XSinator.com: From a Formal Model to the Automatic
Evaluation of Cross-Site Leaks in Web Browsers

Lukas Knittel
Ruhr University Bochum
lukas.knittel@rub.de

Dominik Trevor Nof3
Ruhr University Bochum
dominik.noss@rub.de

ABSTRACT

Cross-Site Leaks (XS-Leaks) describe a client-side bug that allows
an attacker to collect side-channel information from a cross-origin
HTTP resource. They are a significant threat to Internet privacy
since simply visiting a web page may reveal if the victim is a drug
addict or leak a sexual orientation. Numerous different attack vec-
tors, as well as mitigation strategies, have been proposed, but a
clear and systematic understanding of XS-Leak’ root causes is still
missing,.

Recently, Sudhodanan et al. gave a first overview of XS-Leak at
NDSS 2020. We build on their work by presenting the first formal
model for XS-Leaks. Our comprehensive analysis of known XS-
Leaks reveals that all of them fit into this new model. With the help
of this formal approach, we (1) systematically searched for new
XS-Leak attack classes, (2) implemented XSinator.com, a tool to
automatically evaluate if a given web browser is vulnerable to XS-
Leaks, and (3) systematically evaluated mitigations for XS-Leaks.
We found 14 new attack classes, evaluated the resilience of 56
different browser/OS combinations against a total of 34 XS-Leaks,
and propose a completely novel methodology to mitigate XS-Leaks.

CCS CONCEPTS

«+ Information systems — Browsers; Web applications; « Secu-
rity and privacy — Formal security models.

KEYWORDS
XS-Leaks; Browser; Web Security

ACM Reference Format:

Lukas Knittel, Christian Mainka, Marcus Niemietz, Dominik Trevor Nof3,
and Jorg Schwenk. 2021. XSinator.com: From a Formal Model to the Auto-
matic Evaluation of Cross-Site Leaks in Web Browsers. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security
(CCS °21), November 15-19, 2021, Virtual Event, Republic of Korea. ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/3460120.3484739

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8454-4/21/11.

https://doi.org/10.1145/3460120.3484739

Christian Mainka
Ruhr University Bochum
christian.mainka@rub.de

Marcus Niemietz
Niederrhein University
of Applied Sciences
marcus.niemietz@hs-niederrhein.de

Jorg Schwenk
Ruhr University Bochum
joerg.schwenk@rub.de

attacker.com

Use
‘ InClusion | | | COOKIE | fmumgp- State-

_) Method Dependent
[Jiffor—

Resource
Use Leak
Technique

o

Determine
User State
-/

Victim visits
attacker.com

..

«—

Figure 1: XS-Leak attack flow example. The victim (1) visits
the attacker-controlled website, which (2) uses an inclusion
method to request a state-dependent resource from a target
website. The attacker then uses (3) a leak technique to (4)
determine the victim’s user state.

1 INTRODUCTION

Web Applications and User States. In a web application, a web
browser interacts with several web servers through HTTP or Web-
Socket connections. The client-side logic of the web application
is written in HTML, CSS, and JavaScript code, and is executed
inside a tab of the browser, or inside an inline frame in another
application. The execution context of a web application is defined
through the concept of web origins [5]. Web applications may call
and embed other web applications to enhance functionality. For
example, a hotel reservation site may embed Google Maps and
public transportation sites as an easy method to allow its customers
to determine how to reach the hotel. In such situations, cross-origin
HTTP requests between different web origins are necessary to
retrieve data to embed and display in the web application.

When interacting with a website, a user has a well-defined state
— this state typically contains the information whether the user is
logged in or not. Besides the login status, the user state may contain
account permissions, such as admin privileges, premium member-
ship, or restricted accounts. The number of different user states
is potentially unlimited. For example, in a webmail application, a
user may or may not have received an email with the subject “top
secret”.

http://xsinator.com
https://doi.org/10.1145/3460120.3484739
https://doi.org/10.1145/3460120.3484739

Privacy Risks of Cross-Origin Requests. Consider the fol-
lowing situation: the attacker has lured a victim on a malicious web
application that executes hidden cross-origin HTTP requests to
different drug counseling sites. If the attacker could learn whether
the victim is logged in at one of these drug counseling sites, the
attacker would gain highly privacy-critical information about the
victim.

Cross-Site Leaks on the User States. To distinguish between
two user states, the attacker’s JavaScript code must be able to iden-
tify differences in its own execution environment resulting from
different responses to cross-origin HTTP requests. These different
responses must correspond to different user states at the target web
application. If this differentiation is possible, we call this vulnera-
bility an XS-Leak. The attacker can then craft a malicious website,
which triggers the XS-Leak once the victim opens it (Figure 1). In
the following two real-world examples, we try to exemplify the
scope of the problem.

XS-Leak on Gitlab. Gitlab is a popular web application for
collaborative software development hosted by many companies.
Gitlab provides a profile URL https://git.company.com/profile: if
the user is not logged in, this URL redirects the user to https:
//git.company.com/users/sign_in; if the user is logged in, the cur-
rent user’s profile information is shown. However, since the attacker
embeds Gitlab cross-origin into the attacker’s own web page, the
attacker cannot directly read the URL. In Listing 1, we use the
window.length property, which is readable cross-origin, to deter-
mine the user state; the profile page does not contain any iframes,
but the login page includes three frames. If this property has the
value 3, the user is not logged in. If it has the value the 0, the user is
logged in. By scanning different company websites hosting Gitlab,
the attacker may collect information on a programmer’s affiliation.

Listing 1: XS-Leak on Gitlab.
let url = 'https://git.company.com/profile’
let ref = window.open(url, '_blank")

// wait until pop-up is loaded
let counted_frames = ref.window.length;

if (counted_frames === 0) {
// User is logged in
} else if (counted_frames === 3) {

// User is NOT logged in

XS-Leak on Google Mail. Google Mail is one of the most popu-
lar webmail applications. In 2019, Terjanq [53] reported an XS-Leak
which could determine whether an email with a certain subject
(e.g., “drug counseling”) or content was present in the user’s inbox
cross-origin. The XS-Leak abused the common cache that web ap-
plications share. By using the advanced search option, which can be
called cross-origin, Google Mail marks search results (if any exist)
with a dedicated image. To perform an XS-Leak attack, the attacker
first empties the web cache, then calls Google Mail advanced search,
and finally checks if the dedicated image is available in the cache.
If true, the search was successful, and the attacker learned that an
email containing the used search term exists in the victim’s inbox.

Formal Modelling and Testing. Sudhodanan et al. [51] gave
the first classification of existing XS-Leaks. They surveyed related

work, both academic and non-academic, added further attack classes,
and showed that XS-Leaks are a novel paradigm in attacks on pri-
vacy. We build on their work to propose the first formal model for
XS-Leak attacks (Section 2). This formalization allows us to extend
their work in three aspects:

(1) By distinguishing between inclusion methods i and leak
techniques t, we provide a clear methodology on how to
search for novel, yet undiscovered, XS-Leaks. While we did
not extend the set of inclusion methods I, we later show that
mitigations may work for certain inclusion methods only.
On the other hand, we could substantially extend the set T
of leak techniques, by grouping known elements of T and
systematically searching for new vectors which may fit in
these groups.

(2) To systematically evaluate the three-dimensional matrix con-
sisting of pairs (i, t, w), where w € W is a web browser from
the set of tested web browsers, we build a tool called XSinator.
This tool uses hand-crafted state-dependent resources to de-
termine if there exists at least one pair i, t for which the state
of this resource can be leaked in w. If at least one such pair
exists, we label w as vulnerable against this attack vector.
With this tool, we were able to detect major differences be-
tween browser implementations (Table 2). These findings
are used as guides to propose new mitigation methods.

(3) By separating inclusion methods i and leak techniques t,
we could evaluate existing and propose novel mitigations.
Current mitigations mainly focus on the inclusion methods.
4 out of 7 mitigations discussed in [51] are related to HTTP
headers, which only may be effective against certain inclu-
sion methods. For example, SameSite=Lax cookies are only
effective if the target resource is included as an iframe, but
not if it is called with window. open. We introduce a novel
class of mitigations, which in Sudhodanan et al. [51] is only
present as a short analysis of the Tor browser. This class of
mitigations targets the leak techniques T and can be sketched
as follows: if our evaluation (Table 2) shows that some web
browsers are immune to certain XS-Leaks, this indicates that
the corresponding leak techniques can be fixed by changing
the browser implementation. So in our discussion of mitiga-
tions, we clearly distinguish between mitigations targeting
certain inclusion methods only, and mitigations targeting
leak techniques.

Empirical Study with Reproducible Results. XSinator is an
easy to deploy web application. With a single click, all XS-Leaks
test cases can be automatically executed for the active browser. We
used XSinator to evaluate 37 different web browsers on desktop
operating systems, 9 on Android, and 10 on iOS. Surprisingly, we
identified very different XS-Leaks in all major browser families such
as Chromium, Firefox (FF), and Safari (SA). Browsers based on the
Chromium engine (i.e., Google Chrome (GC), Microsoft Edge (MSE),
Opera (OP)) behave identically. For example, XS-Leaks identified
in GC are also applicable to all other browsers based on the same
engine. Moreover, we could detect differences in FF compared to
the Tor browser.

https://about.gitlab.com/
https://git.company.com/profile
https://git.company.com/users/sign_in
https://git.company.com/users/sign_in

Contributions. We make the following key contributions:

e We are the first to present a formal model for XS-Leaks.
We show that this model can be used to gain a systematic
in-depth understanding of XS-Leaks’ root causes (Section 2).

e We implemented XSinator, an easy-to-use, open-source web-
site that is publicly available at XSinator.com. With a single
click, XSinator can automatically scan for XS-Leaks vulner-
abilities in every browser, including mobile and desktop
(Section 3).

e We analyze known vulnerabilities and show that they fit
into our formal model (Section 4).

e We significantly extend the set of known XS-Leak attack
vectors by contributing 14 new XS-Leaks with the help of
our formal model (Section 5).

o We evaluated 56 browser/OS combinations against a total set
of 34 XS-Leaks XSinator fully automatically. We identified
XS-Leaks in 37 desktop, 9 Android and 10 iOS web browsers.
(Section 6).

e We use XSinator and the formal distinction between leak
techniques and inclusion methods to propose a novel class of
mitigation that disables leak techniques within web browser
implementations (Section 7).

Artifact Availability. In the interest of open science, our tool
and its source code, including all 34 XS-Leaks implementations, are
available at XSinator.com.

Responsible Disclosure. We reported new leak techniques to
Google and Mozilla and the disclosure process is still ongoing. We
incorporated their feedback into our countermeasure discussion in
Section 7.

2 FORMAL XS-LEAK DESCRIPTION

This section gives a formal description of XS-Leak attacks as a basis
for further analysis. This formal description helps us to (1) classify
existing XS-Leaks thoroughly, (2) systematically identify new candi-
dates for XS-Leaks, and (3) classify and evaluate countermeasures.

2.1 Formal Description

Same Origin. We first formalize the well-known fact that requests
to the same URL may vyield different results, depending on which
state s the web application is currently in.

Definition 2.1 (State-dependent resource). A state-dependent re-
source sdr is a 2-tuple (url, (s, d)), where (s, d) € {(so,do), (s1,d1)},
and

e url is a URL resource on the target web application.

o S ={s0,51} is a set of two different states of the target web
application.

e D ={dp,d;} is a set that represents the difference of the web
application’s behavior that depends on sp and s;.

Differences. Please note that the definition of D is, by intention,
somewhat vague. Two different states so, s; on the same url € URL
can result in different behavior by the web application. The differ-
ence d € D manifests itself either directly in the initial response
(e.g., HTTP status code, or different HTML elements) or indirectly
when the web application behaves differently (e.g., a navigation
triggered by JavaScript code). Our notion of d does not only cover
differences in HTTP requests and responses, but also side-effects
on the APIs caused by these responses.

States. A web application may have (potentially infinitely many)
different states s € S for a user v. To successively detect the de-
sired state, the attacker may use a divide-and-conquer approach,
for example, by detecting the subject on an email in a webmail
application letter by letter. For this reason, in our model, we con-
centrate on distinguishing between two different states sp, s1. States
are typically stored in the web browser, which sends them along
with the HTTP Request (e.g., HTTP cookies, cache content).

Cross-Origin. In the web attacker model, an adversary can
only access a state-dependent resource sdr from a different web
origin. He thus must use an inclusion method to include sdr into
his web page, and he may use different leak techniques to observe
the victim’s web browser from his malicious JavaScript code.

