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Abstract—The capacity of a channel can usually be charac-
terized as a maximization of certain entropic quantities. From
a practical point of view it is of primary interest to not only
compute the capacity value, but also to find the corresponding
optimizer, i.e., the capacity-achieving input distribution. This pa-
per addresses the general question of whether or not it is possible
to find algorithms that can compute the optimal input distribution
depending on the channel. For this purpose, the concept of Turing
machines is used which provides the fundamental performance
limits of digital computers and therewith fully specifies tasks
are algorithmically feasible in principle. It is shown for discrete
memoryless channels that it is impossible to algorithmically
compute the capacity-achieving input distribution, where the
channel is given as an input to the algorithm (or Turing
machine). Finally, it is further shown that it is even impossible
to algorithmically approximate these input distributions.

Index Terms—Capacity-achieving input distribution, Turing
machine, computability, approximability.

I. INTRODUCTION

The capacity of a channel describes the maximum rate at

which a sender can reliably transmit a message over a noisy

channel to a receiver. Accordingly, the capacity is a function

of the channel and is usually expressed by entropic quantities

that are maximized over all possible input distributions. To

this end, a (numerical) evaluation of the capacity and a char-

acterization of the optimal input distribution that maximizes

the capacity expression are important and common tasks in

information and communication theory. To date, for discrete

memoryless channels (DMCs) no closed form solution for
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the optimal input distribution as a function of the channel is

known. Therefore, several approaches have been proposed to

algorithmically compute the capacity and also (implicitly) the

corresponding optimizer. This is an interesting and challenging

task which can be seen already for the binary symmetric

channel whose capacity is a transcendental number1 in general

(see also the appendix for a detailed discussion on this). Thus,

an exact computation of the capacity value is not possible on

a digital computer as any practical algorithm must stop after

a finite number of computation steps and, therefore, only an

approximation of the capacity value is possible.

A famous iterative algorithm for the computation of the

capacity of an arbitrary DMC was independently proposed in

1972 by Arimoto [1] and Blahut [2], where the latter further

presented a corresponding algorithm for the computation of

the rate-distortion function. This iterative algorithm is now

referred to as the Blahut-Arimoto algorithm. It was further

studied by Csiszár [3] and later generalized by Csiszár and

Tusnády [4]. The Blahut-Arimoto algorithm also appears in

introductory textbooks on information theory such as [5]

and [6]. Since then, the Blahut-Arimoto algorithm has been

extensively studied and extended to various scenarios, cf. for

example [7–14].

Blahut motivated his studies in [2] by the desire to use

digital computers, which were becoming more and more

powerful at this time, for the numerical computation of the

capacity of DMCs. Since the seminal works [1] and [2],

digital computers have been extensively used in information

and communication theory to simulate and evaluate the per-

formance of communication systems. Not surprisingly, higher-

layer network simulations on high performance computers

became a commonly used approach for the design of practical

systems. A critical discussion on this trend is given in [15].

In this paper, we address the issue of computing the optimal

input distribution from a fundamental algorithmic point of

view by using the concept of a Turing machine [16–18]

and the corresponding computability framework. The Turing

machine is a mathematical model of an abstract machine that

manipulates symbols on a strip of tape according to certain

given rules. It can simulate any given algorithm and therewith

provides a simple but very powerful model of computation.

Turing machines have no limitations on computational com-

plexity, unlimited computing capacity and storage, and execute

programs completely error-free. They are further equivalent to

the von Neumann-architecture without hardware limitations

1An algebraic number is a number that is a root of a non-zero polynomial
with integer coefficients. A transcendental number is a number that is not
algebraic, i.e., it is not a root of any non-zero integer polynomial.
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and the theory of recursive functions, cf. also [19–23]. Ac-

cordingly, Turing machines provide fundamental performance

limits for today’s digital computers and are the ideal concept

to study whether or not such computation tasks can be done

algorithmically in principle.

Communication from a computability or algorithmic point

of view has attracted some attention recently. In [24] the

computability of the capacity functions of the wiretap channel

under channel uncertainty and adversarial attacks is studied.

The computability of the capacity of finite state channels

is studied in [25] and of non-i.i.d. channels in [26]. These

works have in common that they study capacity functions of

various communication scenarios and analyze the algorithmic

computability of the capacity function itself. While for DMCs

the capacity function is a computable continuous function

and therewith indeed algorithmically computable [27, 28], this

is no longer the case for certain multi-user scenarios or

channels with memory. However, they do not consider the

computation of the optimal input distributions which, to the

best of our knowledge, have not been studied so far from

a fundamental algorithmic point of view. In addition, even

if the capacity is computable, it is still not clear whether

or not the corresponding optimal input distributions can be

algorithmically computed.

We consider finite input and output alphabets. Due to the

properties of the mutual information, the set of capacity-

achieving input distributions is mathematically well defined

for every DMC and so are all functions that map every channel

to a corresponding capacity-achieving input distribution. A

practically relevant question is now whether or not these

functions are also algorithmically well defined. With this we

mean whether or not it is possible to find at least one function

that can be implemented by an algorithm (or Turing machine).

This is equivalent to the question of whether or not a Turing

machine exists that gets a computable channel as input and

subsequently computes an optimal input distribution of this

channel.

In this paper, we give a negative answer to the question

above by showing that it is in general impossible to find an

algorithm (or Turing machine) that is able to compute the opti-

mal input distribution when the channel is given as an input. To

this end, we first introduce the computability framework based

on Turing machines in Section II. The communication system

model and the precise problem formulation are subsequently

introduced in Section III. We show that all functions that map

channels to their corresponding optimal input distributions are

not Banach-Mazur computable and therewith also not Turing

computable. As a consequence, there is no algorithm (or

Turing machine) that is able to compute the optimizer, i.e.,

the capacity-achieving input distribution. Subsequently, it is

shown that it is further not even possible to algorithmically

approximate the optimizer, i.e., the capacity-achieving input

distribution, within a given tolerated error. The corresponding

proofs are given in Section IV for the non-computability of

the optimizer and in Section V for the non-approximability.

Finally, a conclusion is given in Section VI.

Notation

Discrete random variables are denoted by capital letters and

their realizations and ranges by lower case and calligraphic

letters, respectively; all logarithms and information quantities

are taken to the base 2; N, Q, and R are the sets of

non-negative integers, rational numbers, and real numbers;

P(X ) denotes the set of all probability distributions on X
and CH(X ;Y) denotes the set of all stochastic matrices

(channels) X → P(Y); the binary entropy is denoted by

h2(p) = −p log p − (1 − p) log(1 − p) and I(X ;Y ) denotes

the mutual information between the input X and the output Y
which we interchangeably also write as I(p,W ) to emphasize

the dependency on the input distribution p ∈ P(X ) and the

channel W ∈ CH(X ;Y); the ℓ1-norm is denoted by ‖ · ‖ℓ1 .

