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With the development of large scale quantum computers, the current landscape of asymmetric cryptographic algorithms

will change dramatically. Today’s standards like RSA, DSA and ElGamal will no longer provide suicient security against

quantum attackers and need to be replaced with novel algorithms. In face of these developments, NIST has already started a

standardization process for new Key Encapsulation Mechanisms (KEMs) and Digital Signatures (DS). Moreover, NIST has

recommended the two stateful Hash-Based Signature (HBS) schemes XMSS and LMS for use in devices with long expected

lifetime and limited capabilities for maintenance. Both schemes are also standardized by the IETF.

In this work, we present the irst agile hardware implementation that supports both LMS and XMSS. Our design can

instantiate either LMS, XMSS or both schemes using a simple coniguration setting. Leveraging the vast similarities of the

two schemes, the hardware utilization of the agile design increases by 20% in LUTs and only 3% in Flip Flops (FFs) over a

standalone XMSS implementation. Furthermore, our approach can easily be conigured with an arbitrary number of hash

cores and accelerators for the one-time signatures for diferent application scenarios. We evaluate our implementation on the

Xilinx Artix-7 FPGA platform which is the recommended target for PQC implementations by NIST. We explore potential

trade-ofs in the design space and compare our results to previous work in this ield.

CCS Concepts: · Hardware; · Security and privacy → Hardware security implementation;

Additional Key Words and Phrases: XMSS, LMS, hardware implementation, post-quantum cryptography

1 INTRODUCTION

The continuing development in the area of quantum computers will lead to a security breach of current asymmetric

cryptography schemes in the not-too-distant future. This especially includes the widely deployed RSA and DSA

algorithms. In 1999, Peter Shor presented Shor’s algorithm which solves the factorization and the discrete

logarithm problem on a quantum computer in polynomial time [41]. The current understanding of quantum

computers and quantum algorithms is that symmetric cryptographic primitives like hash functions are less

severely afected. Grover’s algorithm [23] roughly halves the security level of these schemes. While Grover’s

and Shor’s algorithms have been known for many years, only the recent advances in scale and stability of

quantum computers [2] has led to a demand of standardization for post-quantum cryptography. Therefore,

the NIST has started a multi-year competition to ind Key Encapsulation Mechanisms (KEMs) and Digital

Signature (DS) algorithms to be standardized [37]. In this competition, a variety of schemes based on codes [6],

lattices [4, 14, 17, 22, 45], hashes [3], Isogenies [27], and multivariates [16] has been proposed and evaluated. With

the standardization still ongoing, NIST also issued a recommendation for stateful HBS, namely Leighton-Micali

Signatures (LMSs) and the eXtended Merkle Signature Scheme (XMSS) [15]. NIST recommends these algorithms

especially for devices with long expected lifetime and limited ability to update the algorithm once the device is

deployed. The algorithms are also standardized by the IETF in RFC 8391 (XMSS) [25] and RFC 8554 (LMS) [34].
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The two stateful HBS are considered very conservative candidates regarding their security level. That is,

since the security of hash functions on which the security of XMSS and LMS is built is well understood and

has been extensively studied for decades. A further advantage of the schemes is that many consumer- and

server grade devices feature hardware accelerated hash cores that can be leveraged to accelerate the schemes

signiicantly. However, many embedded devices do not implement ISA extensions for hash acceleration. Even

if a hardware-accelerated hash core is available on the target, this is often not suicient to meet the strict

timing constraints. Our implementation can utilize many parallel hash-cores and hence, accelerate the HBS

more eiciently. Embedded devices often perform safety critical operations and are deeply embedded in, e.g.,

industrial control units or cars. Hence, they match all the criteria of the NIST recommendation and are therefore

an important target for optimized implementations. With sharp timing constraints and low-end CPUs, native

software execution of the schemes is often not an option. Due to the safety critical role that embedded devices

play in many applications, certiication and veriication of crucial building blocks such as the implementation

of digital signature schemes is very common in the embedded industry. A full hardware implementation of the

signature scheme is advantageous in this case compared to a hardware / software co-design [36, 46] since the

complexity of the veriication and certiication is reduced to the hardware only, and the certiied component

can be reused in many diferent device types. This reusability compensates for the initial higher complexity of

developing a full hardware design. Moreover, by avoiding a communication bottleneck between the software- and

hardware layer, it is possible to accelerate the schemes more eiciently. This especially holds if Direct Memory

Access (DMA) is available. Hence, having a dedicated hardware accelerator for the signature scheme that frees

CPU time and accelerates the signature algorithm can be crucial on embedded devices.

In this work, we implement such an eicient and agile combined hardware accelerator for XMSS and LMS. We

present the irst agile hardware implementation that supports both stateful HBS schemes. Using a coniguration

parameter, the design either implements a standalone LMS, a standalone XMSS, or an agile design of both that

leverages the similarities of the schemes to reduce the area overhead. Instantiating a single scheme has the

advantage of reduced area utilization while the agile version supporting both schemes is much smaller than two

separate accelerators for both schemes. Our design is highly conigurable regarding many parameters deined in

the RFCs as well as performance trade-ofs like the number of used hash cores. We present the exact coniguration

parameters in Section 4.1. For the parallel hash cores we use a dynamic scheduling approach for the assignment

and separate the hash accelerator from the actual signature accelerator using a bus system. The advantages of

this separation are twofold: First, the implementation of the hash core can easily be exchanged without needing

to change the implementation of the signature itself. Second, the interface to the hash accelerator can be made

available to the outside to accelerate generic hash operations outside of the signature scheme.

In summary, our work will provide following contributions:

• We present the irst full hardware implementation of LMS, combined with an agile hardware implementation

of the two stateful HBS schemes LMS and XMSS. The similarities of the two schemes allow for an eicient,

area-optimized design.

• The implementation is highly conigurable, including the number of instantiated hash cores and the

parameters of the stateful HBS schemes.

• We explore the design trade-ofs and performance diferences of XMSS and LMS and compare them to each

other.

1.1 Organization of the Paper

In Section 2 we introduce related work in the ield of hardware acceleration of PQC schemes. Section 3 deines

the notation used in this paper and introduces the schemes XMSS and LMS. In Section 4, we describe the most
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important aspects of our hardware implementation. We evaluate the design and compare it to related work in

Section 5. Finally, we conclude in Section 6.

2 RELATED WORK

XMSS was introduced in 2011 as a quantum-secure digital signature scheme with minimal security assumptions in

[9] and has since been standardized by the IETF in RFC 8391 [25]. The scheme is closely related to Leighton-Micali

Signatures (LMS) which is also standardized by the IETF [34]. LMS has been proven secure in the quantum

random-oracle model in [19]. A comparison between the two schemes has been conducted in [11, 28]. In [39],

the WOTS scheme on which both XMSS and LMS built, is optimized for either fast veriication, or fast signature

generation. The side-channel security of XMSS has been studied in [29] which was improved upon in [47]. A

hardware/software co-design of XMSS using the RISC-V architecture was implemented in [46]. A pipelined

ASIC accelerator for the leaf node generation of XMSS was presented in [36]. We implemented the irst full

hardware accelerator for XMSS in [44]. This work builds on our previous experience with the standalone XMSS

implementation and extends it with support for the LMS signature scheme. Furthermore this work implements

the BDS algorithm for more eicient treehashing, especially for large tree heights. A diferent full hardware

implementation of XMSS has been presented in [12]. A hardware accelerator for the LMS key generation has

been implemented in [42]. Their design targets Xilinx UltraScale FPGA series and is suited to accelerate the key

generation for general purpose CPUs. Our implementation targets embedded use cases and therefore does not

compare in the achieved performance but also uses signiicantly less area resources.

There are several other proposals for quantum secure signature schemes, most of which are part of the NIST

post-quantum cryptography (PQC) competition [37]. In [38], a hardware accelerator for the number theoretic

transform is implemented using high level synthesis. This accelerator can be utilized to speed up quantum-secure

signature schemes such as Falcon [22] and Crystals-Dilithium [18], the latter also being implemented directly in

hardware in [33]. In [5], an agile crypto co-processor is implemented that can accelerate various lattice based

schemes. The multivariate signature scheme Rainbow1 was presented in [16] and implemented in hardware in

[21].

3 BACKGROUND

In this section we focus on the design of the stateful hash-based signature schemes LMS [34] and XMSS [9]. The

two schemes feature extensive similarities in their design which have been analyzed in [11, 28]. Both schemes

build on a Merkle Tree construction [35] and use an One-Time Signature (OTS) scheme based on Merkle’s

Winternitz one-time signatures [35]. Despite the structural similarities of the schemes, XMSS takes weaker

security assumptions by not relying on the random oracle model for the security proof [9]. LMS, on the other

hand, has only been proven secure in the random oracle model [30].

In the following, we lay out the workings of the key- and signature generation, and the veriication algorithm

of the two schemes. Finally, we summarize the BDS algorithm which gives a trade-of between the latency of the

signature generation and the memory used for caching intermediate values of the tree construction.

