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Abstract. We introduce SPEEDY, a family of ultra low-latency block ciphers. We mix
engineering expertise into each step of the cipher’s design process in order to create
a secure encryption primitive with an extremely low latency in CMOS hardware.
The centerpiece of our constructions is a high-speed 6-bit substitution box whose
coordinate functions are realized as two-level NAND trees. In contrast to other
low-latency block ciphers such as PRINCE, PRINCEv2, MANTIS and QARMA, we neither
constrain ourselves by demanding decryption at low overhead, nor by requiring a
super low area or energy. This freedom together with our gate- and transistor-level
considerations allows us to create an ultra low-latency cipher which outperforms all
known solutions in single-cycle encryption speed. Our main result, SPEEDY-6-192, is a
6-round 192-bit block and 192-bit key cipher which can be executed faster in hardware
than any other known encryption primitive (including Gimli in Even-Mansour scheme
and the Orthros pseudorandom function) and offers 128-bit security. One round
more, i.e., SPEEDY-7-192, provides full 192-bit security. SPEEDY primarily targets
hardware security solutions embedded in high-end CPUs, where area and energy
restrictions are secondary while high performance is the number one priority.
Keywords: Low-Latency Cryptography, High-Speed Encryption, Block Cipher

1 Introduction
In this paper we revisit the following fundamental problem: How do we design a secure
encryption algorithm whose hardware implementation is fast? Specifically, we care about
the entire latency of the hardware circuit from the point where the inputs are provided to
the point where the final outputs are ready and stable, i.e., the latency of a fully-unrolled
hardware implementation entirely made from combinatorial logic. Previous approaches,
which led to the design of established low-latency constructions like PRINCE [BCG+12],
PRINCEv2 [BEK+20], MANTIS [BJK+16] and QARMA [Ava17], considered a low number of
rounds and, to some extent, a small gate depth as design criteria. While both are obviously
important factors to achieve a low latency, there are further aspects which have been ignored
at the design level in the past – first and foremost the latency characteristics of the underly-
ing hardware. At first sight it may appear to be of limited interest to tailor a cryptographic
primitive towards one specific device technology due to the potential loss of generality.
However, in the hardware world there has been only one de-facto standard for integrated
circuit fabrication since the 1980s, namely Complementary Metal–Oxide–Semiconductor
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(CMOS) technology. The construction of CMOS logic gates, i.e., the arrangement of p-
and n-channel MOSFETs (Metal–Oxide–Semiconductor Field-Effect Transistors) to create
a certain functionality, has remained largely unchanged since its original proposal in 1963.
In other words, CMOS logic gates – the essential building blocks for the vast majority
of our computing technology today – have not experienced any fundamental redesign in
almost 6 decades. Merely their size has seen a progressive decrease according to Moore’s
famous law [Moo65].
Notably, there are some operations which can be constructed more naturally from com-
plementary logic. In particular, complementary gates in silicon hardware are naturally
inverting and non-inverting Boolean functions cannot be realized in a single stage (i.e.,
they require more than one pull-up and pull-down network) [RCN04]. Among the naturally
inverting logic gates some can be realized using only the minimum (lower bound) of
2n transistors, where n is the number of inputs the gate receives. These 2n transistors
are then arranged in the classical layout of one pull-up network, built from p-channel
MOSFETs (PMOS), and one pull-down network, built from n-channel MOSFETs (NMOS).
The simple Boolean functions NAND, NOR and INV/NOT are constructed this way, but
also the compound or complex logic gates AND-OR-INV (AOI) and OR-AND-INV (OAI).
We argue that logic cells with these properties are immensely beneficial for low-latency
constructions as they produce outputs much faster than their counterparts, independent
of the particular specifications or the minimum feature size of the fabrication process.
When diving deeper into the physical characteristics of hardware circuits built from silicon,
it is possible to make even further distinctions. In particular, we point out that cell layouts
which require PMOS transistors to be connected in series (stacked) suffer from the lower
mobility of PMOS compared to NMOS transistors more significantly. In consequence,
a noticeable negative impact on the latency of such gates can be observed and larger
transistor widths are required to partially offset this performance loss at the price of an
increased area [RCN04]. Among the previously listed cells, only NAND and INV/NOT
gates do not classically require PMOS transistors to be stacked. NOR gates with more
than two inputs suffer most severely from the mobility mismatch due to the larger PMOS
stacks. To clarify the impact of such observations on the performance of gates in common
standard cell libraries, we present latency figures for individual logic gates exemplarily for
NanGate 45 nm and 15 nm Open Cell Libraries (OCLs) in Section 2.
All gate- and transistor-level considerations described above are universally applicable to
CMOS standard cells, independent of the particular foundry, manufacturing process and
minimum feature size. Hence, it makes sense to take such characteristics into account when
attempting to implement a certain function, like an encryption algorithm, as a hardware
circuit with minimum latency. When revisiting previous latency-driven constructions in
cryptography, it is clear that such low-level observations have not been considered in
the past. We provide first contributions towards hardware-aware low-latency design and
construct a family of ultra low-latency block ciphers based on the underlying principles.

1.1 Motivation
Approaches to secure the internals of modern Central Processing Units (CPUs) have
received significant attention in the last few years as microarchitectural attacks, notably
Meltdown [LSG+18] and Spectre [KHF+19], revealed serious shortcomings in the security
architectures of widely deployed high-end processors. Hardware-based mitigations for such
attacks are proposed "en masse". Many of them call for a higher level of encrypted communi-
cation inside of CPUs as well as between CPUs and their surrounding hardware components.
Among the former are proposals for secure caches such as ScatterCache [WUG+19] and
CEASER [Qur18]. Both of them are compared to a number of further cache architectures
in [DXS19]. To implement new features of this kind in the next generations of mainstream
processors without causing a large performance penalty, high-speed encryption primitives
are among the most important building blocks.
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Secure caches are only one example of security applications in CPU environments that
require high-speed encryption. Dedicated hardware instructions, memory encryption,
pointer authentication (as renownedly implemented using QARMA in ARM processors) and
similar hardware-assisted mechanisms against software exploitation fall into this category
as well. We expect to see a lot more of such features implemented in future generations
of secure processor architectures, especially when more highly-optimized cryptographic
primitives become available. SPEEDY is meant as a general purpose high-speed encryption
primitive for all these applications and not limited or tailored to a subset of them.
Most low-latency ciphers published in the literature so far, such as PRINCE [BCG+12],
PRINCEv2 [BEK+20], MANTIS [BJK+16] and QARMA [Ava17], try to meet tight area and
energy requirements in addition to low latency. These properties make them particularly
suitable for highly-constrained microcontrollers in the Internet of Things (IoT). However,
keeping the primitives suited for battery-powered devices requires sacrifices with respect
to maximum performance. High-end CPUs do not impose the same kind of restrictions
on area and energy, yet they require even higher performance in terms of latency and
throughput. SPEEDY is able to outperform the state of the art by focusing on maximum
encryption speed and high security only.

