
ar
X

iv
:2

20
1.

11
07

8v
1 

 [
cs

.I
T

] 
 2

6 
Ja

n 
20

22

Common Randomness Generation from Gaussian

Sources

Wafa Labidi∗, Rami Ezzine∗, Christian Deppe † and Holger Boche∗‡§

∗Technical University of Munich, Chair of Theoretical Information Technology, Munich, Germany
†Technical University of Munich, Institute for Communications Engineering, Munich, Germany

‡CASA – Cyber Security in the Age of Large-Scale Adversaries– Exzellenzcluster, Ruhr-Universität Bochum, Germany
§Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 Munich, Germany

Email: {wafa.labidi, rami.ezzine, christian.deppe, boche}@tum.de

Abstract—We study the problem of common randomness (CR)
generation in the basic two-party communication setting in which
the sender and the receiver aim to agree on a common random
variable with high probability by observing independent and
identically distributed (i.i.d.) samples of correlated Gaussian
sources and while communicating as little as possible over a noisy
memoryless channel. We completely solve the problem by giving a
single-letter characterization of the CR capacity for the proposed
model and by providing a rigorous proof of it. Interestingly, we
prove that the CR capacity is infinite when the Gaussian sources
are perfectly correlated.

Index Terms—Common randomness generation, Gaussian
sources, memoryless channels

I. INTRODUCTION

In the context of common randomness (CR) generation, the

sender and the receiver, often described as terminals, aim to

agree on a common random variable with high probability.

The availability of this CR is advantageous as it allows to

implement correlated random protocols that often perform

faster and more efficiently than the deterministic ones or the

ones using independent randomization.

An enormous performance gain can be achieved by taking

advantage of the resource CR in the identification scheme,

since it may allow a significant increase in the identification

capacity of channels [1], [2], [3]. The identification scheme is

a new approach in communications developed by Ahlswede

and Dueck [4] in 1989. For many new applications with

high requirements on reliability and latency such as several

machine-to-machine and human-to-machine systems [5], the

tactile internet [6], digital watermarking [7], [8], [9], industry

4.0 [10], the identification approach is much more efficient

than the classical transmission scheme proposed by Shannon

[11]. In the identification framework, the encoder sends an

identification message (called also identity) over the channel

and the decoder is not interested in what the received message

is, but wants to know whether a specific message has been sent

or not.

Many researches explored the problem of CR generation

from correlated discrete sources. This problem was initially

introduced by Ahlswede and Csizár in [2], where the sender

and the receiver are additionally allowed to communicate over

a discrete noiseless channel with limited capacity. Unlike in

the fundamental two papers [12][13], no secrecy requirements

are imposed. A single-letter characterization of the CR ca-

pacity for that model was established in [2]. CR capacity

refers to the maximum rate of CR that Alice and Bob can

generate using the resources available in the model. Later,

the results on CR capacity have been extended in [14] to

point-to-point single-input single-output (SISO) and Multiple-

Input Multiple-Output (MIMO) Gaussian channels for their

practical relevance in many communication situations such as

wired and wireless communications, satellite and deep space

communication links, etc. The results on CR capacity over

Gaussian channels have been used to establish a lower-bound

on their corresponding correlation-assisted secure identifica-

tion capacity in the log-log scale [14]. This lower bound can

already exceed the secure identification capacity over Gaussian

channels with randomized encoding elaborated in [15]. The

problem of CR generation over SISO and MIMO fading

channels has been investigated in [16] and in [17], respectively,

where the authors introduced the concept of outage in the CR

generation framework.

However, as far as we know, there are no results regarding

CR generation from correlated continuous sources. The main

contribution of our work lies in establishing a single-letter

characterization of the CR capacity for a model involving a

bivariate Gaussian source with unidirectional communication

over noisy memoryless channels. We will extend the CR ca-

pacity formula established in [2] for correlated discrete sources

to correlated Gaussian sources. Interestingly, in contrast to the

discrete case where the CR capacity is always finite [2][14], we

will show that the CR capacity is infinite when the Gaussian

sources are perfectly correlated. In such a situation, no com-

munication over the channel is required. We were motivated by

the drastic effects on the identification capacity produced by

the common randomness generated from the perfect feedback

in the model treated in [18]. The authors in [18] proved that

the identification capacity of Gaussian channels with noiseless

feedback is infinite regardless of the scaling by proposing a

coding scheme that generates an infinitely large amount of CR

between the sender and the receiver using noiseless feedback.