3.1 Notation

The RFCs for LMS and XMSS use diferent notations for the same parameters. Table 1 lists the mapping of the

notation used for the remainder of the paper to the respective standard.

1Recent attacks put the security of Rainbow in doubt [7].
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Table 1. Mapping of symbols used in this work to the symbols used in the respective RFC documents of XMSS [25] and
LMS [34].

Symbol LMS XMSS Description

� � � Hash digest length in bytes

� 2� � Winternitz parameter

ℓ � ��� Winternitz chains per OTS

ℎ ℎ ℎ Merkle Tree height

� - - BDS Parameter

3.2 One-Time Signatures

Both LMS and XMSS use variants of the Winternitz One-Time Signature (WOTS) scheme which builds digital

signatures from a secure hash function. The WOTS scheme is parameterized by the Winternitz parameter � .

From a high level perspective the scheme works by splitting a �-byte message digest into ���2 (�) bit-sized blocks

and signing them each using a hash chain. In addition to the ℓ1 = ⌈�/���2 (�)⌉ blocks of the message, a checksum

is computed over the message and also signed. The checksum consists of ℓ2 = ⌊���2 (ℓ1 (� − 1))/���2 (�)⌋ + 1

blocks and computes as

� =

ℓ1︁

�=1

� − 1 −�� = �1 | |�2 | |...| |��2 .

Hence, in total the OTS consists of ℓ = ℓ1 + ℓ2 hash chains. Each hash chain is constructed by irst uniformly

sampling a secret initial �-byte value from {0, 1}8� and then applying a one-way function deined by� : {0, 1}∗ →

{0, 1}8� , (� − 1) times to it. The secret key for WOTS consists of the ℓ randomly chosen �-byte words. The WOTS

public key contains the result of the hash-chain computation of length� − 1 for each of the ℓ secret key words.

To sign a message using WOTS, irst the checksum � is computed. The checksum is added to defend against an

attacker forging a signature by applying the hash function to any block, creating a valid signature for a message

�̄ with �̄� ≥ ��∀� ∈ [1, ℓ1]. Then, the message and the checksum are concatenated and divided into ���2 (�) bit

blocks:

� =�1 | |...| |�ℓ1 | |�1 | |...| |�ℓ2 ,�� , �� ∈ F
���2 (� )

2

The one-time signature is generated by iteratively hashing each secret key value �� , using the respective

message block value as the number of iterations to apply. Since each block is ���2 (�) bit long, its integer value is

between 0 and� − 1, making the signature some iteration in the hash chain between the secret key and the public

key. The signature consists of ℓ hash digests, each representing an intermediate value of the hash chain between

the secret key and the public key. Note that the signature may contain parts of the secret key and / or the public

key. To verify the signature for a given message, again, irst the checksum is computed. Then, each signature

chain is continued by hashing it� − 1 −�� times which results in the public key if the signature is valid.

The OTS scheme used in LMS is dubbed LM-OTS and difers slightly from the original WOTS scheme. For the

chain construction, LM-OTS adds an identiier of the current tree, the current chain, and the index within the

chain to the hash input in each iteration. The process is shown in Figure 1b. Instead of using the ℓ �-byte words

as public key, LM-OTS compresses the public key to a single hash digest using a one-way function.

XMSS also uses a variation of the WOTS scheme which is described in [24]. This scheme called WOTS+

introduces a random mask value in each hash chain iteration, so that each chain iteration operates on a masked

input of the previous iteration. Moreover, XMSS uses a keyed hash function with a unique pseudorandom key

ACM Trans. Embedd. Comput. Syst.



Agile Acceleration of Stateful Hash-Based Signatures in Hardware • 5

in every iteration. In XMSS, the bitmasks and keys are generated pseudorandomly from a public seed which is

part of the public key. Therefore, the hash function is used in diferent modes: The PRF mode (�3) prepends a

zero-padded block with a single ’3’ to the hash input while the actual chain step (�0) prepends a full-zero block

to the hash input. One iteration of the WOTS+ chaining algorithm is shown in Figure 1a. Like LMS, XMSS also

compresses the WOTS+ public key to a single hash digest. Instead of simply hashing the entire public key, XMSS

uses an unbalanced binary tree construction called L-Tree. The L-Tree is structurally similar to a Merkle Tree

(see Section 3.3). Each �-byte word of the public WOTS+ key is assigned to a leaf node of the tree. The left-most

node of a level without an even number of nodes is lifted to the nearest higher level where it can be hashed with

another node.

H0 H3

H3

...
...

Chain Step i-1

Pub. Seed, OTS Addr, 1

Chain Step i

Pub. Seed, OTS Addr, 0

(a) WOTS+ used in XMSS

ID, Chain ID, Index

...
...

H

||

Chain Step i-1

Chain Step i

(b) LM-OTS used in LMS

Fig. 1. One round of the OTS chaining algorithm used in XMSS (let) and LMS (right). In XMSS the hash function is keyed
using a pseudorandom key and operates on the masked output of the previous iteration. LMS simply hashes the concatenated
value of the previous iteration value and an identifier.

3.3 Merkle Tree Construction

A Merkle Tree Signature uses a balanced binary tree of height ℎ in which each node contains a hash digest (see

Figure 2). Every leaf node of the tree contains a compressed public key of a unique OTS. The tree is constructed

from the leaves to the root node. On each level, two sibling nodes are compressed to a new digest that makes up

the parent node within the Merkle Tree using a hash function. The root node of the tree is the public key for the

signature scheme. Hence, to generate the public key, the complete Merkle Tree must be constructed.

The Merkle tree constructions of XMSS and LMS are slightly diferent from each other. In the LMS scheme,

each hash input is prepended with a unique preix to avoid collisions. Otherwise, LMS follows the simple original

Merkle Tree construction by hashing the two sibling nodes. The tree construction in XMSS is more complex than

for LMS. To generate a root node using XMSS, each node of a sibling pair is irst masked using a pseudorandom

bitmask and then combined using a keyed hash function with a pseudorandom key. The keyed hash function (�1)

prepends a zero-padded ’1’ digit to the hash input to distinguish it from hash computations made in the WOTS+

part of the algorithm. Overall, the changes in the treehash function of XMSS are similar to the ones made in

WOTS+ which in combination, make for the improved security properties of XMSS over LMS. The compression

of two sibling nodes for both schemes is depicted in Figure 3.

For the key generation, 2ℎ OTS public keys need to be generated. Using the public keys of the OTS in the leaf

nodes of the Merkle Tree, the root node of the tree can be constructed which serves as the public key for the

grand signature scheme. To sign a message, it is irst compressed to a �-byte hash digest and then signed using

the OTS scheme. The signature consists of the OTS signature and an authentication path. The authentication path

contains all ℎ − 1 sibling nodes of the nodes on the path from the current leaf to the root node. The authentication
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Fig. 2. A generic Merkle Tree signature scheme. The authentication path for the letmost leaf is highlighted in red.

Left Sibling Right Sibling

Pub. Seed, Tree
Addr, 1

Pub. Seed, Tree
Addr, 2

Pub. Seed, Tree Addr, 0

Parent Node

H1

H3

H3

H3

(a) XMSS Treehash

||

Left Sibling Right Sibling

ID, Index

Parent Node

H

(b) LMS Treehash

Fig. 3. One iteration of the compression used in the treehash algorithm of XMSS (let) and LMS (right). LMS omits the
bitmasks and the keyed hash function.

path for the leftmost node is shown in Figure 2. To verify the signature, the veriier irst computes the public

key of the OTS from the one-time signature and compresses it to a Merkle Tree leaf node. Then, they use the

authentication path nodes to calculate the root node of the veriication tree. Only if the OTS signature was valid,

the calculated public key of the OTS matches the actual public key of the OTS and hence, the calculated root

node matches the root node of the Merkle Tree contained in the public key of the grand signature scheme. If this

is the case, the signature is valid.

XMSS and LMS are stateful signature schemes. Since the leaf nodes are instantiated with OTS, each leaf node

can only be used once to sign a message. The state that needs to be maintained internally keeps track of which

OTS have been used already. This is only required for the signer, but not for the veriier. Therefore, the height of

the Merkle Tree determines the maximum number of messages that can be signed using the tree. When all leaf

nodes have been used, a new public key needs to be generated. Statefulness is the major drawback of stateful

hash-based signatures compared to other post-quantum secure schemes based on e.g., lattices [4, 14, 17, 22, 45],

or codes [6].

3.4 BDS Tree Traversal

Since the signature generation requires intermediate nodes of the Merkle Tree to construct the authentication

path, the tree needs to be partially reconstructed for every signed message. While it is possible to store the

entire tree during the key generation phase, this results in a large storage overhead: All 2ℎ leaf nodes and
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2ℎ − 1 intermediate nodes with n-byte each would need to be stored. To reduce the memory requirements,

one can choose to reconstruct the tree from the seed used for initial key generation. However, this brings a

huge performance overhead since especially the computation of the OTS is very complex. Several algorithms

providing a trade-of between these two extremes have been proposed [10, 26, 43]. In this work, we use the

BDS algorithm [10] which is the most recent and has a lower worst-case running time compared to the others.

