3 Summary and Discussion

We summarize our results and compare the techniques in our work and in previ-
ous works. We consider communication over a quantum channel NA→B , where
Alice and Bob are provided with unreliable entanglement resources. Suppose
that Alice wishes to send two messages, at rates R and R′. She encodes both
messages using her share of the entanglement resources, as she does not know
whether Bob will have access to the entangled resources. Bob has two decoding
procedures. If the entanglement assistance has failed to reach Bob’s location,
he performs a decoding operation to recover the first message alone. Hence,
the communication system operates on a rate R. Whereas if Bob has entangle-
ment assistance, he decodes both messages, hence the overall transmission rate
is R + R′. In other words, R is a guaranteed rate, and R′ is the excess rate of
information that entanglement assistance provides. The communication setting
is illustrated in Figure 2, in which the resource uncertainty is represented by
the unknown position of a switch.

We define the capacity region as the set of all rate pairs (R,R′) that can be
achieved with asymptotically vanishing decoding errors.

In the transmission of quantum information, Alice chooses a product state
θM ⊗ ξM̄ over Hilbert spaces of dimension |HM | = 2nQ and |HM̄ | = 2n(Q+Q′).
Alice encodes the input state by applying the encoding channel FGAMM̄→An to
M , M̄ , and to her share of the entangled state ΨGA,GB , and transmits the system
An over n channel uses of NA→B . Bob receives the channel output systems Bn.
If the entanglement assistance is present, then he applies the decoding channel

13



D to the joint output BnGB in order to recover ξM̄ . Otherwise, if entanglement
assistance is absent, then he performs D∗ on Bn in order to recover θM .

We have established a regularized characterization for the classical and quan-
tum capacity regions. The communication design makes a compromise. We
have seen that the unassisted rate is high when the channel input is in a pure
state. Such an assignment achieves (R,R′) = (χ(N ), 0), where χ(N ) is the
Holevo information of the channel. On the other hand, high excess rates are
achieved when the encoder preserves the entanglement between the input sys-
tem and the ancilla (see (14)). Such an encoding operation achieves the rate
pair (R,R′) = (0, CEA(N )), where CEA(N ) is the entanglement-assisted ca-
pacity. Time division between these coding strategies achieves the rate pairs
(R,R′) = ((1− λ)χ(N ), λCEA(N )), for 0 ≤ λ ≤ 1.

In the simple scenario of classical communication over a noiseless qubit chan-
nel, we have shown that the optimal strategy is to perform time division between
super-dense coding and unassisted transmission over the 0-1 basis (see Figure 1).
For the noiseless qubit channel, the classical capacity region with unreliable en-
tanglement assistance is thus CEA∗(N ) =

⋃
0≤λ≤1{(R,R′) : R ≤ 1 − λ , R′ ≤

2λ}. On the other hand, for the depolarizing channel, time division is strictly
sub-optimal.

Next, we discuss capacity computation, the cloud superposition-coding in-
terpretation of our results, the side-information interpretation, and the conse-
quences on the quantum broadcast channel with one-sided entanglement assis-
tance.

3.1 Computing Channel Capacities

For communication system design nowadays, it is crucial to evaluate the cur-
rent performance and how close it is to the optimum49;50. Classical commercial
systems today already employ sophisticated error correction codes with near-
Shannon limit performance51;52. At the time of writing, a realization of a full-
scale quantum communication system that approaches the Shannon-theoretic
limits does not exist, and we can only hope that future systems of quantum com-
munication will reach this level of maturity. Given a specific quantum channel,
e.g. an optical fiber channel with specific parameters, a practitioner is usually
interested in computing the channel capacity as a number. For such practical
purposes, a regularized characterization as in Theorems 1-2 and 5-7 is not neces-
sarily a problem (see a further explanation in Remark 7 by the authors28). Yet,
in Shannon theory, it is generally considered desirable to establish a single-letter
computable capacity formula53;54. Beyond computability, the disadvantage of
a regularized multi-letter formula of the form limn→∞

1
nF(N⊗n), is that such

characterization is not unique (see55Section 13.1.3).
Under practical encoding constraints54, regularized capacity results yield

computable formulas. Encoding constraints are particularly relevant when the
transmitter has access to a cluster of multiple small or moderate-size quantum
computers without interaction between them, and also in nearest-neighbor qubit
architectures56;57. Consider classical communication without assistance, as in
Theorem 1, and suppose that the encoder’s quantum systems An are partitioned
into sub-blocks of a small size b, such that the input state has the form ρAn =
ρAb1 ⊗ ρA2b

b+1
⊗ · · · ⊗ ρAnn−b+1

. As recently observed54, the capacity of a quantum

14



channel NA→B under an encoding constraint b > 0, is given by

C(N , b) =
1

b
χ(N⊗b) . (31)

This formula is computable, since b > 0 is assumed to be a small constant.
This trivial observation and its consequences can be extended to other models
as well.

Another shortcoming of our results is that we do not have a bound on the
dimension of the ancillas A0, A1, and A2. One could always compute an achiev-
able region by simply choosing the dimension of A`, ` ∈ {1, 2, 3}. However, the
optimal rates cannot be computed with absolute precision in general. A similar
difficulty appears in other quantum models such as broadcast communication58

Section VIII, the wiretap channel59 Remark 5, squashed entanglement60 Section
1, and state-dependent channels61 28 Section V.

3.2 Superposition-Coding Interpretation

Our model has a deep relation to the quantum broadcast channel. Before we give
the precise formulation, we point out a heuristic connection. The characteriza-
tion of the classical capacity region in Theorem 5 clearly resembles the classical
superposition-coding region of the broadcast channel without assistance62 (see
Theorem 2 therein). The difference is that here the encoding involves quantum
operations. Nevertheless, we can portray a similar metaphorical image: Let m
be an index over 2nR clouds. Recall that the region formula in (14) involves

an ancillary state ϕA0A1
and a collection of encoding mappings {F (x)

A0→A}x∈X .
Each cloud center is associated with a classical codeword xn(m), and at the
center of each cloud there is the state ⊗ni=1Fxi(m)(ϕ). Applying random Pauli
operators that encode the message m′ takes us from the cloud center to a satel-
lite on the cloud that depends on both m and m′. The channel input is the
satellite state. Bob decodes in two steps. First, Bob recovers the cloud, i.e. he
estimates m. If the entanglement assistance is absent, then Bob quits after the
first step. Otherwise, if Bob has entanglement assistance, then he continues to
decode the satellite m′.

3.3 Side Information Interpretation

We mentioned in the previous section that our classical coding scheme can be
interpreted as a superposition code. Consider the second decoding step for the
message m′. As the message m has already been estimated, we can think of
xn(m) as side information for this decoding operation. Thus, it is not surprising
that the bound on the excess rate R′ in (14) has a similar form as in the capacity
formula for a quantum channel with classical side information at the encoder
and the decoder (see63Corollary 12).

For the quantum capacity region, we point out a connection to quantum side
information. A quantum state-dependent channel (PSA→B , |θSS0〉) is defined by
a linear, completely positive, trace preserving map PSA→B and a fixed quantum
state |θSS0

〉61;64. We refer to the system S as a quantum channel state. Given
quantum side information, the encoder has access to the system S0, which is
entangled with the channel state system S. This model can be interpreted as
if the channel is entangled with the systems S and S0. The quantum capacity
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with quantum side information and no assistance is given by the regularization
of the following formula (see28Theorem 11),

L(P) = sup
ϕA1SA

: ϕS=θS

min{I(A1〉B)ω , H(A1|S)ϕ} , (32)

with ωA1B = PSA→B(ϕA1SA). Thus, we interpret the guaranteed rate Q in (28)
as the quantum coding rate, given a channel state A2.

3.4 The Broadcast Channel with One-Sided Assistance

Beyond the heuristic connection above, the mathematical formulation of our
problem is close to that of a broadcast channel with one-sided assistance. Let
N broadcast
A→B1B2

be a quantum broadcast channel with two receivers, Bob 1 and Bob

2. Suppose that Alice wishes to send a common message m0 ∈ [1 : 2nR0 ] to
both users and a dedicated message m1 ∈ [1 : 2nR1 ] to the first user alone.
That is, Bob 1 decodes both m0 and m1, while Bob 2 is only required to decode
m0. This model is referred to as the broadcast channel with degraded message
sets62. Now, assume that Alice and Bob 1 share reliable entanglement resources
ΨGA,GB1

, while Bob 2 has no resources at all.
The error criterion is the probability that at least one of the receivers de-

codes erroneously. However, it is sufficient to consider each receiver separately,
since the coding performance depends on the broadcast channel N broadcast

A→B1B2
only

through the marginals N (1)
A→B1

and N (2)
A→B2

65,

N (1)(ρA) ≡ TrB2

(
N broadcast(ρA)

)
, (33)

N (2)(ρA) ≡ TrB1

(
N broadcast(ρA)

)
. (34)

Hence, achievable rate pairs (R0, R1) can be defined in terms of the following
error probabilities,

P
(n)
e1|m0,m1

(F ,Ψ,D(1)) = 1− Tr
[
D(1)
m0,m1

(N (1)⊗n
A→B1

⊗ id)(Fm0,m1 ⊗ id)(ΨGA,GB1
)
]

(35)

for Bob 1, and

P
(n)
e2|m0,m1

(F ,Ψ,D(2)) = 1− Tr
[
D(2)
m N (2)⊗n

A→B2
Fm0,m1(ΨGA)

]
(36)

for Bob 2, where Fm0,m1

GA→An is the encoding map, while D(1)
GB1

Bn1
= {D(1)

m0,m1} and

D(2)
Bn2

= {D(2)
m0} are the decoding maps of Bob 1 and Bob 2, respectively.