Applications of our work include the problem of correlation-

assisted identification, where the sender and the receiver have
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access to a correlated Gaussian source. Indeed, analogously

to the discrete case [14] and based on an early work in [19],

one can construct identification codes for noisy memoryless

channels based on the concatenation of two transmission codes

using CR as a resource.

Paper Outline: The rest of the paper is organized as

follows. In Section II, we introduce a generalized typicality

criteria that can be applied to any i.i.d. continuous sources and

we establish the conditional typicality lemma and conditional

divergence lemma for the proposed typicality criteria using

the weak law of large numbers (WLLN). In Section III, we

present the system model for CR generation, provide the key

definitions and the main result. In Section IV, we will prove

the achievability of the CR capacity by proposing a coding

scheme based on the same type of binning as in the Wyner-

Ziv problem, where we make use of the conditional typicality

and the conditional divergence lemma elaborated in Section

II. The converse proof of the CR capacity is established in

Section V. Section VII contains concluding remarks.

II. PRELIMINARIES

A. Notations

Calligraphic letters X ,Y,Z, . . . are used for finite or infinite

sets; lowercase letters x, y, z, . . . stand for constants and values

of random variables; uppercase letters X,Y, Z, . . . stand for

random variables; For any random variables X , Y and Z , we

use the notation X ◦− Y ◦− Z to indicate a Markov chain. R

denotes the sets of real numbers; pX denotes the probability

density function of a continuous RV X ; |X | denotes the

cardinality a finite set X ; the set of probability distributions

on the set X is denoted by P(X ); H(·), E(·) and I(·; ·) are

the entropy, the expected value and the mutual information,

respectively; all logarithms and information quantities are

taken to base 2.

B. Typicality Criteria for Continuous Alphabet

Inspired by the generalized typicality criteria introduced in

[20] and based on the information-spectrum approach [21], we

define the following typicality criterion. This criterion can be

applied to i.i.d. source/channel coding problems.

Definition 1. Suppose δ > 0 and (Xn, Y n) was emitted by

the bivariate Gaussian memoryless source PXY . The sequence

pair (xn, yn) is called jointly δ-typical with respect to pXY if

| 1
n
iXnY n(xn, yn)− I(X ;Y )| ≤ δ, δ > 0, (1)

where iXnY n(xn, yn) is the information density [21] defined

as

iXnY n(xn, yn) = log

(

dpY n|Xn(yn|xn)

dpY n(yn)

)

when pY n|Xn is absolutely continuous w.r.t. pY n . Let T XnY n

δ

denote the set of all δ-jointly typical sequences.

Remark 2. In [22] and [23], the authors introduced typicality

criteria for measures on a Polish space and a Borel space,

respectively. In [20], the authors considered only measurable

spaces as alphabets.

In the following, we consider the properties of sets with

probability approaching one [20].

Lemma 3. [20] Given a bivariate Gaussian memoryless

source pXY , we denote {AXnY n}∞n=1 as a sequence of sets

satisfying the following condition

pXnY n(AXnY n

) ≥ 1− α(n), lim
n→∞

α(n) = 0 (2)

where AXnY n ⊂ Xn × Yn is pXnY n-measurable for all n ∈
N. Let

AY n|xn

= {yn ∈ Yn|(xn, yn) ∈ AXnY n}
and AXn|Y n

= {xn ∈ Xn|pY n|Xn(AY n|xn |xn) > 0}.
Then, for all n ∈ N, the set {AXnY n}∞n=1 has the following

properties

lim
n→∞

pXn(AXn|Y n

) = 1; (3)

lim
n→∞

pY n|Xn(AY n|xn |xn) = 1, ∀xn ∈ AXn|Y n

. (4)

From Lemma 3, we obtain conditional typicality and con-

ditional divergence lemmas for the proposed generalised typ-

icality criterion.