II. COMPUTABILITY FRAMEWORK

We first introduce the computability framework based on

Turing machines which provides the needed background.

Turing machines are extremely powerful compared to state-

of-the-art digital signal processing (DSP) and field gate pro-

grammable array (FPGA) platforms and even current super-

computers. It is the most general computing model and is

even capable of performing arbitrary exhaustive search tasks

on arbitrary large but finite structures. The complexity can

even grow faster than double-exponentially with the set of

parameters of the underlying communication system (such as

time, frequencies, transmit power, modulation scheme, number

of antennas, etc.).

In what follows, we need some basic definitions and

concepts of computability which are briefly reviewed. The

concept of computability and computable real numbers was

first introduced by Turing in [16] and [17].

Recursive functions f : N → N map natural numbers

into natural numbers and are exactly those functions that are

computable by a Turing machine. They are the smallest class

of partial functions that includes the primitive functions (i.e.,

constant function, successor function, and projection function)

and is further closed under composition, primitive recursion,

and minimization. For a detailed introduction, we refer the

reader to [29] and [27]. With this, we call a sequence of

rational numbers (rn)n∈N a computable sequence if there exist

recursive functions a, b, s : N → N with b(n) 6= 0 for all

n ∈ N and

rn = (−1)s(n)
a(n)

b(n)
, n ∈ N; (1)

cf. [29, Def. 2.1 and 2.2] for a detailed treatment. A real

number x is said to be computable if there exists a computable

sequence of rational numbers (rn)n∈N and a recursive function

ϕ such that we have for all M ∈ N

|x− rn| < 2−M (2)

for all n ≥ ϕ(M). Thus, the computable real x is represented

by the pair ((rn)n∈N, ϕ). Note that a computable real number

usually has multiple different representations. For example,

there are multiple algorithms known for the computation of
1
π

or e−1. This form of convergence (2) with a computable
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control of the approximation error is called effective conver-

gence. Note that if a computable sequence of computable real

numbers (rn)n∈N converges effectively to a limit x, then x is

a computable real number, cf. [27]. Furthermore, the set Rc of

all computable real numbers is closed for addition, subtraction,

multiplication, and division (excluding the division by zero).

We denote the set of computable real numbers by Rc. Based on

this, we define the set of computable probability distributions

Pc(X ) as the set of all probability distributions PX ∈ P(X )
such that PX(x) ∈ Rc for all x ∈ X . Further, let CHc(X ;Y)
be the set of all computable channels, i.e., for a channel

W : X → P(Y) we have W (·|x) ∈ Pc(Y) for every x ∈ X .

Definition 1. A function f : Rc → Rc is called Borel-Turing

computable if there exists an algorithm or Turing machine Tf

such that Tf obtains for every x an arbitrary representation

((rn)n∈N, ϕ) for it as input and then computes a representation

((r̂n)n∈N, ϕ̂) for f(x).

Remark 1. Borel-Turing computability characterizes exactly

the behavior that is expected when functions are simulated

and evaluated on digital hardware platforms. A program

for the computation of f(x) must receive a representation

((rn)n∈N, ϕ) for the input x. Based on this, the program com-

putes the representation ((r̂n)n∈N, ϕ̂) for f(x). This means

that if f(x) needs to be computed with a tolerated approxi-

mation error of 1
2M , then it is sufficient to compute the rational

number r̂ϕ̂(M) and the corresponding Turing machine outputs

r̂ϕ̂(M). For example, this is done and further discussed for the

function f(x) = e−x, x ∈ [0, 1], x ∈ Rc in Appendix A.

Remark 2. A practical digital hardware platform and also a

Turing machine must stop after finitely many computation

steps when computing a value of a function. Thus, the com-

puted value of the function must be a rational number. As

a consequence, a Turing machine can only compute rational

numbers exactly. However, it is important to note that in in-

formation and communication theory, the relevant information-

theoretic functions are in general not exactly computable even

for rational channel and system parameters. For example,

already for |X | = 2 and rational probability distribution

p ∈ P(X ), p 6=
(

1
2 ,

1
2

)

, the corresponding binary entropy

h2(p) is a transcendental number and therewith not exactly

computable. Even if this would be done symbolically with al-

gebraic numbers, the binary entropy would not be computable.

As a consequence, already for the binary symmetric channel

(BSC) with rational crossover probability ǫ ∈ (0, 1
2 ) ∩ Q, the

capacity CBSC(ǫ) = 1 − h2(ǫ) is a transcendental number

and therewith an exact computation of the capacity is not

possible. A proof for this statement is given in Appendix B

for completeness.

There are also weaker forms of computability including

Banach-Mazur computability. In particular, Borel-Turing com-

putability implies Banach-Mazur computability, but not vice

versa. For an overview of the logical relations between differ-

ent notions of computability we refer to [19] and, for example,

the introductory textbook [18].

Definition 2. A function f : Rc → Rc is called Banach-

Mazur computable if f maps any given computable sequence

(xn)n∈N of computable real numbers into a computable se-

quence (f(xn))n∈N of computable real numbers.

We further need the concepts of a recursive set and a

recursively enumerable set as, for example, defined in [29].

Definition 3. A set A ⊂ N is called recursive if there exists

a computable function f such that f(x) = 1 if x ∈ A and

f(x) = 0 if x /∈ A.

Definition 4. A set A ⊂ N is recursively enumerable if there

exists a recursive function whose range is exactly A.

We have the following properties which will be crucial later

for proving the desired results; cf. also [29] for further details.

• A is recursive is equivalent to A is recursively enumer-

able and Ac is recursively enumerable.

• There exist recursively enumerable sets A ⊂ N that are

not recursive, i.e., Ac is not recursively enumerable. This

means there are no computable, i.e., recursive, functions

f : N → Ac where for each m ∈ Ac there exists an x
with f(x) = m.

III. PROBLEM FORMULATION AND MAIN RESULTS

Here, we introduce the communication scenario of interest

and present the main problem and results of this work.

A. Communication System Model

We consider a point-to-point channel with one transmitter

and one receiver which defines the most basic communi-

cation scenario. Let X and Y be finite input and output

alphabets. Then the channel is given by a stochastic matrix

W : X → P(Y) which we also equivalently write as

W ∈ CH(X ;Y). The corresponding DMC is then given by

Wn(yn|xn) :=
∏n

i=1 W (yi|xi) for all xn ∈ Xn and yn ∈ Yn.

Definition 5. An (Mn, En, Dn)-code Cn(W ) of blocklength

n ∈ N for the DMC W ∈ CH(X ;Y) consists of an encoder

En : Mn → Xn at the transmitter with a set of messages

Mn := {1, ...,Mn} and a decoder Dn : Yn → Mn at the

receiver.