Definition 2.2 (Cross-Site Leak). A Cross-Site Leak is a function

xsl() that outputs a bit b’, that is b” = xsl(sdr, i, t) where

e sdr € SDR is a state-dependent resource.

e i € [is an inclusion method to request a cross-origin resource.

o t € T is a leak technique which can be used to observe state-

dependent resources cross-origin.

The difference d in a state-dependent resource sdr is called de-
tectable if there exists an inclusion method i and a leak technique ¢
such that xsl((url, (sp,dp)), i, t) = b for all requests.

Inclusion methods i € I trigger cross-origin requests to the tar-
get web application’s state-dependent resource sdr in the victim’s
browser wy. For example, the attacker can include the url of the sdr
(i.e., sdr.url) in the src attribute of a specific HTML element, and
may use the target when opening new browser tabs or windows, or

https://xsinator.com
https://xsinator.com

can use the Fetch API. Note that since i issues a cross-origin request,
t cannot directly access the server response due to the Same-Origin
Policy (SOP) that forbids cross-origin access.

Leak techniques t € T provide information that malicious Java-
Script can observe cross-origin when it runs in the victim’s web
browser wy. This information may be rooted in the JavaScript exe-
cution context (e.g., event handlers, readable DOM attributes), in
the global state of the web browser (e.g., global resource limits), or
on Web APIs (e.g., the Performance API). It can vary in different
browsers. For example, a piece of information may be accessible
cross-origin in Firefox but inaccessible in Chrome.

Example: Cross-Site Leak on Gitlab. Let us illustrate these
definitions with the XS-Leak on Gitlab as depicted in Listing 1. In
that case, we have a state-dependent resource sdr with

e url = https://git.company.com/profile

o s € {logged-in, logged-out}

e d is the number of frames included in the page: dy = 0 for
state logged-in, and d; = 3 for state logged-out.

Note that the reconnaissance phase, in which such state-dependent
resources are found, is conducted on the web application itself
(same origin) and thus is not limited by the cross-origin restrictions.
Whether a state-dependent resource is exploitable in an XS-Leak
depends on the attacker finding a suitable i and ¢ that works in
a victims browser. In this example, the attacker implements the
XS-Leak b” = xsl(sdr, i,t) as follows:

e window.open(sdr, '_blank") is the inclusion method i.

e The DOM property window. length is the leak technique ¢,
which reads the number of frames d by using the pop-up
window reference from i.

e The function xsl() is given in Listing 1.

2.2 Attacker Model

Different attacker models can be derived from this formal descrip-
tion by giving the attacker control over the different components
of an XS-Leak d = xsl(sdr, i,t).

Real-World Attacks. In real-world attacks, the attacker only
controls the inclusion method i and the leak technique ¢ through
the malicious HTML page that they created. The attacker has no
control of sdr.s, which is stored in the victim’s browser, or sdr.d,
which depends on the target web application. To determine a state-
dependent resource sdr, a reconnaissance phase is needed in which
the attacker collects information on different states s that the web
application may have, and on the resulting differences d in the
HTTP responses.

Evaluation. Our evaluation uses a stronger attacker model,
which also gives the adversary full control over the state-dependent
resource sdr. That is, the attacker can choose the url, choose a state
s and a difference d. The only element the attacker does not control
is the web browser and its cross-origin isolation techniques. In an
ideal world, the browser should reduce the set of detectable dif-
ference to the empty set. Thus, we consider the strongest possible
attacker, and we want to determine which XS-Leak may potentially
exist in any web application. We describe this approach’s goal as
follows: if we can reduce the set of detectable difference in this
strong attacker model by strengthening cross-origin isolation tech-
niques within the web browser, then we automatically reduce the

attack surface in any weaker, more realistic attacker model. Our
security experiment can be described as follows:

Definition 2.3 (XS-Leak Security Experiment). The XS-Leak Secu-
rity Experiment operates as follows:

o Setup. In our security experiment, the attacker sets up a web
application’s state-dependent resources sdrg = (url, (so, do)),
sdr1 = (url, (s1,d1)), where the web application at url differs
exactly in d based on s. The attacker then creates an XS-Leak
xsl with the inclusion method i and the leak technique t,
and deploys the resulting code in the web browser w; under
investigation.

e Execution. An unbiased random bit b € {0, 1} is chosen by
the environment, and the resource sdrp, which uses state
sp, is selected. The attacker does not learn b. The attacker
may now issue a request to sdrp, using inclusion method i.
Once the response has been returned, the attacker may try
to determine the state s by learning the detectable difference
d through the use of leak technique ¢t in w,. From d, the
attacker derives state s and, therefore, bit b’.

e Winning condition. The attacker wins the security exper-
iment if b = b.

2.3 Detectable Differences

A detectable difference is a difference D that can be observed cross-
origin through at least one pair (i, ¢) to infer the actual state — we
do not observe the difference directly, but rather through a side
effect that this difference causes. We categorized them into five
groups:

Status Code. An attacker can distinguish different HTTP re-
sponse status codes cross-origin (e.g., server errors, client errors,
or authentication errors).

API Usage. This detectable difference allows an attacker to
detect Web APIs’ usage across pages, allowing an attacker to infer
whether a cross-origin page is using a specific JavaScript Web APL

Redirects. It is possible to detect if a web application has navi-
gated the user to a different page. This is not limited to HTTP redi-
rects but also includes redirects triggered by JavaScript or HTML.

Page Content. These detectable differences appear in the HTTP
response body itself or in sub-resources included by the page. For
example, this could be the number of included frames (cf. XS-Leak
on Gitlab) or size differences of images.

HTTP Header. An attacker can detect the presence of a specific
HTTP response header and may be able to gather its value. This in-
cludes headers such as X-Frame-Options, Content-Disposition,
and Cross-0Origin-Resource-Policy.

It is questionable that these groups are complete since new
browser features or yet unknown XS-Leaks might unveil new de-
tectable difference. However, they serve as a guideline for finding
new XS-Leaks (see Table 1).

2.4 Real-world Inclusion Methods

In all XS-Leak attacks, the attacker’s web page uses cross-origin
inclusion methods to force the victim’s browser in requesting the
state-dependent resource. In theory, the SOP should prevent cross-
origin information leakage, but this separation of web origins is not
perfect and exceptions must be made; cf. Schwenk et al. [46] for a

https://git.company.com/profile

partial analysis. In the following, we discuss four different groups
of inclusion methods:

HTML Elements. HTML offers a variety of elements that en-
able cross-origin resource inclusion. Elements like stylesheets, im-
ages, or scripts, force the victim’s browser to request a specified
non-HTML resource. A list that enumerates possible HTML ele-
ments for this purpose is available online [21].

Frames. Elements such as iframe, object, and embed may embed
further HTML resources directly into the attacker page. If the page
does not use framing protection, JavaScript code can access the
framed resource’s window object via the contentWindow property.

Pop-ups. The window. open method loads a resource in a new
browser tab or window. The method returns a window handle that
JavaScript code can use to access methods and properties, which
comply with the SOP. These so-called pop-ups are often used in
single sign-on. Modern browsers only allow pop-ups if they are
triggered by certain user interactions [43]. For XS-Leak attacks,
this method is especially helpful because it bypasses framing and
cookie restrictions for a target resource. Newer browser versions
recently added means to isolate window handles, as described in
Section 7.

JavaScript Requests. JavaScript allows sending requests to tar-
get resources directly. There are two different ways for this purpose:
XMLHttpRequests and its successor Fetch API [40]. In contrast to
previous inclusion methods, an attacker has fine-grained control
over the issued request, for example, whether an HTTP redirect
must be automatically followed.

2.5 Real-world Leak Techniques

An attacker can observe various types of information from cross-
origin resources. As it is not possible to directly access the response
of a cross-origin request, an XS-Leak attacker relies on side effects
that are caused by the included resource. We found that the tech-
niques used to detect these side effects can ultimately be ascribed to
a set of core problems. By analyzing the existing and new XS-Leaks
we identified six groups:

Event Handler. Event handler can be seen as the classical leak
technique for XS-Leaks. They are a well-known source of various
pieces of information. For example, the trigger of onload indicates
a successful resource loading in contrast to the onerror event.

Error Messages. Beyond event handlers, error messages can
occur as JavaScript exceptions and special error pages. Error mes-
sages can be thrown in different steps, for example, directly by
the leak technique. The leak technique can either use additional
information directly contained in the error message, or distinguish
between the appearance and absence of an error message.

Global Limits. Every computer has its physical limits, so does
a browser. For example, the amount of available memory limits a
browser’s running tabs. The same holds for other browser limits
that are enforced for the entire browser. If an attacker can determine
when the limit is reached this can be used as a leak technique.

Global State. Browsers have global states that all pages can
interact with. If this interaction is detectable from an attacker’s
website, it can be used as a leak technique. For example, the History
interface allows manipulation of the pages visited in a tab or frame.

This creates a global state because the number of entries allows an
attacker to draw conclusions about cross-origin pages.
Performance API. The Performance API is used to access the
performance information of the current page. Their entries include
detailed network timing data for the document and every resource
loaded by the page. This allows an attacker to draw conclusions
about requested resources. For example, we identified cases where
browsers will not create performance entries for some requests.
Readable Attributes. HTML has several attributes that are
readable cross-origin. This read access can be used as a leak tech-
nique. For example, JavaScript code can read the number of frames
included in a webpage cross-origin with the window. frame. length

property.

3 XSINATOR: AUTOMATIC BROWSER
EVALUATION

One of this paper’s main contributions is to evaluate the impact
of XS-Leak attacks on different web browsers w € W. We system-
atically extend the work of Sudhodanan et al. [51] by including
a broad set of relevant browsers, both desktop and mobile, and
extending the set of XS-Leak attacks significantly.

3.1 Implementation

Based on our formal description in Section 2, we evaluate all inclu-
sion methods and leak techniques for a large set W of web browsers.
For that, we built a web application named XSinator that consists
of three main components:

(1) A testing site that acts as an XS-Leak attacker page. It im-
plements known and novel XS-Leaks and evaluates them by
running all of them with a single click.

(2) A vulnerable web application, which simulates the behavior
of a state-dependent resource (sdr) for each XS-Leak. This
web application has two states sy and s1, which are triggered
via a parameter in the HTTP requests. The states trigger
different behavior in the sdr, for instance, in state sg, the sdr
has difference dy and d; in s1.

(3) A database containing all previous test results. Security re-
searchers can use this database to compare these results with
the actual results of a new browser and track the XS-Leaks’
exploitability over time.

The JavaScript code aims to distinguish states sy and s; based on
the retrieved side-channel information. In our formal description,
we consider an XS-Leak exploitable (denoted by @ in Table 2, Ta-
ble 3, and Table 4), if there exists an inclusion method i and a leak
technique ¢ in web browser w such that xsl((url, sp,dp), i, t) = b.
Otherwise, the XS-Leak is not exploitable (denoted by O).

The test results from XSinator allow us to draw the following
conclusion: If a certain XS-Leak is only exploitable in some of the
tested web browsers, then the underlying leak technique could be
fixed and will most probably not break existing web applications.
This allows us to propose realistic countermeasures to known and
novel XS-Leaks in Section 7.

3.2 Evaluation Challenges

The implementation of XSinator was far from being straightforward
and revealed surprising insights.

Privileged Events. Some XS-Leaks require specific conditions
or user interaction. For example, the Frame Count Leak, Web Pay-
ment API Leak, and the WebSocket Leak require a reference to an
opened cross-origin window handle. JavaScript code can only create
this handle with privileged events. For instance, a browser is only
allowed to open a pop-up window if the window. open() function
is triggered by human user interaction. XSinator uses the initial
click on the “Run All Tests” button to initialize the environment as
necessary.

Compatibility between Browsers. Since known XS-Leaks are
often specific to one particular browser, we adapted them to be
compatible with as many browsers as possible. If it was not possible
to cover all browsers, XSinator implements variants of the same
leak technique.

Mobile Browsers. The user interfaces of all mobile browsers
restrict the number of visible windows/tabs to one. In all tested
browsers except FF Focus, multiple windows/tabs can be opened
in the background and are executed in parallel. Therefore, the test
suite can be flawlessly executed. In FF Focus XSinator will not
execute the test cases requiring a secondary window correctly due
to the missing functionality. This has a low impact since an attacker
would succumb to the same conditions.