Observe that the error definitions above are analogous to those of the classi-
cal capacity region with unreliable entanglement assistance in Section 1, where
m and m′ are replaced by m0 and m1, respectively. Although, the error prob-
abilities for the broadcast channel depend on two different channels, N (1) and
N (2). The same methods as we used in this paper show that the classical ca-
pacity region of the quantum broadcast channel with one-sided entanglement
assistance is given by the regularization of the following formula,

R2(N broadcast) =
⋃

pX , ϕA0A1
, F(x)

 (R0, R1) : R0 ≤ I(X;B2)ω
R1 ≤ I(A1;B1|X)ω

R0 +R1 ≤ I(XA1;B1)ω

 (37)
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with

ωXA1A =
∑
x∈X

pX(x) |x〉〈x| ⊗ (id⊗F (x)
A0→A)(ϕA1A0) , (38)

ωXA1B1B2 = (id⊗N broadcast
A→B1B2

)(ρXA1A) . (39)

It is now natural to wonder whether this similarity extends to the quantum
capacity. However, in the transmission of quantum information, Bob 1 and Bob
2 cannot recover a common state due to the no-cloning theorem. That is, quan-
tum communication with degraded message sets is not well defined (see65Section
III.C). Yet, the techniques of Dupuis et al.58;66 for the quantum broadcast chan-
nel with dedicated messages were useful in our proof in Appendix D, for the
quantum capacity theorem with unreliable entanglement assistance.
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A Information-Theoretic Tools

In this section, we give the basic information-theoretic tools that will be used
in the achievability proofs later on.
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A.1 Quantum Packing Lemma

To prove achievability for the classical capacity theorem, we will use the quan-
tum packing lemma. Standard method-of-types concepts are defined as us-
ual55 54. We briefly introduce the notation and basic properties while the de-
tailed definitions can be found in the references54. In particular, given a density
operator ρ =

∑
x pX(x) |x〉〈x| on the Hilbert space HA, we let Aδ(pX) denote

the δ-typical set that is associated with pX , and Πδ
An(ρ) the projector onto

the corresponding subspace. The following inequalities follow from well-known
properties of δ-typical sets67,

Tr(Πδ(ρ)ρ⊗n) ≥ 1− ε (40)

2−n(H(ρ)+cδ)Πδ(ρ) � Πδ(ρ) ρ⊗n Πδ(ρ) � 2−n(H(ρ)−cδ) (41)

Tr(Πδ(ρ)) ≤ 2n(H(ρ)+cδ) (42)

where c > 0 is a constant. Furthermore, for σB =
∑
x pX(x)ρxB , let Πδ

Bn(σB |xn)
denote the projector corresponding to the conditional δ-typical set given the
sequence xn. Similarly55,

Tr(Πδ(σB |xn)ρx
n

Bn) ≥ 1− ε′ (43)

2−n(H(B|X′)σ+c′δ)Πδ(σB |xn) � Πδ(σB |xn) ρx
n

Bn Πδ(σB |xn)

� 2−n(H(B|X′)σ−c′δ) (44)

Tr(Πδ(σB |xn)) ≤ 2n(H(B|X′)σ+c′δ) (45)

where c′ > 0 is a constant, ρx
n

Bn =
⊗n

i=1 ρ
xi
Bi

, and the classical random variable

X ′ is distributed according to the type of xn. If xn ∈ Aδ(pX), then

Tr(Πδ(σB)ρx
n

Bn) ≥1− ε′ (46)

as well (see55 Property 15.2.7).
The lemma below is a simplified version of the quantum packing lemma in68.

Lemma 8 (Quantum Packing Lemma68). Let

ρ =
∑
x∈X

pX(x)ρx , (47)

where {pX(x), ρx}x∈X is a given ensemble. Furthermore, suppose that there is
a code projector Π and codeword projectors Πxn , xn ∈ Aδ(pX), that satisfy for
every α > 0 and sufficiently large n,

Tr(Πρxn) ≥ 1− α (48)

Tr(Πxnρxn) ≥ 1− α (49)

Tr(Πxn) ≤ 2nd (50)

Πρ⊗nΠ � 2−n(D−α)Π (51)

for some 0 < d < D with ρxn ≡
⊗n

i=1 ρxi . Then, there exist codewords xn(m),
m ∈ [1 : 2nR], and a POVM {Λm}m∈[1:2nR], such that

Tr
(
Λmρxn(m)

)
≥ 1− 2−n[D−d−R−εn(α)] (52)

for all m ∈ [1 : 2nR], where εn(α) tends to zero as n→∞ and α→ 0.
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A.2 The Decoupling Theorem

To prove achievability for the quantum capacity theorem, we will use the decou-
pling theorem66. Before we state the theorem, we give an intuitive explanation
in the spirit of55 Section 24.10. Consider a quantum channel NA→B without
entanglement assistance. Let |θMK〉 be a purification of the quantum message
state θM , where K is Alice’s reference system. Suppose that |ψKBnEnJ1〉 is a
purification of the joint state of Alice’s reference system K, the channel output
Bn, and Bob’s environment En, with a purifying system J1. Observe that if the
reduced state ψKEnJ1 is a product state, i.e. ψKEnJ1 = θK ⊗ωEnJ1 , then it has
a purification of the form |θMK〉 ⊗ |ωEnJ1J2〉. Since all purifications are related
by isometries55 Theorem 5.1.1, there exists an isometry DBn→MJ2 such that
|θMK〉 ⊗ |ωEnJ1J2〉 = DBn→MJ2 |ψRBnEnJ1〉. Tracing out K, En, J1, and J2,
it follows that there exists a decoding map DBn→M that recovers the message
state, i.e. θM = DBn→M (ψBn). Therefore, in order to show that there exists a
reliable coding scheme, it is sufficient to encode in such a manner that approxi-
mately decouples between Alice’s reference system and Bob’s environment, i.e.,
such that ψKEnJ1 ≈ θK ⊗ ωEnJ1 .

We will make use of the following definitions from69. Define the conditional
min-entropy by

Hmin(ρAB |σB) = − log inf {λ ∈ R : ρAB � λ · (1A ⊗ σB)}
Hmin(A|B)ρ = sup

σB

Hmin(ρAB |σB) , (53)

where the supremum is over quantum states of the system B. In general, the
conditional min-entropy is bounded by

− log |HB | ≤ Hmin(A|B)ρ ≤ log |HA| . (54)

To see this, observe that if we choose σB = 1B

|HB | , then the matrix inequality

ρAB � λ(1A ⊗ σB) holds for λ = |HB |, hence Hmin(ρAB |σB) ≥ − log |HB |.
As for the upper bound, the matrix inequality implies that 1 = Tr(ρAB) ≤
λ|HA|Tr(σB) = λ|HA|, hence Hmin(ρAB |σB) ≤ log |HA|. Furthermore, the
lower bound is saturated when the joint state of A and B is |ΦAB〉,whereas the
upper bound for a product state 1A

|HA| ⊗ ρB .

Then, define the smoothed min-entropy by

Hε
min(A|B)ρ = max

σAB : dF (ρAB ,σAB)≤ε
Hε

min(A|B)σ (55)

for arbitrarily small ε > 0, where dF (ρ, σ) =
√

1−
∥∥√ρ√σ∥∥2

1
is the fidelity

distance between the states. As for the von Neumann entropy, conditioning
cannot increase the smoothed min-entropy, i.e. Hε

min(A|BC)ρ ≤ Hε
min(A|B)ρ

69

Lemma 3.1.7. The theorem below follows from Dupuis’ results (see66Lemma
2.3 and Theorem 3.8).