Furthermore, it is conigurable over the parameter � , which allows a time-memory trade-of.

Conceptually, a sign operation in the BDS algorithm generates the next authentication path and precomputes

nodes needed in the paths of upcoming signatures. The irst path is generated during the key generation

phase, which allows the computation of the next authentication path during each sign operation. The signing

algorithm generates left and right authentication nodes diferently. Generally, the computation of left nodes

is less expensive than that of right nodes. For left nodes the two child elements are always the previous and

current authentication nodes of the preceding height. By keeping track of previous authentication nodes in the

keep array, the computation of upcoming left authentication nodes only requires a single hash operation that

combines two sibling nodes in the Merkle tree. The generation of right authentication nodes is split further into

two methods. Any right node of height ℎ′ with ℎ − � ≤ ℎ′ ≤ ℎ − 2 is stored in the array ������ℎ′ during the key

generation phase and loaded from the array into the authentication path during the signature generation. For all

heights ℎ′ < ℎ − � an instance of a procedural treehash algorithm is used for generating the right nodes of that

height. An instance either holds a single inished node value or is currently working on the next right node of

that height. The instances irst store the second right node of their respective height during key generation as

their inished node, because the irst right node of every height is part of the initial authentication path. When a

inished node has been loaded into the path, the treehash instance is reset and then generates the next right node

of its height during the following signing operations using a shared stack in update functions. A function call

generates a single leaf and all parent nodes which can be generated with nodes stored on the stack in previous

update procedures. If the height of the instance is not reached, the last node generated is saved on the stack. The

BDS algorithm assigns a budget of �−�
2 updates to each sign operation [10].

4 IMPLEMENTATION

In this section, we describe the details of our implementation. In the following, we will refer to three diferent

conigurations of this implementation. The XMSS- and LMS-only coniguration instantiate only XMSS or LMS

respectively. The agile coniguration instantiates both schemes in parallel and allows selecting which scheme to

be used during run time. Our implementation is available at https://github.com/Chair-for-Security-Engineering/

XMSS-LMS-HW-Agile.

4.1 Design Rationale

The main design target of our implementation is an agile design that can easily be conigured to suit diferent

use cases. This agility ranges from the ability to select the supported algorithm from XMSS or LMS during

synthesis or run time, over the number of hash cores used to accelerate the scheme, to parameter setting of the

scheme itself like the tree height or the Winternitz parameter. The coniguration ile is shown in Listing 1. Our

design allows selecting the signature scheme, the hash-digest length, the WOTS parameter, the tree height, and

performance related parameters including the number of parallel hash cores instantiated. All parameters can be

modiied independently. However, since the parameter � is directly inluenced by the choice of the hash function,

changes may be necessary to support diferent hash digest lengths. We chose to not implement the multi-tree

variants of XMSS and LMS which would add additional complexity and therefore increase the hardware footprint.

The HBS accelerator is implemented fully in hardware, without the need for software support. In addition to

the veriication and certiication beneits mentioned earlier, this can yield performance beneits compared to
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Fig. 4. Block design overview of the architecture.

hardware / software co-design like [36, 46]. Opposed to such designs, the full hardware implementation allows

us to optimally schedule parallel computations for a high capacity utilization of the hash cores. In hardware /

software co-designs, the communication between the two layers could easily become a bottleneck, especially if

additional tasks are executed on the software level. It must be noted, that if the target device does not implement

DMA, the hardware accelerator also encounters additional overhead when transmitting the results from the

hardware to the software. The magnitude of this delay depends on the device itself. For the multi-tree variants,

we believe that a hardware / software co-design utilizing a modiied variant of our implementation to compute

the subtrees would be well suited. That is, since the computation of the subtrees is very complex by itself and

therefore only little communication between the hardware and the software needs to occur. The similarities of

XMSS and LMS make it possible to share much of the hardware logic between the two signature schemes. Hence,

the hardware overhead for coniguring the run time-agile version should be kept low. Since both XMSS and LMS

have been standardized, it is likely that a mixture of systems using XMSS or LMS will evolve in the ield. By

supporting both schemes, our implementation is compatible with all those systems by diferent vendors using

diferent standards.

Our design implements the key generation, signature generation and the veriication algorithm of XMSS and

LMS. Hence, it can be used to fully accelerate both schemes. We use the BDS algorithm [10] to optimize the

runtime of the signature generation while keeping the BRAM utilization low. We target a Xilinx Artix-7 FPGA.

Listing 1. The configuration file allows to set various parameters before synthesis. Among others, it is possible to select the
supported scheme, the BDS parameter, and the number of hash cores and OTS chains.

package config is

constant SCHEME: scheme_t := LMS; -- LMS , XMSS or DUAL_SHARED_BRAM

constant N: integer := 32;

constant WOTS_W: integer := 16; -- 2**w for LMS

constant TREE_HEIGHT: integer := 10;
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constant BDS_K: integer := 8;

constant HASH_CORES: integer := 5;

constant HASH_CHAINS: integer := 4;

end package;

4.2 Agile Acceleration of XMSS and LMS

The similarities between XMSS and LMS make it possible to share many components between the accelerators

of the two schemes which reduces the overall hardware cost for an agile implementation. In the following, we

describe the most important implementation aspects of the two schemes and our agile design.

For most modules, the signals for LMS and XMSS are the same. Since the access to the hash module is limited

to the WOTS module and the Thash module we can reuse the control logic for the remainder of the scheme (i.e.

generating the tree structure and controlling the hash chain). The WOTS module and the Thash module determine

the inputs to the hash function which diferentiate between LMS and XMSS. Due to the reduced complexity of

LMS, some signals are unused for LMS. The Thash module implements the L-Tree compressions and Merkle

Tree hash operations for XMSS and only the Merkle Tree hash operations for LMS. It is controlled either by the

OTS module (L-Trees), the Path-Generator module (Treehash), or the Verify module. Because of the diferent

addressing scheme of the Merkle tree nodes for LMS and XMSS, the most notable diference in inputs to Thash is

that for LMS the node index is calculated using (2ℎ + ���� _�����_�� � �����_�ℎ���)/2ℎ���� and for XMSS using

���� _�����_�� � �����_�ℎ���/2ℎ���� . The design uses two dual-port BRAMs, one as internal storage for the BDS

retain array and as intermediate storage for the WOTS secret and public key values. The other BRAM is used as

an I/O interface, with one port being accessible from outside the design. This BRAM is used to make the generated

public key available after key generation and the WOTS signature and authentication path after signing. For

veriication, the public key and the signature must be written to the same memory locations. The design is split

into two main controller modules, the Path-Generator which implements the BDS algorithm (key and signature

generation) and the Verify module, which implements only signature veriication. The Path-Generator can

divert control to the OTS module.

4.2.1 OTS Acceleration. As described in Section 3, the OTS schemes used in XMSS and LMS are both based on

the WOTS scheme. However, XMSS uses the keyed hash function with masked inputs while LMS only prepends a

tweak value to the hash input. TheWOTS module implements all operations of the OTS schemes. It features a seed

expander following the seed expansion algorithms described in [34] and the XMSS reference implementation. The

seed expansion for XMSS does not follow the RFC, as it sufers from a multi-target attack [20] 2. The generated

WOTS secret key is stored in the internal BRAM. In the Chain-Computemodule, the WOTS chains are calculated,

using the internal BRAM as a bufer for the inal chain values for key generation and veriication, reading the

start values from either internal BRAM or from the IO BRAM. For signature generation, the signature values are

written to the IO BRAM.

Arguably the biggest diference between XMSS and LMS is the way an OTS public key is compressed to a leaf

node of the Merkle Tree. In LMS, all ℓ �-byte words are fed into the hash function sequentially, resulting in a

single digest value. This process only requires a single hash invocation, albeit with a large message input. XMSS

on the other hand uses L-Trees to compress the OTS public keys. The construction uses the same key and mask

technique as in the treehash algorithm of XMSS. Because of these diferences, the compression for the schemes is

implemented in two diferent compressor modules. For LMS, the module irst generates the LM-OTS public key

and afterwards uses the result to generate the leaf node, which uses its own distinct hash operation. The L-Tree

2https://github.com/XMSS/xmss-reference/commit/3e28db2362f25600699972766e7782635b1826f5
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module follows the algorithm described out in [25], using the Thash module for the keyed hash function calls.

No optimizations have been applied to L-Tree, since our analysis revealed that the L-Tree construction has only a

small impact on the overall running time of the WOTS key generation algorithm.