The transmitted codeword needs to be decoded reliably at

the receiver. To model this requirement, we define the average

probability of error as

ēn :=
1

|Mn|

∑

m∈Mn

∑

yn:Dn(yn) 6=m

Wn(yn|xn
m)

and the maximum probability of error as

emax,n := max
m∈Mn

∑

yn:Dn(yn) 6=m

Wn(yn|xn
m)

with xn
m = En(m) the codeword for message m ∈ Mn.

Definition 6. A rate R > 0 is called achievable for the DMC

W if there exists a sequence (Cn(W ))n∈N of (Mn, En, Dn)-
codes such that we have 1

n
logMn ≥ R and ēn ≤ ǫn (or

emax,n ≤ ǫn, respectively) with ǫn → 0 as n → ∞. The
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capacity C(W ) of the DMC W is given by the supremum of

all achievable rates R.

The capacity of the DMC has been established and goes

back to the seminal work of Shannon [30].

Theorem 1. The capacity C(W ) of the DMC W under both

the average and maximum error criteria is

C(W ) = max
X

I(X ;Y ) = max
p∈P(X )

I(p,W ). (3)

The capacity of a channel characterizes the maximum

transmission rate at which the users can reliably communicate

with vanishing probability of error. Note that for DMCs, there

is no difference in the capacity whether the average error or

the maximum error criterion is considered.

Remark 3. Capacity expressions such as (3) for the point-

to-point channel have further been established for various

multi-user communication scenarios, cf. for example [31] and

references therein. They all have in common that these are

characterized by entropic quantities.

B. Blahut-Arimoto Algorithm

The Blahut-Arimoto algorithm as initially proposed in [1]

and [2] tackles the problem of numerically computing the

capacity of DMCs with finite input and output alphabets. This

algorithm is an alternating optimization algorithm, which has

become a standard technique of convex optimization. It has

the advantage that it exploits the properties of the mutual

information to obtain a simple method to compute the capacity.

For a DMC W , the algorithm computes the following two

quantities at the n-th iteration:

1) an input distribution pn = pn(W )
2) an approximation to the capacity given by the mutual

information I(pn,W ) for this input distribution.

This means the algorithm computes a sequence p0(W ),
I(p0,W ), p1(W ), I(p1,W ), ... , pn(W ), I(pn,W ), ... where

each element in the sequence is a function of the previous ones

except the initial input distribution p0(W ) which is arbitrarily

chosen.

For the sequence p0(W ), p1(W ), ... it is shown in [1–3] that

it converges to an optimizer, i.e., to an optimal input distribu-

tion. First, the existence of a limit p∗ = p∗(W ) ∈ P(X ) of

this sequence is shown by the Bolzano–Weierstrass theorem,

cf. for example [32]. Subsequently, it is shown that this limit

must be an optimal input distribution, i.e., p∗ ∈ Popt(W ) with

Popt(W ) =
{

p ∈ P(X ) : I(p,W ) = C(W )
}

(4)

the set of optimal input distributions. The Heine-Borel theorem

is a simple technique to show the existence of solutions

of certain problems, but, in general, it does not provide an

algorithm to compute this solution; in this case the optimal

input distribution as a function of the channel.

For the capacity, a stopping criterion is provided, i.e., we

can choose a certain approximation error 1
2M > 0, M ∈ N,

and the algorithm stops if this tolerated error is satisfied so

that the computed value I(pn,W ) is within this error to the

actual capacity C(W ), i.e.,

∣

∣C(W )− I(pn,W )
∣

∣ <
1

2M
.

On the other hand, for the optimizer, i.e., the optimal input

distribution, a stop criterion has not been given in [1–3],

i.e., we cannot control when the algorithm should stop for

a given maximum tolerable error. Such a stopping criterion

could similarly be defined, e.g., when

∥

∥p∗ − pn(W )
∥

∥

ℓ1
<

1

2M

with p∗ ∈ Popt(W ) a capacity-achieving input distribution is

satisfied and further a computable upper bound for the speed

of convergence is given. Surprisingly, to date such a stopping

criterion has not been found. In particular, our results even

show that such a stopping criterion cannot exist! We will come

back to this issue in more detail in the following subsection.

In fact, both seminal papers [1] and [2] do not only aim at

computing the capacity, but also propose an algorithm for the

computation of a sequence of input distributions pn ∈ P(X )
and study the convergence to a maximum p∗ ∈ Popt(W ) for

a fixed channel W , i.e.,

I(p∗,W ) = C(W ) = max
p∈P(X )

I(p,W ).

They state that a suitable subsequence (pnl
)l∈N converges to

an optimizer, but without providing a stopping criterion. That

this is problematic has been realized afterwards by Csiszár

who explicitly states in [3] that there is no stopping criterion

for the computation of the optimizer.

C. Computability of an Optimal Input Distribution

The capacity C(W ) = maxp∈P(X ) I(p,W ) of the DMC

W , cf. (3), is given by a maximization problem, where the

mutual information I(p,W ) is maximized over all possible

input distributions p ∈ P(X ). Since I(p,W ) is continuous in

(p,W ), concave in the input distribution p, and convex in the

channel W , there exists for every channel W ∈ CH(X ;Y) at

least one optimal input distribution p∗(W ) ∈ Popt(W ). Note

that the set Popt(W ) is a convex set for each channel W .

Now, we can choose for every channel W ∈ CH(X ;Y) such

a capacity-achieving input distribution p∗ = p∗(W ). Then

F (W ) = p∗(W ) is a mathematically well defined function

of the form

F : CH(X ;Y) → P(X ) (5)

which maps every channel to an optimal input distribution for

this channel. We call F an optimal assignment function and

denote by Mopt(X ;Y) the set of all these functions. The set

Mopt(X ;Y) is of crucial practical importance and, in particu-

lar, it would be interesting to find functions F ∈ Mopt(X ;Y)
that can be described algorithmically. Note that in general,

this function F does not need to be unique and there can

be infinitely many such functions. Further, for computable

channels W ∈ CHc(X ;Y) we always have F (W ) ∈ Pc(X ).

Remark 4. From a practical point of view it is interesting

to understand whether or not there exists a function F
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with F (W ) ∈ Popt(W ) for all W ∈ CHc(X ;Y) that is

Borel-Turing computable. Since exactly in this case there

is an algorithm (or Turing machine) that takes the channel

W ∈ CHc(X ;Y) as an input and computes a corresponding

capacity-achieving input distribution F (W ) = p∗(W ) ∈
Popt(W ). It is clear that we consider only computable channels

W ∈ CHc(X ;Y) as inputs for the Turing machine as it can

operate work only with such inputs. More specifically, for

W ∈ CHc(X ;Y) such a Turing machine gets an arbitrary

representation of W as input, i.e., W (y|x) is given by a

representation ((rn(x, y))n∈N, ϕ
(x,y)) for all x ∈ X , y ∈ Y .