1.2 Related Work
Designing cryptographic primitives with minimum execution time in hardware is still a
young and emergent research discipline. At CHES 2012 the authors of [KNR12] delivered
first results in that area by comparing the latency properties of multiple (lightweight) block
ciphers. It was concluded that, among other factors, the use of cryptographically-strong 4-
bit (or even 3-bit) S-boxes should be favored over larger substitutions and that a low number
of rounds should be maintained even at the price of a heavier linear layer when designing
a low-latency primitive. These demands were immediately met by the first dedicated
low-latency block cipher called PRINCE which has been presented at ASIACRYPT 2012.
PRINCE is a 64-bit block cipher with a 128-bit key and 12 cipher rounds which features
an innovative reflection property that allows to encrypt and decrypt data with essentially
the same circuit. Recently, an updated version called PRINCEv2 has been proposed which
claims to increase the security level of PRINCE by making small modifications to the key
schedule and the middle rounds [BEK+20]. This work also provides a comparison of
multiple low-latency block ciphers which confirms that PRINCE and PRINCEv2 are still the
fastest such primitives in public literature [BEK+20]. The comparison also includes the
tweakable block ciphers MANTIS [BJK+16] and QARMA [Ava17] as well as the low-energy
block cipher Midori [BBI+15] and demonstrates that all three of them come at a latency
overhead between 22 % and 42 % (considering the encryption-only variants) compared to
PRINCE in open-source NanGate libraries. This result may not come as a surprise, since
tweakable block ciphers such as MANTIS and QARMA are expected to require a larger circuit
depth due to the additional tweak input and since Midori has not been designed with low
latency being the primary design goal, although its substitution layer has been chosen
particularly to offer a small delay. However, two recent works claim that cryptographic
primitives aside from traditional block ciphers are able to outperform PRINCE in terms
of latency. First, the high performance cross-platform permutation Gimli introduced
in [BKL+17] is claimed to enable encryption with a 1.7 times smaller latency than PRINCE
in [GKD20], while the low-latency pseudorandom function (PRF) Orthros introduced
in [BIL+21] claims to achieve a latency about 7 % below PRINCE’s. We analyze both claims
in our comparison in Section 7 and conclude that the latter is consistent with our results,
while the former is clearly not. Orthros is able to achieve a lower latency than PRINCE
by computing the sum of two keyed permutations [BIL+21] which makes the resulting
primitive non-invertible (in contrast to block ciphers like SPEEDY).
Apart from the full cryptographic primitives discussed above, there are also some works
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focusing on particular cryptographic building blocks only. For instance, in [LSL+19] it
is shown how to construct involutory low-latency Maximal Distance Separable (MDS)
matrices. The authors of [BFP19] present techniques for finding small low-depth circuits
for cryptographic functions. In [BMD+20] the main goal is to construct S-boxes whose
masked variants (i.e., their side-channel protected versions) have a low latency in hardware
which conceptually requires a low AND depth and AND gate complexity. Low-latency
hardware masking in general, used to protect cryptographic primitives against side-
channel attacks, has received significant attention in the last few years, as demonstrated
in [MS16, GIB18, ABP+18, BKN19, SBHM20]. However, this field is not directly related
to the development of low-latency symmetric primitives in general, as the requirements
are vastly different and sometimes even direct opposites.1

1.3 Our Contribution
We introduce SPEEDY, a family of ultra low-latency block ciphers dedicated to semi-custom,
i.e., standard-cell-based, integrated circuit design. In order to tailor this cryptographic
primitive towards maximum execution speed in hardware we first analyze which type of
logic gates and circuit topologies are particularly suited for ultra low-latency encryption.
Our considerations in this regard are novel and have, to the best of our knowledge, not
been applied in previous designs of symmetric cryptographic primitives.
SPEEDY can be instantiated with different block and key sizes and varying numbers of
rounds. However, due to our S-box width of 6 bits and our main target application of
64-bit high-end CPUs we decided to use the least common multiple of 6 and 64, namely
192 as the default block and key size and call this instance SPEEDY-r-192. We claim that
SPEEDY-r-192 achieves 128-bit security when iterated over r = 6 rounds and full 192-bit
security when iterated over r = 7 rounds, while the r = 5 round variant already provides
a decent security level that is sufficient for many practical applications. Our extensive
evaluation of hardware implementations in 6 different standard cell libraries shows that
both SPEEDY-5-192 and SPEEDY-6-192 achieve a lower latency in hardware than any other
known encryption primitive, while SPEEDY-7-192 is only marginally slower than PRINCE.
Considering the provided security levels this is a significant improvement over the state of
the art in the area of (ultra) low-latency cryptography.

2 Background
In this section we revisit the necessary concepts which build the foundation for SPEEDY and
analyze the primary traits that make certain CMOS standard cells and circuit topologies
particularly useful for high-speed cryptography.

2.1 Natural CMOS Gates (NCGs)
A static CMOS gate is constructed by combining a pull-up with a pull-down network.
The pull-up network, as the name suggests, is responsible for pulling the output of the
gate up to VDD whenever the Boolean function should result in a logical ’1’. The pull-
down network, analogously, is responsible for pulling the output down to GND whenever
the Boolean function should output a logical ’0’. The networks are built in a mutually
exclusive manner such that only one of them is conductive for each combination of input
signals [RCN04]. While the pull-up networks are exclusively built from PMOS devices,
the pull-down networks are built from NMOS devices. PMOS devices can be understood

1In regular cryptographic S-boxes, non-linear gates such as AND and NAND are beneficial for area and
latency over linear gates like XOR and XNOR for instance. In masked S-boxes on the other hand, linear
operations are optimal and non-linear gates are the primary cost factor [BMD+20].
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as switches that conduct current between their drain and source terminals whenever their
gate voltage is low, NMOS devices conduct current between the terminals whenever their
gate voltage is high. For the opposite gate voltages the transistors are in a high-resistance
state. The assignment of PMOS transistors to pull-up networks and NMOS to pull-down
networks originates from the fact that PMOS devices cannot produce so-called strong zeros,
while NMOS devices cannot produce strong ones [RCN04]. In consequence, static CMOS
gates with a single stage are naturally inverting by design. Non-inverting Boolean functions
require at least two stages of pull-up and pull-down networks. Thus, as already discussed
in Section 1, certain logic functions are a more natural fit for technologies that are based
on complementary metal–oxide–semiconductor logic. Inverting Boolean functions include
for instance the common logic gates INV/NOT, NAND, NOR, XNOR, AOI and OAI.
Most of them (all except XNOR) can be realized as static gates by using only the lower
bound of 2n devices, namely n PMOS and n NMOS transistors. We call all inverting logic
gates which require only one stage and 2n transistors for their implementation Natural
CMOS Gates (NCGs). All NCGs commonly found in standard cell libraries with 1 ≤ n ≤ 4
inputs are depicted in Figure 1. Such logic cells are not only interesting from a hardware
design perspective because they require a lower number of transistors and therefore have a
smaller area footprint, they are also faster than their opposition and therefore beneficial
for low-latency constructions.