Theorem 9 (Decoupling Theorem66). Let θA1K be a quantum state, TA1→E a
quantum channel, and ε > 0 arbitrary. Define

ωAE = TA1→E(ΦA1A) . (56)
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Then,∫
UA1

∥∥TA1→E(UA1ρA1K)− ωE ⊗ θK
∥∥

1
dUA1 ≤ 2−

1
2 [Hεmin(A|E)ω+Hεmin(A1|K)θ] + 8ε

(57)

where the integral is over the Haar measure on all unitaries UA.

The decoupling theorem shows that by choosing a unitary UA uniformly
at random, we can approximately decouple between E and K provided that
Hε

min(A|E)ω > −Hε
min(A1|K)ρ. Uhlmann’s theorem70 is often used along with

the decoupling approach to establish the existence of proper encoding and de-
coding operations.

Theorem 10 (Uhlmann’s theorem70 66 Corollary 3.2). For every pair of pure
states |ψAB〉 and |θAC〉 that satisfy ‖ψA − θA‖1 ≤ ε, there exists an isometry
FB→C such that ‖(1⊗ FB→C)ψAB − θAC‖1 ≤ 2

√
ε.

B Proof of Lemma 4

Consider the region REA∗(N ) as defined in (14). Fix ϕA0A1 , pX(x), and

{F (x)
A0→A}. Let

R = I(X;B)ω , (58)

R′ = I(A1;B|X)ω . (59)

We prove the lemma using similar techniques as in Pereg54;71. It is easy to
see that pure states are sufficient, as every quantum state ϕA0A1

has a purifi-
cation |φA0J0A1

〉. Since A0 is arbitrary, we can extend it and obtain the same
characterization when A0 is replaced by Ā0 = (A0, J0).

To bound the alphabet size of the random variable X, we use the Fenchel-
Eggleston-Carathéodory lemma46 and similar arguments as in previous works47;54.

Having fixed ϕA0A1
and {F (x)

A0→A}, define

ωxA ≡ F (x)
A0→A(ϕA0

) . (60)

Every quantum state ρA has a unique and real parametric representation u(ρA)

of dimension |HA|2 − 1 (see54 Appendix B-B). Then, define a map g : X →
R|HA|2+1 by

g(x) =
(
u(ωxA) , H(B|X = x)ω , I(A1;B|X = x)ω

)
. (61)

The map g can be extended to probability distributions as follows:

G : pX 7→
∑
x∈X

pX(x)g(x) =
(
u(ωA) , H(B|X)ω , I(A1;B|X)ω

)
, (62)

as ωA =
∑
x pX(x)ωxA. According to the Fenchel-Eggleston-Carathéodory lem-

ma46, any point in the convex closure of a connected compact set within Rd
belongs to the convex hull of d points in the set. Since the map G is linear,
it maps the set of distributions on X to a connected compact set in R|HA|2+1.
Thus, for every pX , there exists a probability distribution pX̄ on a subset X ⊆ X
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of size |HA|2 + 1, such that G(pX̄) = G(pX). We deduce that the cardinality

of X can be restricted to |X | ≤ |HA|2 + 1, while preserving ωA, and thus, the
output state ωB ≡ N (ωA) as well, and the mutual informations I(X;B)ω =
H(B)ρ −H(B|X)ω and I(A1;B|X)ω.

This completes the proof of the lemma.

C Proof of Theorem 5

Consider classical communication over a quantum channel NA→B with unreli-
able entanglement assistance.

C.1 Achievability Proof

We show that for every ε0, δ0 > 0, there exists a (2n(R−δ0), 2n(R′−δ0), n, ε0) code
with unreliable entanglement assistance, provided that (R,R′) ∈ REA*(N ). To
this end, we will use the quantum packing lemma68, as presented in Subsec-
tion A.1 of the previous appendix. Recall that by Lemma 4, it suffices to con-
sider pure states. Then, let |φG1G2

〉 be a pure entangled state on HA0
⊗HA0

,
and F (x) be a quantum channel acting on S (HA0) (see (14)-(16)). Suppose
that Alice and Bob share |φG1G2〉⊗n.

As we explain below, we can restrict ourselves to isometric encoding maps.
For a moment, let us denote the channel input by S, and consider the channel

NS→B . In the derivation below, we will use the encoding channel F (x)
A0→S .

Every quantum channel F (x)
A0→S has an isometric extension F

(x)

A0→SS̆
. Since it is

an encoding mapping, we may as well take S̆ to be Alice’s ancilla. Then, let
A ≡ SS̆ be the augmented channel input. We are effectively coding over the
channel ÑA→B , which is defined by

ÑA→B(ρSS̆) ≡ NS→B(TrS̆(ρSS̆)) , (63)

using the isometric map F
(x)
A0→A.

From this point, we will focus on the quantum channel ÑA→B and use the

encoding isometry F
(x)
A0→A. Define∣∣ψxAG2

〉
= (F (x) ⊗ 1) |φG1G2

〉 , (64)

ωxBG2
= (Ñ ⊗ id)(ψxAG2

) . (65)

We will often use the notation
∣∣ψxn〉 ≡ ⊗n

i=1 |ψxi〉. The code construction,
encoding and decoding procedures are described below.

C.1.1 Code Construction

First, consider a classical codebook. Let {xn(m)}m∈[1:2nR] be a set of 2nR

classical codewords that will be chosen later, in Subsection C.1.5 below. We
define the encoding operators in terms of this classical codebook. Denote the
Heisenberg-Weyl operators of dimension D by {Σ(a, b) = ΣaXΣbZ}, where ΣX =∑D−1
j=0 |j ⊕ 1〉〈j| and ΣZ =

∑D−1
j=0 e2πij/D |j〉〈j|, for a, b ∈ {0, 1, . . . , D− 1}, with

j ⊕ k = (j + k) mod D and i =
√
−1.
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Consider a Schmidt decomposition of the pure state in (64),∣∣ψxAG2

〉
=
∑
z∈Z

√
pZ|X(z|x) |ξz,x〉 ⊗

∣∣ξ′z,x〉 , (66)

where pZ|X is a conditional probability distribution, while {|ξz,x〉} and
∣∣ξ′z,x〉 are

orthonormal sets. For every xn ∈ Xn and every conditional type class Tn(t|xn)
in Zn, define the operators

Vt(at, bt, ct) = (−1)ctΣ(at, bt) ,

at, bt ∈ {0, 1, . . . , Dt − 1} , ct ∈ {0, 1} , (67)

where Dt = |Tn(t|xn)| is the size of type class associated with the conditional
type t. Then, define the operator

U(γ) =
⊕
t

Vt(at, bt, ct) (68)

with γ = ((at, bt, ct)t). Let Γxn denote the set of all possible vectors γ.
For every m ∈ [1 : 2nR], choose 2nR

′
vectors γ(m′|xn(m)), m′ ∈ [1 : 2nR

′
],

uniformly at random from Γxn(m). The mappings are revealed to both Alice
and Bob.

C.1.2 Encoder

To send the messages (m,m′) ∈ [1 : 2nR] × [1 : 2nR
′
], apply the operators

F (xi(m)) and U(γ(m′|xn(m))). This yields the input state∣∣∣χγ,xnAnGn2

〉
≡ (U(γ)F (xn) ⊗ 1) |φG1G2〉⊗n , (69)

for xn = xn(m) and γ = γ(m′|xn), where F (xn) ≡⊗n
i=1 F

(xi). Then, transmit
An through the channel.

C.1.3 Decoder

Bob receives the systems Bn in a state ργ,x
n

BnGn2
, and decodes as follows.

(i) Measure Bn using a POVM {Λm}m∈[1:2nR]. Denote the measurement out-
come by m̂.

(ii) If there is no entanglement assistance, declare m̂ as the message estimate.

(iii) If entanglement assistance is present, measure BnGn2 jointly using a sec-
ond POVM {Υm′|xn(m̂)}m′∈[1:2nR′ ]. Let m̂′ be the outcome of this mea-

surement. Then, declare (m̂, m̂′) as the estimated message pair.