4.2.2 Treehash Acceleration. The treehash implementation in the Path-Generator is divided into the Initializer

and the Treehashmodule. A single stack is also instantiated, which is used by the two modules. The Initializer

implements a generalization of the treehash routine described in the XMSS RFC, using the WOTS module to gener-

ate leaf nodes, as well as the stack and the Thash module to generate higher level tree nodes. By exposing the

current node, its location within the tree, and whether it is part of the authentication path or needs to be copied

into a treehash instance or the retain array, the module allows the Path-Generator to copy the node into the

respective register or - in the case of retained values - the internal BRAM. The retain array is speciically placed

in BRAM to enable the coniguration of larger � , for which the retain array would exceed the available FFs. The

sequential treehash algorithm is implemented in Treehash which stores the nodes for all treehash instances and

can calculate a single treehash update operation at a time. While a parallel design would also be feasible, the

design would need as many WOTS modules as it has treehash instances to efectively parallelize the leaf node

generation. Moreover, each parallel treehash module would require its own stack, while the sequential design

uses a single shared stack. For each instance, the current lowest height of the instance on the stack is stored in a

register, such that the Path-Generator can select the correct treehash instance to start based on their heights.

For key generation the Path-Generator generates the root node using the Initializer module. When signing

it uses the WOTS module to generate the WOTS signature for the given message hash, writes the current path

to the IO BRAM, and then generates the upcoming path according to the BDS algorithm. Finally the module

searches for the treehash instance with the lowest height on the stack and then starts the Treehash module to

work on this instance.

4.3 Hash-Bus Implementation

The hash controller is responsible for making � hash cores available to the signature core over a predeined

bus-interface and is a key design element in our conigurable implementation. The controller allows instantiating

an arbitrary number of hash accelerators via a simple coniguration ile. We provide an implementation of

SHA2-256, however, the abstraction of the hash implementation from the signature implementation through

the hash controller logic allows straightforward design of extensions to support additional hash algorithms or

use implementations with diferent optimization targets. For example, one could replace our SHA2 core with a

SHAKE-128 implementation or switch out our performance focused general purpose implementation of SHA2

with a XMSS speciic optimized variant as proposed in [46].

Figure 5 depicts a structural overview of the interconnection of the hash accelerators and the signature core.

The hash controller processes inputs in 256-bit blocks and requires unique IDs as input to map each input block to

the corresponding hash operation. The input size of 256 bits allows it to feed an entire block in a single clock cycle.

While XMSS only uses inputs that are multiples of 256 bits throughout the scheme, LMS does not have a ixed

block size. The ��� signal indicates the length of the entire input. The interface of the hash controller features a

busy and an idle signal. The busy signal indicates whether the hash controller is able to receive new hashing

requests. If the busy signal is set, either all available hash cores are currently in use, or the bus is occupied by a

mnext request. Such mnext requests are sent, when a hash core requires the next message block to continue the

hash operation. To avoid unnecessary stall cycles, in such a case, the bus is automatically blocked to all actions

other than serving the next message block by setting the busy signal to high. Simultaneously, the ID is forwarded

on the ����� port to identify the module the task originates from.

When the busy signal is set to low, new hash operations can be started from the XMSS core by setting the

enable signal to high for the duration of one clock cycle, alongside an identiier, the length of the data input

ACM Trans. Embedd. Comput. Syst.
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Fig. 5. Structural overview of the hash controller that manages the assignment of hash cores to requests from the bus.

and the irst 256-bit block of the message. The hash controller then forwards the data to one of the idling hash

cores. The padding that is required for the hash algorithms is implemented within the hash core. Our SHA-2

implementation allows arbitrary input lengths. Hence, it would also be feasible to make the hash-bus interface

available to other resources on the chip. The signature core is not required to implement a hash-speciic padding

which facilitates the logical separation between the hash-core implementation and the signature core. As soon as

a hash operation is inished, the output of the respective hash core is forwarded via the ���� port alongside the

ID which is provided via the DoneID signal. While the ID could have also been forwarded via the ����� signal,

this causes stall cycles if another hash core tries to set the mnext signal in the same cycle the respective hash

core sets the done signal. By separating the ����� signal from the DoneID signal, such conlicts can be avoided.

However, it can still occur, that two hash cores try to fetch the next message block in the same clock cycle. Such

an mnext-collision is resolved by halting one of the hash cores for one clock cycle. These collisions happen very

rarely and therefore hardly afect the performance of the scheme. Similarly, such collisions can arise when two

hash cores inish at the same time. Analogously to the handling of menxt-collisions, one of the hash cores is

halted and the output is forwarded with one clock cycle delay.

It must be noted that the input-side of the hash controller does not resolve bus-communication-conlicts

automatically. In most cases, only one module on the signature-core side is active at a time which makes conlict

handling unnecessary; e.g., during the treehash algorithm, the internal state logic ensures that in each clock cycle

no more than one hash operation is started. A special case arises in the parallel computation of WOTS+ chains

which is further examined in the following.

4.4 OTS Chain Parallelism

It is in no doubt that the performance of the deployed hash core(s) is a key factor in the overall performance of

XMSS and LMS. Both schemes use the hash function extensively throughout the computation of the one-time

signatures and the treehash algorithm. In addition to that, XMSS generates all bitmasks and hash-keys that are

used throughout the scheme pesudorandomly using the hash function which results in an even higher capacity

utilization of the hash accelerator. However, our analysis quickly revealed that simply adding a large number of

hash cores is not suicient to parallelize the schemes efectively since most of the hash operations depend on

the result of prior operations. For example, during each step of the WOTS+ chaining algorithm of XMSS, one

hash operation is required to generate the pseudorandom key and bitmask respectively. These two operations are

ACM Trans. Embedd. Comput. Syst.
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followed by the chain step which uses the key and the masked value of the previous chain step as input. In LMS,

this problem is even more severe since the hash operations of the LM-OTS chaining algorithm directly depend

on the outcome of the previous hash operation. Hence, the opportunities for parallel hash computations are very

limited. Other parts of the algorithm ofer slightly more opportunities for naive parallelism.

In our hardware implementation, we take advantage of all the opportunities where parallel computation is

feasible, e.g., by computing the bitmask and the hash key simultaneously. However since the OTS chaining

algorithm is a crucial part in the performance of the HBS, especially during key- and signature generation, it

requires further acceleration. To allow optimal acceleration of the OTS chaining algorithms, we instantiate a

conigurable amount of OTS chaining modules in parallel. Since each OTS signature consists of many independent

chains (using XMSS with a 256-bit hash function and� = 16, a signature is made from 67 WOTS+ chains), parallel

computation of chains allows for much improved scheduling of hash cores with less idling due to dependencies.

Due to the parallel chaining module, multiple modules could nowwrite simultaneously on the hash bus, requesting

the start of a new hash operation. Since the hash bus itself does not implement conlict resolution measures on

the input side of the hash controller, a mechanism to avoid such conlicts is required. To keep the overhead low,

we implement a time-division multiplexing (TDM) solution where each OTS chaining module is assigned to a

ixed time slot during which new hash operations can be started. The TDM is implemented using a straight ring

counter. A part of the ID which is used for the hash operation identiies the originating OTS chaining module.

Hence, when the hash controller signals mnext to request the next message block, this request can be directly

forwarded to the corresponding chaining module. The ring counter is then reset and continues in the next clock

cycle with the subsequent chaining module.

5 EVALUATION

In this section we evaluate our implementation and compare it to related work. We start by exploring the

performance limits of both schemes and investigating the efect of additional hash cores and OTS chaining

modules. We then continue to analyze the area requirements for diferent conigurations. During this analysis,

we also examine the overhead of the agile implementation over a standalone XMSS design. Combining the results

of the area and performance analysis, we establish optimal time-area trade ofs for the implementations with up

to 8 hash cores and 8 OTS chaining modules. Finally, we discuss the results and compare the diferences of XMSS

and LMS.

Our design allows coniguring an arbitrary number of hash cores and OTS chains which allows various trade

ofs regarding area and performance. To analyze the impact of this conigurability, we evaluate each aspect of

the implementation using up to eight hash cores and eight parallel OTS chains. Unless otherwise stated, we use

ℎ = 10, � = 16 and � = 32 in the following. For the BDS parameter � , we explore � = 2 and � = 8. Using the

former, very few nodes are stored in BRAM to accelerate the signature generation. The latter stores many Merkle

Tree nodes in BRAM which should lead to a signiicant increase in the performance of the signature generation.

Choosing � close to the minimum and maximum yields a good intention for the design space and possible trade

ofs.

5.1 Performance Exploration

We start the evaluation by exploring the performance results of our implementation. Therefore, we examine

LMS and XMSS separately. The timing properties are mostly independent of the coniguration that places either

one of the schemes or an agile implementation of both on the Field Programmable Gate Array (FPGA). For now,

we assume that every coniguration can be placed with a frequency of 100 MHz. This allows us to estimate

the execution time for all conigurations in the following without having to execute the complex optimization

ACM Trans. Embedd. Comput. Syst.
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Fig. 6. Latency in�� for LMS key generation using ℎ = 10,� = 16 and SHA2-256 with diferent number of configured hash
cores and LM-OTS chaining modules.

strategies to establish the maximum clock frequency. We report the maximum frequency for some interesting

conigurations separately in Section 5.4.