Different Error Types. Many XS-Leaks distinguish between
a successful leak technique’s code execution and code execution
triggering an error. For this reason, XSinator must distinguish if
a triggered error can be interpreted as a XS-Leak test result or a
runtime error. For example, when comparing SA to Chromium-
based browsers, the Web Payment API is implemented differently.
It, therefore, needs custom code adaptation. In contrast, FF does
not implement the Web Payment API at all. Therefore it throws
different errors, which XSinator must correctly interpret to give
accurate results.

3.3 Limitations

XSinator comes with a few limitations and constraints.

No Automatic Detection of New Variants. XSinator is not
designed to find new attack variants and automatically building new
XS-Leaks remains an open problem. Although, as we implemented
leaks that were thought of to be specific to one browser, we often
found that they apply to others browser families as well by changing
the leak technique or inclusion method.

From Browser to Website Evaluation. XSinator is not meant
to be an automatic penetration testing tool. We use XSinator to
systematically evaluate browser implementations against all known
XS-Leaks. Although it cannot automatically detect weaknesses in
real-world websites, developers can run the implemented XS-Leaks
against a specified endpoint.

Excluded XS-Leaks. We had to exclude XS-Leaks that rely on
service workers as they would interfere with other leaks in XSinator.
Furthermore, we chose to exclude XS-Leaks that rely on misconfig-
uration and bugs in a specific web application. For example, Cross-
Origin Resource Sharing (CORS) misconfigurations, postMessage
leakage [19] or Cross-Site Scripting. Additionally, we excluded time-
based XS-Leaks since they often suffer from being slow, noisy and
inaccurate.

4 OVERVIEW OF XS-LEAK ATTACKS

We conducted a comprehensive analysis of known XS-Leaks. In
Table 1, we present our results and show that all of them fit in
our formal model. Each known XS-Leak can be described using
xsl(sdr,i,t) withi € I and t € T. In total, there are 5 detectable
differences and 34 XS-Leaks, including a contribution of 14 novel
XS-Leaks (@) discussed in Section 5. We use 5 classes of detectable
difference to structure this section, since they provide the basic in-
formation we want to observe through different inclusion methods
and leak techniques based sidechannels.

Full details for the new attacks are provided in Section 5. Details
for other attacks are given in Appendix A.

5 NEW XS-LEAK ATTACKS

Our formal model reveals that every XS-Leak consists of three
main ingredients. To systematically identify novel XS-Leaks, we
henceforth investigated them. First, there are inclusion methods.
The sets of inclusion methods are well-known and mostly static.
Novel XS-Leaks can be especially identified once browser vendors
implement new features that are leak techniques. Second, there are
leak techniques. Novel XS-Leaks are typically found by developing
new leak techniques. In this section, we identified new XS-Leaks
based on this ingredient. Third, there are detectable differences. We
systematically created tests to extend the set of detectable differences
when combined with known leak techniques, which led us to new
XS-Leaks.

5.1 Leak Technique: Global Limits

WebSocket API. With this new technique, it is possible to identify
if, and how many, WebSocket connections a target page uses. It
allows an attacker to detect application states and leak information
tied to the number of WebSocket connections.

Details: The WebSocket API allows the use of streaming connec-
tions between clients and servers using proprietary (e.g., binary)
protocols. The client initiates the WebSocket Handshake using
HTTPS. Upon success, the established TLS connection is used for
tunneling the desired protocol. The specification recommends a lim-
itation of WebSocket connections per client [15]. If one origin uses
the maximum amount of WebSocket connection objects, regardless
of their connections state, the creation of new objects will result in
JavaScript exceptions. To execute this attack, the attacker website
opens the target website in a pop-up or iframe and then attempts to
create the maximum number of WebSockets connections possible.
The number of thrown exceptions is the number of WebSocket
connections used by the target website window.

Example Attack: Slack is a proprietary business communication
platform that offers teams to work together in one workspace. Users
can join one or more workspaces and communicate with other
members in real-time. For this purpose, Slack uses WebSockets. We
found that by detecting this WebSocket connection, it is possible
to leak if a user is a member of a specific workspace.

Payment API. This XS-Leak enables an attacker to detect when
a cross-origin page initiates a payment request.

Details: The Payment Request API enables a website to use the
web browser to conduct payments. The user enters their payment
credentials (e.g., credit card information) into the web browser.

https://slack.com

XS-Leak

Related Work

Leak Technique ¢ € T

Inclusion Method i €

Detectable Difference: Status Code

© Perf. API Error (Section 5.2) A request that results in errors will not create a resource timing entry. HTML Elements, Frames
© Style Reload Error (Section 5.2) Due to a browser bug, requests that result in errors are loaded twice. HTML Elements
© Request Merging Error (Section 5.2) Requests that result in an error can not be merged. HTML Elements
Event Handler Error Staicu and Pradel [50], Event handlers attached to HTML tags trigger on specific status codes. HTML Elements, Frames
Sudhodanan et al. [51]
MediaError Acar and Danny InFF, it is possible to accurately leak a cross-origin request’s status code. HTML Elements (Video, Audio)
Y. Huang [1]
Detectable Difference: Redirects
© CORS Error (Section 5.3) In SA CORS error messages leak the full URL of redirects. Fetch API
© Redirect Start (Section 5.2) Resource timing entry leaks the start time of a redirect. Frames
© Duration Redirect (Section 5.2) The duration of timing entries is negative when a redirect occurs. Fetch API
Fetch Redirect Janc et al. [30] GC and SA allow to check the response’s type (opaque-redirect) after the redirect ~ Fetch API
is finished.
URL Max Length Masas [38, 39] Gather the length of a URL that triggers an error on a specific server. Fetch API, HTML Elements
Max Redirect Herrera [23] Abuse the redirect limit to detect redirects. Fetch API, Frames
History Length Olejnik et al. [44], Smith JavaScript code manipulates the browser history and can be accessed by the ~ Pop-ups
et al. [47], terjanq [54], length property.
Wondracek et al. [75]
CSP Violation Homakov [27], West [63] The attacker sets up a CSP on attacker.com that only allows requests to ~ Fetch API, Frames
target.com. If attacker.com issues a request to target.com that redirects
to another cross-origin domain, the CSP blocks access and creates a violation
report. Target location of the redirect may leak.
CSP Detection Homakov [27], West [63] Similar to the above leak technique, but the location does not leak. Fetch API, Frames
Detectable Difference: API Usage
© WebSocket (Section 5.1) Exhausting the WebSocket connection limit leaks the number of WebSocket ~ Frames, Pop-ups
connections of a cross-origin page.
© Payment API (Section 5.1) Detect Payment Request because only one can be active at a time. Frames, Pop-ups
Service Worker Karami et al. [32] Detect if a service worker is registered for a specific origin. Frames
Detectable Difference: Page Content
© Perf. API Empty Page (Section 5.2) Empty responses do not create resource timing entries. Frames
© Perf. API XSS-Auditor (Section 5.2) Detect presence of specific elements in a webpage with the XSS-Auditor in SA. Frames
Cache Vela [59] Clear the file from the cache. Opens target page checks if the file is present in ~ Frames, Pop-ups
the cache.
Frame Count Grossman [18], Masas Read number of frames (window. length). Frames, Pop-ups
[38]
Media Dimensions Masas [38] Read size of embedded media. HTML Elements (Video, Audio)
Media Duration Masas [38] Read duration of embedded media. HTML Elements (Video, Audio)
Id Attribute Heyes [25] Leak sensitive data from the id or name attribute. Frames
CSS Property Evans [13] Detect website styling depending on the status of the user. HTML Elements
Detectable Difference: Header
© SRIError (Section 5.3) Subresource Integrity error messages leak the size of a response in SA. Fetch API
© Perf. API Download (Section 5.2) Downloads do not create resource timing entries in the Performance APL Frames
© Perf. API CORP (Section 5.2) Resource protected with CORP do not create resource timing entries. Frames
© coor (Section 5.4) COOP protected pages can not be accessed. Pop-ups
Perf. API XFO terjanq [55] Resource with X-Frame-Options header does not create resource timing entry. ~ Frames
CSP Directive Yoneuchi [76] CSP header directives can be probed with the CSP iframe attribute. Frames
CORP Wiki [72] Resource protected with CORP throws error when fetched. Fetch API
CORB Wiki [71] Detect presets of Content-Type and Content-Type-Options headers, because =~ HTML Elements
CORB is only enforced for specific content types together with the nosniff
option.
ContentDocument XFO Sudhodanan et al. [51] In GC, when a page is not allowed to be embedded on a cross-origin page Frames
because of X-Frame-Options, an error page is shown.
Download Detection Masas [38] Attacker can detect downloads by using iframes. If the iframe is still accessible, = Frames

the file was downloaded.

Table 1: Overview of XS-Leaks attacks sorted by their detectable difference integrated into our formal model. We contribute

novel attack techniques indicated by ©.

Afterwards, the website can query the API to request payment.
The browser then shows a UI pop-up to the user, and the user can
confirm the purchase with one single click on a button. Similar
to the WebSocket API, the standard specification recommends a
global limit of one singular UI element [28]. If the target website is
using the Payment Request API, any further attempts to show this
Ul will be blocked, and cause a JavaScript exception. The attacker
can exploit this by periodically attempting to show the Payment
API UL If one attempt causes an exception, the target website is

currently using it. The attacker can hide these periodical attempts
by immediately closing the UI after creation. Instead of opening
the UI and then closing it, the browser never shows the UL and the
user takes no notice of the attack.

Example Attack: A specific product provided by the website
shop.org is advertised on a website, for example, blog.com, using an
affiliate link. The operator of shop.org can use our attack to identify
if a customer bought the product after clicking on provided affiliate
link.

5.2 Leak Technique: Performance API

We developed new XS-Leak attacks based on the Performance API,
which allows an attacker to leak various characteristics of the target
page.

Details: The Performance API is used to access the performance
information of the current page. This includes detailed network
timing data for the document and every resource the page loads.
Terjang [55] showed how to detect the X-Frame-Options header in
GC. We used his work as a base to create novel attacks that allow to
differentiate between status codes, to detect empty pages, to detect
if the XSS-Auditor is executed, and we improved terjanq’s work to
detect X-Frame-Options in non-Chromium-based browsers. The
Performance API specifies that all fetched resources must create a
performance entry [29]. We identified cases where browsers will
not create an entry for a specific request. That means an attacker
can differentiate requests by checking if a performance entry is
created. The following 8 new XS-Leak attacks are based on this
observation:

e Error Leak: It is possible to differentiate between HTTP re-
sponse status codes because requests that lead to an error do
not create a performance entry. This has a similar impact to
XS-Leak described in Section A.1. We also identified two cases
where browser bugs in GC lead to resources being loaded twice
when they fail to load. This will result in multiple entries in the
Performance API and can thus be detected.

o Empty Page Leak: An attacker can detect if a request resulted
in an empty HTTP response body because empty pages do not
create a performance entry in some browsers.

o XSS-Auditor Leak: In SA, it is possible to detect if the XSS-
Auditor was triggered and thus leak sensitive information. The
XSS-Auditor is a built-in feature of SA and GC (now removed [10])
designed to mitigate Cross-Site Scripting (XSS) attacks. It aims
to protect against reflected XSS by checking query parameters.
In 2013, Braun and Heiderich [7] showed that the XSS-Auditor
can be used to block benign scripts with false positives. Based
on their technique, researchers exfiltrate information and detect
specific content on a cross-origin page. These XS-Leaks were
first described in a bug report by Terada [52] and later in a blog
post by Heyes [24]. However, the discovered techniques applied
only to the XSS-Auditor in GC and do not work in SA. We found
that blocked pages will not create Performance API entries. That
means an attacker can still leak sensitive information with the
XSS-Auditor in SA.

o X-Frame Leak: If a page is not allowed to be rendered in an
iframe it does not create a performance entry. As a result, an
attacker can detect the response header X-Frame-Options.

o Download Detection: Similar, to the XS-Leak described in Sec-

tion A.5, a resource that is downloaded because of the Content-

Disposition header, also does not create a performance entry.

This technique works in all major browsers.

Redirect Start Leak: We found one XS-Leak instance that abuses

the behavior of some browsers which log too much information

for cross-origin requests. The standard defines a subset of at-
tributes that should be set to zero for cross-origin resources.

However, in SA it is possible to detect if the user is redirected by

the target page, by querying the Performance API and checking
for the redirectStart timing data.

e Duration Redirect Leak: In GC, the duration for requests that
result in a redirect is negative and can thus be distinguished from
requests that do not result in a redirect.

e CORP Leak: In some cases, the nextHopProtocol entry can be
used as a leak technique. In GC, when the CORP header is set, the
nextHopProtocol will be empty. Note that SA will not create a
performance entry at all for CORP-enabled resources.