The POVMs {Λm} and {Υm′|xn(m̂)} will be chosen later in Subsections C.1.5
and C.1.6, respectively.
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C.1.4 Code Properties

Before we go into the error analysis, we show that Alice’s operations for encoding
the second message m′ can be effectively reflected to Bob’s side. To this end,
we will apply the “ricochet property”68 Eq. (17),

(U ⊗ 1) |ΦAB〉 = (1⊗ UT ) |ΦAB〉 . (70)

Now, for every xn ∈ Xn,∣∣∣ψxnAnGn2 〉 =
∑

zn∈Zn

√
pZn|Xn(zn|xn) |ξxn,zn〉 ⊗

∣∣ξ′xn,zn〉 , (71)

where pZn|Xn(zn|xn) =
∏n
i=1 pZ|X(zi|xi). As the space Zn can be partitioned

into conditional type classes given xn, we may write∣∣∣ψxnAnGn2 〉 =
∑

t∈Pn(Z)

∑
zn∈Tn(t|xn)

√
pZn|Xn(zn|xn) |ξxn,zn〉 ⊗

∣∣ξ′xn,zn〉
=

∑
t∈Pn(Z)

√
pZn|Xn(znt |xn)

∑
zn∈Tn(t|xn)

|ξxn,zn〉 ⊗
∣∣ξ′xn,zn〉 , (72)

where znt is any sequence in the conditional type class Tn(t|xn). Therefore,∣∣∣ψxnAnGn2 〉 =
∑

t∈Pn(Z)

√
P (t|xn) |Φt〉 , (73)

where P (t|xn) = PZn|Xn(znt |xn)|Tn(t|xn)| is the conditional probability of the
type class Tn(t|sn), and

|Φt〉 =
1√

|Tn(t|xn)|
∑

zn∈Tn(t|xn)

|ξxn,zn〉 ⊗
∣∣ξ′xn,zn〉 . (74)

Alice applies the operator U(γ(m′|xn(m))) to the entangled states. Since
the state |Φt〉 is maximally entangled, we have by (70),∣∣∣χγ,xnAnGn2

〉
≡ (U(γ(m,m′))⊗ 1)

∣∣∣ψxnAGn2 〉
= (1⊗ UT (γ(m,m′)))

∣∣∣ψxnAnGn2 〉 , (75)

where
∣∣∣ψxnAnGn2 〉 ≡⊗n

i=1

∣∣ψxiAG2

〉
(see (64)). By the same considerations,∣∣∣ψxnAnGn2 〉 = (F (xn) ⊗ 1) |φG1G2

〉⊗n

= (1⊗ (F (xn))T )
∣∣φAG′2〉⊗n . (76)

That is, Alice’s unitary operations can be reflected and treated as if performed
by Bob.

Bob then receives the systems Bn in the state

ργ,x
n

BnGn2
= (Ñ⊗n ⊗ id)

(
χγ,x

n

AnGn2

)
(77)

= (Ñ⊗n ⊗ id)
(

(1⊗ UT (γ))ψx
n

AnGn2
(1⊗ U∗(γ))

)
, (78)
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where Ñ is as in (63), and the last line is due to (75). Since a quantum channel
is a linear map, the above can be written as

ργ,x
n

BnGn2
=(1⊗ UT (γ))(Ñ ⊗ id)(ψx

n

AnGn2
)(1⊗ U∗(γ))

=(1⊗ UT (γ))ωx
n

BnGn2
(1⊗ U∗(γ)) . (79)

C.1.5 Error Analysis Without Assistance

Recall that if entanglement assistance is absent, then Bob does not decode m′.
Furthermore, since the decoder cannot measure Gn2 in this case, we need to

consider the reduced state ργ,x
n

Bn of the joint output state ργ,x
n

BnGn2
. Observe that

by (79), the reduced output state is

ρ
γ,xn(m)
Bn = ω

xn(m)
Bn . (80)

Thereby, the reduced output is not affected by the encoding of the message m′

using γ(m′|xn(m)), and we can use the standard results on classical communi-
cation over a quantum channel without assistance.

Fix δ > 0. Based on the HSW Theorem15;16, there exists a codebook
{xn(m)} and a POVM {Λm} such that

P
∗(n)
e|m,m′(F , φ⊗nG1G2

,Λ) = 1− Tr(Λmρ
γ(m′|xn(m)),xn(m)
Bn )

= 1− Tr(Λmω
xn(m)
Bn )

≤ 2−n(I(X;B)ω−R−ε1(δ)) , (81)

where xn(m) ∈ Aδ(pX) for all m ∈ [1 : 2nR] (see55 Section 20.3.1). We use
the notation εj(δ) for terms that tend to zero as δ → 0. Thus, in the absence
of entanglement assistance, the probability of error tends to zero as n → ∞,
provided that

R < I(X;B)ω − ε1(δ) . (82)

C.1.6 Packing Lemma Requirements

In the error analysis with entanglement assistance, we will use the quantum
packing lemma. Fix a sequence xn ∈ Aδ(pX). Consider the ensemble {p(γ) =

1
|Γxn | , ρ

γ,xn

Bn,Gn2
}, for which the expected density operator is

ρx
n

BnGn2
=

1

|Γxn |
∑
γ∈Γxn

ργ,x
n

BnGn2
. (83)

Define the code projector and the codeword projectors by

Π ≡ Πδ(ωB |xn)⊗Πδ(ωG2 |xn) (84)

Πγ ≡ (1⊗ UT (γ))Πδ(ωBG2 |xn)(1⊗ U∗(γ)) , for γ ∈ Γxn , (85)

where Πδ(ωBG2
|xn), Πδ(ωB |xn) and Πδ(ωG2

|xn) are the projectors onto the con-
ditional δ-typical subspaces associated with the states ωxBG2

, ωxB = TrG2
(ωxBG2

)
and ωxG2

= TrB(ωxBG2
), respectively (see (65)).
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Applying the bounds in68 Appendix II to the operators above, we obtain

Tr(Πργ,x
n

BnGn2
) ≥ 1− 2ε2(δ) , (86)

Tr(Πγρ
γ,xn

BnGn2
) ≥ 1− ε3(δ) , (87)

Tr(Πγ) ≤ 2n(H(BG2|X)ω+ε4(δ)) , (88)

Πσx
n

B′nGn2
Π � 2−n(H(B|X)ω+H(G2|X)ω+ε5(δ))Π , (89)

where εj(δ) tend to zero as δ → 0. Hence, the requirements of the packing lemma
are satisfied. Then, by Lemma 8, there exist deterministic vectors γ(m′|xn),
m′ ∈ [1 : 2nR

′
], and a POVM {Υm′|xn}m′∈[1:2nR′ ], such that

Tr
(

Υm′|xnρ
γ(m′|xn),xn

BnGn2

)
≥ 1− 2−n[I(B;G2|X)ω−R′−ε6(δ)] (90)

for all m′ ∈ [1 : 2nR
′
].

C.1.7 Error Analysis with Entanglement Assistance

Suppose that entanglement assistance is present, in which case Bob estimates
both m and m′. Hence, the error event is bounded by the union of the following
events,

E1(m) ={m̂ 6= m} , (91)

E2(m′) ={m̂′ 6= m′} . (92)

Then, by the union of events bound,

P
(n)
e|m,m′(F , φ⊗nG1G2

,Υ ◦ Λ) ≤ Pr (E1(m)) + Pr (E2(m′) |E c
1 (m)) . (93)

The first term corresponds to the measurement of {Λm} above. Based on our
previous analysis (see (81)),

Pr (E1(m)) ≤ 2−n(I(X;B)ω−R−ε1(δ)) , (94)

which tends to zero for a rate R as in (82).
Given E c

1 , Bob has recovered the correct m in step (i) of the decoding pro-
cedure. Denote the joint state of the systems BnGn2 after this measurement by

ρ̃
γ,xn(m)
BnGn2

. As previously observed72;73, by the gentle measurement lemma74;75

and (94), the post-measurement state is close to the original state in the sense
that

1

2

∥∥∥ρ̃ γ,xn(m)
BnGn2

− ργ,x
n(m)

BnGn2

∥∥∥
1

≤ 2−n
1
2 (I(X;B)ω−R−ε1(δ))

≤ ε7(δ) (95)

for sufficiently large n and R as in (82). Therefore, the distribution of measure-

ment outcomes, when ρ̃ γ,x
n

BnGn2
is measured, is roughly the same as if the POVM

Λm was never performed. To be precise, the difference between the proba-
bility of a measurement outcome m̂′ when ρ̃ γ,x

n

BnGn2
is measured and the prob-

ability when ρ γ,x
n

BnGn2
is measured is bounded by ε7(δ) in absolute value (see55

25



Lemma 9.11). Therefore, by (90), the POVM Υm′|xn(m) satisfies Pr (E2 |E c
1 ) ≤

2−n(I(G2;B|X)ρ−R′−ε8(δ)), which tends to zero as n→∞, if

R′ < I(G2;B|X)ω − ε8(δ) . (96)

Finally, we let A0, A1 replace G1, G2, respectively. Thus, the probability of
error tends to zero as n → ∞ provided that R < I(X;B)ω − ε1(δ) and R′ <
I(A1;B|X)ω − ε8(δ). This completes the proof of the direct part.