2.2 Latency of CMOS Logic Gates
The time that a physical instance of a logic gate requires to respond to a change in its
input signals by updating its output signal is called the delay or the latency of a cell.
Considering CMOS hardware, the latency of a physical instance of a logic cell depends on
a number of factors. Besides environmental influences like the temperature and the supply
voltage, also the transition time of the input signals and the capacitance that needs to be
driven at its output play a significant role. In this subsection, however, we want to compare
the base latencies of static CMOS gates when all outside factors are equal. Tables 1 and 2
list the latencies of common logic gates in two open-source standard cell libraries, namely
NanGate 45 nm and 15 nm Open Cell Libraries (OCLs), respectively. The latency values
are given in picoseconds and have been obtained by analyzing a netlist containing only
the individual logic gate enclosed between standard D-flip-flop cells for typical operating
conditions (25 °C, nominal voltage) with the Electronic Design Automation (EDA) software
Synopsys Design Compiler Version O-2018.06-SP4 using Composite Current Source (CCS)
models of the standard cells. Please note that for simplicity only the logic gates with the
minimum drive strength (denoted by the suffix "_X1" in NanGate libraries) are shown
here. However, the following arguments and considerations also apply to the higher drive
strength variants. As expected, the natural CMOS gates, defined in the previous subsection,
produce their outputs significantly faster than the competition. Interestingly, though,
some significant differences between analogous natural gates such as NAND and NOR can
be observed. In NanGate 45 nm technology for example, the NAND4_X1 cell is more than
twice as fast as the NOR4_X1 cell. This is due to the different physical behavior of p-type
and n-type MOSFETs realized in silicon as semiconductor material. In n-type MOSFETs
the majority carriers are electrons which are negatively charged. In p-type MOSFETs on
the other hand, the majority carriers are positively charged holes [RCN04]. Holes are less
mobile than electrons, which means they move slower. Therefore, simply speaking, PMOS
transistors operate slower than NMOS transistors of the same size. This situation is even
amplified when connecting PMOS devices in series (stacking) and leads to a significant
performance degradation and an increased area demand due to the larger widths required
to partially offset the performance penalty and achieve balanced rise and fall times. Classic
CMOS NOR gates require stacks of n PMOS transistors and are therefore among the logic
functions which suffer the most from the lower mobility of holes as majority carriers. Since
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(a) INV

(b) NAND2 (c) NOR2

(d) NAND3 (e) NOR3 (f) OAI21 (g) AOI21

(h) NAND4 (i) NOR4 (j) OAI22 (k) AOI22

Figure 1: Natural CMOS Gates (NCGs): Inverting logic cells realizable in only one stage
of 2n MOSFETs as static CMOS gates, where n is the number of inputs.

both types of complex gates, AOI and OAI, require stacked PMOS transistors in their
layouts as well, we can make similar arguments here, although the effect is less striking
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Table 1: Fan-In, Latency, Fan-In-to-Latency-Ratio and Linearity of logic gates in NanGate
45nm Open Cell Library (OCL) for typical operating conditions.

Cell Name Fan-In Latency [ps] FLR Linearity

INV_X1 1 22.047900 0.045356 2
BUF_X1 1 33.556521 0.029800 2

AND2_X1 2 40.170699 0.049788 2
NAND2_X1 2 27.885556 0.071722 2
NOR2_X1 2 40.649809 0.049201 2
OR2_X1 2 56.413554 0.035452 2
XNOR2_X1 2 57.604454 0.034720 4
XOR2_X1 2 73.018849 0.027390 4

AND3_X1 3 51.869132 0.057838 6
AOI21_X1 3 51.618919 0.058118 6
MUX2_X1 3 75.174913 0.039907 4
NAND3_X1 3 34.766912 0.086289 6
NOR3_X1 3 61.542571 0.048747 6
OAI21_X1 3 32.650799 0.091881 6
OR3_X1 3 85.839920 0.034949 6

AND4_X1 4 65.491892 0.061076 14
AOI22_X1 4 57.255469 0.069862 6
NAND4_X1 4 44.487149 0.089914 14
NOR4_X1 4 91.312885 0.043805 14
OAI22_X1 4 54.596245 0.073265 6
OR4_X1 4 118.592046 0.033729 14

since the stacks are smaller. OAI gates are typically faster than AOI gates in common
standard cell libraries since the internal capacitances in the pull-up networks of AOI gates
are larger. NAND and INV/NOT gates are the only NCGs that do not require PMOS
stacks in their classical layout. As a result, INV/NOT and NAND2 gates are almost
exclusively the fastest CMOS gates for n = 1 and n = 2 in any CMOS gate library. For
n = 3 and n = 4 the situation depends on the exact sizing of the transistors chosen by the
cell designer for each particular gate. This choice determines the trade-off between area
and latency of the logic cells. Typically, either NAND3 and NAND4 or OAI21 and OAI22
are the fastest gates for n = 3 and n = 4, respectively. In NanGate 45 nm technology
OAI21 (n = 3) and NAND4 (n = 4) are the fastest cells for their respective number of
inputs while in 15 nm technology NAND3 (n = 3) and OAI22 (n = 4) cells are the fastest,
as apparent in Tables 1 and 2.

2.2.1 Suitability for High-Speed Encryption

There are several factors to be considered when determining which cells in a standard gate
library are most suitable for low-latency encryption. Building a low-latency encryption
primitive in hardware is essentially the task of creating a circuit that, as quickly as possible,
establishes an, as highly as possible, non-linear relationship between the plaintext and, as
many as possible, independent key bits. Of course, this is an extreme oversimplification of
the large number of requirements that symmetric cryptographic primitives need to fulfill
in order parry all known attacks. Yet, when following this simplified idea, the design
process for an ultra low-latency cipher should start at the gate level. In particular, we are
interested in logic gates that are capable of establishing a Boolean relationship between
as many inputs as possible in a short period of time. In that regard, we introduce a new
metric, which we call the Fan-in-to-Latency Ratio (FLR). Essentially, we divide the fan-in
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Table 2: Fan-In, Latency, Fan-In-to-Latency-Ratio and Linearity of logic gates in NanGate
15nm Open Cell Library (OCL) for typical operating conditions.

Cell Name Fan-In Latency [ps] FLR Linearity

INV_X1 1 1.580082 0.632879 2
BUF_X1 1 3.068201 0.325924 2

AND2_X1 2 3.579786 0.558692 2
NAND2_X1 2 2.030621 0.984920 2
NOR2_X1 2 2.554366 0.782973 2
OR2_X1 2 3.643867 0.548867 2
XNOR2_X1 2 6.788322 0.294624 4
XOR2_X1 2 5.268465 0.379617 4

AND3_X1 3 5.496015 0.545850 6
AOI21_X1 3 3.394032 0.883904 6
MUX2_X1 3 6.133133 0.489146 4
NAND3_X1 3 2.360978 1.270660 6
NOR3_X1 3 3.787567 0.792065 6
OAI21_X1 3 2.830147 1.060016 6
OR3_X1 3 5.862194 0.511754 6

AND4_X1 4 7.125210 0.561387 14
AOI22_X1 4 4.070343 0.982718 6
NAND4_X1 4 4.659015 0.858551 14
NOR4_X1 4 5.250172 0.761880 14
OAI22_X1 4 3.775570 1.059443 6
OR4_X1 4 7.682688 0.520651 14

n of each gate (i.e., the number of inputs it receives) by its latency. Let f : Fn
2 → F2 be

the Boolean function of a logic gate and n the number of inputs it receives (i.e., the fan-in),
then the Fan-in-to-Latency Ratio (FLR) of f can be expressed as Equation 1.