Lemma 4. Given a bivariate Gaussian memoryless source

pXY we set

T Y n|xn

δ = {yn ∈ Yn, (xn, yn) ∈ T XnY n

δ }, xn ∈ Xn

T Xn|Y n

δ = {xn ∈ Xn, pY n|Xn(T Y n|xn

δ |xn) > 0}.
Then

lim
n→∞

pXn(T Xn|Y n

δ ) = 1, (5)

lim
n→∞

pY n|Xn(T Y n|xn

δ ) = 1, ∀xn ∈ T Xn|Y n

δ . (6)

Proof. T XnY n

δ is pXnY n -measurable because iXnY n is a

measurable function. For i.i.d. sequence pairs (Xn, Y n), it

follows from the Weak Law of Large Numbers (WLLN) that

for any δ > 0

lim
n→∞

Pr{| 1
n
iXnY n(Xn, Y n)− I(X ;Y )| < δ} = 1,

where E
[

1
n iXnY n(Xn, Y n)

]

= I(X ;Y ). Thus T XnY n

δ satis-

fies condition (2).

Lemma 5. Given a bivariate Gaussian memoryless source

pXY , for all n ∈ N and xn ∈ T Xn|Y n

δ

2−n[I(X;Y )+δ] ≤ pY n(T Y n|xn

δ ) ≤ 2−n[I(X;Y )−δ] (7)

2−n[I(X;Y )+δ] ≤ pXnpY n(T Y nXn

δ ) ≤ 2−[n(I(X;Y )−δ], (8)

where

pXnpY n(T Y nXn

δ ) =

∫

xn∈T
Xn|Y n

δ

pY n(T Y n|xn

δ )dpXn(xn).



Proof. The proof is similar to the proof in [20, Lemma 3].

III. SYSTEM MODEL, DEFINITIONS AND MAIN RESULT

In this section, we introduce our system model and propose

a single-letter characterization of the CR capacity for the

scenario presented in Fig. 1.

A. System Model

Let a bivariate Gaussian memoryless source pXY with two

components, with generic variables X and Y on alphabets

X ⊆ R and Y ⊆ R, correspondingly, be given. The outputs

of X are observed only by Terminal A and those of Y
only by Terminal B. Both outputs have length n. We further

assume that the joint distribution of (X,Y ) is known to both

terminals. Terminal A can send information to Terminal B
over a memoryless channel W. The Shannon capacity of the

channel W is denoted by C(W ). There are no other resources

available to any of the terminals.

A CR-generation protocol [2] of block length n consists of:

1) a function Φ that maps Xn into a random variable K
with alphabet K generated by Terminal A,

2) a function Λ that maps Xn into the input sequence T n

3) a function Ψ that maps Y n and the output sequence Zn

into a random variable L with alphabet K generated by

Terminal B.

This protocol generates a pair of random variable (K,L)
that is called permissible [2] if K and L are functions

of the resources available at Terminal A and Terminal B,

respectively.

K = Φ(Xn), L = Ψ(Y n, Zn). (9)

The system model is depicted in Fig. 1.

PXY

memoryless channel

Terminal A Terminal B

K = Φ(Xn) L = Ψ(Y n, Zn)
Xn Y n

Tn = Λ(Xn) Zn

Fig. 1: Bivariate Gaussian memoryless source model with one-

way communication over a memoryless channel

B. Definitions and Main Result

In this section, we provide the definition of an achievable

CR rate and present the main result of the paper.

Definition 6. A number H is called an achievable CR rate

if there exists a non-negative constant c such that for every

ǫ > 0 and γ > 0 and for sufficiently large n there exists a

permissible pair of random variables (K,L) such that

Pr{K 6= L} ≤ ǫ, (10)

|K| ≤ 2cn, (11)

1

n
H(K) > H − γ. (12)

Definition 7. The CR capacity CCR(pXY ,W ) is the maximum

achievable CR rate.