C.2 Converse Proof

Suppose that Alice and Bob are trying to distribute randomness. An upper
bound on the rate at which Alice can distribute randomness to Bob also serves as
an upper bound on the rate at which they can communicate. In this task, Alice
and Bob share an unreliable entangled resource ΨGAGB . Alice first prepares
maximally corrleated states,

πKMK′M ′ ≡

 1

2nR

2nR∑
m=1

|m〉〈m| ⊗ |m〉〈m|


⊗

 1

2nR′

2nR∑
m′=1

|m′〉〈m′| ⊗ |m′〉〈m′|

 (97)

locally. That is, K, M , K ′, and M ′ are classical registers that store uniformly-
distributed indices m and m′. Then, Alice applies an encoding channel to the
classical system MM ′ and her share GA of the entangled state ΨGAGB . As
Alice applies FMM ′GA→An , the resulting state is

σKK′AnGB ≡ (id⊗F ⊗ id)(πKK′MM ′ ⊗ΨGAGB ) . (98)

After Alice sends the system An through the channel, Bob receives the system
Bn in the state

ωKK′GBBn ≡ (id⊗N⊗n)(σKK′GBAn) . (99)

In the presence of entanglement assistance, Bob performs a decoding channel
DBnGB→M̂M̂ ′ , which yields

ρKK′M̂M̂ ′ ≡ (id⊗D)(ωKK′BnGB ) . (100)

If the entanglement assistance is not available, Bob performsD∗
Bn→M̃ , producing

ρ∗
KK′M̃GB

≡ (id⊗D∗ ⊗ id)(ωKK′BnGB ) . (101)

Consider a sequence of codes (En,Ψn,Dn,D∗n) of randomness distribution
with unreliable entanglement assistance, such that

1

2

∥∥ρKM̂K′M̂ ′ − πKMK′M ′
∥∥

1
≤ αn , (102)

1

2

∥∥ρ∗
KM̃
− πKM

∥∥
1
≤ α∗n , (103)
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where ρ∗
KM̃

is the reduced density operator of ρ∗
KK′M̃GB

, while αn, α
∗
n tend

to zero as n → ∞. By the Alicki-Fannes-Winter inequality76;77 55 Theorem
11.10.3, this implies∣∣∣H(K ′|M̂ ′K)ρ −H(K ′|M ′K)π

∣∣∣ ≤ nεn , (104)∣∣∣H(K|M̃)ρ∗ −H(K|M)π

∣∣∣ ≤ nε∗n , (105)

where εn, ε
∗
n tends to zero as n→∞.

Now, suppose that entanglement assistance is absent. Observe thatH(K)ρ∗ =

H(K)π = nR implies I(K;M)π−I(K; M̂)ρ∗ = H(K|M̂)ρ∗−H(K|M)π. There-
fore, by (105),

nR =I(K;M)π

≤I(K; M̂)ρ∗ + nε∗n

≤I(K;Bn)ω + nε∗n , (106)

where the last line follows from (101) and the quantum data processing in-
equality67 Theorem 11.5. Here, the system GB need not be included since the
decoding measurement D∗ is only applied to Bn.

We move to the case where entanglement assistance is present. Similarly,
I(K ′;M ′|K)π − I(K ′; M̂ ′|K)ρ = H(K ′|M̂ ′K)ρ −H(K ′|M ′K)π. Therefore, by
(104),

nR′ =I(K ′;M ′|K)π

≤I(K ′; M̂ ′|K)ρ + nεn

≤I(K ′;GBB
n|K)ω + nεn (107)

by (100) and the quantum data processing inequality. We must include the
entanglemet resource system GB , since the decoder measures GBB

n. By the
chain rule, the last bound can also be written as

nR′ ≤ I(K ′GB ;Bn|K)ρ − I(GB ;Bn|K)ρ

+ I(K ′;GB |K)ρ + nεn

≤ I(K ′GB ;Bn|K)ρ + I(K ′;GB |K)ω + nεn

= I(K ′GB ;Bn|K)ω + nεn , (108)

where the equality holds since GB and (K,K ′) are in a product state. To
complete the regularized converse proof, set Xn = f(K) and An1 ≡ (K ′, GB),
where f is an arbitrary one-to-one function from [1 : 2nR] to Xn. This concludes
the proof of Theorem 5.

D Proof of Theorem 7

Consider quantum communication over NA→B with unreliable entanglment as-
sistance.
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D.1 Achievability Proof

In the proof we follow Dupuis’ methods66, originally applied to the quantum
broadcast channel.

At first we restrict the entanglement resources to a given rate Re. That is,
we assume |HGA | = |HGB | ≤ 2nRe . We are going to show that any rate pair
(Q,Q′) is achievable with unreliable entanglement assistance if

0 ≤ Q < H(A1|A2)ω (109a)

Q < I(A1〉B)ω (109b)

Q+Q′ +Re < H(A2)ω (109c)

Q+Q′ −Re < I(A2〉B)ω (109d)

for some ϕA1A2A, where A1, A2 are arbitrary systems, and ωA1A2B = NA→B
(ϕA1A2A).

Let |φA1A2AJ〉 be a purification of ϕA1A2A. Then, the corresponding channel
output is

|ωA1A2BEJ〉 = UNA→BE |φA1A2AJ〉 , (110)

where UNA→BE is a Stinespring dilation such that UNA→BE(ρA) = UNA→BEρA
(UNA→BE)†.

Given a quantum message state θM ⊗ ξM̄ , let K and K̄ be reference sys-
tems that purify the message systems M and M̄ , respectively, i.e. such that
the systems M , M̄ , K, and K̄ have a pure joint state |θMK〉 ⊗ |ξM̄K̄〉, with
|HK | = |HM | = 2nQ and |HK̄ | = |HM̄ | = 2n(Q+Q′). Suppose that given reliable
entanglement assistance, Alice and Bob share an entangled state |ΦGAGB 〉 of
dimension |HGA | = |HGB | = 2nRe .

Let V
(1)
M→An1

and V
(2)

M̄GA→An2
be arbitrary full-rank partial isometries. That

is, each operator has 0-1 singular values with a rank of 2nQ and 2n(Q+Q′),
respectively. Denote∣∣∣ψ(1)

An1K

〉
= V

(1)
M→An1

|θMK〉 , (111)∣∣∣ψ(2)

An2GBK̄

〉
= V

(2)

M̄GA→An2
(|ξK̄M̄ 〉 ⊗ |ΦGA,GB 〉) . (112)

D.1.1 Decoupling Inequalities

First, we establish decoupling inequalities. We introduce the following nota-
tion of operators and channels. For every pair of Hilbert spaces HA and HB
with orthonormal bases {|iA〉} and {|jB〉}, respectively, define the operator
opA→B(|ψAB〉) by

opA→B(|iA〉 ⊗ |jB〉) ≡ |jB〉〈iA| . (113)

While the operation above depends on the choice of bases, we will not specify
these since it is not important for our purposes. To generalize this definition to
any state |ψAB〉, consider its decomposition |ψAB〉 =

∑
i,j ai,j |iA〉 ⊗ |jB〉, and

define opA→B(|ψAB〉) =
∑
i,j ai,jopA→B(|iA〉 ⊗ |jB〉).
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Consider the operators

ΠA2→A1AJ =
√
|HA2

|opA2→A1AJ(φA1A2AJ) , (114)

ΠA1→A2AJ =
√
|HA1

|opA1→A2AJ(φA1A2AJ) . (115)

Given a pair of unitaries, U
(1)
An1

and U
(2)
An2

, define the following quantum states,∣∣∣ωU(2)

An1A
nJnK̄GB

〉
= Π⊗nA2→A1AJ

U
(2)
An2

∣∣∣ψ(2)

An2GBK̄

〉
, (116)∣∣∣ωU(1)

An2A
nJnK

〉
= Π⊗nA1→A2AJ

U
(1)
An1

∣∣∣ψ(1)
An1K

〉
. (117)

The corresponding channel outputs are then∣∣∣ωU(2)

An1B
nEnJnK̄GB

〉
= (UNA→BE)⊗n

∣∣∣ωU(2)

An1A
nJnK̄GB

〉
, (118)∣∣∣ωU(1)

An2B
nEnJnK

〉
= (UNA→BE)⊗n

∣∣∣ωU(1)

An2A
nJnK

〉
. (119)

Now, consider the operators

ΠU(2)

An1→AnJnK̄GB
=
√
|HA1

|nopAn1→AJK̄GB (ωU
(2)

An1A
nJnK̄GB

) , (120)

ΠU(1)

An2→AnJnK =
√
|HA2 |nopAn2→AnJnK(ωU

(1)

An2A
nJnK) , (121)

ΠA1A2→AJ =
√
|HA1 ||HA2 |opA1A2→AJ(φA1A2AJ) , (122)

and define the quantum channels T U(2)

An1→EnJnK̄GB
, T U(1)

An2→EnJnK
, and TA1A2→EJ ,

by

T U(2)

An1→EnJnK̄GB
(ρAn1 ) = TrBn

[
UNA→BE(ΠU(2)