5.1.1 LMS. The results for the performance of the LMS key generation are shown in Figure 6. Each cell of the

igure holds the latency of the key generation for the respective number of hash cores and parallel LM-OTS chains.

Using the minimal coniguration with one hash core and one LM-OTS chaining module, the key generation takes

785 ms. From the igure, it is clear that only adding hash cores or only adding LM-OTS chaining modules barely

improves the performance. That is, since each step in the hash chain operates on the output of the previous

iteration. Hence, it is not possible to compute multiple steps in the same LM-OTS chain in parallel. Similarly, it

is not feasible to compute multiple hash chains in parallel if only one hash core is available. That is, since the

capacity utilization of the hash function is extremely high throughout the scheme; i.e., the timing overhead for

the control logic is negligible compared to the hash computation. The igure shows that a 1:1 relation of hash

cores and LM-OTS chains (the diagonal) yields the best performance results and deviating from the diagonal in

either direction barely improves the performance.

Figure 7 shows the latency of the signature generation for various conigurations of hash cores and LM-OTS

chains in microseconds. Since the latency for the signature generation varies slightly depending on the (hashed)

input and the state of the BDS algorithm, the depicted results are averaged over the irst 50 signatures. We

veriied experimentally for a small subset of conigurations, that the average over all signatures falls in the same

range and hence, the measured timing is a good approximation. The left igure depicts the results with BDS

parameter � = 2 and on the right with BDS parameter � = 8. The BDS parameter allows for a tradeof between

used BRAM memory and area and performance. Depending on the chosen parameter, the signature generation

takes between 2,148 us and 1,185 us for the minimal coniguration with one hash core and one LM-OTS chain.

Hence, maintaining more intermediate nodes in BRAM can almost double the performance. Similar to the key

generation, the 1:1 ratio of hash cores and LM-OTS chains yields the best performance results. The largest

tested coniguration generates signatures in 368 us and 206 us respectively. It is possible to conigure even more

hash cores and LM-OTS chains, further reducing the latency. Overall, the signature generation outperforms the

key generation by orders of magnitude which testaments the efectiveness of the BDS algorithm. By storing

intermediate nodes of the tree, the computation of the authentication path does not need to recreate the entire
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(a) � = 2 (b) � = 8

Fig. 7. Average latency in �� for LMS signature generation using ℎ = 10, � = 16 and SHA2-256 with diferent number of
configured hash cores and LM-OTS chaining modules. The let figure shows the latency with BDS parameter � = 2 and the
right shows the latency with BDS parameter � = 8.

Fig. 8. Average latency in �� for LMS signature verification using ℎ = 10, � = 16 and SHA2-256 with diferent number of
configured hash cores and LM-OTS chaining modules.

tree which results in greatly improved performance. The initial storage of intermediate nodes occurs during the

key generation phase which automatically stores the irst authentication path. With each signature, the BDS

algorithm precomputes and stores nodes that will be required for later signatures.

The latency for the veriication algorithm is shown in Figure 8. Using a single hash core and LM-OTS chain,

the veriication algorithm takes 371 us. Again, the conigurations with equal number of hash cores and LM-OTS

chains yield the best results. This is expected since the veriication algorithm on average needs to compute each

hash chain for half the overall length and then needs to combine the computed OTS public key with each node

ACM Trans. Embedd. Comput. Syst.
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of the authentication path separately. The largest coniguration tested in this evaluation veriies a signature in

about 85 us.
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Fig. 9. Relative latency of LMS as a function of the configured hash cores and LM-OTS chains in comparison to the
configuration with only one hash core and LM-OTS chain. Lower is beter.

A diferent aspect that is visible in all of the prior performance igures is that the largest performance gaps

occur for a relatively low number of hash cores and LM-OTS chains. For key- and signature generation as well

as for the veriication algorithm, the addition of a second hash core and LM-OTS chain almost doubles the

performance. The efect reduces for a larger number of cores and parallel chains. This is natural since adding

a second hash core and LM-OTS chain would ideally lead to a halved run time. However, adding a third hash

core and LM-OTS chain can only cut the running time of the minimal coniguration into thirds which does not

halve the running time with two cores and OTS chains. Figure 9 shows the speedup for conigurations with �

hash cores and LM-OTS chains over the minimal coniguration of LMS. The dashed line shows the best-case

performance when each added hash core / LM-OTS chain would be utilized ideally; i.e. a second pair of chains /

cores would double the performance. Both the key- and signature generation function come very close to the ideal

speedup. The veriication algorithm achieves slightly worse performance compared to the ideal boundary. The

reason for this can be found in the algorithm itself: In the irst phase, the LM-OTS public key is computed. This

can be parallelized similarly to the key- and signature generation. In the second phase, the computed LM-OTS

public key is iteratively combined with the authentication path nodes to compute the root node of the Merkle

tree. In this phase, the additional hash cores and LM-OTS chains cannot be utilized. For signature veriication,

the percentage of time spent in the irst phase is much lower than for key- and signature generation. Thus, the

acceleration for signature veriication is slightly less efective.

5.1.2 XMSS. We now instantiate the XMSS algorithm and evaluate the performance. The results for the key

generation are shown in Figure 10. The key generation for the coniguration with one hash core and one WOTS+

chaining module takes about 4.7 s. By only adding a second hash core, this time can be reduced by about one

third. However, coniguring even more hash cores does not improve performance signiicantly. That is, since in

XMSS each WOTS+ chain iteration computes a pseudorandom key and mask using the hash function. Then, the

previous hash chain value is masked and hashed using the key. The generation of the key and the mask value can

be parallelized using two hash cores. However, the actual hash chain step can only be computed when the key

and the masking value are known. Hence, further available hash cores cannot be utilized. From the igure, it is
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Fig. 10. Latency in�� for XMSS key generation using ℎ = 10,� = 16 and SHA2-256 with diferent number of configured
hash cores and WOTS+ chaining modules.

also clear that the efect of multiple WOTS+ chaining modules only starts showing with two or more hash cores.

This is similar to the observations made for LMS. Opposed to the observation made for LMS, for XMSS the ideal

relation between hash cores and WOTS+ chains is not 1:1. That is, since due to the extensive use of masks and

pseudorandom keys, the design is more dependent on the hash function than on the number of WOTS+ chains.

Due to the dynamic scheduling of hash cores to OTS chains and the diferent opportunities for parallelism during

OTS chaining and treehash, there is no sharp ideal ratio as can be seen in the igures.

(a) � = 2 (b) � = 8

Fig. 11. Average latency in�� for XMSS signature generation using ℎ = 10,� = 16 and SHA2-256 with diferent number of
configured hash cores and WOTS+ chaining modules. The let figure shows the latency with BDS parameter � = 2 and the
right shows the latency with BDS parameter � = 8.
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Fig. 12. Average latency in �� for XMSS signature verification using ℎ = 10,� = 16 and SHA2-256 with diferent number of
configured hash cores and WOTS+ chaining modules.

The average results for XMSS signature generation are shown in Figure 11 for BDS parameter � = 2 (left)

and � = 8 (right). The characteristics regarding the relation between hash cores and WOTS+ chains are similar

to the key generation. For XMSS, the largest coniguration with 8 hash cores and 8 WOTS+ chains does not

yield a desirable coniguration as it only performs as good or slightly better then the coniguration with 8 hash

cores and 5 WOTS+ chaining modules. Considering the area cost of additional hash cores, choosing the largest

coniguration is not a sensible choice. We further explore trade ofs between the area cost and the achieved

performance in Section 5.3. In the minimal coniguration, the signature generation takes on average 12.6 ms

for � = 2 and 6.9 ms for � = 8. This is a signiicant speedup over the key generation, again demonstrating the

efectiveness of maintaining intermediate nodes in BRAM. As for LMS, the performance using � = 8 is almost

doubled. Conigurations with further hash cores and WOTS+ chaining modules increase the performance over

the minimal coniguration. Using 8 hash cores and 5 WOTS+ modules, the signature generation takes 2.3 ms and

1.3 ms respectively.

The performance results for XMSS signature veriication are shown in Figure 12. Similar to LMS, the XMSS

veriication is the fastest part of XMSS. Using the minimal coniguration with one hash core and one WOTS+

chain, the veriication algorithm has an expected latency of about 2.5 ms. In the boundaries of our evaluation,

the fastest signature veriication was achieved at 529 us using 8 hash cores and 8 WOTS+ chains. However, as

discussed above this coniguration is not ideal since the much smaller coniguration with 5 parallel WOTS+

chains and 8 hash cores achieves similar performance with 551 us.

The performance of XMSS as a function of the conigured Hash Cores andWOTS+ chains is plotted in Figure 13.

Since XMSS does not yield ideal conigurations with a 1:1 relation of hash cores and WOTS+ chains we use the

fastest measured time at a ixed number of hash cores for the evaluation. The measured latency is close to the

ideal speedup that can be achieved by adding more hash cores. Overall, speedups of up to 80% can be achieved. As

for LMS, the veriication algorithm performs slightly worse compared to key- and signature generation. However,

the additional hash cores can be utilized slightly better in XMSS which is a result of the additional hash keys and

masks that are computed during the WOTS+ veriication as well as the treehash operation.