FLR(f) = n

latency(f) (1)

By calculating the FLR for each logic gate in a standard cell library one can rank the gates
by their suitability for ultra low-latency encryption. Tables 1 and 2 list the FLR scores for
all standard logic gates with n inputs for 1 ≤ n ≤ 4. The FLR score reflects the ability of
a logic gate to rapidly evaluate a Boolean function on multiple inputs. Hence, the higher
the value in the FLR-column for a logic gate, the higher is its potential to be suitable for
ultra low-latency encryption. NAND and OAI gates are among the logic cells with the
highest FLR scores, while XOR and XNOR gates are among the worst performers. Thus,
despite the importance of XOR (and XNOR) gates in symmetric cryptography (mostly for
key addition and strong linear layers) it is prudent to limit their occurrence to a minimum.
Obviously, the kind of Boolean logic function that is evaluated plays a significant role in
determining its suitability for high-speed encryption as well. In that regard, a further
important aspect is the linearity of a function. Lin(f) denotes the linearity of the Boolean
function f , defined by Equation 2, where f̂ : Fn

2 → Z is the Fourier transform of f given
by Equation 3.

Lin(f) := max
α∈Fn

2

∣∣∣f̂(α)
∣∣∣ (2)

f̂(α) =
∑

x∈Fn
2

(−1)f(x)+⟨α,x⟩ (3)

Tables 1 and 2 provide the linearity of all listed logic gates. The linearity of a Boolean
function f : Fn

2 → F2 is lower bounded by 2 n
2 and upper bounded by 2n. Whenever
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Lin(f) = 2n, f is an affine function, i.e., Equation 4 holds with α ∈ Fn
2 , c ∈ F2.

f(x) = ⟨α, x⟩ + c (4)

In our tables, the logic functions INV/NOT, BUF, XOR, XNOR have maximum linearity
(2n) and can be expressed as constant or affine functions, while the logic gates AND2,
NAND2, NOR2 and OR2 reach the lower bound for the linearity of 2 n

2 .
While both, linear and non-linear functions, are useful for the construction of secure
encryption algorithms, they are typically used in different layers or round operations. The
non-linear layer in block cipher design is typically the substitution layer while all other
operations tend to be linear. Often the substitution boxes, in short S-boxes, are among
the most resource consuming elements in terms of area, energy and latency. Therefore, it
is particularly interesting to optimize this building block towards the desired design goal
when developing and implementing a cipher. In that regard, non-linear gates with a high
FLR score, like NAND and OAI, are the prime candidates for building strong and fast
S-boxes.

2.3 Latency of Logic Circuits
It is insufficient to consider only the latencies of individual logic elements in order to deter-
mine the resulting total latency of a combinatorial circuit or path. When connecting logic
gates to logic circuits, the individual propagation delays of the gates depend significantly
on their direct electrical environment. Merely summing up the base latencies of the gates
in a path (e.g., the values given in Tables 1 and 2) may give a very incorrect idea about
the path’s total latency. Despite the fact that some obvious correlation between these
quantities can be observed, the gate depth of a path is not always directly proportional to
its latency. Therefore, it is important to also consider adequate circuit topologies which
minimize the latency of combinatorial circuits when designing a low-latency cipher. In this
regard, we first want to dispel two common myths about the latency of CMOS circuits:

• Myth 1: Each CMOS standard cell has a fixed delay and each instantiation of the
same exact standard cell adds (approximately) the same latency to a path.
Truth: This is false. The propagation delay of a CMOS cell is always a function of
the transition time of its input signals, which is influenced by the drive strength of
preceding cells and the capacitance of the nets they need to drive, as well as the
capacitive load that the CMOS cell itself needs to drive at its output. The variations
of the delay of a cell instance depending on its electrical environment can easily be
in the range of 200-300%. Therefore, it is not uncommon that two instances of the
same cell in different positions of a logic circuit have delays associated with them
(e.g., in a timing report) that differ by a factor of 3 or 4.

• Myth 2: Adding a gate to a path of a circuit and not making any other changes to
the path will always increase the path’s latency.
Truth: This is also false. Often, adding a well-placed buffer or inverter (where
logically applicable) to a path in order to charge a significant capacitive load faster
can decrease the overall latency of the path. Hence, the mere gate depth is not
always indicative of the latency of a circuit. Generally, the topology of a circuit,
primarily the fan-out of the logic cells, is similarly important as the number and
type of gates in its critical path when determining the maximum latency.

In the following we provide an example which demonstrates the incorrectness of the two
myths. We consider a simple circuit in Figure 2(a) where the output signal of a single
XOR logic gate in NanGate 15 nm technology (XOR2_X1) is the input to 8 further XOR
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(a) without buffering (b) with buffering

Figure 2: Impact on the latency of the circuit in NanGate 15 nm technology when buffering
the high fan-out net. Total latency is 29.169073 ps without the buffer (left) and 18.675571
ps with the buffer (right), despite the larger gate depth on the right.

cells. The respective maximum latencies for each of the two circuit stages are denoted
below the gates in Figure 2. While the base latency of a simple XOR logic gate in this
technology is 5.268465 ps according to Table 2, it is obvious that the actual latencies of
the gates in this circuit are significantly larger. The first XOR gate in particular which
feeds the other 8 gates requires a latency which is more than 4 times as large as its base
latency due to the significant capacitive load it needs to drive. The XOR gates in the
second stage do not drive any large loads but their latency is increased because their input
signals have a large transition time. It is noteworthy that this is a synthesis result, which
means that the actual capacitances and resistances of the routing (i.e., wiring) are not
even considered yet. After placing and routing this circuit in a chip design the latencies
would likely be even larger. Figure 2(b) shows a circuit with the same logic functionality
and the same 9 total XOR gates, but here the output of the first stage XOR is buffered by
a drive strength buffer (BUF_X4). Although this change increases the gate depth of the
circuit, it decreases its overall latency. The first stage XOR now only needs to drive a
small load and the last stage XORs are driven by input signals with a short transition
time. As a result, the buffered circuit has a total latency of 18.675571 ps (Fig. 2(b)) while
the circuit without a buffer has a total latency of 29.169073 ps (Fig. 2(a)). Hence, the
buffered circuit is more than 35% faster. Please note that the NanGate 15 nm library does
not provide XOR gates with a higher drive strength, thus up-sizing the first stage XOR
itself is not an option here and buffering the high fan-out net is inevitable when the latency
should be reduced. Of course, this is done automatically by the synthesis tool. Our point
here is simply that, regardless of how the large fan-out is addressed by the tool or the
designer, e.g., up-sizing the gate or inserting a buffer, it assuredly causes an increased
latency compared to a circuit with the same depth and the same gates in both levels, but
with smaller fan-outs. Thus, we conclude that dedicated low-latency circuits should use
topologies where the fan-outs of the logic gates are as small as possible (e.g. tree-based).
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2.3.1 Finding Circuits with Minimum Latency