An1→AnJnK̄GB
(ρAn1 ))

]
, (123)

T U(1)

An2→EnJnK(ρAn2 ) = TrBn
[
UNA→BE(ΠU(1)

An2→AnJnK(ρAn2 ))
]
, (124)

TA1A2→EJ(ρA1A2) = TrB
[
UNA→BE(ΠA1A2→AJ(ρA1A2))

]
. (125)

According to66 Lemma 2.7, opA→B(ψAB) |φAC〉 = opA→C(φAC) |ψAB〉, hence

T U(2)

An1→EnJnK̄GB
(U

(1)
An1
ψ

(1)
An1K

) = T U(1)

An2→EnJnK(U
(2)
An2
ψ

(2)

An2 K̄GB
)

= T ⊗nA1A2→EJ(U
(1)
An1
ψ

(1)
An1K

⊗ U (2)
An2
ψ

(2)

An2 K̄GB
) . (126)

Applying the decoupling theorem, Theorem 9, to the channels in (123)-(124),
we obtain∫

UAn1

∥∥T U(2)

An1→EnJnK̄GB
(U

(1)
An1
ψ

(1)
An1K

)− θK ⊗ ωU
(2)

EnJnK̄GB

∥∥
1
dU

(1)
An1

≤ 2
− 1

2

[
Hεmin(An1 |E

nJnK̄GB)
ωU

(2)−nQ
]

+ 8ε , (127)∫
UAn2

∥∥T U(1)

An2→EnJnK(U
(2)
An2
ψ

(2)

An2 K̄GB
)− ξK̄ ⊗ ωU

(1)

EnJnK

∥∥
1
dU

(2)
An2

≤ 2
− 1

2

[
Hεmin(An2 |E

nJnK)
ωU

(1)−n(Q+Q′−Re)
]

+ 8ε . (128)
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Using (126), we can rewrite those decoupling inequalities as∫
UAn1

∥∥T ⊗nA1A2→ED(U
(1)
An1
ψ

(1)
An1K

⊗ U (2)
An2
ψ

(2)

An2 K̄GB
)− θK ⊗ ωU

(2)

EnJnK̄GB

∥∥
1
dU

(1)
An1

≤ 2
− 1

2

[
Hεmin(An1 |E

nJnK̄GB)
ωU

(2)−n(Q−α1n)
]
, (129)∫

UAn2

∥∥T ⊗nA1A2→EJ(U
(1)
An1
ψ

(1)
An1K

⊗ U (2)
An2
ψ

(2)

An2 K̄GB
)− ξK̄ ⊗ ωU

(1)

EnJnK

∥∥
1
dU

(2)
An2

≤ 2
− 1

2

[
Hεmin(An2 |E

nJnK)
ωU

(1)−n(Q+Q′−Re+α2n)
]
, (130)

where αjn → 0 as n→∞. The last bounds tend to zero provided that

Q <
1

n
Hε

min(An1 |EnJnK̄GB)
ωU

(2) − α1n , (131)

Q+Q′ −Re <
1

n
Hε

min(An2 |EnJnK)
ωU

(1) − α2n . (132)

This is close to what we would like to show. However, we need the en-

coder to be an isometry, and we need to replace ωU
(1)

, ωU
(2)

in the inequal-

ities above by ω. Applying the decoupling theorem, with T̄ U(2)

An1→K̄GB
(ρAn1 ) =

TrAnJn [ΠU(2)

An1→AnJnK̄GB
(ρAn1 )] and T̄An2→C(ρAn2 ) = Tr[ΠAn2→An1AnJn(ρAn2 )], we

obtain ∫
UAn1

∥∥∥TrAnJn
[
ΠU(2)

An1→AnJnK̄GB
U

(1)
An1
ψ

(1)
An1K

]
− θK ⊗ ωU

(2)

K̄GB

∥∥∥
1
dU

(1)
An1

≤ 2
− 1

2

[
Hεmin(An1 |K̄GB)

ωU
(2)−n(Q+α3n)

]
, (133)∫

UAn2

∥∥ωU(2)

K̄GB
− ξK̄ ⊗ ΦGB

∥∥
1
dU

(2)
An2

=

∫
UAn2

∥∥T̄An2→C(U
(2)
An2
ψ

(2)

An2 K̄GB
)− ξK̄ ⊗ ΦGB

∥∥
1
dU

(2)
An2

≤ 2−
1
2n[H(A2)φ−(Q+Q′+Re+α4n)] , (134)

which tend to zero for

Q <
1

n
Hε

min(An1 |K̄GB)
ωU

(2) − α3n , (135)

Q+Q′ +Re < H(A2)φ − α4n . (136)

We will use these decoupling properties in order to obtain the encoding map,
by applying Uhlmann’s theorem (see Theorem 10). However, before that, we
give the bounds on the smoothed min-entropies.

D.1.2 Entropy Bounds

We would like to bound the min-entropies in (131)-(132) and (135). We begin
with the min-entropy Hε

min(An1 |K̄GB)
ωU

(2) . Suppose that φ̃An1An2AnJn is a state
such that ∥∥∥φ̃An1An2AnJn − φ⊗nA1A2AJ

∥∥∥
1
≤ 2ε0 (137)
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and

Hmin(An1 |An2 )φ̃ = Hmin(An1 |An2 )φ . (138)

Define

Π̃U(2)

An2→K̄GB
=
√∣∣HAn2 ∣∣opAn2→K̄GB (U

(2)
An2
W

(2)

M̄GA→An2
|ψ(2)

M̄GAGBK̄
〉) , (139)

hence ∣∣∣ωU(2)

An1A
nJnK̄GB

〉
= Π̃U(2)

An2→K̄GB

∣∣φ⊗nA1A2AJ

〉
. (140)

Consider a decomposition of the operator (φ̃ − φ⊗n) into its positive and
negative parts,

φ̃An1An2AnJn − φ
⊗n
A1A2AJ

= ∆+ −∆− , (141)

where ∆+, ∆− � 0 have a disjoint support. Hence, by (137), Tr(∆±) ≤ 2ε0.
We note that ∫

UAn2

Π̃U(2)

An2→K̄GB
(PAn2 ) dU

(2)
An2

= Tr(PAn2 ) · 1

|HA2
|n Π̃U(2)

An2→K̄GB
Π̃U(2)†
An2→K̄GB

. (142)

Thus, ∫
UAn2

∥∥∥Π̃U(2)

An2→K̄GB
(φ̃An1An2AnJn)− Π̃U(2)

An2→K̄GB
(φ⊗nA1A2AJ

)
∥∥∥

1
dU

(2)
An2

=

∫
UAn2

∥∥∥Π̃U(2)

An2→K̄GB
(∆+ −∆−)

∥∥∥
1
dU

(2)
An2

≤ Tr
(

Π̃U(2)

An2→K̄GB
(∆+)

)
+ Tr

(
Π̃U(2)

An2→K̄GB
(∆−)

)
≤ 4ε0 , (143)

which, in turn, implies∫
UAn2

dF

(
Π̃U(2)

An2→K̄GB
(φ̃An1An2AnJn) , Π̃U(2)

An2→K̄GB
(φ⊗nA1A2AJ

)
)
dU

(2)
An2
≤ 2
√
ε0 ,

(144)

based on the relation between the fidelity and trace distance55 Corollary 9.3.1.
We deduce that∫

UAn2

H
2
√
ε0

min (An1 |K̄GB)
ωU

(2) dU
(2)
An2
≥ Hε0

min(An1 |An2 )φ . (145)

For ε0 = ε2

4 , we obtain∫
UAn2

1

n
Hε

min(An1 |K̄GB)
ωU

(2) dU
(2)
An2
≥ H(A1|A2)φ − α5n . (146)
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By the same considerations,∫
UAn1

1

n
Hε

min(An2 |EnJnK)
ωU

(1) dU
(1)
An1
≥ H(A2|EDA1)ω − α6n

= −H(A2|B)ω − α6n

= I(A2〉B)ω − α6n , (147)

and ∫
UAn2

1

n
Hε

min(An1 |EnJnK̄GB)
ωU

(2) dU
(2)
An2
≥ H(A1|EDA2)ω − α7n

= I(A1〉B)ω − α7n . (148)

Therefore, there exist unitaries U
(1)
An1

and U
(2)
An2

that satisfy the following in-

equalities,∥∥∥TrAnJn
[
ΠU(2)

An1→AnJnK̄GB
U

(1)
An1
ψ

(1)
An1K

]
− θK ⊗ ωU

(2)

K̄GB

∥∥∥
1

≤ 2−
1
2n[H(A1|A2)φ−Q−βn] , (149)∥∥T ⊗nA1A2→EJ(U

(1)
An1
ψ

(1)
An1K

⊗ U (2)
An2
ψ

(2)

An2 K̄GB
)− θK ⊗ ωU

(2)

EnJnK̄GB

∥∥
1

≤ 2−
1
2n[I(A1〉B)ω−Q−βn] , (150)∥∥T ⊗nA1A2→EJ(U

(1)
An1
ψ

(1)
An1K

⊗ U (2)
An2
ψ

(2)

An2 K̄
)− ξK̄ ⊗ ωU

(1)

EnJnK

∥∥
1

≤ 2−
1
2n[I(A2〉B)ω−(Q+Q′−Re)−βn] , (151)∥∥ωU(2)

K̄GB
− ξK̄ ⊗ ΦGB

∥∥
1

=
∥∥T̄ ⊗nA2→C(U

(2)
An2
ψ

(2)

An2 K̄GB
)− ξK̄ ⊗ ΦGB

∥∥
1

≤ 2−
1
2n[H(A2)φ−(Q+Q′+Re)−βn] , (152)

for some βn that tends to zero as n → ∞, as the first inequality follows from
(133) and (146), the second from (129) and (148), the third is due to (130) and
(147), and the last holds by (134).