5.1.3 Comparison. To inalize the performance analysis, we compare the results of the two schemes. As a result

of the pseudorandom bitmasks and hash keys, XMSS requires far more hash operations which leads to a much
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Fig. 13. Relative latency of XMSS as a function of the configured hash cores in comparison to the configuration with only
one hash core. Lower is beter.

Table 2. Performance comparison of our hardware implementation of XMSS and LMS using the minimal configurations.

Keygen Sign Verify

LMS 785 ms 2.1 ms 371 us

XMSS 4.68 s 12.6 ms 2.5 ms

Diference x 6.19 x 6 x 6.74

longer running time throughout all XMSS functions compared to LMS. In Table 2 we list the latencies for keygen,

signature generation and veriication for both schemes in the minimal coniguration using only one hash core.

Overall, we ind that XMSS is about 6 times slower than LMS for each operation. This is due to the increased

complexity of XMSS (see Figure 1 and Figure 3). Another factor that contributes to the performance diference is

the block length of the hash function. Since XMSS uses larger inputs to the hash function than LMS, the hash

computations in XMSS take longer than in LMS. This efect can be reduced by using a hash function with larger

block length like SHAKE.

5.2 Area Utilization

We now evaluate the hardware requirements for both schemes. We start by separately analyzing the standalone

versions of LMS and XMSS. Then, we instantiate the agile version that supports both schemes and analyze

the overhead. For the synthesis, we use Xilinx Vivado 2021.2 with an Artix-7 target device (speciically the

xc7a75tcsg324-2L). The FPGA features 47,200 LUTs and 94,400 FFs in total. In the following, we report the area

utilization after synthesis using the area optimized synthesis strategy of Vivado for evaluation-time reasons. We

report the numbers after place and route as well as the achieved frequency for some conigurations in Section 5.4.

The BDS parameter � selects howmany nodes of the Merkle Tree are stored in BRAM during the key generation.

For smaller � , only few nodes are stored while for large � , many nodes are stored. We showed the efect on

the performance in the previous section. However, quantifying the area cost is more complicated since the

parameter mostly afects the amount of BRAM used and barely changes the area utilization measured in Lookup

Tables (LUTs) and FFs. Our implementation instantiates a BRAM that is suiciently large for � = 2 and � = 8

independent of the actual value for � . For � = 8, we need about 10 kB of BRAM while for � = 2 only 2.2 kB BRAM

storage are used. The trade of between area, performance and BRAM usage needs to be considered for a given
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use-case and is especially interesting for large tree heights where it may not be possible to store all nodes in

BRAM. In the following analysis, we focus on � ∈ {2, 8} and report the LUT and FF utilization. Other values for �

can be chosen in the coniguration ile.

(a) LUTs (b) FFs

Fig. 14. Area utilization measured in LUTs and FFs of the implementation that only supports LMS. The configuration uses
ℎ = 10,� = 16, � = 2 and SHA2-256 as hash function.

5.2.1 LMS. We start by analyzing the area requirements for LMS. The results for the area utilization measured

in LUTs as a function of the conigured hash cores and LM-OTS chaining modules is shown in Figure 14a.

The minimal coniguration uses about 12,000 LUTs while the area requirements for the largest coniguration

is more than double at about 28,000 LUTs. On average, adding an additional hash core adds 1,475 LUTs to the

design while adding an additional LM-OTS chaining module adds about 519 LUTs. Hence, in terms of hardware

utilization, additional LM-OTS chains are much cheaper. The BDS parameter � has only a small inluence on the

LUT utilization as can be seen in the diference between the left and the right igure. The LUT utilization for

� = 8 us similar to the coniguration with � = 2.

Figure 14b shows the FF utilization for LMS with � = 2. The smallest design can be placed with 1,430 FFs. Each

additional hash core requires on average 1,156 FFs and each additional LM-OTS chaining module requires on

average 563 FFs. This is similar to the results using LUTs as a metric. The coniguration with � = 8 uses fewer

FFs than the coniguration with � = 2. That is, since for smaller � , more FFs are needed as internal storage for

the additional treehash instances. On average, the coniguration with � = 2 uses about 10% more FFs than the

coniguration with � = 8.

5.2.2 XMSS. We now analyze the area requirements for the XMSS-only implementation. The results for the

LUT utilization is shown in Figure 15a. Compared to LMS, the XMSS implementation uses slightly more LUTs.

Like in the LMS analysis, the LUT utilization remains similar when using � = 8 instead of � = 2. Each additional

hash core increases the LUT utilization on average by 1,500 LUTs. Adding a WOTS+ chaining module on average

results in 713 added LUTs. The size estimate for the hash core is consistent with the LMS evaluation which

resulted in almost equal size. For the OTS scheme, it shows that WOTS+ requires more LUTs than LM-OTS which

is expected due to the generation of the additional key and bitmask.
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(a) LUTs (b) FFs

Fig. 15. Area utilization measured in LUTs of the implementation that only supports XMSS. The configuration uses ℎ = 10,
� = 16, � = 2 and SHA2-256 as hash function.

The FF-based area evaluation for XMSS is shown in Figure 15b. As it was the case in LMS, the coniguration

with � = 2 uses more FFs compared to � = 8. Each added hash core increases the area usage by 1,175 FFs and

each WOTS+ chain by 681 FFs. The results for the WOTS+ chains indicate increased complexity compared to

LM-OTS which required 563 FFs per chain module.

In general, the hardware utilization for XMSS is slightly increased over LMS. There are few reasons for this:

Firstly, we already identiied that the WOTS+ module is more complex than the LM-OTS module. Especially for

multiple parallel chaining modules, this (small) overhead adds up and contributes to the overall size. Secondly,

the compressing mechanism for the OTS public keys in LMS is much simpler than the L-Tree approach of XMSS.

In the coniguration with only one WOTS+ chain, the L-Tree compression mechanism contributes most to the

increased area utilization.

5.2.3 Agile Version. In the previous sections we analyzed the standalone-versions of LMS and XMSS. Usually,

when a device is required to support both XMSS and LMS, one would need to instantiate two hardware accelerators

each with the area utilization described above. However, due to the similarities of LMS and XMSS, much of the

hardware logic can be reused to minimize the overhead. In this section we examine the hardware overhead that

occurs when coniguring the agile version.

We irst measure the area overhead of the agile version over the standalone LMS implementation. Figure 16

shows the absolute overhead of the agile implementation measured in FFs. The same evaluation using LUTs

as a metric yields similar results. The igure conirms the observation made earlier, that the WOTS+ chaining

modules are slightly larger than the LM-OTS chaining modules. Since the OTS chaining modules in the agile

implementation supports both LM-OTS and WOTS+, the agile OTS module is also larger than the LM-OTS-only

module which leads to the increasing overhead on the chain-module axis. We also measure the overhead of the

agile implementation over the XMSS-only design and ind that the overhead is almost constant for all numbers of

hash cores and OTS chaining modules. Hence, there is no gradual increase in overhead of the agile implementation

over XMSS for larger conigurations as it is with LMS. That is, since most of the LMS scheme can be realized

by skipping states of XMSS; e.g., by omitting the key and mask steps in the WOTS+ scheme, LM-OTS can be
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Fig. 16. Area overhead of the agile implementation over the LMS-only version measured in FFs.

realized. Hence, the overhead to XMSS comes mostly down to additional edges in the state machines. However,

few aspects of LMS, like the LM-OTS public key compression, cannot be realized in this way which leads to a

small increase in size.

Table 3. Comparison of the hardware utilization for LMS, XMSS and the agile instantiation ater place and route on a Xilinx
Artix 7 FPGA. All designs use ℎ = 10, � = 16 with SHA2-256 and are placed with 100 MHz using Vivados area optimized
strategies and use a single hash core with a single OTS chaining module. The relative overhead is computed in comparison to
the XMSS-only version.

Logic Memory Usage

LUT MUX FF LUTRAM BRAM Util. Slices

Only LMS (� = 2) 12 407 373 13 293 32 2.2 kB 4 683

Only XMSS (� = 2) 12 986 309 14 203 32 2.2 kB 4 661

Agile LMS & XMSS (� = 2) 15 405 (+19%) 537 (+44%) 14 512 (+2%) 32 (±0%) 2.2 kB 5 115 (+10%)

Only LMS (� = 8) 12 374 0 11 630 32 10.1 kB 4 450

Only XMSS (� = 8) 12 038 421 12 535 32 10.1 kB 4 887

Agile LMS & XMSS (� = 8) 14 615 (+21%) 515 (+22%) 12 854 (+3%) 32 (±0%) 10.1 kB 4 528 (-9%)

Table 3 shows the utilization report of the minimal conigurations of LMS, XMSS and the agile version after

place and route on the Artix 7 FPGA. It further shows the relative overhead of the agile design compared to the

standalone versions of LMS and XMSS. For � = 2 and � = 8, the agile design has a 20% increased LUT utilization.