We would like to caution against the common perception that professional synthesis tools
can readily be used to find and generate a netlist with minimum achievable latency for a
simple Boolean function like an S-box coordinate function. First of all, the complexity of
checking any possible circuit representation composed of a finite (but usually large) set of
standard cells for a Boolean function is often remarkably high and market-leading EDA
tools are built for time efficiency (especially the synthesis routines). Furthermore, the
proprietary synthesis algorithms may not be sufficiently configurable to consider latency
as the only or primary design goal. The tools may rather take area and energy into
account as well and not consider latency optimizations that come at a harsh penalty for
the other two optimization goals. In our own experience, the thresholds for such decisions
cannot be adjusted sufficiently by the designer. Thus, we have found that constructing
optimal building blocks for ultra low-latency cryptography needs to be done from scratch
(by hand or via heuristics) instead of analyzing many different variants with a synthesis
tool and selecting the ones that delivered the best performance. In our evaluations,
the synthesis algorithms usually produced the best results with respect to low latency,
when the underlying gate structure was already given and only incremental performance
optimizations were required.

3 Ultra Low-Latency 6-bit S-box
In this section, we describe the technique we have used to build an ultra low-latency S-box
from gate level. In order to design an S-box which is extremely fast in CMOS hardware
while at the same time provides good cryptographic properties, we used the following
criteria:

• Ultra low-latency: As explained in Subsection 2.2, NAND and OAI gates are among
the best-suited logic gates for low-latency S-box design. Thus, we search for S-boxes
that can be realized with as few as possible levels of only NAND and OAI gates.
Furthermore, as discussed in Subsection 2.3, we try to make sure that in as many
stages as possible the logic gates have a minimum fan-out.

• Bijective mapping with fully-dependent outputs: Since we aim for an SPN cipher,
we need the S-box to be a bijective mapping. Moreover, we restrict the search to the
S-boxes with fully-dependent outputs. In more detail, this means that all input bits
are involved in the computation of each output bit.

• Small linearity and uniformity: To provide strong resistance against differential and
linear attacks, we are only interested in S-boxes with small uniformity u and linearity
l defined as

u = Uni(S) := max
α,β∈Fn

2
α̸=0

∣∣{x ∈ Fn
2 |S(x) ⊕ S(x ⊕ α) = β}

∣∣ ,

l = Lin(S) := max
α,β∈Fn

2
β ̸=0

∣∣∣ ∑
x∈Fn

2

(−1)⟨α,x⟩⊕⟨β,S(x)⟩
∣∣∣ .

By definition, the latency of a vectorial Boolean function, e.g., an S-box, is the maximum
of the latencies of its coordinate Boolean functions. Besides, to have a bijective fully-
dependent S-box with a small linearity, all of its coordinate functions must be balanced,
fully-dependent and have a small linearity. Hence, our strategy was to first find low-latency
Boolean functions and in a second step try to combine those into an S-box.
It is noteworthy that the S-boxes within the same class of extended bit-permutation
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equivalence have roughly the same latency cost (with a small margin of tolerance). Moreover,
those functions will have the same uniformity and linearity. We recall from [LP07] that
two n-bit to m-bit vectorial Boolean functions F and G of the form Fn

2 7→ Fm
2 are called

extended bit-permutation equivalent, if there exist a ∈ Fn
2 , b ∈ Fm

2 , Pin a bit permutation
function of n bits and Pout a bit permutation function of m bits such that

G(x) = Pout ◦ F ◦ Pin(x ⊕ a) ⊕ b ∀x ∈ Fn
2 .

Therefore, it is sufficient to consider S-boxes only up to this equivalence.

3.1 Suitable Boolean Functions
To achieve a minimal latency, we searched for coordinate functions that can be realized in
only two levels of NAND and OAI gates, or more specifically NAND2, NAND3, NAND4,
OAI21 and OAI22 gates, while the larger and slower NAND4 and OAI22 gates should
only be used in one of both levels. Additionally the first stage of NAND and OAI gates
should have a fan-out of 1 for each gate. With this restriction, we are able to find Boolean
functions with an extremely low latency in CMOS hardware.
We empirically found that Boolean functions based on NAND gates exclusively achieve
the best cryptographic properties and latencies with only two levels at a higher quantity;
therefore, in the following we limit ourselves to S-boxes which are possible to be built only
from NAND gates. However, using the same process described in the following we have
created S-boxes based on OAI gates exclusively (functions based on a mix between NAND
and OAI have shown to be less promising) and compare them to the NAND-based boxes
at the end of this section.
By considering all the possibilities for the inputs of the NAND gates at the first level, we
aim at building all the n-bit Boolean functions f(x0, . . . , xn−1); i.e., for each input for
NAND gates we test 2n possible inputs: either xi or its inverted value ¬xi with 0 ≤ i < n.
We then filter the Boolean functions with respect to the aforementioned criteria, that is
balancedness and low-linearity. Please note that selecting the inverted inputs requires
additional inverter gates before the first stage of NAND gates. Yet, since each of the
S-box inputs feeds multiple coordinate Boolean functions at the same time it is prudent to
instantiate buffers to drive those nets anyway and an inverter can serve the same purpose.
Following this argument, the inverted inputs do not cause any significant extra cost.
The first step is to find all the Boolean functions f : Fn

2 7→ F2 which are: 1) possible
to be built by using two levels of NAND gates as explained previously, 2) balanced, 3)
fully-dependent on all the input bits, and 4) with linearity at most l. It is important
to mention that the order of checking these features is quite important for reducing the
computational cost.
We save all those Boolean functions in a set, named F . Note that if there is a function f ∈ F ,
then all of its extended bit-permutation equivalent functions such as g(·) = f ◦ P ( · ⊕ a) ⊕ b
with a ∈ Fn

2 , b ∈ F2 and P a bit permutation function of n bits, are included in F . Next,
we reduce the Boolean functions within F by the extended bit-permutation equivalence,
and only keep one representative of each equivalence class in another set F∗. Note that if
there are N∗

f Boolean functions in F∗, then there are about Nf = N∗
f · (n! · 2n+1) functions

in F . This reduction corresponds to the n! permutations of the input bits, the 2n constants
we can add to the input and the single bit we can add to the output.

3.2 Building Sboxes
To find all the bijective S-boxes S = (f0, . . . , fn−1) such that each coordinate function
is in F , we can simply choose n of those Nf functions and then check for the necessary
criteria, but this requires about (Nf )n steps of checking all the criteria which for n > 4
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is a large computation cost. The two main options to reduce this cost is (i) considering
permutation equivalence and (ii) to select the coordinate function step-by-step and filter
after each additional choice.
Since it is sufficient to find the bijective S-boxes up-to the extended bit-permutation
equivalence, we can restrict the first coordinate function f0 to be chosen from F∗ that is
due to the freedom on choosing the constant and the bit-permutation in the input of the
S-box. Besides, for all the other coordinate functions f1, . . . , fn−1, we can fix an input’s
output to a constant, e.g., fi(0) = 0 and this is because of the freedom in the output
constant of the S-box. Note that since f0 is chosen from F∗ and it is a representative
function, we already considered that f0(0) = 0. Moreover, since we are still left with the
freedom on the output bit-permutation of the S-box, we can fix the order of the coordinate
functions of the S-box. In other words, if we consider that the elements of F are indexed,
then we can fix the index of f1 to be smaller than the index of f2 and both are smaller
than the index of f3 and so on. This way, we reduce the number of choices to build an
S-box to about Nn

f /(n! · 2n)2 ≈ (N∗
f )n · (n!)n−2 · 2n2−n. In case of n = 5, this number is

about (N∗
f )5 · 241 which is still not feasible to search.