D.1.3 Encoding

By the triangle inequality, (149) and (152) yield∥∥∥TrAnJn
[
ΠU(2)

An1→AnJnK̄GB
U

(1)
An1
ψ

(1)
An1K

]
− θK ⊗ ξK̄ ⊗ ΦGB

∥∥∥
1
≤ δenc(n) , (153)

where

δenc(n) ≡ 2−
1
2n[H(A1|A2)φ−Q−β] + 2−

1
2n[H(A2)φ−(Q+Q′+Re)−β] . (154)

Based on Uhlmann’s theorem, it follows that there exists an isometry FMM̄GA→AnJn
such that∥∥∥ΠU(2)

An1→AnJnK̄GB
U

(1)
An1
ψ

(1)
An1K

− FMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB )
∥∥∥

1

≤ 2
√
δenc(n) . (155)
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D.1.4 Decoding without Assistance

By applying the isometric extension of the channel to the states on the RHS
of (155) and using the triangle inequality and the monotonicity of the trace
distance under quantum channels, we obtain∥∥∥T U(2)

An1→EnJnK̄GB
(U

(1)
An1
ψ

(1)
An1K

)

− TrBn
[
(UNA→BE)⊗nFMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB )

]∥∥∥
1

≤ 2
√
δenc(n) . (156)

By (126), the inequality above can also be written as∥∥∥T ⊗nA1A2→EJ(U
(1)
An1
ψ

(1)
An1K

⊗ U (2)
An2
ψ

(2)

An2 K̄GB
)

− TrBn
[
(UNA→BE)⊗nFMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB )

]∥∥∥
1

≤ 2
√
δenc(n) . (157)

Together with (150), this implies∥∥∥TrBn
[
(UNA→BE)⊗nFMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB )

]
− θK ⊗ ωU

(2)

EnJnK̄GB

∥∥∥
1

≤ 2
√
δenc(n) + δ1(n) , (158)

where δ1(n) ≡ 2−
1
2n[I(A1〉B)ω−Q−β].

Thus, by Uhlmann’s theorem, there exists an isometry D∗Bn→MJ1
, such that∥∥∥D∗Bn→MJ1(UNA→BE)⊗nFMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB )

− θMK ⊗ ω̂EnJnK̄GBJ1
∥∥∥

1
≤ 2

√
2
√
δenc(n) + δ1(n) , (159)

where ω̂EnJnK̄GBJ1 is an arbitrary purification of ωU
(2)

EnJnK̄GB
. By tracing over

EnJnK̄GBJ1, we deduce that there exist an encoding map FMM̄GA→An and a
decoding map D∗Bn→M , such that∥∥∥(D∗Bn→MJ1 ◦ N⊗nA→B ◦ FMM̄GA→An)(θMK ⊗ ξM̄ ⊗ ΦGA)− θMK

∥∥∥
1

≤ 2

√
2
√
δenc + δ1(n) . (160)

D.1.5 Decoding with Entanglement Assistance

The bound in (157), together with (151), implies∥∥∥TrBnGB
[
(UNA→BE)⊗nFMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB )

]
− ξK̄ ⊗ ωU

(1)

EnJnK

∥∥∥
1
≤ 2
√
δenc(n) + δ2(n) , (161)
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where δ2(n) ≡ 2−
1
2n[I(A2〉B)ω−(Q+Q′−Re)−β]. Thus, by Uhlmann’s theorem,

there exists an isometry DBnGB→M̄G′AG
′
BJ2

, such that∥∥∥DBnGB→M̄G′AG
′
BJ2

(UNA→BE)⊗nFMM̄GA→AnJn(θMK ⊗ ξM̄K̄ ⊗ ΦGAGB )

− ξM̄K̄ ⊗ ΦGAGB ⊗ ω̂EnJnKJ2
∥∥∥

1
≤ 2

√
2
√
δenc(n) + δ2(n) . (162)

By tracing over EnJnKG′AG
′
BJ2, we deduce that FMM̄GA→An and DBGB→M̄

satisfy∥∥∥DBnGB→M̄ ◦ N⊗nA→B ◦ FMM̄GA→An(θM ⊗ ξM̄K̄ ⊗ ΦGAGB )− ξM̄K̄

∥∥∥
1

≤ 2

√
2
√
δenc(n) + δ2(n) . (163)

As δenc(n), δ1(n), and δ2(n) tend to zero as n → ∞ for rates as in (109), we
deduce that the errors tend to zero as well.

Choosing the entanglement rate Re = 1
2 [H(A2)ω + H(A2|B)ω], it follows

that LEA∗(N ) is an achievable rate region (cf. (28) and (109)). To show that
rate pairs in 1

kLEA∗(N⊗k) are achievable as well, we employ the coding scheme
above for the product channel N⊗k, where k is arbitrarily large. This completes
the achievability proof.

D.2 Converse Proof

Consider the converse part. Suppose that Alice and Bob are trying to generate
entanglement between them. An upper bound on the rate at which Alice and
Bob can generate entanglement also serves as an upper bound on the quantum
rate at which they can communicate qubits, since a noiseless quantum channel
can be used to generate entanglement by sending one part of an entangled pair.
In this task, Alice locally prepares two maximally entangled pairs,

|ΦMK〉 ⊗ |ΦM̄K̄〉 =

 1√
2nQ

2nQ∑
m=1

|m〉M ⊗ |m〉K


⊗

 1√
2n(Q+Q′)

2n(Q+Q′)∑
m̄=1

|m̄〉M̄ ⊗ |m̄〉K̄

 . (164)

If the entanglement assistance is reliable, then Alice and Bob share the quantum
state |ΦGAGB 〉, where GA and GB represent the entanglement resources that
Alice and Bob share, respectively. Then Alice applies an encoding channel
FMM̄GA→An to the quantum message systems MM̄ and her share GA of the
entanglement resources. The resulting state is

ϕKK̄GBAn ≡ FMM̄GA→An(ΦMK ⊗ ΦM̄K̄ ⊗ ΦGAGB ) . (165)

As Alice sends the systems An through the channel, the output state is

ωKK̄GBBn ≡ N⊗nA→B(σKK̄GBAn) . (166)
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If the entanglement assistance is present, then Bob can access GB . In this case,
Bob performs a decoding channel DGBBn→M̆ , hence

ρKK̄M̆ ≡ DGBBn→M̆ (ρKK̄GBBn) . (167)

On the other hand, without assistance, Bob performs D∗
Bn→M̂ , producing

ρ∗
KK̄M̂GB

≡ D∗
Bn→M̂ (ρKK̄GBBn) . (168)

Since Bob has not received the entanglement resources, the system GB is not
affected by itself.

Consider a sequence of codes (Fn,Dn,D∗n) for entanglement generation given
unreliable assistance, such that

1

2

∥∥ρM̆K̄ − ΦM̄K̄

∥∥
1
≤αn , (169)

1

2

∥∥ρ∗
M̂K
− ΦMK

∥∥
1
≤α∗n , (170)

where αn, α
∗
n tend to zero as n→∞.