This means that for all x ∈ X , y ∈ Y we have for all N ∈ N

∣

∣W (y|x)− rn(x, y)
∣

∣ <
1

2N

for all n ≥ ϕ(x,y)(N). As a result, the Turing ma-

chine computes a representation of F (W ) ∈ Popt(W ), i.e.,

((r∗n(x))n∈N, ϕ
(∗,x)) is a representation of p∗(x), x ∈ X , with

F (W ) = p∗ =
(

p∗(1), . . . , p∗(|X |)
)

. Thus, for all x ∈ X it

holds that for all N ∈ N

∣

∣p∗(x) − r∗n(x)
∣

∣ <
1

2N
(6)

for all n ≥ ϕ(∗,x)(N).

Accordingly, in the following we will address this question

in detail and study whether or not it is possible to find such

a Turing machine that computes a capacity-achieving input

distribution for a given channel.

Question 1: Let X and Y be finite input and output

alphabets. Is there an algorithm (or Turing machine)

T that takes an arbitrary representation of W ∈
CHc(X ;Y) as an input and computes a description of

p∗(W ) ∈ Popt(W )?

Remark 5. Question 1 formalizes exactly what we would

require from an algorithmic construction of optimal input

distributions on digital hardware platforms. From a practical

point of view, a simulation on a digital hardware must stop

after a finite number of computations. Usually, it should stop

if for W ∈ CHc(X ;Y) the computed approximation of an

input distribution p∗(W ) ∈ Popt(W ) satisfies a given but fixed

approximation error. This constraint on the approximation

error is exactly modeled by the representation of p∗(W ). If

the representation ((r∗n(x))n∈N, ϕ
(∗,x)), x ∈ X , of p∗(W ) has

been computed for a tolerated error 1
2N and r being the small-

est natural number such that 2r > |X |, then the approximation

process can be stopped after N∗ = maxx∈X ϕ(∗,x)(N + r)
steps, since we have

∑

x∈X

∣

∣p∗(x)− r∗N∗(x)
∣

∣ <
∑

x∈X

1

2N+r
=

|X |

2N+r
<

1

2N
.

This would provide us a stopping criterion as discussed in

Section III-B for the Blahut-Arimoto algorithm.

Now we can state the following result which provides a

negative answer to Question 1 above.

Theorem 2. Let X and Y be arbitrary but finite alphabets

with |X | ≥ 3 and |Y| ≥ 2. Then there is no function F ∈
Mopt(X ;Y) that is Banach-Mazur computable.

Proof: The proof is given in Section IV.

From this, we can immediately conclude the following.

Corollary 1. There is no Turing machine T that takes a

channel W ∈ CHc(X ;Y) as an input and computes an

optimal input distribution p ∈ Popt(W ) for this channel.

Proof: If such a Turing machine would exist, then the cor-

responding function F would be Banach-Mazur computable.

This is a contradiction to Theorem 2 so that such a Turing

machine cannot exist.

Remark 6. This shows that such a Turing machine cannot

exist providing a negative answer to Question 1 above. As

a consequence, this means also that a function F as in (5)

cannot exist for which F (W ) can “easily” be computed for

W . In particular, this excludes the possibility to find a function

F that provides a “closed form solution”, since this would

be then Turing computable and therewith algorithmically con-

structable, cf. also [33, 34].

Remark 7. It is of interest to discuss the Blahut-Arimoto

algorithm taking the result in Theorem 2 into account. This

algorithm computes for each channel W ∈ CHc(X ;Y) an

optimal input distribution p∗(W ) ∈ Popt(W ) and a corre-

sponding sequence (pn)n∈N for the representation of p∗(W ).
The second crucial ingredient of the representation of p∗(W )
is a stopping criterion for the computation of the sequence

(pn)n∈N for a given approximation error 1
2N . Such a stopping

criterion is not provided by the Blahut-Arimoto algorithm.

This was already criticized by Csiszár in [3]. Our Theorem 2

shows now that such a computable stopping criterion as a

function of the representation of the channel cannot exist!

The statement on the impossibility of the algorithmic

solvability is closely connected to the underlying hardware

platform (Turing machine) and therewith, equivalently, to the

admissible programming languages (Turing complete) and also

the admissible signal processing operations. Note that for other

computing platforms (such as neuromorphic or quantum com-

puting platforms) this statement need not be the case. However,

whenever simulations are done in the broad area of information

theory, communication theory, or signal processing, these are

done on digital hardware platforms for which Turing machines

provide the underlying computing framework.

Remark 8. It is helpful and very interesting to gain further

intuition and insight into the non-computability by Turing ma-

chines and other potential computing platforms. For example,

it has been a long-standing open problem to describe the roots

of polynomials by radicals as a function of the coefficients of

the polynomial. To this end, Galois showed this is not possible

in general for polynomials of the order 5 or higher [35]. This

means that the roots of polynomials of order 5 or higher cannot

be expressed as a “closed form solution” by radicals; see [35]

and further discussions in [33, 34]. On the other hand, from

the complex analysis there are algorithms known that are able
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to approximate these roots. This shows that the “computing

theory of radicals” is not sufficient for the computation of the

roots of polynomials of order 5 or higher, but other techniques

from complex analysis enable the approximation thereof.

D. Approximability of an Optimal Input Distribution

Above we have shown that it is impossible to algorithmi-

cally construct optimal, i.e., capacity-achieving, input distri-

butions. Consequently, we are now interested to understand

whether or not it is at least possible to algorithmically ap-

proximate such distributions.

We have seen that all functions F : CHc(X ;Y) → P(X )
with F (W ) ∈ Popt(W ) for all W ∈ CHc(X ;Y) are not

Banach-Mazur computable and therewith also not Borel-

Turing computable. The question is now whether or not we can

instead solve this problem approximately, i.e., does there exist

a computable sequence of Borel-Turing computable functions

Fn, n ∈ N, with Fn : CHc(X ;Y) → Pc(X ), n ∈ N, such

that for all W ∈ CHc(X ;Y) for a suitable function F with

F (W ) ∈ Popt(W ) for all W ∈ CHc(X ;Y) we always have

∥

∥F (W )− Fn(W )
∥

∥

ℓ1
<

1

2n
.