The other main technique to reduce the computation cost of this search is that instead of
choosing all the coordinate functions at once and then check for the criteria, we choose
them one by one and in each step of choosing a coordinate function, we check for the
probable possible criteria. In more details, in step one, we choose f0 ∈ F∗, then in step 2,
we choose f1 ∈ F . Before, going to step 3, we can check for balancedness and linearity of
the component function f0 ⊕f1. We go to the next step, if the criteria for f0 ⊕f1 have met,
otherwise, we stay in step 2 and choose another function as f1. In step 3, after choosing
f2 ∈ F , we again can check for balancedness and linearity of the component functions
f0 ⊕ f2, f1 ⊕ f2, f0 ⊕ f1 ⊕ f2. We go to step 4, if all these criteria have met. In this way,
we choose all the n coordinate functions to build the S-box, and then we can check for the
uniformity criterion.
This technique, together with several other low-level techniques for speeding up the search,
reduces the computation cost of this search significantly. Our search algorithm is written
in C++ code and we run it on an Intel Core i7 CPU with 8 threads for about 10 days to
exhaustively search all the possible 6-bit S-boxes. Finding all 5-bit S-boxes only requires
about two hours.
We also constructed 7- and 8-bit S-boxes, but due to the larger linearity or uniformity
value, they would not have been beneficial over the 6-bit S-box.

3.3 Results
In case of 6-bit S-boxes, the minimum linearity and the minimum uniformity of all S-boxes
possible to built, is 24 and 8, respectively. For these properties, up to the extended
bit-permutation equivalence, there are only two class of such S-boxes. We choose the S-box
class equivalent to the one shown in Figure 3 and given in Table 3, because of the higher
algebraic degree.
For the chosen S-box class, we have the freedom to choose the input/output constants a
and b and also Pin and Pout bit-permutation functions. We choose the output constant b
in such a way that there is no need to insert an inverter in the output of the NAND gates
of the second gate level. Even though it is a tiny improvement, the input constant a is
chosen in a way to minimize the latency of the whole structure.
Finally, we choose the bit-permutations in such a way that it improves the cryptographic
properties of the round function for SPEEDY which is explained in more detail in Section 6.
Note that the optimum choice of these bit-permutations can be different for round functions
of different primitives. Altogether, we end up with the S-box presented in Table 3. Its
corresponding implementation is depicted in Figure 3. Furthermore, the disjunctive normal
form (DNF) of the S-box is presented below, which is equivalent to the representation by
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Table 3: The 6-bit S-box of SPEEDY.

x0x1 x2x3x4x5

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 08 00 09 03 38 10 29 13 0c 0d 04 07 30 01 20 23
1. 1a 12 18 32 3e 16 2c 36 1c 1d 14 37 34 05 24 27
2. 02 06 0b 0f 33 17 21 15 0a 1b 0e 1f 31 11 25 35
3. 22 26 2a 2e 3a 1e 28 3c 2b 3b 2f 3f 39 19 2d 3d

Figure 3: Implementation of the 6-bit S-box of SPEEDY based on two-level NAND trees.

the 2-level NAND gates.

y0 = ( x3 ∧¬x5 ) ∨ ( x3 ∧ x4 ∧ x2 ) ∨ (¬x3∧ x1 ∧x0) ∨ ( x5 ∧ x4 ∧ x1 ) ,
y1 = ( x5 ∧ x3 ∧¬x2) ∨ (¬x5∧ x3 ∧¬x4) ∨ ( x5 ∧ x2 ∧x0) ∨ (¬x3∧¬x0∧ x1 ) ,
y2 = (¬x3∧ x0 ∧ x4 ) ∨ ( x3 ∧ x0 ∧ x1 ) ∨ (¬x3∧¬x4∧x2) ∨ (¬x0∧¬x2∧¬x5) ,
y3 = (¬x0∧ x2 ∧¬x3) ∨ ( x0 ∧ x2 ∧ x4 ) ∨ ( x0 ∧¬x2∧x5) ∨ (¬x0∧ x3 ∧ x1 ) ,
y4 = ( x0 ∧¬x3 ) ∨ ( x0 ∧¬x4∧¬x2) ∨ (¬x0∧ x4 ∧x5) ∨ (¬x4∧¬x2∧ x1 ) ,
y5 = ( x2 ∧ x5 ) ∨ (¬x2∧¬x1∧ x4 ) ∨ ( x2 ∧ x1 ∧x0) ∨ (¬x1∧ x0 ∧ x3 ) .

3.4 S-box Latency Comparison
We benchmark our chosen S-box with respect to minimum latency in hardware and
compare it to a number of other S-boxes from literature in Table 4. Details about the
synthesis tools and process are given in Section 7. Please note that up to now only
4-bit S-boxes have been proposed for low-latency constructions in literature, namely (in
alphabetical order) the Midori S-boxes [BBI+15], the Orthros S-box [BIL+21], the PRINCE
S-box [BCG+12] and the QARMA S-boxes [Ava17]. Yet, in order to compare the SPEEDY
S-box also to larger substitution boxes we chose the ASCON 5-bit S-box [DEMS19], the
Data Encryption Standard (DES) S1 6-to-4-bit box (as a representative of the 8 different
DES S-boxes) [oST79], the Q2263 6-bit S-box [BMD+20] and the Advanced Encryption
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Table 4: Latency comparison of different S-boxes with varying numbers of input bits (#ib).
If not stated otherwise, each S-box is implemented as a lookup table (using with/select in
VHDL).

Minimum Latency [ns]
Commercial Foundry NanGate OCL

#ib S-box 90 nm LP 65 nm LP 40 nm LP 28 nm HPC 45 nm 15 nm

4 Midori Sb0 0.089098 0.070579 0.055577 0.021051 0.111156 0.010619
4 Midori Sb1 0.132489 0.095724 0.080657 0.026898 0.119637 0.009058
4 Orthros 0.075344 0.051435 0.055908 0.021003 0.133932 0.008821
4 PRINCE 0.087938 0.066545 0.052826 0.031010 0.126588 0.010176
4 QARMA σ0 0.090568 0.057602 0.051993 0.022180 0.128350 0.009409
4 QARMA σ1 0.144465 0.101487 0.077186 0.031306 0.156462 0.011272
4 QARMA σ2 0.100530 0.075846 0.081528 0.036485 0.154379 0.013354

5 ASCON 0.197794 0.151025 0.123356 0.057595 0.210599 0.019854

6 DES S1 0.260286 0.190725 0.153514 0.069299 0.309009 0.030846
6 OAIU8L24 0.138926 0.111734 0.088775 0.046295 0.215628 0.017971
6 Q2263 0.233256 0.171537 0.157194 0.068870 0.246198 0.028648
6 min(RU8L24) 0.220168 0.144777 0.126819 0.060535 0.240982 0.026696
6 SPEEDY 0.106872 0.081330 0.065966 0.029890 0.161653 0.016124
6 SPEEDY * 0.096468 0.073253 0.064215 0.029470 0.138825 0.012799
6 SPEEDY_INV 0.207746 0.152161 0.129433 0.071523 0.278395 0.025665

8 AES 0.407332 0.304098 0.248914 0.130490 0.491570 0.048258
* = Optimized HDL code with direct instantiation of library cells based on Figure 3.