Theorem 8. For the model in Fig 1, the CR capacity

CCR(pXY ,W ) is equal to

CCR(pXY ,W ) = max
U

U ◦−X ◦−Y
I(U ;X)−I(U ;Y )≤C(W )

I(U ;X). (13)

In contrast to the discrete case in [2], [14], note that the CR

capacity can reach infinity [24]. If the I(X,Y ) = +∞, then

the single-letter characterization in (13) can be reduced to the

following form:

CCR(pXY ,W ) = max
U

U ◦−X ◦−Y

I(U ;X) = +∞.

If I(X,Y ) = +∞, then Y is a linear function of X with

probability one [25]. This implies that I(U ;X)−I(U ;Y ) = 0
with probability one.

Remark 9. In our model, we distinguish two sources of

randomness. The first one is obtained from the correlated

source pXY and the second one by communicating over the

channel W . When the two continuous random variables X
and Y are perfectly correlated, we can achieve infinite CR

capacity without communicating over the channel, since the

joint distribution of (X,Y ) is known to both terminals.

IV. DIRECT PROOF OF THEOREM 8

In this section, we provide the direct proof of Theorem 8.

We distinguish two cases. The first one is when the X and Y
are perfectly correlated, i.e., the mutual information I(X ;Y ) is

infinite. The second one is when I(X ;Y ) is finite. In the latter

case, we can use the typicality criteria presented in Section

II-B.

A. I(X,Y ) is Infinite

We recall that pXY is a bivariate Gaussian source. The

mutual information I(X,Y ) is given by

I(X,Y ) = −1

2
log(1 − ρ2),

where ρ is the correlation coefficient between X and Y . That

means I(X,Y ) = +∞ iff |ρ| = 1, i.e., X and Y are perfectly

correlated. In such a situation, Y is a linear function of X
with probability one [25]. We set

Y = g(X),



where g : X −→ Y is a linear function. Therefore, almost

surely, we do not need to communicate over the channel. Since

X and Y are perfectly correlated, we can achieve infinite CR

capacity without sending any information over the channel.

We prove that it is sufficient that the terminals A and B
observe one symbol X and Y , respectively. In the following,

we first prove the existence of a function Φ that converts

the Gaussian RV X to the RV K uniformly distributed on

K = {1, 2, . . . , |K|}. It is worth noting that we do not pay any

price for the uniformity. We can convert a random experiment

with a Gaussian distribution to another one with uniform

distribution with zero error probability.

Lemma 10. Assume X has a normal distribution with mean

µX and variance σ2
X > 0. We denote by F the cumulative

distribution function of the standard normal distribution. Let

for σ2 > 0 the RV X̃ be defined as X̃ = F (X−µX√
σ2

X

). X̃ is

uniformly distributed on (0, 1).

The proof of Lemma 10 is analogous to the proof of [18,

Lemma 7]. We then discretize X̃ using the function d as

described in [18].

d : (0, 1) −→ {1, 2, . . . , |K|}
: x̃ 7→ k, k ∈ K.

We set

Φ: Rn −→ {1, 2, . . . , |K|},
: x 7→ d ◦ F (x).

We set |K| = 2nc, c > 0. Thus condition (11) is satisfied.

Let Ψ = Φ ◦ g−1. If K = Φ(X), then

L = Ψ(Y )

= Φ ◦ g−1(g(X))

= K.

Thus, (10) is satisfied. Now, we want to compute the entropy

of K .

H(K) = log(|K|)
= nc, c > 0

= nH.

Since the constant c can be chosen arbitrarily, then (12) is

satisfied for any positive H. Thus, we have proved that any

CR rate is achievable. This implies that the CR capacity is

infinite in this case. This completes the proof.

B. I(X,Y ) is Finite

We consider the same code construction as used in [2] based

on the same type of binning as for the Wyner-Ziv problem.

Let ǫ, γ > 0. Let U be an arbitrary random variable on U
satisfying U ◦− X ◦− Y and I(U ;X) − I(U ;Y ) < C(W ).
We are going to show that H = I(U ;X) is an achievable CR

rate.

Let pU|X be a “channel” from X to U .

Code Construction: We generate N1N2 codewords

un(i, j), i = 1, . . . , N1, j = 1, . . . , N2 by choosing

the n.(N1N2) symbols ul(i, j) independently at random

using pU (computed from pXU ). Each realization un
i,j of Un

i,j

is known to both terminals. For some δ > 0, let

N1 = 2(n[I(U ;X)−I(U ;Y )+4δ])

N2 = 2(n[I(U ;Y )−2δ]).