This is equivalent to the question of if there exists a Turing

machine T that takes an arbitrary representation of W ∈
CHc(X ;Y) and n ∈ N as inputs and then computes for W
and n a representation for pn(W ) ∈ P(X ) such that

∥

∥F (W )− pn(W )
∥

∥

ℓ1
<

1

2n
. (7)

And this is equivalent to the question of whether or not it

is possible to find a Turing machine T with the following

properties: T takes the channel and natural numbers as inputs

and computes a description of an input distribution. This

input distribution must satisfy the following: for all W ∈
CHc(X ;Y) and all n ∈ N the Turing machine must compute

for every description for W a description of pn(W ) such that

for a suitable p∗(W ) ∈ Popt(W ) it always holds

∥

∥p∗(W )− pn(W )
∥

∥

ℓ1
<

1

2n
.

The input n of this Turing machine T could enable the

algorithmic approximation of the optimal input distribution.

A negative answer can be immediately given to this question

based on the results obtained above, since a function F must

be Borel-Turing computable, see also [25]. We can formalize

the following question.

Question 2: Let X and Y be finite input and output

alphabets with |X | ≥ 3 and |Y| ≥ 2. Is it possible

to approximate a function F ∈ Mopt(X ;Y) by com-

putable functions. Is there a function F ∈ Mopt(X ;Y)
and a computable function F1 such that

sup
W∈CHc(X ;Y)

∥

∥F (W )− F1(W )
∥

∥

ℓ1
<

1

2
.

Remark 9. With this question we ask whether or not the

previous condition (7) as the supremum can be satisfied for

the trivial case n = 1.

Theorem 3. Let X and Y be arbitrary but finite alphabets with

|X | ≥ 3 and |Y| ≥ 2. Let F ∈ Mopt(X ;Y) be an arbitrary

function and let F1 be another arbitrary function with

sup
W∈CHc(X ;Y)

∥

∥F (W )− F1(W )
∥

∥

ℓ1
= α <

1

2
.

Then F1 is not Banach-Mazur computable.

Proof: The proof is given in Section V.

From this we immediately obtain the following result.

Corollary 2. Let F ∈ Mopt(X ;Y) be an arbitrary function.

For α < 1
2 arbitrary, there exists no Turing machine T∗ such

that for all W ∈ CHc(X ;Y),
∥

∥F (W )− T∗(W )
∥

∥

ℓ1
≤ α

is true.

Proof: If such a function F ∈ Mopt(X ;Y) would exist

for which we can find a Turing machine T∗ with α̂ < 1
2 , then

F1(W ) = T∗(W ), W ∈ CHc(X ;Y), would be Banach-Mazur

computable.

As a consequence, we can further conclude the following.

Corollary 3. The approximation problem stated in Question 2

is not solvable.

Proof: Already for n = 2 this is not possible.

IV. NON-COMPUTABILITY OF THE OPTIMIZER

Before we present the proof of Theorem 2, we first need

to define and discuss specific channels and their optimal input

distributions.

A. Preliminary Considerations

Let X and Y be arbitrary but finite alphabets with |X | = 3
and |Y| = 2. We define the channel

W∗ =

(

1 0 0
0 1 1

)

(8)

and further consider the channels

W1,µ =

(

1 0 µ
0 1 1− µ

)

and W2,µ =

(

1 µ 0
0 1− µ 1

)

for µ ∈ (0, 1). We define the distance between two channels

W1,W2 ∈ CH(X ;Y) based on the total variation distance as

D(W1,W2) := max
x∈X

∑

y∈Y

∣

∣W1(y|x) −W2(y|x)
∣

∣

and observe that

lim
µ→0

D(W∗,W1,µ) = lim
µ→0

D(W∗,W2,µ) = 0.

We consider the set

P1 =
{

p = (p1, p2, p3) ∈ P(X ) : p1 =
1

2
and p2 + p3 =

1

2

}

.
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Then we have

max
p∈P(X )

I(p,W∗) = 1 = I(p∗,W∗)

with p∗ ∈ P1 arbitrary. This means P1 is the set of all

maximizing input distributions for the channel W∗, since

I(p,W∗) = p1 · 1 · log
1 · p1
p1 · p1

+ p2 · 1 · log
1 · p2

p2(p2 + p3)

+ p3 · 1 · log
1 · p3

p3(p2 + p3)

= p1 log
1

p1
+ (p2 + p3) log

1

p2 + p3

= p1 log
1

p1
+ (1 − p1) log

1

1− p1
= h2(p1)

where h2(·) is the binary entropy function. This means that

for all p with p1 ∈ [0, 1]\{ 1
2} we always have

I(p,W∗) < 1 = h2(p∗) = I(p∗,W∗)

with p∗ ∈ P1 arbitrary as defined above.

Next, we define the channel

Ŵ =

(

1 0 1
0 1 0

)

and for µ ∈ [0, 1] we have

W1,µ = (1− µ)W∗ + µŴ .

Then for p ∈ P(X ) arbitrary, we always have

I(p,W1,µ) ≤ (1− µ)I(p,W∗) + µI(p, Ŵ ).

We now consider the set

P2 =
{

p = (p1, p2, p3) ∈ P(X ) : p2 =
1

2
and p1 + p3 =

1

2

}

.

Similarly, we can show for the channel Ŵ that

max
p∈P(X )

I(p, Ŵ ) = 1 = I(p̂, Ŵ )

with p̂ ∈ P2 arbitrary. Further, we have

P1 ∩ P2 =





1
2
1
2
0



 .

For p ∈ P(X ), p 6= (12 ,
1
2 , 0), we must have

I(p,W∗) < 1 or I(p, Ŵ ) < 1.

Thus, for arbitrary p ∈ P(X ) with p ∈ P(X ), p 6= (12 ,
1
2 , 0)

we always have

I(p,W1,µ) ≤ (1 − µ)I(p,W∗) + µI(p, Ŵ )

< (1 − µ) + µ

= 1.

For

p
(1)
∗ =





1
2
1
2
0





we have

I(p
(1)
∗ ,W1,µ) = 1

for µ ∈ [0, 1]. Consequently, for channel W1,µ for µ ∈
(0, 1) there is exactly one optimal input distribution, i.e.,

Popt(W1,µ) = {p
(1)
∗ }.

Similarly, one can show that for channel W2,µ for µ ∈
(0, 1) there is exactly one optimal input distribution, i.e.,

Popt(W2,µ) = {p
(2)
∗ } given by

p
(2)
∗ =





1
2
0
1
2



 .

B. Non-Computability of an Optimal Input Distribution

Now we are in the position to prove Theorem 2. We start

with the case |X | = 3 and |Y| = 2 and prove the desired result

by contradiction. For this purpose, we assume that there exists

a function F ∈ Mopt(X ;Y) that is Banach-Mazur computable.

This means that every computable sequence (Wn)n∈N of

computable channels Wn ∈ CHc(X ;Y) is mapped to a com-

putable sequence (pn)n∈N of computable input distributions

pn ∈ Pc(X ) for all n ∈ N. For the set of optimal input

distributions (4) we always have Popt(W ) 6= ∅. Further, let F
be an arbitrary function as in (5) and

F (W ) ∈ Popt(W ),

i.e., F maps every channel to an optimal input distribution for

this channel.