Standard (AES) 8-bit S-box [oST01] for the comparison. Under the abbreviation OAIU8L24
we have listed a 6-bit S-box built from two levels of OAI22 gates with uniformity 8 and
linearity 24 (same properties as the SPEEDY S-box). By min(RU8L24) we denote the
minimum latency achieved among 10 randomly generated 6-bit S-boxes with uniformity
8 and linearity 24 (without focusing on a particularly efficient implementation). Finally,
the inverse of the SPEEDY S-box is included. However, this inverse is not required for the
SPEEDY encryption and therefore only relevant for the latency of its decryption. Minimizing
the decryption’s latency is not a focus of this work.
From the comparison it becomes clear that the SPEEDY S-box is impressively fast in
hardware. It is much faster than any other S-box with more than 4 input bits (#ib),
especially when considering the optimized version with direct instantiation of standard
cells in the code based on Figure 3. Additionally, it even outperforms multiple of the
4-bit low-latency S-boxes (including Midori Sb1, QARMA σ1 and QARMA σ2). This is a great
result, since the SPEEDY S-box not only provides better diffusion in general but also offers
stronger protection against linear and differential attacks than any 4-bit S-box possibly
could. Thus, we are confident in our S-box choice as the centerpiece for an ultra low-latency
cipher.

4 Specification of SPEEDY
SPEEDY is a family of ultra low-latency block ciphers with different block and key sizes,
and varying numbers of rounds. Precisely, SPEEDY-r-6ℓ is an instance of this family with
block and key size 6ℓ bits and it iterates over r rounds.
The internal state is viewed as an ℓ × 6 rectangle array of bits. We use the notation x[i,j] to
denote the bit located at row i and column j of the state x with 0 ≤ i < ℓ and 0 ≤ j < 6.
It is important to emphasize that in the remainder of this paper, all the indices start from
zero and the zero-th bit or word is always considered the most significant one. Besides,
note that if there is an addition or a subtraction in the indices of the state, it is always in
modulo ℓ for the first (row) index and in modulo 6 for the second (column) index.
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Initialization: The cipher receives a 6ℓ-bit plaintext and initializes the internal state with
it using the same order used for indexing bits, i.e. it first fills x[0,0], then x[0,1] and so
on. Then, r round functions, Rr (with 0 ≤ r < r), are applied on the internal state, the
first r − 1 ones of which (up to the round keys and round constants) are identical. Each
round function is composed of the following four different operations: (2×) SubBox, (2×)
ShiftColumns, MixColumns, AddRoundConstant and AddRoundKey. Considering x ∈ Fℓ×6

2
as the input, y ∈ Fℓ×6

2 as the output of operations, 0 ≤ i < ℓ and 0 ≤ j < 6, the round
operations are defined as follows:

• SubBox (SB): The 6-bit S-box S is applied to each row of the state.

(y[i,0], y[i,1], y[i,2], y[i,3], y[i,4], y[i,5]) = S(x[i,0], x[i,1], x[i,2], x[i,3], x[i,4], x[i,5]) , ∀ i .

The table for the S-box (in hexadecimal notation) is given in Table 3 and its
implementation based on two-level NAND trees is shown in Figure 3.

• ShiftColumns (SC): The j-th column of the state is rotated upside by j bits.

y[i,j] = x[i+j,j] , ∀ i, j .

• MixColumns (MC): A cyclic binary matrix is multiplied to each column of the state.

y[i,j] = xi,j ⊕ x[i+α1,j] ⊕ x[i+α2,j] ⊕ x[i+α3,j] ⊕ x[i+α4,j] ⊕ x[i+α5,j] ⊕ x[i+α6,j] , ∀ i, j .

For simplicity, we identify the applied matrix with α = (α1, . . . , α6) that is parame-
terized for each version of the cipher with different ℓ value.

• AddRoundKey (Akr ): The 6ℓ-bit round key kr is XORed to the whole of the state.

y[i,j] = x[i,j] ⊕ kr [i,j] , ∀ i, j .

• AddRoundConstant (Acr
): The 6ℓ-bit constant cr is XORed to the whole of the state.

y[i,j] = x[i,j] ⊕ cr [i,j] , ∀ i, j .

Similar to PRINCE, the round constants are chosen as the binary digits of the number
π − 3 = 0.1415 . . . . Table 5 presents the first 100 × 64 bits of this constant. We use
the first 6ℓ bits as c0, the second 6ℓ bits as c1 and so on.

Round Function: Using the above mentioned round operations, the first r − 1 round
functions (with 0 ≤ r ≤ r − 2) are defined as

Rr = Acr
◦ MC ◦ SC ◦ SB ◦ SC ◦ SB ◦ Akr

,

while in the last round, the linear layer and constant addition are omitted, and instead an
extra key addition is applied, i.e.,

Rr−1 = Akr ◦ SB ◦ SC ◦ SB ◦ Akr−1 .
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Table 5: The first 100 × 64 bits of the constant used in the round constants of SPEEDY.