Moreover, the design uses much more multiplexers than the standalone versions of LMS and XMSS. The reason

for this increase is that at many occasions conditional statements are implemented which switch between the

two schemes. For the standalone version, these statements are removed by optimizations during the synthesis

process. The register overhead of the agile design over XMSS is low at about 3%. The LMS version uses slightly

fewer FFs which is due to the simpler algorithm. The agile design essentially uses the same registers as LMS and

XMSS. Due to the similarities, almost all registers can be shared between the schemes which leads to the minor

increase in FFs. For the slice utilization, the results are inconclusive with a 10% increase for the agile design

ACM Trans. Embedd. Comput. Syst.



22 • JP Thoma, D. Hartlief, and T. Güneysu

using � = 2 and almost 10% decrease for � = 8. This is an artifact of the largely undocumented place and route

algorithm used by Vivado.

5.3 Time-Area Optimization

So far, we have analyzed the performance capabilities and the area utilization of our implementation separately.

For some use cases, this is the best way of choosing a coniguration, e.g., if there are hard time constraints like žthe
key generation must be completed in less than X secondsž or if the available space is limited and the performance

should be maximized. In the former case, one would choose the smallest coniguration that meets the time

constraints and for the latter, the largest coniguration that its the available area. However, in reality there often

is a trade of between area and performance to be made. Since space on the hardware design is expensive in

the manufacturing process, engineers often like to use the smallest design that yields the best performance. In

this section, we aim to ind such optimal trade ofs for the standalone designs of LMS and XMSS as well as the

agile design. To do this, we take the area results (LUTs + FFs) for each coniguration and multiply them by the

average latency of a signature generation. We omit the area inluence of the BRAM since while the amount of

memory required changes with the BDS parameter � , it does not afect the number of hardware BRAMs utilized

on the FPGA. The efect is only relected in the FPGA BRAM utilization for larger tree heights or for ASIC targets.

We use the sign algorithm for the optimization since often, this is the most timing critical part of the signature

scheme. To keep the numbers of the time-area product in a readable region, we further multiply a scale factor

between 10−8 and 10−9.

(a) � = 2 (b) � = 8

Fig. 17. Time-area product of the implementation that only supports LMS. Lower is beter. The configuration uses ℎ = 10,
� = 16 and SHA2-256 as hash function. The let figure shows the results for BDS parameter � = 2 and the right figure shows
� = 8.

5.3.1 LMS. Figure 17 shows the result for the time-area product for conigurations of LMS with up to eight

hash cores and eight LM-OTS chaining modules. The results for BDS parameter � = 2 (left) and � = 8 (right)

are very similar. In the performance analysis (Section 5.1), we already found that for LMS, a relation of one

hash core per LM-OTS chaining module is best to accelerate the scheme. Combined with the almost linear area

overhead per added hash core and LM-OTS chaining module, conigurations that deviate from the diagonal line
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generally yield a higher time-area product. For � = 8 (right), the time-area product is minimal at 7 hash cores and

7 parallel LM-OTS chains. We expect this to be the global minimum for the time-area product since even larger

conigurations only slightly increase the performance (c.f. Figure 7) but the area increases linearly with each

added hash core and LM-OTS chain (c.f. Figure 14a). For � = 2 (left), the time-area product of the coniguration

with 7 hash cores and 7 LM-OTS chains is almost equal to the conigurations with 8 and 8 hash cores and LM-OTS

chains. However, without the scale factor, the 7x7 coniguration yields a slightly lower time-area product. Hence,

we conclude that for the LMS-only design, a coniguration with 7 hash cores and 7 LM-OTS chaining modules

minimizes the time-area product.

(a) � = 2 (b) � = 8

Fig. 18. Time-area product of the implementation that only supports XMSS. Lower is beter. The configuration uses ℎ = 10,
� = 16 and SHA2-256 as hash function. The let figure shows the results for BDS parameter � = 2 and the right figure shows
� = 8.

5.3.2 XMSS. We repeat the analysis for the design that only implements XMSS, the results of which are shown

in Figure 18. Opposed to the LMS evaluation, the ideal relation between hash cores and parallel OTS chains is

not 1:1 which leads to a more difuse distribution of conigurations with low time-area product in the igure.

However, for both � = 2 and � = 8, the lowest time-area product occurs with 8 hash cores and 7 WOTS+ chains.

For � = 2, the coniguration with 7 hash cores and 5 WOTS+ chains achieves almost the same time-area product.

Without the scale factor, the 8x7 coniguration performs slightly better. There may be conigurations with even

lower time-area products outside of our 8x8 evaluation scope. However, we do not expect these to improve the

product by much since the results are lattening out in the lower right edge of the igure. Similar to LMS, the

impact of additional hash cores and WOTS+ chains reduces with each added core / chaining module while the

hardware overhead is almost constant for each added module.

5.3.3 Agile Version. The agile design combines the two schemes at the cost of a small hardware overhead. The

timing results are mostly unafected by these changes. Since the LMS-only and the XMSS-only designs yielded

very similar conigurations that minimize the time-area product, it is unsurprising that these conigurations lead

to a small time-area product in the agile design. We veriied this intuition using the same technique as above.
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Table 4. Comparison of our results in diferent configurations compared to themselves and related work. All implementations
use h=10, n=32 and w=16. The configurations of the implementation described in this work has been synthesized and placed
on an Artix-7 FPGA (xc7a75tcsg324-2L) using Vivados performance optimized algorithms. The ł/ž-character separates lines
in a table row.

Scheme /
Variant (Cores, Chains)

Logic Memory
FMax Gen Sign Verify

LUT FF BRAM

XMSS [36, 46]

HW-SW Co-design
6 289 8 579 16 93 MHz 3.44 s 9.95 ms 5.68 ms

LMS Gen [42] 190 660 126 656 17 285 MHz 3.06 ms - -

XMSS Gen / Sign / Vrfy [12]

8 464 14 464 0

110 MHz 2.88 s 11.09 ms 1.45 ms22 300 31 215 0

6 979 10 860 0

XMSS (Ours, [44])

Minimal (1x1)
7 177 3 027 14.5 100 MHz 4.63 s 10.33 ms 2.68 ms

XMSS (Ours, [44])

Time-Area (3x2)
12 463 6 525 14.5 100 MHz 1.68 s 4.98 ms 1.01 ms

XMSS (Ours, [44])

Performance (9x7)
30 454 15 191 14.5 95 MHz 0.77 s 4.20 ms 561.01 us

XMSS / LMS / Both (Ours)

BDS � = 2, Minimal (1x1)

13 630 15 278 15 100 MHz 4.68 s 12.6 ms 2.5 ms

13 137 14 365 15 100 MHz 785 ms 2.1 ms 371 us

15 946 15 566 15 100 MHz Ð same as above Ð

XMSS / LMS / Both (Ours)

BDS � = 2, Medium (5x4)

22 833 20 789 15 100 MHz 1.1 s 3.0 ms 682 us

22 033 19 125 15 100 MHz 223 ms 682 us 125 us

27 032 21 228 15 98 MHz Ð x 1.024 Ð

XMSS / LMS / Both (Ours)

BDS � = 2, Large (8x7)

30 057 25 371 15 100 MHz 783 ms 2.1 ms 530 us

28 533 22 903 15 99 MHz 141 ms 392 us 90 us

36 315 25 808 15 81 MHz Ð XMSS: x 1.234 ; LMS: x 1.222 Ð

XMSS / LMS / Both (Ours)

BDS � = 8, Minimal (1x1)

13 308 13 625 15 100 MHz 4.68 s 6.9 ms 2.5 ms

12 698 12 708 15 100 MHz 785 ms 1.18 ms 371 us

15 860 13 914 15 100 MHz Ð same as above Ð

XMSS / LMS / Both (Ours)

BDS � = 8, Medium (5x4)

22 560 19 157 15 100 MHz 1.1 s 1.6 ms 682 us

21 388 17 433 15 100 MHz 223 ms 340 us 125 us

26 828 19 515 15 100 MHz Ð same as above Ð

XMSS / LMS / Both (Ours)

BDS � = 8, Large (8x7)