Encoder: Let (xn, yn) be any realization of (Xn, Y n). Given

xn with (xn, yn) ∈ T XnY n

δ , try to find a pair (i, j) such

that (xn, un(i, j)) ∈ T XnUn

δ and un(i, j) ∈ T Un|Y n

δ . If

successful, let f(xn) = i. If no such un(i, j) exists, then

f(xn) = N1 + 1 and Φ(xn) is set to a constant sequence un
0

different from all the un(i, j)s and known to both terminals.

We choose δ to be sufficiently small such that

log‖f‖
n

=
log(N1 + 1)

n
≤ C(W )− δ′, δ′ > 0, (14)

where ‖f‖ refers to the cardinality of the set of messages

{i⋆ = f(xn)}. The message i⋆ = f(xn), with i⋆ ∈
{1, . . . , N1 +1}, is encoded to a sequence tn using a suitable

forward error correcting code with rate
log‖f‖

n satisfying (14)

and with error probability not exceeding ǫ
2 for sufficiently

large n. The sequence tn is sent over the channel W .

Decoder: Let zn be the channel output sequence. Terminal

B decodes the message î⋆ from the knowledge of zn. Given

î⋆ and yn, try to find j̃ such that
(

yn, un(̂i⋆, j̃)
)

∈ T Y nUn

δ .

If successful, let L(yn, î⋆) = un(̂i⋆, j̃). If there is no such

un(̂i⋆, j̃) or there are several, L is set to un
0 (since K and L

must have the same alphabet).

Error Analysis: We consider the following error events.

• E1 :=
{

(Xn, Y n) /∈ T XnY n

δ

}

.

• Suppose that (xn, yn) ∈ T XnY n

δ but the encoder cannot

find a pair (i, j) such that (xn, un(i, j)) ∈ T XnUn

δ and

un ∈ T Un|Y n

δ ,

E2 :=
⋂

i=1,...,N1

j=1,...,N2

{

(Xn, Un(i, j)) /∈ T XnUn

δ ∪ Un(i, j) /∈

T Un|Y n

δ

}

.

• Suppose that (xn, yn) ∈ T XnY n

δ and the encoder finds a

pair (i, j) such that (xn, un(i, j)) ∈ T XnUn

δ with un(i, j) ∈
T Un|Y n

δ . However, the decoder finds j̃ 6= j such that
(

yn, un(̂i, j̃)
)

∈ T Y nUn

δ ,

E3 := ∪j̃=1,...,N2

j̃ 6=j

{(

Y n, Un(̂i, j̃)
)

∈ T Y nUn

δ

}

.

• Suppose that (xn, yn) ∈ T XnY n

δ and the encoder finds a

pair (i, j) such that (xn, un(i, j)) ∈ T XnUn

δ with un(i, j) ∈
T Un|Y n

δ . However, the decoder cannot find j such that
(

yn, un(̂i, j)
)

∈ T Y nUn

δ ,

E4 :=

{

∩j=1,...,N2

{(

Y n, Un(̂i, j)
)

/∈ T Y nUn

δ

}

}

⋂ Ec
2 .

We denote by Pe the probability of the overall error event.

It follows from the union bound that

Pe ≤ Pr{E1}+ Pr{E2}+ Pr{E3}+ Pr{E4}.



In the following, we compute an upper-bound on the overall

error probability.

Pr{E1} = pnXY

(

(T XnY n

δ )c
)

= 1− pnXY

(

T XnY n

δ

)

(a)

≤ β1(n), lim
n→∞

β1(n) = 0,

where (a) follows from Lemma 3 as pnXY (T XnY n

δ ) satisfies

condition (5) w.r.t. the typicality criterion in (1).

Pr{E3}
(a)

≤
∑

j̃ 6=j

Pr
{(

Y n, Un(̂i, j̃)
)

∈ T Y nUn

δ

}

(b)
< N2 · 2−n(I(U,Y )+δ)

= 2−nδ, β3(n) := 2−nδ,

where (a) follows from the union bound and (b) follows from

Lemma 5. pUY can be computed from pU|X and pXY .

pUY (u
n, yn) =

∫

xnXn

pnU|XY (u
n|xn, yn)pnXY (x

n, yn)dxn

(a)
=

∫

xnXn

pnU|X(un|xn, yn)pnXY (x
n, yn)dxn.