For our previously defined channel W∗, cf. (8), we therefore

have

F (W∗) ∈ Popt(W∗) = P1.

For µ ∈ (0, 1), we further have

F (W1,µ) = p
(1)
∗

since Popt(W1,µ) = {p
(1)
∗ } for µ ∈ (0, 1).

For µ ∈ (0, 1) we also have

F (W2,µ) = p
(2)
∗

since Popt(W2,µ) = {p
(2)
∗ } for µ ∈ (0, 1). We have p

(1)
∗ ∈ P1,

p
(2)
∗ ∈ P1, and ‖p

(1)
∗ − p

(2)
∗ ‖ = 1. With this, we obtain

1 =
∥

∥p
(1)
∗ − p

(2)
∗

∥

∥

ℓ1

=
∥

∥p
(1)
∗ − F (W∗) + F (W∗)− p

(2)
∗

∥

∥

ℓ1

≤
∥

∥p
(1)
∗ − F (W∗)

∥

∥

ℓ1
+
∥

∥F (W∗)− p
(2)
∗

∥

∥

ℓ1

≤ 2max
{

∥

∥p
(1)
∗ − F (W∗)

∥

∥

ℓ1
,
∥

∥p
(2)
∗ − F (W∗)

∥

∥

ℓ1

}

so that

max
{

∥

∥p
(1)
∗ − F (W∗)

∥

∥

ℓ1
,
∥

∥p
(2)
∗ − F (W∗)

∥

∥

ℓ1

}

≥
1

2
.

Let A ⊂ N be a recursively enumerable set that is not

recursive, cf. Section II. Let g : N → A be a computable

function where for each m ∈ A there exists a k with g(k) = m
and g(k1) 6= g(k2) for k1 6= k2.

Let TA be a Turing machine that accepts exactly the set A,

i.e., TA stops for input k ∈ N if and only if k ∈ A. Otherwise,
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TA runs forever and does not stop. For k ∈ N and n ∈ N, we

define the function

q(k, n)=

{

2s+2 if TA stops for input k after s ≤ n steps

2n+2 if TA does not stop for input k after n steps.

Note that q : N× N → N is a computable function.

Let k, n ∈ N be arbitrary. If k is odd, i.e., k ∈ O with

O ⊂ N the set of all odd numbers, then we have k = 2l − 1,

l ≥ 1, l ∈ N, and we consider the channel Wk,n := W1, 1
q(l,n)

.

If k is even, i.e., k ∈ E with E ⊂ N the set of all even

numbers, then we have k = 2l, l ≥ 1, l ∈ N, and we consider

Wk,n := W2, 1
q(l,n)

. Note that in both cases, l is a function of

k. With this, (Wk,n)k∈N,n∈N is a computable double sequence.

Now, we define the following sequence (W ∗
k )k∈N. We will

later show in the proof that (W ∗
k )k∈N is even a computable

sequence of computable channels. For k ∈ N, k is either odd

or even:

1) k ∈ O odd, i.e., k = 2l− 1, l ≥ 1, l ∈ N. If l ∈ A, then

we set W ∗
k := W1, 1

2s+2
with TA has stopped for input

l after s steps. If l /∈ A, then we set W ∗
k
:= W∗.

2) k ∈ E even, i.e., k = 2l, l ≥ 1, l ∈ N. If l ∈ A, then

we set W ∗
k
:= W2, 1

2s+2
with TA has stopped for input

l after s steps. If l /∈ A, then we set W ∗
k := W∗.

Next, we show that the double sequence (Wk,n)k∈N,n∈N con-

verges effectively to the sequence (W ∗
k )k∈N. This implies that

(W ∗
k )k∈N is a computable sequence of computable channels.

Further, we show that for all k ∈ N and n ∈ N we have

D(W ∗
k ,Wk,n) <

1

2n
(9)

so that (Wk,n)k∈N,n∈N indeed converges effectively.

Let k ∈ N be arbitrary. We first consider the case k ∈ O,

i.e., k = 2l − 1, l ≥ 1, l ∈ N. If l /∈ A, we have W ∗
k = W∗

so that

D
(

W ∗
k ,Wk,n

)

= D
(

W∗,W1, 1

2n+2

)

=
2

2n+2
<

1

2n

which already shows (9) for this case. In the other case, if

l ∈ A, we have W ∗
k = W1, 1

2s+2
, where s is the actual number

of steps after which the Turing machine TA stopped for input

l. Now, let n ∈ N be arbitrary. For n ≥ s we have

Wk,n = W2l−1,n = W1, 1

2s+2
= W ∗

k

so that

D(W ∗
k ,Wk,n) = 0.

For n < s we have Wk,n = W1, 1

2n+2
so that

D(W ∗
k ,Wk,n) = D(W1, 1

2s+2
,W1, 1

2n+2
)

=
∣

∣

∣

(

1−
1

2s+2

)

−
(

1−
1

2n+2

)∣

∣

∣
+
∣

∣

∣

1

2s+2
−

1

2n+2

∣

∣

∣

= 2
∣

∣

∣

1

2n+2
−

1

2s+2

∣

∣

∣ < 2
1

2n+2
<

1

2n

which shows (9) for this case as well.

The proof for even numbers k ∈ E follows as above for odd

numbers k ∈ O and is omitted for brevity. As a consequence,

(W ∗
k )k∈N is a computable sequence of computable channels.

If the function F is Banach-Mazur computable, then the

sequence (F (W ∗
k ))k∈N must be a computable sequence of

computable input distributions in Pc(X ).
We consider the computable sequence

(

F (W ∗
k )− F (W∗)

)

k∈N
(10)

and the following Turing machine: For l ∈ N we start two

Turing machines in parallel.

The first Turing machine T1 is given by T1 = TA, i.e., for

input l it runs the algorithm for TA step by step.

The second Turing machine is given as follows. We compute

n = 2l−1 and also F (W ∗
2l−1)−F (W∗) which is possible since

(10) is a computable sequence. We compute ‖F (W ∗
2l−1) −

F (W∗)‖ℓ1 . In parallel, we further compute n = 2l and also

F (W ∗
2l)−F (W∗) and ‖F (W ∗

2l)−F (W∗)‖ℓ1 . We now compute

rl = max
{

‖F (W ∗
2l−1)−F (W∗)‖ℓ1 , ‖F (W ∗

2l)−F (W∗)‖ℓ1
}

.