5.3 Leak Technique: Error Messages

CORS Error. This technique allows an attacker to leak the target
of a redirect that is initiated by a cross-origin site.

Details: CORS is used to explicitly allow access between cross-
origin sites that would otherwise be forbidden by the SOP. Access
-Control headers let servers describe which origins are permitted
to access the response and whether credentials should be included
with the request. CORS allows publicly accessible web resources to
be read and used from any website. In Webkit-based browsers, it is
possible to access CORS error messages when a CORS request fails.
An attacker can send a CORS-enabled request to a target website
which redirects based on the user state. When the browser denies
the request, the full URL of the redirect target is leaked in the error
message. With this attack, it is possible to detect redirects, leak
redirect locations, and sensitive query parameters.

SRIError. An attacker can leak the size of cross-origin responses
due to verbose error messages.

Details: The integrity attribute defines a cryptographic hash
by which the browser can verify that a fetched resource has not
been manipulated. This security mechanism is called Subresource
Integrity (SRI) [3]. It is used for integrity verification of resources
served from content delivery networks (CDNs). To prevent data
leaks, cross-origin resources must be CORS-enabled. Otherwise, the
response is not eligible for integrity validation. Similar to the CORS
error XS-Leak, it is possible to catch the error message after a fetch
request with an integrity attribute fails. An attacker can forcefully
trigger this error on any request by specifying a bogus hash value.
In SA, this error message leaks the content length of the requested
resource. An attacker can use this leak to detect differences in
response size, which enables powerful XS-Leak attacks.

5.4 Leak Technique Readable Attributes

COOP. An attacker can leak if the Cross-Origin Opener Policy
(COOP) header is available within an cross-origin HTTP response.

Details: Web applications can deploy COOP response header to
prevent other websites from gaining arbitrary window references
to the application. However, this header can easily be detected by
trying to read the contentWindow reference. If a site only deploys
COOP in one state, this property is undefined, otherwise it is defined.

6 EVALUATION RESULTS

Table 2 shows evaluation results which are automatically generated
by using XSinator. We used browsers that are available on Browser-
Stack in our evaluation. This ensures two aspects. First, the results

https://www.browserstack.com/
https://www.browserstack.com/

=3
%
=
o]
=
o
E
@
[}
4

® Chrome (=) Edge ©) Firefox () Opera Safari

) g o ; Z o o 2 N) o E E i
XS-Leak ® % ® | ¥ & f|x % 8|8 L s XT|]=s = =
0S & & | 0 HC & | & & | & 0 & | & | & J
Detectable Difference: Status Code
Performance API Error O O e ® O ©o O O e O O e e o O O O
Style Reload Error ® ¢ 6 &6 ¢ ¢ O O oo &6 & & & ¢ O O O
Request Merging Error ® 6 6 6 ¢ ¢ O O o & & ¢ &6 8 O O O
Event Handler Error e o o e o ©o e o o e o o e o e o o
MediaError (@) (@) (@) (@) (@) (@) 0] 0] 0] (0] (@] O @] (0] 0] 0] 0]
Detectable Difference: Redirects
CORS Error Leak O O @e¢/|O0O O /|0 O @0/ O O @/ @86 ®#¢ O O O
Redirect Start O O ¢/ O O @/ O O @€ O O @ ®&®¢ ¢ O O O
Duration Redirect O O OO0 O O|0O O O|@e@ O O|O O|l0O0 O O
Fetch Redirect ® ¢ O/ O @€ OO0 O 0O ®@¢8 OO0 O|lO0O O O
URL Max Length O 6 6 6 6 & o o o o o ¢ °o o o o o
Max Redirect o o o o o o] [] [] o o o o o]] o
History Length ® 6 ®© 6 ¢ ¢ O O o & ¢ & ®¢ ¢ O O O
CSP Violation O O e/ 6 O @ O O ¢ O O e & ¢ O O O
CSP Redirect e 6 6 6 6 o o6 o o & & & & ¢ O O O
Detectable Difference: API Usage
WebSocket @ ¢ O 06 6 O 6 ¢ O 6 &6 O O O|e o o
Payment API O @€ OO0 @€ OO0 O OO @€ O|O0O O|l0O0 O O
Detectable Difference: Page Content
Performance APIEmptyPage O O @ | O O @O O @€|O0 O ©o|©® €| O O O
Performance XSS Auditor O O o O O o O O o O O e©o e O O O O
Cache O O e/ @6 O @ &6 O 0 ¢ O @ ®¢ ®#¢ O O O
Frame Count o o o o o o o o o o o o o o o o o
Media Dimensions e 6 6 6 6 6 6 o ¢ o o o °o o o o o
Media Duration ® ¢ O 6 ¢ O 6 ¢ O 6 ¢ O O O|e ¢ O
Id Attribute ® ¢ O 6 6 O/ 0O O O @8 O/ 0O O|l0O0 O O
CSS Property o 6 6 6 6 6 6 o6 o6 o6 o6 o o6 o o o o
Detectable Difference: Header
SRI Error O O ¢/ O O @€/ 0O O @ O O @ ®&@&6 ¢ O O O
Performance API Download ® 6 O 6 ¢ O |6 ¢ O o & ¢ ®¢ ®#¢8 O O O
Performance API CORP e o o e o ©o O O e e o o e o O O O
COOP Leak ® ¢ O/ O @€ OO0 O OO0 @€ O|O O|l0O0 O O
Performance API XFO O O e ® O o O O e &6 O o e o O O O
CSP Directive ® 6 O 6 @6 O/ 0O O O ®#8 OO O|l0O0 0O O
CORP e 6 6 6 6 6 6 o ¢ o o o o o o o o
CORB O 6 6 6 6 & o o o o o ¢ °o o o o o
ContentDocument XFO ® & O ® & O O O O|e e O O O O O O
Download Detection ® @ O 0 ¢ O 6 ¢ O 6 6 o o o o o o
> Attackable (max. 34) 22 23 2224 23 22 [14 13 22|24 23 24|24 24|11 11 10

Table 2: Evaluation results overview categorized by its detectable differences. Successful attacks are depicted with full circuits
(@), safe browser are indicated with empty circuits (O). The results for Android i in comparison with Desktop bed Browsers are
almost identical, while iOS @ browsers behave differently. Only a few XS-Leaks are susceptible to all browsers. More detailed
evaluation tables found in the Appendix, Tables 3 and 4. The used inclusion methods and leak techniques are listed in Table 1.

are generated in a fully automatic fashion; including different op-
erating systems combined with Selenium for browser automation.
Second, the results can be reproduced by other researchers. We
additionally evaluated Tor using XSinator because of its privacy
goals that are directly targeted with XS-Leaks. More browser re-
sults, including a real-time browser evaluation, are available on
XSinator’s website and in the Appendix (Tables 3 and 4).

First, we identified clear differences between each browser fam-
ily, although GC and SA still have certain similarities. On mobile
devices, it is evident how restricted the iOS browser ecosystem is,
while browsers on Android often behave just like their desktop
counterparts. Second, we analyze how vulnerabilities propagate be-
tween different browser versions over time. For this, we compared
the results from XSinator for all popular desktop browsers over the
last year, which gave interesting insights into the adoption of new
features and the effectiveness of security patches.

6.1 Browser Comparison

Blink vs. Webkit. On the Desktop, GC 90, MSE 90, and OP 75,
which are based on Chromium’s Blink engine, behave equal in our
test suite. Moreover, we detected that Blink-based browsers are
vulnerable to the fetch redirect XS-Leak. This vulnerability was
surprising since it was a known bug in SA that was fixed in February
2020 [73]. Blink- and Webkit-based browsers are vulnerable to
multiple Performance API XS-Leaks. Although Google developers
have been addressing theses XS-Leaks (cf. Table 3), it is still possible
to detect new security headers like the CORP header. In contrast,
Webkit-based browsers are still vulnerable to a variety of XS-Leaks
based on the Performance API. XSinator shows the possibility to
detect empty pages and therefore pages that the XSS-Auditor blocks
in Webkit.

Desktop Tor vs. Firefox. Two of the main targets of Tor are to
defend surveillance and resist fingerprinting. To verify its resilience
to XS-Leaks, we used XSinator to evaluate the behavior of Tor in the
default and safer mode. We compared Tor browser (based on FF78)
with FF due to the same underlying browser engine called Gecko.
Tor has more restrictive browser settings; some APIs are not acti-
vated because they are explicitly deactivated using Tor browser’s
configuration flags. Despite this hardening, our evaluation shows
that a subset of FF XS-Leaks still works. Regarding XS-Leak attacks,
Tor’s secure mode is more restrictive than the default mode; for
example, attackers cannot automatically fingerprint sound and im-
age files due to an activated click-to-play functionality. However,
eleven XS-Leaks like the WebSocket XS-Leak still work in Tor’s
secure mode. While FF is already quite resistant against XS-Leaks
based on the Performance API leak technique, our tests show that
the Performance API is completely disabled in Tor. This restric-
tion drastically limits the attack surface, even for undiscovered
XS-Leaks.

Desktop vs. Mobile. We evaluated desktop as well as mobile
browsers (cf. Table 2). Most android browsers behave almost iden-
tical regarding XS-Leaks on both platforms when comparing the
same browser engine versions. Given that most Android browsers
are built on outdated Chromium-based browser engines, XS-Leaks
are of prime importance. Our results show that an older browser
engine is usually an indicator for older browser bugs. For example,

the Performance API Error XS-Leak does not appear in Chrome
engines since version 84. Additionally, some new functionalities
like the Payment API or COOP are only available and exploitable
in the newest browser engines.

Our evaluation results in Table 4 show that browsers installed in
i0S behave similarly due to the same underlying browser engine.
Note that the browser versions do not necessarily match cross
operating systems. For example, GC 86 was the latest version on i0S
while GC 89 was the latest version on Desktop and Android. Some
iOS browsers do not support downloads and are thus not vulnerable
to download detection XS-Leaks. The mobile and desktop versions
of SA behave identically are thus vulnerable to the same XS-Leaks.

6.2 Patch History

Table 3 shows the results of popular desktop browsers over time.
This timeline provides interesting insights into patch behavior and
how vulnerabilities propagate between different versions. SA only
patched the fetch redirect XS-Leak, while support for new features
led to more XS-Leaks. FF fixed the media Error XS-Leak in version
80, and cache partitioning in version 85 mitigated the HTTP cache
XS-Leak. Cache portioning was also introduced in Chromium-based
browser in version 88. The Chromium developers are actively trying
to combat XS-Leaks. For example, they addressed the CSP violation
XS-Leak, and two XS-Leaks based on the Performance APIL. How-
ever, we believe that patching the Performance API Error XS-Leak
in version 84 introduced the Duration Redirect, as it appeared in
the same version. This assumption was later confirmed when the
bug was closed in version 88 [56].

7 XS-LEAK DEFENSES

In our formal model, an XS-Leak is a function with three inputs:
(1) a state-dependent resource sdr, (2) an inclusion method i, and
(3) a leak technique t. In this section, we discuss how to mitigate
the XS-Leak threat based on this definition.

The existence of state-dependent resources cannot be prevented
since most web applications (except simple static sites) use them
by nature. Mitigations based on a single reported state-dependent
resource, for example, the status code fix of HotCRP reported in
[51], may not fix the problem since typically many state-dependent
resources exist in a single web application.

Several new extensions to the HTTP ecosystem have been pro-
posed and implemented recently. For example, Same-Site Cookies
set to the mode lax will prevent protected cookies from being sent,
if the target web application is embedded in an iframe in a cross-
site context. If a pop-up window is used as inclusion method, the
Same-Site mode lax is not enough to protect cookies. Such miti-
gation approaches have the benefit of being standardized and will
most probably work in all modern browsers. However, they may
be limited to a subset of the inclusion methods.

The basic paradigm behind these mitigations is that only a single
state s of the web application can be reached when using a specific
inclusion method i. We describe these mitigations in Section 7.1.

Our evaluation of XS-Leaks in Section 6 showed that for some
XS-Leaks, only some browsers are vulnerable, and others are not (cf.
Table 2). This observation gives rise to a new class of countermea-
sures — to investigate the differences in browser implementations

lax
lax

and to identify the root cause for non-vulnerability. Browser im-
plementations which are not vulnerable to the described XS-Leaks
attacks have somehow managed to block the leak technique ¢ used
in the attack; regardless of the inclusion method used. We describe
these mitigations in Section 7.2.