(a) follows because U ◦− X ◦− Y forms a Markov chain. We

compute an upper-bound for Pr{E4}.

Pr{E4} = Pr

{

∩j=1,...,N2

{(

Y n, Un(̂i, j̃)
)

/∈ T Y nUn

δ

}

⋂

Ec
2

}

≤ Pr

{

⋂

j=1,...,N2

{(

Y n, Un(̂i, j)
)

/∈ T Y nUn

δ

∩ Un(̂i, j) ∈ T Un|Y n

δ

}

}

≤ β4(n), lim
n→∞

β4(n) = 0.

Now, we compute an upper-bound for Pr{E2}.

Pr{E2}

=

∫

xn∈Xn

pXn(xn) Pr{E2|Xn = xn}dxn

=

∫

xn /∈T
X

n|Un

δ

pXn(xn) Pr{E2|Xn = xn}dxn

+

∫

xn∈T
X

n|Un

δ

Pr

{

⋂

i=1,...,N1

j=1,...,N2

(xn, Un(i, j)) /∈ T XnUn

δ

∪ Un(i, j) /∈ T Un|Y n

δ |Xn = xn

}

pXn(xn)dxn

≤pnX

(

(T Xn|Un

δ )c
)

+

∫

xn∈T
X

n|Un

δ

Pr

{

⋂

i=1,...,N1

j=1,...,N2

Un(i, j) /∈ T Un|Xn

δ

∪ Un(i, j) /∈ T Un|Y n

δ |Xn = xn

}

pXn(xn)dxn

(a)

≤ β(n) +

∫

xn∈T
X

n|Un

δ

pXn(xn)
∏

i=1,...,N1

j=1,...,N2

(

Pr
{

Un(i, j) /∈

T Un|Xn

δ |Xn = xn
}

+ Pr
{

Un(i, j) /∈ T Un|Y n

δ |Xn = xn
}

)

dxn

(b)

≤ β(n) +

∫

xn∈T
X

n|Un

δ

(

1− 2−n(I(U,X)+δ) + β′(n)
)N1N2

pXn(xn)dxn

(c)

≤ β(n) + exp
(

−2n(−I(U,X)−δ) − β′(n)
)N1N2

≤ β(n) + exp(
(

−2n(−I(U,X)−δ)
)N1N2

· exp(−β′(n))N1N2

≤ β2(n), lim
n→∞

β2(n)
(d)
= 0,

where (a) follows because the N1N2 events of the intersec-

tion are independent and from Lemma 4, (b) follows from

Lemma 4 and Lemma 5 with limn→∞ β′(n) = 0, (c) follows

because (1 − x)m ≤ exp(−mx) and (d) follows because

limn→∞ β(n) = 0 and 1
n log(N1N2) > I(U,X). Therefore,

for large sufficiently n

Pe ≤
4

∑

i=1

βi(n) ≤
ǫ

2
.

Now, we are going to show that (K,L) satisfies (10), (11)

and (12). Clearly, (11) is satisfied for c = 2(H(X) + 1), n
sufficiently large:

|K| = N1N2 + 1

= 2(n[I(U ;X)+δ]) + 1

≤ 2(2n[I(U ;X)+δ]).



For a fixed un(i, j) ∈ Un, we compute the following

probability.

Pr{K = un(i, j)}

=

∫

xn∈T
Xn|Un

δ

Pr{K = un(i, j)|Xn = xn}pnX(xn)dxn

+

∫

xn∈(T
Xn|Un

δ
)c
Pr{K = un(i, j)|Xn = xn}pnX(xn)dxn

(a)
=

∫

xn∈T
Xn|Un

δ

Pr{K = un(i, j)|Xn = xn}pnX(xn)dxn

≤
∫

xn∈T
Xn|Un

δ

pnX(xn)dxn = pnX(T Xn|Un

δ )

(b)

≤ 2(−n(I(U ;X)+δ)),

where (a) follows because for (xn, un(i, j)) being not jointly

typical, we have Pr{K = un(i, j)|Xn = xn} = 0 and (b)
follows from Lemma 5. This yields

H(K) ≥ n(I(U ;X) + δ)

= nH + o(n).