By the Alicki-Fannes-Winter inequality76;77 55 Theorem 11.10.3, (170) im-
plies |H(K|M̂)ρ∗ −H(K|M)Φ| ≤ nεn, or equivalently,

|I(K〉M̂)ρ∗ − I(K〉M)Φ| ≤ nεn , (171)

where εn tends to zero as n → ∞. Observe that I(K〉M)Φ = H(M)Φ −
H(KM)Φ = nQ− 0 = nQ. Thus,

nQ =I(K〉M)Φ

≤I(K〉M̂)ρ∗ + nεn

≤I(K〉Bn)ω + nεn , (172)

where the last line follows from (168) and the data processing inequality for the
coherent information55 Theorem 11.9.3. In addition,

nQ =H(K)Φ

=H(K|K̄GB)Φ⊗Φ

=H(K|K̄GB)ω , (173)

where the second line follows since K and K̄ are in a product state.
As for decoding with entanglement assistance, (169) implies |I(K̄; M̄)Φ −

I(K̄; M̆)ρ| ≤ nε̄n, by the Alicki-Fannes-Winter inequality, where ε̄n tends to
zero as n→∞. Therefore,

n(Q+Q′) =
1

2
I(K̄; M̄)Φ

≤ 1

2
I(K̄; M̆)ρ + nε̄n

≤ 1

2
I(K̄;GBB

n)ω + nε̄n (174)
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by the data processing inequality for the quantum mutual information. By the
chain rule, the mutual information above satisfies

I(K̄;GBB
n)ω = I(K̄;Bn|GB)ω + I(K̄;GB)Φ⊗Φ

= I(K̄;Bn|GB)ω

≤ I(K̄GB ;Bn)ω . (175)

The regularized converse follows from (172), (173), and (174)-(175), as we

let An1 and An2 be quantum systems such that for some isometries W
(1)
K→An1

and

W
(2)

K̄GB→An2
,

ϕAn1An2An =
(
W

(1)
K→An1

⊗W (2)

K̄GB→An2

)
ϕKK̄GBAn

(
W

(1)
K→An1

⊗W (2)

K̄→An2

)†
.

(176)

This completes the proof of Theorem 7.
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Wootters, “Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels,” Physical review letters, vol. 70, no. 13,
p. 1895, 1993.

[46] H. G. Eggleston, “Convexity,” J. London Math. Society, vol. 1, no. 1, pp.
183–186, 1966.

[47] J. Yard, P. Hayden, and I. Devetak, “Capacity theorems for quantum
multiple-access channels: classical-quantum and quantum-quantum capac-
ity regions,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 3091–3113, July
2008.

[48] C. King, “The capacity of the quantum depolarizing channel,” IEEE Trans.
Inf. Theory, vol. 49, no. 1, pp. 221–229, 2003.

[49] K. Arora, J. Singh, and Y. S. Randhawa, “A survey on channel coding
techniques for 5g wireless networks,” Telecommun. Syst., pp. 1–27, 2019.

[50] D. J. Costello and G. D. Forney, “Channel coding: The road to channel
capacity,” Proc. IEEE, vol. 95, no. 6, pp. 1150–1177, 2007.

[51] E. Nisioti and N. Thomos, “Design of capacity-approaching low-density
parity-check codes using recurrent neural networks,” arXiv:2001.01249,
2020.

[52] T. Richardson and S. Kudekar, “Design of low-density parity check codes
for 5g new radio,” IEEE Commun. Mag., vol. 56, no. 3, pp. 28–34, 2018.

39



[53] J. Körner, “The concept of single-letterization in information theory,” in
Open Prob. Commun. Comp. Springer, 1987, pp. 35–36.

[54] U. Pereg, “Communication over quantum channels with parameter estima-
tion,” IEEE Trans. Inf. Theory, 2021.

[55] M. M. Wilde, Quantum information theory, 2nd ed. Cambridge University
Press, 2017.

[56] R. Stassi, M. Cirio, and F. Nori, “Scalable quantum computer with su-
perconducting circuits in the ultrastrong coupling regime,” npj Quantum
Information, vol. 6, no. 1, pp. 1–6, 2020.

[57] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A.
Landsman, K. Wright, and C. Monroe, “Experimental comparison of two
quantum computing architectures,” Proc. Nation. Acad. Scien., vol. 114,
no. 13, pp. 3305–3310, 2017.

[58] F. Dupuis, P. Hayden, and K. Li, “A father protocol for quantum broadcast
channels,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2946–2956, June
2010.

[59] H. Qi, K. Sharma, and M. M. Wilde, “Entanglement-assisted private com-
munication over quantum broadcast channels,” J. Phys. A: Math. and
Theo., vol. 51, no. 37, p. 374001, 2018.

[60] K. Li and A. Winter, “Relative entropy and squashed entanglement,” Com-
mun. Math. Phys., vol. 326, no. 1, pp. 63–80, Jan 2014.

[61] F. Dupuis, “The capacity of quantum channels with side information at
the transmitter,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT’2009), June
2009, pp. 948–952.

[62] J. Yard, P. Hayden, and I. Devetak, “Quantum broadcast channels,” IEEE
Trans. Inf. Theory, vol. 57, no. 10, pp. 7147–7162, Oct 2011.

[63] U. Pereg, “Entanglement-assisted capacity of quantum channels with
side information,” arXiv:1909.09992, Sep 2019. [Online]. Available:
https://arxiv.org/pdf/1909.09992.pdf

[64] F. Dupuis, “Coding for quantum channels with side information at the
transmitter,” arXiv preprint arXiv:0805.3352, 2008.

[65] U. Pereg, C. Deppe, and H. Boche, “Quantum broadcast channels with
cooperating decoders: An information-theoretic perspective on quantum
repeaters,” J. Math. Phys., vol. 62, no. 6, p. 062204, 2021.

[66] F. Dupuis, “The decoupling approach to quantum information theory,”
Ph.D. dissertation, Université de Montréal, 2010.

[67] M. A. Nielsen and I. Chuang, “Quantum computation and quantum infor-
mation,” 2002.

[68] M. Hsieh, I. Devetak, and A. Winter, “Entanglement-assisted capacity of
quantum multiple-access channels,” IEEE Trans. Inf. Theory, vol. 54, no. 7,
pp. 3078–3090, July 2008.

40

https://arxiv.org/pdf/1909.09992.pdf


[69] R. Renner, “Security of quantum key distribution,” Int’l J. Quantum Info.,
vol. 6, no. 01, pp. 1–127, 2008.

[70] A. Uhlmann, “The “transition probability” in the state space of a*-
algebra,” Reports Math. Phys., vol. 9, no. 2, pp. 273–279, 1976.

[71] U. Pereg, “Entanglement-assisted capacity of quantum channels with side
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Switzerland, Feb 2020, pp. 106–110.

[72] ——, “Communication over quantum channels with parameter estimation,”
arXiv:2001.00836, Jan 2020. [Online]. Available: https://arxiv.org/pdf/
2001.00836.pdf

[73] ——, “Communication over quantum channels with parameter estimation,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT’2020), June 2020.

[74] A. Winter, “Coding theorem and strong converse for quantum channels,”
IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2481–2485, Nov 1999.

[75] T. Ogawa and H. Nagaoka, “Making good codes for classical-quantum
channel coding via quantum hypothesis testing,” IEEE Trans. Inf. The-
ory, vol. 53, no. 6, pp. 2261–2266, June 2007.

[76] R. Alicki and M. Fannes, “Continuity of quantum conditional information,”
J. Phys. A: Math. General, vol. 37, no. 5, pp. L55–L57, Jan 2004.

[77] A. Winter, “Tight uniform continuity bounds for quantum entropies: condi-
tional entropy, relative entropy distance and energy constraints,” Commun.
in Math. Phys., vol. 347, no. 1, pp. 291–313, 2016.

41

https://arxiv.org/pdf/2001.00836.pdf
https://arxiv.org/pdf/2001.00836.pdf

	1 Definitions and Related Work
	1.1 Notation and Information Measures
	1.2 Quantum Channel
	1.3 Coding with Unreliable Assistance
	1.3.1 Classical Codes
	1.3.2 Quantum Codes

	1.4 Related Work

	2 Results
	2.1 Classical Communication
	2.2 Quantum Communication

	3 Summary and Discussion
	3.1 Computing Channel Capacities
	3.2 Superposition-Coding Interpretation
	3.3 Side Information Interpretation
	3.4 The Broadcast Channel with One-Sided Assistance

	A Information-Theoretic Tools
	A.1 Quantum Packing Lemma
	A.2 The Decoupling Theorem

	B Proof of Lemma 4
	C Proof of Theorem 5
	C.1 Achievability Proof
	C.1.1 Code Construction
	C.1.2 Encoder
	C.1.3 Decoder
	C.1.4 Code Properties
	C.1.5 Error Analysis Without Assistance
	C.1.6 Packing Lemma Requirements
	C.1.7 Error Analysis with Entanglement Assistance

	C.2 Converse Proof

	D Proof of Theorem 7
	D.1 Achievability Proof
	D.1.1 Decoupling Inequalities
	D.1.2 Entropy Bounds
	D.1.3 Encoding
	D.1.4 Decoding without Assistance
	D.1.5 Decoding with Entanglement Assistance

	D.2 Converse Proof