We now use the Turing machine T< 1
4

from [27, page 14] and

test if rl <
1
4 is true. Our second Turing machine T2 stops if

and only if the Turing machine T< 1
4

stops for input rl.
We start both Turing machines in parallel in such a way

that the computing steps are synchronous. Whenever the first

Turing machine stops, we set l ∈ A. Otherwise, if the second

Turing machine stops, we set l /∈ A. The first Turing machine

stops if and only if l ∈ A. The second Turing machine stops

if and only if rl <
1
4 . As for l ∈ A we have rl ≥

1
2 and for

l /∈ A we have rl = 0, the second Turing machine stops if

and only if l /∈ A.

With this, we have obtained a Turing machine T∗ that

always decides for l ∈ N whether l ∈ A or l /∈ A. This

means that A must be a recursive set which is a contradiction

to our initial assumption. Thus, the function F is not Banach-

Mazur computable which proves the desired result for the case

|X | = 3 and |Y| = 2.

Finally, we outline how the proof extends to arbitrary |X | ≥
3 and |Y| ≥ 2. In this case, for the set CHc(X ;Y) we consider

the subset CHc(X ;Y) of all channels W ∈ CHc(X ;Y) and

choose an arbitrary channel W ∈ CHc(X1;Y1) with |X1| = 3
and |Y1| = 2. We set

W (y|x) =

{

W (y|x) y ∈ {1, 2}x ∈ {1, 2, 3}

0 y ∈ {3, ..., |Y|}x ∈ {1, 2, 3}
(11)

as well as

W (·|x) = W (·|1) x ∈ {4, ..., |X |}. (12)

As above, we assume that F ∈ Mopt(X ;Y) is a Banach-

Mazur computable function that computes an optimal input

distribution for the set CHc(X ;Y). Then we always have

F (W ) ∈ P(X ) for W ∈ CHc(X ;Y). For W ∈ CHc(X1;Y1)
we can immediately compute an optimal input distribution

p∗1 ∈ Popt(W ) as follows. We take W which is constructed

as above in (11)-(12). Let W ∈ CHc(X ;Y) and consider

p(W ) := F (W ). With

p(W ) =







p1(W )
...

p|X |(W )






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we set

p∗1(W ) := p1(W ) +

|X |
∑

x=4

px(W ) (13)

and

p∗2(W ) := p2(W ), (14)

p∗3(W ) := p3(W ). (15)

For W ∈ CH(X1;Y1) we consider the mapping

G(W ) =





p∗1(W )
p∗2(W )
p∗3(W )





which is defined by (13)-(15). The mapping G is a composition

of the following components: 1) it constructs from W the

channel W according to (11)-(12); 2) it applies the function

F on W ; and 3) it applies the operations (13)-(15) on F . The

construction (11)-(12) and also the operations (13)-(15) are

Borel-Turing computable. Since F is further Banach-Mazur

computable by assumption, the mapping G must be Banach-

Mazur computable as well. However, we have p∗ ∈ Popt(W ).
This is a contradiction since for |X1| = 3 and |Y1| = 2 all

functions G ∈ Mopt(X1;Y1) can not be Banach-Mazur com-

putable. This proves the general case and therewith completes

the proof of Theorem 2. �

V. NON-APPROXIMABILITY OF THE OPTIMIZER

In this section we present the proof of Theorem 3. We prove

the result by contradiction. Therefore, we assume that there

exists a function F ∈ Mopt(X ;Y) such that there is a function

F1 with

sup
W∈CHc(X ;Y)

∣

∣F (W )− F1(W )
∣

∣ = β < 1

that is Banach-Mazur computable. Then, there exists a com-

putable real number α with β ≤ α < 1.

We now consider the computable sequence (W ∗
n)n∈N as

used in the proof of Theorem 2. For l ∈ N, let

∥

∥F1(W
∗
2l)− F (W ∗

2l)
∥

∥

ℓ1
≤ α

and
∥

∥F1(W
∗
2l−1)− F (W ∗

2l−1)
∥

∥

ℓ1
≤ α

be satisfied. Then, we also have for l ∈ A the following:

1 =
∥

∥F (W ∗
2l)− F (W ∗

2l−1)
∥

∥

ℓ1

=
∥

∥F (W ∗
2l)− F1(W

∗
2l) + F1(W

∗
2l)− F1(W

∗
2l−1)

+ F1(W
∗
2l−1)− F (W ∗

2l−1)
∥

∥

ℓ1

≤
∥

∥F (W ∗
2l)− F1(W

∗
2l)

∥

∥

ℓ1
+
∥

∥F1(W
∗
2l)− F1(W

∗
2l−1)

∥

∥

ℓ1

+
∥

∥F1(W
∗
2l−1)− F (W ∗

2l−1)
∥

∥

ℓ1

≤ 2α+
∥

∥F1(W
∗
2l)− F1(W

∗
2l−1)

∥

∥

ℓ1
.

Therefore, it holds that

∥

∥F1(W
∗
2l)− F1(W

∗
2l−1)

∥

∥

ℓ1
≥ 1− 2α = c1 > 0

which implies that

c1 =
∥

∥F1(W
∗
2l)− F1(W∗) + F1(W∗)− F1(W

∗
2l−1)

∥

∥

ℓ1

≤
∥

∥F1(W
∗
2l)− F1(W∗)

∥

∥

ℓ1
+
∥

∥F1(W∗)− F1(W
∗
2l−1)

∥

∥

ℓ1

≤ 2max
{∥

∥F1(W
∗
2l)−F1(W∗)

∥

∥

ℓ1
,

∥

∥F1(W∗)−F1(W
∗
2l−1)

∥

∥

ℓ1

}

=: 2r∗l .

We conclude that

r∗l ≥
c1
2

> 0. (16)

For l ∈ N and l /∈ A,

F1(W
∗
2l) = F1(W∗)

and

F1(W
∗
2l−1) = F1(W∗)

are satisfied. Accordingly, we can use the same Turing ma-

chine T< 1
4

as in the proof of Theorem 2 for the input r∗l in

(16). The Turing machine T< 1
4
(r∗l ) stops if and only if l /∈ A.

Thus, we can construct a Turing machine as in the proof of

Theorem 2 that decides for every l ∈ N whether l ∈ A or

l /∈ A. This is, again, a contradiction to the initial assumption

completing the proof of Theorem 3. �

VI. CONCLUSION

The channel capacity describes the maximum rate at which

a source can be reliably transmitted. Capacity expressions

are usually given by entropic quantities that are optimized

over all possible input distributions. Evaluating such capacity

expressions and finding corresponding optimal input distribu-

tions that maximize these capacity expressions is a common

and important task in information and communication theory.