30 643 23 723 15 100 MHz 783 ms 1.2 ms 530 us

21 388 17 433 15 100 MHz 140 ms 217 us 89 us

36 534 24 197 15 81 MHz Ð x 1.234 Ð

5.4 Discussion & Comparison

We now summarize our key indings and compare how LMS compares to XMSS and the agile implementation.
We select conigurations of interest for which we determine the maximum clock frequency supported by the
design and report the area utilization after place and route on the target device. Finally, we compare our results
to related work and discuss the results.
Overall, our evaluation showed that parallelizing hash operations is an efective measure to accelerate both

schemes. However, we also found that the parallel hash cores can only be utilized eiciently if the OTS chaining
algorithm can also be parallelized. For LMS, the optimal relation of OTS chains to hash cores is 1:1. XMSS on the
other hand requires more hash cores than OTS chains for ideal acceleration. That is due to the extensive generation
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of hash keys and bitmasks which can be done in parallel. Regarding the area requirements, we found that the
standalone versions of XMSS and LMS are fairly similar. However, in all investigated conigurations, XMSS had
slightly higher area utilization which is a result of the used keyed hash functions and the more complicated
compression of the leaf nodes. Moreover, the WOTS+ hash chains are slightly larger than for LM-OTS. This leads
to an incremental overhead of XMSS over LMS for conigurations with parallel OTS chains. For the agile design
that implements LMS and XMSS simultaneously, the hardware overhead comes down to roughly 20% increased
LUT utilization compared to standalone XMSS. The amount of FFs used is only slightly increased.
Table 4 shows the results of our implementation in diferent conigurations compared to related work. We

ran the synthesis and place and route algorithms using the performance optimized strategies of Vivado for a
Xilinx Artix-7 target (xc7a75tcsg324-2L). Almost all conigurations can be placed at a clock frequency of 100
MHz. However, for the largest conigurations with the agile coniguration, the placement strategies reach a limit
which causes a much reduced clock frequency for these two conigurations. Our design instantiates a ixed-size
BRAM to support all values for � ≤ 8. Each BRAM module of the FPGA has a word width of 32 bit. To support
the 256-bit data width of the hash function, multiple BRAM modules are concatenated. This leads to the static
amount of BRAM reported for our implementations. However, the versions with � = 2 utilize much less BRAM
which is relevant if the design is placed on custom hardware.

The agile implementation described in this work builds on our previously reported standalone XMSS imple-
mentation [44]. Compared to the standalone version, the agile implementation utilizes more hardware resources.
The reason for that is, that the standalone version heavily relies on the BRAM as it outsources the treehash stack
in BRAM. It also does not implement the BDS algorithm but instead caches all leaf nodes during key generation
in BRAM. However, this approach scales badly for large tree heights. Furthermore we found that the signature
generation which is arguably the most critical operation of the design could not utilize the additional hash cores
and OTS chains well using the naive treehash approach. Therefore, this work implements the BDS algorithm
which largely contributes to the increased area utilization but limits the BRAM usage for any tree height and
allows accelerating the signature generation more easily. The performance results for the key generation are
similar to the ones of the standalone XMSS version. However, the signature generation of XMSS is much faster,
leveraging the beneits of the BDS algorithm. Using � = 2 (and hence storing only 2.2 kB), the signature generation
is almost as fast as with the naive treehash that stores all 1,024 leaf nodes (12.6 ms vs 10.33 ms). Using � = 8,
more nodes are stored by the BDS algorithm and the average signature latency reduces to 6.9 milliseconds for
the smallest coniguration. The signature generation of the large coniguration with 8 hash cores and 7 WOTS+
chains outperforms the naive treehash implementation by a factor of two for � = 2, despite storing much fewer
nodes in BRAM. For � = 8, the signature generation can be further accelerated and outperforms the naive version
by a factor of four. The fact that our new implementation is better suited to accelerate the signature generation
than the old one also shows at the time-area optimization. For our previous implementation, the optimal trade of
was at three hash cores and two WOTS+ chains. For the new implementation, the minimal time area product was
at 8 hash cores and 7 WOTS+ chains, indicating that the performance improvements for such large conigurations
outweigh the area overhead.

Compared to the hardware / software co-design in [36, 46], the conigurability of our implementation allows
various trade ofs regarding area and performance. While our minimal coniguration is slightly slower than theirs,
coniguring only a second hash core makes up the entire diference. Larger conigurations of our implementation
allow further acceleration of the scheme, outperforming the hardware / software co-design approach substantially.
Moreover, the full hardware design does not require additional computing resources on an external CPU which
may be occupied by other tasks. It must be noted that the transfer of the results (e.g. the signature) from the
hardware module to the main memory is not considered in our timing measurements. The latency of this step
depends on the target device where our accelerator is implemented (i.e. the bus width from the I/O BRAM to
the memory management). Using direct memory access (DMA), this additional latency can be avoided entirely.
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However, this is not always available on low-end devices. The hardware implementation of XMSS presented
in [12] is split into distinct modules for keygen, sign and verify. Our design combines all three operations and the
medium coniguration which is comparable in size outperforms their version by more than a factor of two. The
accelerator for the key generation of LMS presented in [42] targets a diferent use case. Their design is much
larger than ours, but therefore accelerates the LMS key generation beyond the coniguration boundaries of our
design. While their design targets server-grade CPUs, our focus is on embedded devices. What distinguishes our
implementation from all previously mentioned is the agility and vast conigurability. This is the key feature of
our design and allows tailored trade ofs for a large number of applications and use cases.

Table 5. Size and performance of the verification unit. Each configuration is equipped with a single hash core and a single
OTS chaining module. Larger configurations are possible. The latency is averaged over multiple signature verifications.

Scheme
Logic Memory

FMax Latency
LUT FF BRAM

XMSS 4 885 3 379 15 100 MHz 2.5 ms

LMS 3 914 2 454 15 100 MHz 0.4 ms

Agile 6 334 3 669 15 100 MHz ś same as above ś

5.5 Verification-Only Accelerator

There are many applications where only signature veriication is needed. Especially in an embedded environment,
it can make sense to reduce the hardware accelerator to a variant that can only perform signature veriication.
This could, for example, be a medical device that can receive over-the-air updates. In this scenario, the hardware
unit acts as a trust-anchor that is veriied by the device manufacturer. The update ile could be signed using
XMSS or LMS and the hardware veriication unit can verify that the update is legitimate. The reduced hardware
module has two advantages: First, it requires less area which reduces the production cost and, second, the cost
for certiication is less due to the reduced complexity.

We implemented such a reduced version of our accelerator. The conigurability is not afected by this, i.e., it is
still possible to instantiate XMSS, LMS, or the agile version. Moreover, it is still possible to conigure multiple
hash cores and OTS chains for the veriication-only variant. The area- and performance igures are shown in
Table 5. As expected, the timing behavior is unafected by the smaller design. However, the area utilization is
reduced signiicantly. As for the full design, the agile implementation has almost no overhead in FFs over the
XMSS-only version. The LUT utilization of the agile version is increased by 30% over XMSS. Hence, the overhead
is slightly higher than for the full implementation. The veriication-only variant of LMS is particularly small in
hardware. Compared to the full accelerator, the LMS veriication requires only 30% of the LUTs and 17% of the
FFs.

5.6 Possible Atacks and Countermeasures

The security of the primitives XMSS and LMS is based on hash functions and therefore well-understood and
believed to be a conservative choice. However, many real-world attacks do not target the cryptographic primitive
but the implementation instead. So-called side-channel attacks [31, 32] may exploit the power consumption,
the electromagnetic radiation, or timing characteristics of the implementation. Fault-attacks [8] on the other
hand actively tamper the device, e.g., by hitting the circuitry with a laser, or by undervolting the device during
(parts of) the computation. Due to the random nature of the hash function, the computations in XMSS and
LMS have very little dependency on the key that can be attacked using side-channels. However, in [29, 47]
power-side channel attacks on the SHA-2-based pseudo random number generator used in XMSS are presented.
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Generally, fault-attacks pose a high risk on stateful signature schemes. That is, since if the attacker is able to fault
the internal state, they can easily forge signatures. Hence, the state needs to be protected carefully if physical
attackers are within the threat model. Compared to a software implementation or even a hardware / software
co-design like [46] our hardware implementation maintains the state completely in hardware which prevents any
attacks from the software level like out-of-bound writes which could tamper the HBS state. For protection on the
hardware level, one could maintain several copies of the state and check for consistency. Since it is diicult for an
attacker to cause the same faults on several chip locations, attempts to tamper the state could be detected. Apart
from attacking the state, fault attacks presented in [1, 13] can potentially be applied to the multi-tree variants of
XMSS and LMS.

6 CONCLUSION

In this work we presented the irst agile hardware accelerator for the stateful hash-based signature schemes LMS
and XMSS. Leveraging the similarities of both schemes, our implementation incurs only a small area overhead
compared to the standalone versions of XMSS and LMS. With the easy conigurability during synthesis, one can
choose to instantiate either one of the schemes or the agile version that supports both. We implemented the BDS
algorithm and made the parameter � conigurable to allow for various trade ofs between BRAM usage and the
performance of the signature generation. Furthermore it is possible to conigure an arbitrary number of parallel
hash cores and OTS chaining modules which communicate over a bus interface.
We explored the design space of our implementation regarding speed and area. Moreover, we analyzed the

time-area product and derived conigurations which optimize this. Throughout our work, we explored diferences
between LMS and XMSS. We found that XMSS is much slower and slightly more complex in hardware. In return,
XMSS ofers a higher security model. Having an agile implementation of both schemes allows engineers to
support both standards and therefore maintain interoperability between devices from diferent manufactures.
Moreover it is possible to switch between schemes, if one of them becomes insecure in the future.
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