7.1 Inclusion Method Mitigations

Inclusion methods enable an attacker to trigger cross-origin re-
quests on a specified state-dependent resource. To mitigate XS-
Leaks on the inclusion method level, there are two possibilities.
First, cross-origin requests can be allowed but they do not result in
a detectable difference. Second, cross-origin requests can be denied
under specific circumstances.

HTML elements. In the case of XS-Leaks requesting resources,
a web application can apply different mitigations. It can use the
CORP header to control if pages can embed a resource [66]. CORP
can either be set to same-origin or same-site and blocks any
cross-origin respectively cross-site requests to that resource.

On the client site, Chromium-based browsers use the CORB
algorithm to decide whether cross-origin resource requests should
be allowed or denied. CORB was primarily implemented to protect
against side-channel attacks such as Spectre [35], but it mitigates
XS-Leak inclusion methods in addition. For example, it protects
HTML, XML, and JSON files by blocking requests such as .

Frames. The main defense to prevent iframe elements from load-
ing HTML resources is the usage of X-Frame-Options. This HTTP
response header indicates whether a browser is allowed to embed
a document. For example, X-Frame-Options: DENY mitigates any
XS-Leak which relies on iframe, objects, or embed elements. Alter-
natively, the CSP directive frame-ancestors can achieve a similar
result [61]. If the embedding is denied, the inclusion method cannot
detect a difference in the responses.

Pop-ups. Inclusion methods that use pop-ups are more difficult
to handle because a specific HTML element do not trigger them
and HTTP response headers such as X-Frame-Options do not apply.
For restricting the access to window.opener, the COOP HTTP re-
sponse header defines three different values: unsafe-none (default),
same-origin-allow-popups, and same-origin. These values can
be used to isolate browsing tabs and pop-ups and thus, mitigates
leak techniques based on pop-ups.

JavaScript Requests. Cross-origin JavaScript requests are of-
ten used in XS-Leak attacks, because an attacker has fine-grained
control over the issued request. However, since these request are
not CORS enabled they fall under the same restrictions as requests
send by HTML elements, like scripts or images. Thus the impact of
this leak technique can also be mitigated by CORP and CORB.

Generic Request Policies. In the following discussion, we shed light
on browser features that help on a generic level to mitigate XS-
Leaks on multiple inclusion methods.

Fetch Metadata. These request headers allow server owners to
understand better how the user’s browser caused a specific request.
In Chrome, Sec-Fetch-* headers are automatically added to each
request and provide metadata about the request’s provenance [65].

For example, Sec-Fetch-Dest: image was triggered from an im-
age element. Web applications can then choose to block requests
based on that information.

Same-Site Cookies. The Same-Site cookie flag allows websites
to declare whether a cookie should be restricted to same-site or first-
party context. All major browsers support Same-Site cookies. In GC,
cookies without the attribute are now Lax by default. For XS-Leaks,
Same-Site cookies drastically limit the leak attack possibilities. On
the other hand, leak techniques that rely on window.open still
work with SameSite=Lax. Websites that use other authentication
methods, such as client-side certificates and HT TP authentication,
remain vulnerable.

Cross-Origin Identifier Unlinkability (COIU). COIU, also
known as First-Party Isolation (FPI), is an optional security feature
that users can enable in FF’s expert settings (about: config) and
was initially introduced in Tor Browser. In an abstract view, it is an
extended same-site context. It binds multiple resources (e.g., Cook-
ies, Cache, Client-side storages) to the first-party instead of sharing
them among all visited websites. If enabled, COIU drastically de-
creases the applicability of XS-Leaks, since only methods using
pop-ups are still possible to fit the policy’s first-party requirement.

Tracking Protections. Apple implemented a privacy mecha-
nism called Intelligent Tracking Prevention (ITP) in SA that aims
to combat cross-site tracking by limiting the capabilities of cookies
and other web APIs [4]. In newer versions of SA, ITP blocks all
third-party cookies by default without any exceptions [74]. This
blocking prevents all leaks that are not based on pop-ups. FF took
a similar approach with Enhanced Tracking Prevention (ETP), but
they only block specific third-party cookies belonging to track-
ing providers. In the context of XS-Leaks, ETP only mitigates leak
techniques that target these tracking domains.

Browser Extensions. Security aware users can use browser
extensions to prevent certain inclusion methods. Since numerous
extensions allow controlling a browser’s HT TP requests, we discuss
this prevention by the example of uBlock Origin (UBO), one of the
most prominent wide spectrum blockers.

UBO provides three [26] blocking modes, which we evaluated
using XSinator in GC. UBO uses the easy mode in its default in-
stallation and only blocks advertisements based on URL patterns.
When running UBO on XSinator, it does not block a single request
and henceforth does not prevent any XS-Leak. In the medium mode,
UBO blocks third-party frames and third-party scripts globally.
This block prevents all XS-Leaks relying on inclusion methods that
use HTML elements. In UBO’s hard mode, it blocks all third-party
resources. Every HTTP resource that does not belong to the first-
party must be manually enabled. This blocking prevents XS-Leaks
that rely on inclusion methods using JavaScript requests or other
HTML tags (e.g., link), leaving only pop-up based XS-Leaks as still
working. To prevent them, users can configure UBO to globally
disable pop-ups.

7.2 Leak Technique Mitigations

XS-Leaks use various leak techniques for exploitation. We identified
various XS-Leaks that only work in some browsers, while others
are immune. In the following, we discuss mitigations that are based
on the leak technique level.

Event Handler. The most prominent leak technique for XS-Leak
is probably the event handler because event messages contained
in the trigger are a rich source of information (cf. Sudhodanan
et al. [51]). The most effective mitigation on this leak technique
would be to deny them all, but this would break the majority of web
applications on the Internet. We therefore propose to reduce the
number of the necessary information that can be gathered within
events. For example, the CSP violation event should not contain the
redirection target URL in the blockedURI field. This behavior is
implemented in FF and in newer versions of GC - only SA remains
vulnerable.

Error Messages. To mitigate XS-Leaks based on the leak tech-
nique error messages, there are two major requirements. First, error
messages must not contain detailed information, similarly to event
handler messages. For example, the MediaError and CORS error
XS-Leak abuses details provided in the error message, such as the
HTTP response status code. Second, browsers must minimize error
message occurrences. XS-Leaks such as SRI Error, ContentDocu-
ment XFO, or Fetch Redirect detect whether an error message is
thrown or not. For example, GC could mimic the behavior of FF
and SA, that is, they do not throw an error at all in these particular
cases.

Global Limits. Fixing leak techniques that abuse global limits
are relatively complex because they rely on physical restrictions.
For example, the maximum number of available TCP connections
cannot be changed. The general recommendation thereby is to re-
strict global limits on a small per-site basis. The WebSocket API
XS-Leak leverages the shared limit of concurrent WebSocket con-
nections; FF has a global limit of 200 connections. Upon exhausting
this limit, new connections result in JavaScript exceptions. A partial
mitigation is to change this limit from a global to a per-site limit,
possibly with a small randomized value. The global limit for the
Payment API is one, that is, the attacker can silently attempt to
activate the WebPayment Ul at any time, which only succeeds if the
Ul is not being used concurrently by any other tab. We recommend
to only access to the Payment API when a trustworthy event [43]
was used. By this means, the global limit is set to zero unless the
user provides consent like a left mouse click on a dialog window,
which sets the global limit to one.

Global State. Any properties of a browser’s global state should
not be accessible. For example, FF is the only browser that updates
the global state history when a redirect occurs, which results in
reading history.length. Browsers should create a new history
property when a redirection occurs instead of storing it globally.
Other examples are shared resources, such as caches. Cache leaks
abuse the shared cache used for all open websites in a browser.
To completely mitigate cache leak techniques, the HTTP cache
must be partitioned on a per-site base, as implemented by SA, GC
and FF [34]. Note that in SA iframes are not effected by cache
partitioning.

Performance API. We proved the Performance API to be an
excellent leak technique. In many XS-Leaks, we could detect the
difference whether a cross-origin request’s response has or has not
a performance entry. As a unification, we recommend ensuring that
all request must create such an entry and only the correct subset of
timing information is recorded for cross-origin requests.

8 RELATED WORK

Our work relates to research of four different categories that we
elaborate in the following. An overview of known XS-Leaks is
depicted in Table 1 in Section 4.

XS-Leak Attacks. Recently, Sudhodanan et al. [51] systemati-
cally summarized prior work on XS-Leaks and presented how they
can be used to infer state information from a cross-origin web ap-
plication. The authors implemented a crawler-based attack vector
generation tool for websites called BASTA-COSI. We considered
their XS-Leaks in our work. While the authors showcased success-
ful attacks on various websites, we contribute a comprehensive test
suite for browsers and an extensive evaluation thereof. They did
not consider a formal model of XS-Leaks.

Lee et al. [36] created XS-Leaks which use crafted AppCache
manifest to leak redirections in state-dependent resources. Simi-
larly, Eriksson and Sabelfeld [12] explore XS-Leak to detect redi-
rects with the new navigate-to CSP directive. In 2015 Lekies et al.
[37] showed how the cross-origin inclusion of dynamically gener-
ated JavaScript poses the risk of leaking sensitive information like
usernames and passwords. They focused on websites and did not
evaluate the behavior of different browsers. In 2018 Acar et al. [2]
presented how attacker sites can attack IoT devices on the victim’s
LAN via a Media Error XS-Leak. Gulyas et al. [20] showed how
XS-Leaks on login pages can be used for browser fingerprint web
browsers. In 2019 Staicu and Pradel [50] showed how accounts
on file sharing platforms can be uniquely identified by granting
sole access rights to an image to a sole user and including it in the
attacker website.

In Bortz and Boneh [6] analyzed cross-site timing attacks, in
which the time a site takes to respond to a cross-site request could
be used as leak technique. In 2009 Chris Evans [9] was the first
described the concept of cross-site search attacks based on timing
attacks. Gelernter and Herzberg [16] improved their work with
attacks based on statistical tests, algorithms, and some application-
specific behaviors in 2015. Van Goethem et al. [57, 58] reiterated the
feasibility of fast and precise timing side-channel attacks utilizing
HTMLS5 features to leak size, type, and transmission speed of cross-
origin web resources.

Browser Security. In 2017 two white papers by Heiderich et al.
[22] and Vervier et al. [60] summarized the recent threats to browser
users. In 2019 Mirheidari et al. [41] showed how Web Cache Decep-
tion (WCD) can lead to caches exposing sensitive data. In 2020 Janc
and West [31] discuss their plans to remove unsafe features and be-
haviors from the web platform. Calzavara et al. [8] highlighted how
inconsistent framing policies of websites in the wild can impede
browser security. Narayan et al. [42] proposed changes to the Fire-
fox source code to mitigate binary exploitation through web-served
passive media, an orthogonal threat besides XS-Leak. Karami et al.
[33] researched how browser extensions can be fingerprinted by
enumeration of its Web Accessible Resources (WARs) and behavior.
Roth et al. [45] revealed the challenges posed to website maintain-
ers by the complex and ever-developing Content Security Policy
(CSP).

Online Evaluation Test Suites Schwenk et al. [46] provided
a test suite for stress-testing the SOP. The tabular presentation
of historical data collected across different browsers allows to

quickly identify outliers. We used their concept as a basis for
XSinator. As a collection of test suites for testing browsers based
on W3C/WHATWG specifications, Web Platform Tests [49] can be
used.

Formal Models. In 2005 Gross et al. [17] formally model a web
browser for the purpose of analyzing browser-based protocols. In
2014 Fett et al. [14] formalized an expressive model of the Web
Infrastructure based a model for public key cryptography by Dolev
and Yao [11]. In 2017 Schwenk et al. [46] published a formal model
for the SOP and systematically analyzed and highlighted problem-
atic differences between implementations across browser families.
Our proposed model takes the SOP into consideration as an impor-
tant factor in the context of XS-Leaks, as it is more concise and
applicable than the general formalization of a whole web browser.

9 CONCLUDING REMARKS

In this paper, we proposed a formal model for XS-Leaks. This model
fits all previously published results. By identifying the three ingre-
dients of an XS-Leak, which are the detectable difference D, inclusion
method i and leak technique t, we were able to gain novel in-depth
insights and systematically produce new attacks. (1) To detect a
difference D, different inclusion methods i and leak techniques t
can be used. This yields a systematic way for detecting 14 new
XS-Leaks. (2) Our evaluation of existing browser/OS combinations
with XSinator showed that non-vulnerable browser implementa-
tions for each class of XS-Leak exist (except in 5 cases). (3) This
finding allowed us to investigate a new class of XS-Leak mitiga-
tions that target the used leak techniques. Our results show that a
small, dedicated formal model may help to develop a more thorough
understanding of web attacks.