Several algorithms including the Blahut-Arimoto algorithm

have been proposed to algorithmically compute these quan-

tities. In this work, we have shown that there exists no

algorithm or Turing machine that takes a DMC as input

and then computes an input distribution that maximizes the

capacity. Although capacity-achieving input distributions have

been found analytically for some specific DMCs, this does not

immediately mean that capacity-achieving input distributions

can be algorithmically computed by a Turing that takes a

DMC of interest as input. We have further shown that it is

not even possible to algorithmically approximate this distribu-

tion. These results have implications for the Blahut-Arimoto

algorithm. In particular, as we have noted, there is no stopping

criterion for the computation of the input distribution, and our

results imply that such a computable stopping criterion cannot

exist, providing a negative answer to the open question of

whether one does.

APPENDIX

A. Example of a Non-Computable Function

Here, we show that for x ∈ [0, 1] ∩ Rc the function

f(t) = e−x
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is not exactly computable on Turing machines, but only

approximable.

By the remainder theorem of Lagrange, we get for x ∈
[0, 1]:

f(x) =

n
∑

l=0

(−1)l

l!
xl +

1

(n+ 1)!
f (n+1)(ϑx)x

n+1

with ϑx ∈ [0, x] a suitable number. With this, we get

∣

∣

∣f(x)−
n
∑

l=1

(−1)l

l!
xl
∣

∣

∣ =
1

(n+ 1)!
e−ϑxxn+1 ≤

1

(n+ 1)!

and

(n+ 1)! > 2n, n ≥ 2.

Assume now that we have a sequence (rn)n∈N of rational

numbers with

|x− rn| <
1

2n

so that

∣

∣

∣
f(x)−

n
∑

l=0

(−1)l

l!
(rn)

l
∣

∣

∣

=
∣

∣

∣f(x)− f(rn) + f(rn)−
n
∑

l=0

(−1)l

l!
(rn)

l
∣

∣

∣

≤ |f(x)− f(rn)|+
∣

∣

∣f(rn)−
n
∑

l=0

(−1)l

l!
(rn)

l
∣

∣

∣

< |f(x)− f(rn)|+
1

2n
, n ≥ 2.

Now, the mean value theorem implies that

|f(x)− f(rn)| = |f ′(ξx,n)|·|x− rn|

with ξx,n ∈ [x − rn, x + rn] being a suitable number. This

yields

|f(x)− f(rn)| ≤ |x− rn| <
1

2n
.

With yn :=
∑n

l=0
(−1)l

l! (rn)
l, we obtain

|f(x)− yn| <
1

2n
+

1

2n
=

1

2n−1
,

i.e., the algorithm

(rn)n∈N → (yn)n∈N

maps a representation of x into a representation of f(x). This

algorithm converges effectively.

From this calculation we immediately see how the function

f can be approximated. Whenever f needs to be approximated

in such a way that the error satisfies 1
2n , we use the polynomial

as given above and compute it accordingly. For this, it is

important to find suitable sequences of polynomials. Note that

the polynomials in this sequence needs to be computable as

well as the sequence itself needs to be a computable sequence,

since otherwise, we are not able to evaluate the approximation

process algorithmically. Note that this does not mean that

every sequence of approximations of f is also a suitable

sequence for our purpose.

B. Binary Entropy and Transcendental Numbers

For the following, we need Hilbert’s Seventh Problem which

is restated next for completeness.

Hilbert’s Seventh Problem. Let a /∈ {0, 1} be an

algebraic number (i.e., a root of a non-zero polynomial

with integer coefficients) and let b be an irrational and

algebraic number. Is ab always a transcendental number

(i.e., not algebraic)?

Remark 10. A positive answer to this question was then first

given in 1934 by Gelfond [36] and subsequently refined in

1935 by Schneider [37]. Later this was generalized by Baker

for which he was awarded a Fields Medal in 1970, cf. [38].

We further need the following observation.

Lemma 1. Let n ∈ N and t ∈ N be arbitrary. Then n and nt

are divisible by the same prime numbers.

Proof: Let n =
∏r

l=1 pl be the unique prime factorization

of n. Note that in factorization, certain prime factors may

appear multiple times. Then, nt =
∏r

l=1(pl)
t is a prime

factorization of nt. As this factorization is unique, both n and

nt must have the same prime factors.

We now prove the following result.

Theorem 4. Let p ∈ Q with p /∈ {0, 12 , 1}. Then, h2(p) is a

transcendental number.

Proof: Let

h2(p) = p log
1

p
+ (1 − p) log

1

1− p

be the binary entropy, which can be equivalently be expressed

as

2h2(p) =

(

1

p

)p (
1

1− p

)1−p

. (17)

Let p ∈ Q with p ∈ (0, 1), p /∈ {0, 12 , 1} be arbitrary. Then,

we can express p as p = n
m

, n < m, n,m ∈ N, and assume

without loss of generality that n and m are coprime. With this,

we can write
(

1

p

)p

=
(m

n

)
n
m

and conclude that the number ( 1
p
)p is a root of the polynomial

xm−(m
n
)n and therewith also of the polynomial nnxm−mn.

Thus, ( 1
p
)p is an algebraic number. Similarly, one can show

that ( 1
1−p

)1−p is an algebraic number so that 2h2(p) as in (17)

is also an algebraic number.

Now, we can use the Gelfond-Schneider theorem, i.e., the

solution to Hilbert’s Seventh Problem, cf. for example [38]. As

2h2(p) is an algebraic number, h2(p) must be either rational or

transcendental. Since otherwise, if h2(p) would be algebraic

and irrational, then 2h2(p) would be transcendental.

Next, we want to show by contradiction that h2(p) cannot

be rational. Since p ∈ (0, 1), p 6= 1
2 , we have h2(p) ∈ (0, 1).

For this purpose, we assume that h2(p) is rational so that it

can be expressed as h2(p) = u
v

with 0 < u < v, u, v ∈ N,
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and u, v coprime without loss of generality. We further must

have v > 1. This would imply that

2
u
v =

(m

n

)
n
m

(

1

1− n
m

)1− n
m

=
(m

n

)
n
m

(

m

m− n

)
m−n
m

so that

2mu =
(m

n

)nv
(

m

m− n

)(m−n)v

or equivalently

2mu(n)nv(m− n)(m−n)v = (m)mv.

Note that m−n ≥ 1 and further nv ∈ N, nv > 1, since v > 1.

If n = 1, then

2mu(m− 1)(m−1)v = (m)mv.

Lemma 1 and the uniqueness of the prime factorization would

then imply that every prime factor of m = 1 must be a prime

factor m as well. However, this is not possible.

If n > 1, then Lemma 1 implies that every prime factor

of n must also be a prime factor of m. However, this is not

possible, since n and m are coprime. As a consequence, h2(p)
cannot be a rational number. Finally, we conclude that h2(p)
must be a transcendental number which completes the proof.
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[20] K. Gödel, “Die Vollständigkeit der Axiome des logischen Funktio-
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