Thus, (12) is satisfied. Now, it remains to prove that (10) is

satisfied. We further define I⋆ = f(Xn) to be the random

variable modeling the message encoded by Terminal A and

Î⋆ to be the random variable modeling the message decoded

by Terminal B. We have:

Pr{K 6= L} = Pr{K 6= L|I⋆ = Î⋆}Pr{I⋆ = Î⋆}
+ Pr{K 6= L|I⋆ 6= Î⋆}Pr{I⋆ 6= Î⋆}

≤ Pr{K 6= L|I⋆ = Î⋆}+ Pr{I⋆ 6= Î⋆}.
we define the following event:

E = “K(Xn) is equal to none of the un(i, j)s”.

We have

Pr{K 6= L|I⋆ = Î⋆}
= Pr{K 6= L|I⋆ = Î⋆, E ] Pr{E|I⋆ = Î⋆}
+ Pr{K 6= L|I⋆ = Î⋆, Ec}Pr{Ec|I⋆ = Î⋆}

(a)
= Pr{K 6= L|I⋆ = Î⋆, Ec}Pr{Ec|I⋆ = Î⋆}
≤ Pr{K 6= L|I⋆ = Î⋆, Ec},

where (a) follows from Pr{K 6= L|I⋆ = Î⋆, E} = 0, since

conditioned on I⋆ = Î⋆ and E , we know that K and L are

both equal to un
0 . It follows that

Pr{K 6= L}
≤ Pr{K 6= L|I⋆ = Î⋆, Ec}+ Pr{I⋆ 6= Î⋆]

≤ Pr{∪4
i=1Ei}+ Pr{I⋆ 6= Î⋆}

(a)

≤ Pe +
ǫ

2
(15)

≤ ǫ, (16)

where (a) follows from the union bound.

This completes the direct proof.

V. CONVERSE PROOF OF THEOREM 8

Let (K,L) be a permissible pair according to a fixed CR-

generation protocol of block-length n, as introduced in Section

III-A. We further assume that (K,L) satisfies (10) (11) and

(12). We are going to show for some ǫ′(n) > 0 that

H(K)

n
≤ max

U
U ◦−X ◦−Y

I(U ;X)−I(U ;Y )≤C(W )+ǫ′(n)

I(U ;X),

where lim
n→∞

ǫ′(n) can be made arbitrarily small for ǫ > 0 cho-

sen arbitrarily small. In our proof, we will use the following

lemma:

Lemma 11. (Lemma 17.12 in [26]) For arbitrary random

variables S and R and sequences of random variables Xn

and Y n, it holds that

I(S;Xn|R)− I(S;Y n|R)

=

n
∑

i=1

I(S;Xi|X1, . . . , Xi−1, Yi+1, . . . , Yn, R)

−
n
∑

i=1

I(S;Yi|X1, . . . , Xi−1, Yi+1, . . . , Yn, R)

= n[I(S;XJ |V )− I(S;YJ |V )],

where V = (X1, . . . , XJ−1, YJ+1, . . . , Yn, R, J), with J be-

ing a random variable independent of R, S, Xn and Y n

and uniformly distributed on {1, . . . , n}.

Let J be a random variable uniformly distributed on

{1, . . . , n} and independent of K , Xn and Y n. We further

define U = (K,X1, . . . , XJ−1, YJ+1, . . . , Yn, J). It holds that

U ◦− XJ ◦− YJ .
Notice that

H(K)
(a)
= H(K)−H(K|Xn)

= I(K;Xn)

(b)
=

n
∑

i=1

I(K;Xi|X1, . . . , Xi−1)

= nI(K;XJ |X1, . . . , XJ−1, J)

(c)

≤ nI(U ;XJ),

where(a) follows because K = Φ(Xn) and (b) and (c)
follow from the chain rule for mutual information. Ap-

plying Lemma 11 for S = K , R = ∅ with V =
(X1, . . . , XJ−1, YJ+1, . . . , Yn, J) yields