Future Work. While the set I of inclusion methods is relatively
static, new web technologies may introduce novel detectable dif-
ferences, and novel leak techniques. Our contributed formal model
provides a clear methodology to check such novel technologies
for possible XS-Leaks. A similar observation holds for the miti-
gations. The inclusion method-based countermeasures should be
re-evaluated once new inclusion methods are defined, and browser
implementations need to be constantly re-evaluated once their
functionality is enhanced. Moreover, we think that the community
could benefit from an evaluation whether fixes against XS-Leaks
can be done without interfering with Web functionality. However,
crawling sites would probably yield only incomplete data, since
many sites hide their functionalities behind logins or on sub-sites.
Therefore, it would be a difficult but commendable future work to
look on web applications, identify their states, and solve session
management problems.

ACKNOWLEDGEMENTS

Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA - 390781972. Lukas Knittel was supported by the Ger-
man Federal Ministry of Economics and Technology (BMWi) project
“Industrie 4.0 Recht-Testbed” (13140V002C). Dominik Noss was sup-
ported by the research project “MITSicherheit NRW” funded by
the European Regional Development Fund North Rhine-Westphalia
(EFRE.NRW).

REFERENCES

[1] Gunes Acar and Frank Li of UC Berkeley Danny Y. Huang, Princeton University.
2018. MediaError message property leaks cross-origin response status. https:
//bugs.chromium.org/p/chromium/issues/detail?id=828265. (April 2018).

[2] Gunes Acar, Danny Yuxing Huang, Frank Li, Arvind Narayanan, and Nick
Feamster. 2018. Web-Based Attacks to Discover and Control Local IoT De-
vices. In Proceedings of the 2018 Workshop on IoT Security and Privacy (IoT
S&P ’18). Association for Computing Machinery, New York, NY, USA, 29-35.
https://doi.org/10.1145/3229565.3229568

[3] Devdatta Akhawe, Frederik Braun, Francois Marier, and Joel Wein-
berger. 2016. Subresource Integrity. W3C Recommendation. W3C.
https://www.w3.0rg/TR/2016/REC-SRI-20160623/.

[4] Apple. 2019. Safari Privacy Overview. https://www.apple.com/safari/docs/
Safari_White_Paper_Nov_2019.pdf. (November 2019).

[5] A.Barth. 2011. The Web Origin Concept. RFC 6454. IETF. http://tools.ietf.org/
rfc/rfc6454.txt

[6] Andrew Bortz and Dan Boneh. 2007. Exposing Private Information by Timing
Web Applications. In Proceedings of the 16th International Conference on World
Wide Web (WWW °07). Association for Computing Machinery, New York, NY,
USA, 621-628. https://doi.org/10.1145/1242572.1242656

[7] Frederik Braun and Mario Heiderich. 2013. X-frame-options: All about clickjack-
ing. (2013). https://cure53.de/xfo-clickjacking.pdf

[8] Stefano Calzavara, Sebastian Roth, Alvise Rabitti, Michael Backes, and Ben
Stock. 2020. A Tale of Two Headers: A Formal Analysis of Inconsistent Click-
Jacking Protection on the Web. In 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, 683-697. https://www.usenix.org/conference/
usenixsecurity20/presentation/calzavara

[9] Chris Evans. 2009. Cross-domain search timing. (2009). https://

scarybeastsecurity.blogspot.com/2009/12/cross-domain-search- timing.html

Chrome Platform Status. 2020. XSS Auditor (removed). https://

www.chromestatus.com/feature/5021976655560704. (June 2020).

[11] D. Dolev and A. Yao. 1983. On the security of public key protocols. IEEE

Transactions on Information Theory 29, 2 (1983), 198-208. https://doi.org/10.1109/

TIT.1983.1056650

Benjamin Eriksson and Andrei Sabelfeld. 2020. Autonav: Evaluation and automa-

tization of web navigation policies. In Proceedings of The Web Conference 2020.

1320-1331.

[13] Chris Evans. 2008. Cross-domain leaks of site logins. https:
//scarybeastsecurity.blogspot.com/2008/08/cross-domain-leaks- of-site-
logins.html. (August 2008).

[14] Daniel Fett, Ralf Kuesters, and Guido Schmitz. 2014. An Expressive Model for the
Web Infrastructure: Definition and Application to the BrowserID SSO System.
(2014). arXiv:cs.CR/1403.1866

[15] 1. Fette and A. Melnikov. 2011. The WebSocket Protocol. RFC 6455. IETF. http:

//tools.ietf .org/rfc/rfc6455.txt

Nethanel Gelernter and Amir Herzberg. 2015. Cross-site search attacks. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications

Security. ACM, 1394-1405.

Thomas Gross, Birgit Pfitzmann, and Ahmad-Reza Sadeghi. 2005. Browser Model

for Security Analysis of Browser-Based Protocols. IACR Cryptology ePrint Archive

2005, 127. https://doi.org/10.1007/11555827_28

[18] Jeremiah Grossman. 2012. I Know What Websites You Are Logged-In To
(Login-Detection via CSRF). http://blog.whitehatsec.com/i-know-what
-websites-you-are-logged-in-to-login-detection-via-csrf/. (October
2012).

[19] Chong Guan, Kun Sun, Zhan Wang, and WenTao Zhu. 2016. Privacy breach by ex-

ploiting postmessage in html5: Identification, evaluation, and countermeasure. In

Proceedings of the 11th ACM on Asia Conference on Computer and Communications

Security. 629-640.

Gabor Gyorgy Gulyas, Doliere Francis Some, Nataliia Bielova, and Claude Castel-

luccia. 2018. To extend or not to extend: on the uniqueness of browser extensions

and web logins. In Proceedings of the 2018 Workshop on Privacy in the Electronic

Society. 14-27.

Mario Heiderich. 2020. HTTPLeaks. https://github.com/cure53/HTTPLeaks.

(June 2020).

Mario Heiderich, Alex Infiihr, Fabian Fafiler, Nikolei Krein, Masato Kinugawa,

Tsang-Chi Hong, Dario Weifiler, and Paula Pustulka. 2017. Cure53’s Browser Se-

curity White Paper. (2017). https://raw.githubusercontent.com/cure53/browser-

sec-whitepaper/master/browser-security-whitepaper.pdf

[23] Luan Herrera. 2020. XS-Leaks in redirect flows. https://docs.google.com/

presentation/d/1rlnxXUYHY9CHgCMckZsCGH4VopLo4DYMvAcOltma0og.

(January 2020).

Gareth Heyes. 2015. Abusing Chrome’s XSS auditor to steal tokens. https:

//portswigger.net/research/abusing- chromes-xss-auditor- to-steal-tokens. (Au-

gust 2015).

Gareth Heyes. 2019. XS-Leak: Leaking IDs using focus. https://portswigger.net/

research/xs-leak-leaking-ids-using-focus. (October 2019).

=
2

[12

[16

[17

IS
=

[21

[22

[24

[25

https://bugs.chromium.org/p/chromium/issues/detail?id=828265
https://bugs.chromium.org/p/chromium/issues/detail?id=828265
https://doi.org/10.1145/3229565.3229568
https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
http://tools.ietf.org/rfc/rfc6454.txt
http://tools.ietf.org/rfc/rfc6454.txt
https://doi.org/10.1145/1242572.1242656
https://cure53.de/xfo-clickjacking.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/calzavara
https://www.usenix.org/conference/usenixsecurity20/presentation/calzavara
https://scarybeastsecurity.blogspot.com/2009/12/cross-domain-search-timing.html
https://scarybeastsecurity.blogspot.com/2009/12/cross-domain-search-timing.html
https://www.chromestatus.com/feature/5021976655560704
https://www.chromestatus.com/feature/5021976655560704
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://scarybeastsecurity.blogspot.com/2008/08/cross-domain-leaks-of-site-logins.html
https://scarybeastsecurity.blogspot.com/2008/08/cross-domain-leaks-of-site-logins.html
https://scarybeastsecurity.blogspot.com/2008/08/cross-domain-leaks-of-site-logins.html
https://arxiv.org/abs/cs.CR/1403.1866
http://tools.ietf.org/rfc/rfc6455.txt
http://tools.ietf.org/rfc/rfc6455.txt
https://doi.org/10.1007/11555827_28
https://github.com/cure53/HTTPLeaks
https://raw.githubusercontent.com/cure53/browser-sec-whitepaper/master/browser-security-whitepaper.pdf
https://raw.githubusercontent.com/cure53/browser-sec-whitepaper/master/browser-security-whitepaper.pdf
https://docs.google.com/presentation/d/1rlnxXUYHY9CHgCMckZsCGH4VopLo4DYMvAcOltma0og
https://docs.google.com/presentation/d/1rlnxXUYHY9CHgCMckZsCGH4VopLo4DYMvAcOltma0og
https://portswigger.net/research/abusing-chromes-xss-auditor-to-steal-tokens
https://portswigger.net/research/abusing-chromes-xss-auditor-to-steal-tokens
https://portswigger.net/research/xs-leak-leaking-ids-using-focus
https://portswigger.net/research/xs-leak-leaking-ids-using-focus

[26

[27]

[28]

[29

[30

[31]

[32

[33

[34]

[35]

[36

[37

[40]

[41

[42]

[43

[44]

[45]

[46]

[47

[48]

[49]

[50

Raymond Hill. 2020. Blocking mode uBlock Wiki. https://github.com/gorhill/
uBlock/wiki/Blocking-mode. (October 2020).

Egor Homakov. 2013. Disclose domain of redirect destination taking adven-
tadge of CSP. https://bugs.chromium.org/p/chromium/issues/detail?id=313737.
(October 2013).

Tan Jacobs, Zach Koch, Domenic Denicola, Roy McElmurry, Rouslan Solomakhin,
and Marcos Caceres. 2019. Payment Request API. Candidate Recommenda-
tion. W3C. https://www.w3.0rg/TR/2019/CR-payment-request-20191212/#show-
method.

Arvind Jain, Zhiheng Wang, Anderson Quach, Jatinder Mann, and Todd
Reifsteck. 2017. Resource Timing Level 1. Candidate Recommendation.
W3C. https://www.w3.org/TR/2017/CR-resource-timing-1-20170330/#resources-
included.

Artur Janc, Krzysztof Kotowicz, Lukas Weichselbaum, and Roberto Clapis. 2020.
Information Leaks via Safari’s Intelligent Tracking Prevention. https://arxiv.org/
abs/2001.07421. (January 2020).

Artur Janc and Mike West. 2020. Oh, the Places You'll Go! Finding Our Way Back
from the Web Platform’s Ill-conceived Jaunts. In 2020 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE, 673-680.

Soroush Karami, Panagiotis Ilia, and Jason Polakis. 2021. Awakening the Web’s
Sleeper Agents: Misusing Service Workers for Privacy Leakage. In Network and
Distributed System Security Symposium (NDSS).

Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. 2020.
Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting. In
27th Annual Network and Distributed System Security Symposium, NDSS 2020, San
Diego, California, USA, February 23-26, 2020. The Internet Society.

Eiji Kitamura. 2020. Gaining security and privacy by partitioning the cache. https:
//developers.google.com/web/updates/2020/10/http-cache-partitioning. (Octo-
ber 2020).

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1-19.

Sangho Lee, Hyungsub Kim, and Jong Kim. 2015. Identifying Cross-origin Re-
source Status Using Application Cache. In 22nd Network and Distributed System
Security Symposium (NDSS 2015). https://www.microsoft.com/en-us/research/
publication/identifying- cross-origin-resource- status-using-application-cache/
Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. 2015. The
Unexpected Dangers of Dynamic JavaScript. In 24th USENIX Security Symposium
(USENIX Security 15). 723-735. https://publications.cispa.saarland/987/ pub_id:
1055 Bibtex: lekies2015unexpected URL date: None.

Ron Masas. 2019. Browser Side Channels. https://github.com/xsleaks/xsleaks/
wiki/Browser-Side-Channels. (September 2019).

Ron Masas. 2019. Server Side Redirect Detection. https://xsleaks.github.io/
xsleaks/examples/redirect/. (September 2019).

MDN web docs. 2020. Fetch APL https://developer.mozilla.org/en-US/docs/Web/
API/Fetch_API (June 2020).

Seyed Mirheidari, Sajjad Arshad, Kaan Onarlioglu, Bruno Crispo, Engin Kirda,
and William Robertson. 2019. Cached and Confused: Web Cache Deception in
the Wild. (12 2019).

Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm,
Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020. Retrofitting Fine Grain
Isolation in the Firefox Renderer. In 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, 699-716. https://www.usenix.org/conference/
usenixsecurity20/presentation/narayan

Marcus Niemietz and Jérg Schwenk. 2018. Out of the Dark: UI Redressing and
Trustworthy Events. In Cryptology and Network Security, Srdjan Capkun and
Sherman S. M. Chow (Eds.). Springer International Publishing, Cham, 229-249.

Lukasz Olejnik, Claude Castelluccia, and Artur Janc. 2012. Why johnny can’t
browse in peace: On the uniqueness of web browsing history patterns. In 5th
Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2012).

S. Roth, Timothy Barron, S. Calzavara, Nick Nikiforakis, and Ben Stock. 2020.
Complex Security Policy? A Longitudinal Analysis of Deployed Content Security
Policies. In NDSS.

Jérg Schwenk, Marcus Niemietz, and Christian Mainka. 2017. Same-origin policy:
Evaluation in modern browsers. In 26th USENIX Security Symposium (USENIX
Security 17). 713-727.

Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser Brown, and Deian
Stefan. 2018. Browser history re: visited. In 12th USENIX Workshop on Offensive
Technologies (WOOT 18).

Jungkee Song, Alex Russell, Marijn Kruisselbrink, and Jake Archibald.
2019. Service Workers 1. Candidate Recommendation. W3C.
https://www.w3.0rg/TR/2019/CR-service-workers-1-20191119/.

Web Platform Tests / Open Source. 2021. Web Platform Tests Github Page. (2021).
https://github.com/web-platform-tests/wpt

Cristian-Alexandru Staicu and Michael Pradel. 2019. Leaky images: targeted
privacy attacks in the web. In 28th USENIX Security Symposium (USENIX Security
19). 923-939

o
=

o
&

o
0,

[61

(62]

[63]

[68]

[69

[70

71

(72

[73

(74

[75

Avinash Sudhodanan, Soheil Khodayari, and Juan Caballero. 2020. Cross-Origin
State Inference (COSI) Attacks: Leaking Web Site States through XS-Leaks. In
27nd Network and Distributed System Security Symposium (NDSS 20).
Takeshi Terada. 2014. Security: XSS filter information leak.
bugs.chromium.org/p/chromium/issues/detail?id=396544. (July 2014).
Terjanq. 2019. Mass XS-Search using Cache Attack. https://medium.com/
(@terjanq/massive-xs-search-over-multiple-google-products-416e50dd2ec6. (No-
vember 2019).

terjanq. 2019. Protected tweets exposure through the URL.
hackerone.com/reports/491473. (April 2019).

terjang. 2019. Twitter: Detect X-Frame-Options header in Chrome. https://
twitter.com/terjang/status/1111600071014080517. (March 2019).

terjang. 2020. Issue 1157818: performance API reveals information about redirects
(XS-Leak). https://crbug.com/1157818. (December 2020).

Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015. The clock is
still ticking: Timing attacks in the modern web. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, 1382-1393.
Tom Van Goethem, Christina Pépper, Wouter Joosen, and Mathy Vanhoef. 2020.
Timeless timing attacks: Exploiting concurrency to leak secrets over remote
connections. In 29th {USENIX} Security Symposium ({USENIX} Security 20).
1985-2002.

Eduardo Vela. 2019. HTTP Cache Cross-Site Leaks. http:
//sirdarckcat.blogspot.com/2019/03/http-cache-cross-site-leaks.html. (March
2019).

Markus Vervier, Michele Orru, Berend-Jan Wever, and Eric Sesterhenn. 2017.
Cure53’s Browser Security White Paper. (2017). https://browser-security.x41-
dsec.de/X41-Browser-Security- White-Paper.pdf

MDN web docs. 2019. CSP: frame-ancestors. https://developer.mozilla.org/en-US/
docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors. (November
2019).

MDN web docs. 2020. Web APIs: History. https://developer.mozilla.org/en-
US/docs/Web/API/History. (February 2020).

Mike West. 2013. Cross-origin leakage with securitypolicyviolation events
and paths in source expressions. https://lists.w3.org/Archives/Public/public-
webappsec/2013May/0022.html. (May 2013).

Mike West. 2018. Content Security Policy Level 3. W3C Working Draft. W3C.
https://www.w3.0rg/TR/2018/WD-CSP3-20181015/.

Mike West. 2020. Fetch Metadata Request Headers. https://w3c.github.io/
webappsec-fetch-metadata/. (April 2020).

Web Hypertext Application Technology Working Group (WHATWG). 2020.
Fetch - Living Standard: Cross-Origin-Resource-Policy header. https://
fetch.spec.whatwg.org/#cross-origin-resource-policy-header. (August 2020).
Web Hypertext Application Technology Working Group (WHATWG). 2020. Fetch
- Living Standard: HTTP-redirect fetch. https://fetch.spec.whatwg.org/#http-
redirect-fetch. (August 2020).

Web Hypertext Application Technology Working Group (WHATWG). 2020. Fetch
- Living Standard: Requests. https://fetch.spec.whatwg.org/#requests. (August
2020).

Web Hypertext Application Technology Working Group (WHATWG). 2020.
HTML - Living Standard: contentDocument. https://html.spec.whatwg.org/
multipage/iframe-embed- object.html#dom-iframe- contentdocument. (August
2020).

Web Hypertext Application Technology Working Group (WHATWG).
2020. HTML - Living Standard: Navigating to a fragment. https:
//html.spec.whatwg.org/multipage/browsing-the-web.html#scroll-to-fragid.
(August 2020).

XS-Leaks Wiki. 2020. CORB Leaks. https://xsleaks.com/docs/attacks/browser-
features/corb/. (October 2020).

XS-Leaks Wiki. 2020. CORP Leaks. https://xsleaks.com/docs/attacks/browser-
features/corp/. (October 2020).

John Wilander. 2019. Preventing Tracking Prevention Tracking. https:
//webkit.org/blog/9661/preventing- tracking-prevention-tracking/. (December
2019).

John Wilander. 2020. Full Third-Party Cookie Blocking and More. https:
//webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/. (March
2020).

Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Christopher Kruegel. 2010.
A practical attack to de-anonymize social network users. In 2010 IEEE Symposium
on Security and Privacy. IEEE, 223-238.

Takashi Yoneuchi. 2019. XS-Leak with Resource Timing API and CSP Embedded
Enforcement. https://crbug.com/1105875. (July 2019).

https://

https://

https://github.com/gorhill/uBlock/wiki/Blocking-mode
https://github.com/gorhill/uBlock/wiki/Blocking-mode
https://bugs.chromium.org/p/chromium/issues/detail?id=313737
https://arxiv.org/abs/2001.07421
https://arxiv.org/abs/2001.07421
https://developers.google.com/web/updates/2020/10/http-cache-partitioning
https://developers.google.com/web/updates/2020/10/http-cache-partitioning
https://www.microsoft.com/en-us/research/publication/identifying-cross-origin-resource-status-using-application-cache/
https://www.microsoft.com/en-us/research/publication/identifying-cross-origin-resource-status-using-application-cache/
https://publications.cispa.saarland/987/
https://github.com/xsleaks/xsleaks/wiki/Browser-Side-Channels
https://github.com/xsleaks/xsleaks/wiki/Browser-Side-Channels
https://xsleaks.github.io/xsleaks/examples/redirect/
https://xsleaks.github.io/xsleaks/examples/redirect/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://github.com/web-platform-tests/wpt
https://bugs.chromium.org/p/chromium/issues/detail?id=396544
https://bugs.chromium.org/p/chromium/issues/detail?id=396544
https://medium.com/@terjanq/massive-xs-search-over-multiple-google-products-416e50dd2ec6
https://medium.com/@terjanq/massive-xs-search-over-multiple-google-products-416e50dd2ec6
https://hackerone.com/reports/491473
https://hackerone.com/reports/491473
https://twitter.com/terjanq/status/1111600071014080517
https://twitter.com/terjanq/status/1111600071014080517
https://crbug.com/1157818
http://sirdarckcat.blogspot.com/2019/03/http-cache-cross-site-leaks.html
http://sirdarckcat.blogspot.com/2019/03/http-cache-cross-site-leaks.html
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/API/History
https://developer.mozilla.org/en-US/docs/Web/API/History
https://lists.w3.org/Archives/Public/public-webappsec/2013May/0022.html
https://lists.w3.org/Archives/Public/public-webappsec/2013May/0022.html
https://w3c.github.io/webappsec-fetch-metadata/
https://w3c.github.io/webappsec-fetch-metadata/
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-header
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-header
https://fetch.spec.whatwg.org/#http-redirect-fetch
https://fetch.spec.whatwg.org/#http-redirect-fetch
https://fetch.spec.whatwg.org/#requests
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#dom-iframe-contentdocument
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#dom-iframe-contentdocument
https://html.spec.whatwg.org/multipage/browsing-the-web.html#scroll-to-fragid
https://html.spec.whatwg.org/multipage/browsing-the-web.html#scroll-to-fragid
https://xsleaks.com/docs/attacks/browser-features/corb/
https://xsleaks.com/docs/attacks/browser-features/corb/
https://xsleaks.com/docs/attacks/browser-features/corp/
https://xsleaks.com/docs/attacks/browser-features/corp/
https://webkit.org/blog/9661/preventing-tracking-prevention-tracking/
https://webkit.org/blog/9661/preventing-tracking-prevention-tracking/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://crbug.com/1105875

A OVERVIEW OF XS-LEAK ATTACKS

A.1 Detectable Difference: Status Code

An attacker is able to distinguish different HTTP response status
codes to detect server errors, client errors, authentication errors, or
server redirects cross-origin.

Leak Technique: Event Handler. Event handlers can be at-
tached to an HTML tag which includes a cross-origin resource.
Depending on the status code, content-type, and other response
headers, different events handlers are triggered (e.g., onload or
onerror) [50, 51]. By using event handler as a leak technique, an
attacker is allowed to detect the presence of headers, HT TP errors,
and media types.

Leak Technique: MediaError. In FF, it is possible to accurately
leak a cross-origin request’s status code by using an error message
leak technique generated by a video or audio element as inclusion
methods.

A.2 Detectable Difference: API Usage

An attacker is able to detect the usage of Web APIs cross-origin.

Service Worker. Service workers are event-driven script con-
texts that run at an origin [48]. They run in the background of a
web page and can intercept, modify, and cache resources to create
offline web application. Karami et al. [32] introduced leak tech-
niques to detect if a service worker is registered for a specific origin.
They used iframes as an inclusion method on resources that have
previously been cached by a service worker.

A.3 Detectable Difference: Redirects

It is possible to detect if a web application has navigated the user to
a different page. This is not limited to HTTP redirects but redirects
triggered by JavaScript or HTML code can also be detected.

Fetch Redirect. The Fetch API provides an interface for fetching
resources by using JavaScript code. The API allows various config-
uration options. One of these options is the redirect mode [68]. If
it is set to manual, redirects are not automatically followed. Based
on the discussion of Janc et al. [30], browsers like GC and SA allow
the attacker to check the response’s type as a leak technique after
the redirect is finished.

URL Max Length. Web applications may not adequately handle
long URLs. Usually, web servers reject a request when the URL
exceeds a specific limit and return an error with status code 414
URI Too Longor 413 Payload Too Large. Modern browsers can
typically handle longer URLs, although 2 megabytes are a common
limit. If a web application redirects, it may try to preserve any
query parameters that are attached to the original request (e.g., as
implemented by twitter.com). Additionally, the URL length may
increase in size when a redirect occurs. By considering a global limit
as a leak technique, an attacker can consequently craft a request
that exceeds the server’s URL character limit to trigger an error
once redirected. As an example, Masas [38, 39] showed how an
attacker could gather the length of a URL that triggers an error on
a specific server to be used within an XS-Leak.

Max Redirect Browsers try to prevent infinite redirect loops.
The Fetch standard specifies that after twenty redirects a network
error should be returned [67]. Herrera [23] showed that this limit

can be abused to detect the number of redirects of a cross-origin
resource. For example, an attacker can redirect nineteen times
before redirecting to the target site that may potentially redirect. If
it redirects, an error is triggered that can then be detected by the
attacker page.

History Length. The History API allows JavaScript code to
manipulate the browser history, which saves the pages visited by a
user [62]. An attacker can use the length property as an inclusion
method: to detect JavaScript and HTML navigation. Multiple works
have studied the browser history and show how to abuse it to
determine whether a user has accessed a certain website [44, 47,
54, 75].

CSP Violation. An XS-Leak can use the CSP [64] to detect if a
cross-origin site was redirected to a different origin. This leak can
detect the redirect, but additionally, the domain of the redirect target
leaks. These techniques were discussed by West [63] and Homakov
[27]. The basic idea of this attack is to allow the target domain on
the attacker site. Once a request is issued to the target domain, it
redirects to a cross-origin domain. CSP blocks the access to it and
creates a violation report used as a leak technique. Depending on
the browser, this report may leak the target location of the redirect.

CSP Detection. Newer browsers do not leak the target location
of the redirect in the violation report. However it is still possible
to detect if a cross-origin redirect occurred, because the request is
still blocked by the CSP, i.e., the violation report can be used as a
leak technique.

A.4 Detectable Difference: Page Content

An attacker can detect content in HTML documents or resources.
The detection includes HTML attributes, embedded resources, and
CSS rules.

Cache. For avoiding unnecessary data transfers and server re-
quests, browsers implement HTTP caching to increase performance
when loading web pages. Vela [59] discovered that most browsers
use one shared cache for all websites. Regardless of their origin, it
is possible to deduct whether a target page has requested a specific
file. To detect this request, the attacker page executes the following
leak technique it clears the file from the cache, it opens the target
page in a pop-up or iframe, and finally, it checks if the file is present
in the cache again.

Frame Count. HTML iframe elements can be used to embed
other documents within the current one. Developers use them to
isolate third-party content or to include widgets and advertisements.
Although JavaScript APIs only allow limited access to cross-origin
window objects, the number of frames on a page can still be read. As
shown by Grossman [18] and Masas [38], an attacker can use this
length to detect state differences if the number of frames changes
between them. A target web page may include a different number
of frames depending on the user state. With readable attributes as
a leak technique, properties like length help an attacker to leak
the frame number if it is possible to obtain a window handle to the
target. A window handle can be obtained by the following inclusion
methods: embedding the target page in an iframe or by opening a
pop-up using window. open.

Media Dimensions. Media elements, such as video and image,
can sometimes differ in size. Web applications may dynamically

generate media files depending on user information or add water-
marks that change media size. An attacker can use standard DOM
APIs to detect these differences [38]. For example, media resources
can be embedded cross-origin with <video> or HTML tags
and properties such as the dimensions for image elements can be
read.

Media Duration. Similarly, the duration of audio and video
elements can be read cross-origin.

Id Attribute. Hyperlinks are often used to link to specific parts
of a document, and browsers will automatically scroll to them when
the identifier is specified in the fragment part of a URL [70]. This
behavior can be used to detect if a specific identifier is present on
a page. For certain HTML elements as inclusion methods, GC and
SA will not only scroll to them but also focus them. For example,
<input id="leakme"> will gain focus when the fragment of the
URL is set to leakme. In GC, this even works in cross-origin iframes.
However, an attacker can not directly detect that the element got
focused because of the SOP. To get around this, an onblur handler
can be registered on the attacker page. Once the iframe receives
focus, the attacker page will lose focus and a blur event triggers.
Heyes [25] discovered this leak technique and it can be used to
detect login pages or to leak sensitive data from the id or name
attribute.

CSS Property. Web applications may change website styling de-
pending on the status of the user. As described by Evans [13], these
changes can be used to detect differences in Cascading Style Sheets
(CSS) rules. Cross-origin CSS files can be embedded on the attacker
page with the HTML link element, and the rules will be applied
to the attacker page. If a page dynamically changes these rules, an
attacker can detect these differences depending on the user state.
For example, websites will often serve different CSS depending on
whether the user is logged in. As a leak technique, the attacker can
include the targeted CSS file to use the window. getComputedStyle
method to read CSS properties of a specific HTML element. As a
result, an attacker can read arbitrary CSS properties if the affected
element and property name is known.

A.5 Detectable Difference: Header

In some cases, the presence of HTTP headers can be detected. This
includes headers such as X-Frame-Options, Content-Type, and
Content-Disposition.

Performance API XFO The Performance API is used to access
performance information of the current page [29]. This includes
detailed network timing data for the document and every resource
the page loads. Terjanq [55] showed that when a resource has
X-Frame-Options header set and is included with an object tag, it
will not create an resource timing entry in the Performance API (cf.
Section 5.2).

CSP Directive. A new feature in GC allows web pages to pro-
poses a CSP by setting an attribute on an iframe element. The policy
directives are transmitted along with the HTTP request. Normally,
the embedded content must explicitly allow this with an HTTP
header, otherwise an error page is displayed. However, if the iframe
already ships a CSP and the new policy is not stricter, the page will
display normally.

This allows an attacker to detect specific CSP directive of a cross-
origin page, if it is possible to detect the error page. This leak was
reported to GC by Takashi Yoneuchi [76]. Although, this bug is now
marked as fixed, we found a new leak technique that can detect the
error page, because the underlying problem was never fixed.

CORP. The CORP header is a relatively new web platform secu-
rity feature that when set blocks no-cors cross-origin requests to
the given resource (cf. Section 7). The presence of the header can
be detected, because a resource protected with CORP will throw
an error when fetched.

CORB. CORB is an algorithm in the browser that blocks dubious
cross-origin resource requests before they reach the webserver
(cf. Section 7). This feature can be used to detect the presence
of Content-Type and Content-Type-Options headers, because
CORSB is only enforced for specific content-types together with the
nosniff option. An attacker can use a combination of event handlers
as a leak technique to detect CORB.

ContentDocument XFO. In Chrome, when a page is not al-
lowed to be embedded on a cross-origin page, because the X-Frame-
Options (XFO) header is set to deny or same-origin, an error page
is shown instead. For objects, this error page can be detected by
checking the contentDocument property [69]. Typically, this prop-
erty returns null because access to a cross-origin embedded docu-
ment is not allowed. However, due to Chrome’s rendering of the
error page, an empty document object is returned instead. This
does not work for iframes or in other browsers. Developers may
forget to set X-Frame-Options for all pages and especially error
pages often miss this header. As a leak technique, an attacker may
be able to differentiate between different user states by checking
for it.

Download Detection. The Content-Disposition header in-
dicates if the browser is either supposed to downloaded content
or displayed it inline. Masas [38] has demonstrated with a leak
technique that an attacker can detect downloads by using the in-
clusion method: iframe. If the iframe is still accessible, the file was
downloaded; this is the case because in most browsers a down-
load does not trigger a navigation and the iframe is still considered
same-origin. This attack also works with pop-ups created with
window. open.

Browser ® Chrome and @ Edge ©) Firefox @ Safari

80

81.0

83

84.0

85.0 - 87.0
88.0

89.0 - 90.0
79.0

80.0 - 84.0
85.0 - 88.0
11.1

12

13.1

14

XS-Leak
Detectable Difference: Status Code

ContentDocument XFO
Download Detection

Performance API Error o o o @] (@] O (0] @] (0] @] o (] o]
Style Reload Error ([o [o [o o o 0] [[[([
Request Merging Error ([o [([[o o (o] 0] o [[[
Event Handler Error o o o o o o [) (] o (] o o] o
MediaError (0] (@] (@] (@] (0] (@] (@) o (0] (@] @] @] @] @]
Detectable Difference: Redirects
CORS Error Leak (o] o (o] o (o] o @) o (@) 0] [[[[
Redirect Start (@) (@) (@) (@) (@) (@) (@) 0] (@] @] o [] o []
Duration Redirect (@) (@) (@) o o (0] @] (@] (0] (@] (0] @] (0] 0]
Fetch Redirect (@] o o o o o o (@] (@] (@] o (@) @] 0]
URL Max Length o L o L ® o [] o] o] o [
Max Redirect o o o o o o []] o [@] @] @]]
History Length o o o o o [o o (o) 0] [[[o
CSP Violation o L o o O o (0] o O o o [] [
CSP Redirect o o o o o o o [o [o] o]
Detectable Difference: API Usage
WebSocket o o o o o o o] o o @] @] (@] @]
Payment API o L o o o o o o O o o 0] o o
Detectable Difference: Page Content
Performance API Empty Page O o O 0] O o o o (0] o o o o o
Performance XSS Auditor (@) (@) (@) (@) (@) (0] @] (@] (0] (@] o o o]
Cache o o ® o o @) o] o o o o o]
Frame Count o o o o o o o] o o o [] o []
Media Dimensions o [) [) o o o o (] o o o o o o
Media Duration o o o o o o o o o o (@] (@) @] 0]
1d Attribute o L o o ® o] o O o O] o 0] o
CSS Property o o o o o o o [o [o] o]
Detectable Difference: Header
SRI Error (@] @] (@] @] (@] @] o @] (@] @] @] @] o o
Performance API Download o o o o o o o o o] o [] o]
Performance API CORP [) [) o [) o o [) (@] (0] (@] (@] o o o
COOP Leak (@] @] o o o o o @] (@] @] @] @] @] @]
Performance API XFO o o o o o o @) (@) (@] @] o o o o
CSP Directive o o o o o o o @] (0] @] @] @] @] @]
CORP o o o o o o o [o] @]] o o
CORB o L ® o o o o] o L] [o o
o o o o o o o (@] (0] @] @] @] @] @]
o o o o o o o [o o @]] o]
25 26 27 27 26 24 15 14 22 23 24

> Attackable (max. 34) 23 | 13] 20
Table 3: Evaluation results for popular desktop browsers show how vulnerabilities propagate between different versions.
Browser versions that did not show any differences have been merged. Chrome & and Edge @ behave identically.

iOS Version iOS 14 iOS 13 iOS 12 iOS 11

Firefox Focus 8.1.7

Safari 14.0
Opera 3.0.2
Chrome 87.0
Chrome 86.0
Firefox 33.0
Edge 46.3.7
Safari 13.0
Safari 12.1
Safari 11.0

XS-Leak

Detectable Difference: Status Co
Performance API Error
Style Reload Error
Request Merging Error
Event Handler Error
MediaError

Detectable Difference: Redirects
CORS Error Leak
Redirect Start
Duration Redirect
Fetch Redirect
URL Max Length
Max Redirect
History Length
CSP Violation
CSP Redirect

Detectable Difference: API Usage
WebSocket
Payment API

[=}
o

ceeoo0o0

000000000

oo

Detectable Difference: Page Content
Performance API Empty Page
Performance XSS Auditor
Cache

Frame Count

Media Dimensions

Media Duration

1d Attribute

CSS Property

Detectable Difference: Header
SRI Error

Performance API Download
Performance API CORP
COOQP Leak

Performance API XFO

CSP Directive

CORP

CORB

ContentDocument XFO
Download Detection

> Attackable (max. 34) ‘ ‘ ‘

Table 4: Evaluation results of 10 iOS browsers. All browsers based on new versions of WebKit mostly behave identically except
for Firefox Focus. Older version closely match the desktop Safari behavior (cf. Tables 3).

20000000000 00000000 OO (000000000 OO00OO
OO0 0e 00000000 OO (000000000 O000O
80000000000 00000000 OO (000000000 OO0OO
B|O0O000O00000 00000000 OO (000000000 O00OO
B|O0O00O0O00000 00000000 OO (000000000 O00O0O
50000000000 00000000 OO0 |000000000 Oeoeo0o
0000000000 00000000 OO (000000000 O000O
S|0000000000 00000000 OO (000000000 OOO0OO
50000000000 00000000 OO (000000000 OO0

20000000000 000CO0OGFOOO

	Abstract
	1 Introduction
	2 Formal XS-Leak Description
	2.1 Formal Description
	2.2 Attacker Model
	2.3 Detectable Differences
	2.4 Real-world Inclusion Methods
	2.5 Real-world Leak Techniques

	3 XSinator: Automatic Browser Evaluation
	3.1 Implementation
	3.2 Evaluation Challenges
	3.3 Limitations

	4 Overview of XS-Leak Attacks
	5 New XS-Leak Attacks
	5.1 Leak Technique: Global Limits
	5.2 Leak Technique: Performance API
	5.3 Leak Technique: Error Messages
	5.4 Leak Technique Readable Attributes

	6 Evaluation Results
	6.1 Browser Comparison
	6.2 Patch History

	7 XS-Leak Defenses
	7.1 im Mitigations
	7.2 lt Mitigations

	8 Related Work
	9 Concluding Remarks
	References
	A Overview of XS-Leak Attacks
	A.1 Detectable Difference: Status Code
	A.2 Detectable Difference: API Usage
	A.3 Detectable Difference: Redirects
	A.4 Detectable Difference: Page Content
	A.5 Detectable Difference: Header