I(K;Xn)− I(K;Y n)

= n[I(K;XJ |V )− I(K;YJ |V )]

(a)
= n[I(KV ;XJ)− I(K;V )− I(KV ;YJ ) + I(K;V )]

(b)
= n[I(U ;XJ)− I(U ;YJ )], (17)



where (a) follows from the chain rule for mutual information

and (b) follows from U = (K,V ).
It results using (17) that

n[I(U ;XJ)− I(U ;YJ)] = I(K;Xn)− I(K;Y n)

= H(K)− I(K;Y n)

= H(K|Y n). (18)

Next, we will show for some ǫ′(n) > 0 that

H(K|Y n)

n
≤ C(W ) + ǫ′(n).

We have

H(K|Y n) = I(K;Zn|Y n) +H(K|Y nZn). (19)

On the one hand, it holds that

I(K;Zn|Y n) ≤ I(XnK;Zn|Y n)

(a)

≤ I(T n;Zn|Y n)

= h(Zn|Y n)− h(Zn|T n, Y n)

(b)
= h(Zn|Y n)− h(Zn|T n)

(c)

≤ h(Zn)− h(Zn|T n)

= I(T n;Zn)

(d)
=

n
∑

i=1

I(Zi;T
n|Zi−1)

=

n
∑

i=1

h(Zi|Zi−1)− h(Zi|T n, Zi−1)

(e)
=

n
∑

i=1

h(Zi|Zi−1)− h(Zi|Ti)

(f)

≤
n
∑

i=1

h(Zi)− h(Zi|Ti)

=

n
∑

i=1

I(Ti;Zi)

≤ nC(W ), (20)

where (a) follows from the Data Processing Inequality because

Y n ◦− XnK ◦− T n ◦− Zn forms a Markov chain, where

we used the fact that the Data Processing inequality holds

also for continuous random variables [27], (b) follows because

Y n ◦− XnK ◦− T n ◦− Zn forms a Markov chain, (c)(f) follow

because conditioning does not increase entropy, (d) follows

from the chain rule for mutual information and (e) follows

because T1, . . . , Ti−1, Ti+1, . . . , Tn, Z
i−1 ◦− Ti ◦− Zi forms a

Markov chain. On the other hand, it holds that

H(K|Y n, Zn)
(a)

≤ H(K|L)
(b)

≤ 1 + log|K|Pr[K 6= L]

(c)

≤ 1 + ǫcn, (21)

where (a) follows from L = Ψ(Y n, Zn) in (9), (b) follows

from Fano’s Inequality using (10) and (c) follows from (11).

It follows from (19), (20) and (21) that

H(K|Y n)

n
≤ C(W ) + ǫ′(n), (22)

where ǫ′(n) = 1
n + ǫc. From (18), we deduce that

I(U ;XJ)− I(U ;YJ) ≤ C(W ) + ǫ′(n). (23)

Since the joint distribution of XJ and YJ is equal to pXY ,
H(K)

n is upper-bounded by I(U ;X) subject to I(U ;X) −
I(U ;Y ) ≤ C(W ) + ǫ′(n) with U satisfying U ◦− X ◦− Y .

As a result, it holds that

H(K)

n
≤ max

U
U ◦−X ◦−Y

I(U ;X)−I(U ;Y )≤C(W )+ǫ′(n)

I(U ;X).

Here, lim
n→∞

ǫ′(n) can be made arbitrarily small by choosing ǫ

to be an arbitrarily small positive constant. This completes the

converse proof of Thereom 8.

VI. CONCLUSION

In this paper, we investigated the problem of CR generation

from correlated Gaussian sources with communication over

noisy channels. We extended the CR capacity formula estab-

lished in [2] to Gaussian sources and showed that in contrast to

the discrete case, where the CR capacity is always finite, one

can achieve an infinite CR rate when the Gaussian sources are

perfectly correlated. The obtained results are highly useful in

the problem of correlation-assisted identification over Gaus-

sian channels as well as the problem of identification over

Gaussian channels in the presence of noisy feedback.
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