0 243f6a8885a308d3 13198a2e03707344 a4093822299f31d0 082efa98ec4e6c89
1 452821e638d01377 be5466cf34e90c6c c0ac29b7c97c50dd 3f84d5b5b5470917
2 9216d5d98979fb1b d1310ba698dfb5ac 2ffd72dbd01adfb7 b8e1afed6a267e96
3 ba7c9045f12c7f99 24a19947b3916cf7 0801f2e2858efc16 636920d871574e69
4 a458fea3f4933d7e 0d95748f728eb658 718bcd5882154aee 7b54a41dc25a59b5
5 9c30d5392af26013 c5d1b023286085f0 ca417918b8db38ef 8e79dcb0603a180e
6 6c9e0e8bb01e8a3e d71577c1bd314b27 78af2fda55605c60 e65525f3aa55ab94
7 5748986263e81440 55ca396a2aab10b6 b4cc5c341141e8ce a15486af7c72e993
8 b3ee1411636fbc2a 2ba9c55d741831f6 ce5c3e169b87931e afd6ba336c24cf5c
9 7a32538128958677 3b8f48986b4bb9af c4bfe81b66282193 61d809ccfb21a991
10 487cac605dec8032 ef845d5de98575b1 dc262302eb651b88 23893e81d396acc5
11 0f6d6ff383f44239 2e0b4482a4842004 69c8f04a9e1f9b5e 21c66842f6e96c9a
12 670c9c61abd388f0 6a51a0d2d8542f68 960fa728ab5133a3 6eef0b6c137a3be4
13 ba3bf0507efb2a98 a1f1651d39af0176 66ca593e82430e88 8cee8619456f9fb4
14 7d84a5c33b8b5ebe e06f75d885c12073 401a449f56c16aa6 4ed3aa62363f7706
15 1bfedf72429b023d 37d0d724d00a1248 db0fead349f1c09b 075372c980991b7b
16 25d479d8f6e8def7 e3fe501ab6794c3b 976ce0bd04c006ba c1a94fb6409f60c4
17 5e5c9ec2196a2463 68fb6faf3e6c53b5 1339b2eb3b52ec6f 6dfc511f9b30952c
18 cc814544af5ebd09 bee3d004de334afd 660f2807192e4bb3 c0cba85745c8740f
19 d20b5f39b9d3fbdb 5579c0bd1a60320a d6a100c6402c7279 679f25fefb1fa3cc
20 8ea5e9f8db3222f8 3c7516dffd616b15 2f501ec8ad0552ab 323db5fafd238760
21 53317b483e00df82 9e5c57bbca6f8ca0 1a87562edf1769db d542a8f6287effc3
22 ac6732c68c4f5573 695b27b0bbca58c8 e1ffa35db8f011a0 10fa3d98fd2183b8
23 4afcb56c2dd1d35b 9a53e479b6f84565 d28e49bc4bfb9790 e1ddf2daa4cb7e33
24 62fb1341cee4c6e8 ef20cada36774c01 d07e9efe2bf11fb4 95dbda4dae909198

Key Schedule: The cipher receives a 6ℓ-bit master key and initializes it to the state of
the zero-th round key (k0). Then, it applies the bit permutation PB to compute the next
round key, i.e., using the following permutation P , the positions of the bits are changed.
That is

kr+1 = PB(kr) with kr+1 [i′,j′] = kr [i,j] ,

such that

(i′, j′) := P (i, j) with (6i′ + j′) ≡
(
β · (6i + j) + γ

)
mod 6ℓ ,

i.e., i′ and j′ are the quotient and remainder of dividing
(
β · (6i + j) + γ

)
mod 6ℓ to 6,

respectively. The parameters β and γ are dependent on the block length of the cipher
with the condition of gcd(β, 6ℓ) = 1.

Instantiation: As already mentioned, SPEEDY is a family of block ciphers that allows
instantiations of a wide range of block sizes and security levels. One may choose the block
size of the encryption (6ℓ) by to the type of data blocks that need to be encrypted, and
select the number of rounds (r) based on the necessary security level. By applying an
appropriate α = (α1, . . . , α6) value with regards to the rationale explained in Section 5,
SPEEDY-r-6ℓ is ready to use.
To provide encryption of 64-bit blocks, which is the common instruction and data width
in modern CPUs, we suggest to instantiate SPEEDY-r-192 with α = (1, 5, 9, 15, 21, 26) as
the linear layer’s parameter. We leave the number of rounds to be chosen based on the
required security level. That is, for 128- and 192-bit security levels, we recommend using
r ≥ 6 and r ≥ 7 rounds, respectively. More details about our security claims are provided
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Table 6: P bit-permutation for SPEEDY-r-192 with ℓ = 32, β = 7 and γ = 1.
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P (i) 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162

i 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 169 176 183 190 5 12 19 26 33 40 47 54 61 68 75 82 89 96 103 110 117 124 131 138

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

P (i) 145 152 159 166 173 180 187 2 9 16 23 30 37 44 51 58 65 72 79 86 93 100 107 114

i 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

P (i) 121 128 135 142 149 156 163 170 177 184 191 6 13 20 27 34 41 48 55 62 69 76 83 90

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

P (i) 97 104 111 118 125 132 139 146 153 160 167 174 181 188 3 10 17 24 31 38 45 52 59 66

i 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

P (i) 73 80 87 94 101 108 115 122 129 136 143 150 157 164 171 178 185 0 7 14 21 28 35 42

i 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

P (i) 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154 161 168 175 182 189 4 11 18

i 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

P (i) 25 32 39 46 53 60 67 74 81 88 95 102 109 116 123 130 137 144 151 158 165 172 179 186

below. The security analysis and the implementation of this instance are discussed in
Section 6 and Section 7, respectively. Furthermore, for this instance we suggest to use
β = 7 and γ = 1 for the key schedule parameters that the corresponding permutation P
(given in Table 6) receives.
We provide several test vectors for SPEEDY-r-192 encryption in Appendix C.

Security Claim While SPEEDY can be instantiated with different block and key sizes, the
default is 192 bit as it constitutes the least common multiple of 6 (our S-box width) and
64 (the instruction width in high-end CPUs). We expect that SPEEDY-r-192 achieves
128-bit security when iterated over r = 6 rounds and full 192-bit security when iterated
over r = 7 rounds, while the r = 5 round variant already provides a decent security
level that is sufficient for many practical applications (≥ 2128 time complexity when data
complexity is limited to ≤ 264). Compared to the security claims made for example for
PRINCE (≥ 2127−n time complexity when data complexity is limited to ≤ 2n) or PRINCEv2
(≥ 2112 time complexity when data complexity is limited to ≤ 250) the security level
claimed by SPEEDY-5-192 is already superior.

5 Design Rationale
The primary criterion for the design of SPEEDY is to use round operations with a low latency
that still provide good enough cryptographic properties to provide a secure encryption with
a small number of rounds. To achieve this goal, we applied the ultra low-latency S-box
found in Section 3. While the design approach for the S-box is described in Section 3, all
details regarding the design choices for the other round operations are explained in the
following.

MixColumns: It is clear that the latency cost (in terms of XOR gate depth) of XORing n
bits, i.e., x0 ⊕ . . . ⊕ xn−1 is equal to d = ⌊log2 n⌋. This means that XORing n bits with
2d−1 < n ≤ 2d, has the same cost for all n values with respect to the latency of the circuit
(considering identical topology). Therefore, to use the maximum capacity of the given
latency, it is prudent to choose n = 2d.
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Figure 4: Implementation of each output bit of the merged function Akr+1 ◦ Acr ◦ MC of the
SPEEDY design.

In the design of SPEEDY, since the Akr+1 operation from round r + 1 occurs right after the
Acr

and MC operations from the r-th round, it is possible to merge all three operations.
Considering that x and y from Fℓ×6

2 are the input and output of the merged Akr+1 ◦ Acr ◦ MC
operation, respectively, then each output bit can be calculated as

y[i,j] = x[i,j]⊕x[i+α1,j]⊕x[i+α2,j]⊕x[i+α3,j]⊕x[i+α4,j]⊕x[i+α5,j]⊕x[i+α6,j]⊕(kr+1 [i,j]⊕cr [i,j]) .

Hence, it is possible to implement the whole Akr+1 ◦ Acr ◦ MC as a merged function within
three XOR gate levels. Note that since the input kr+1 [i,j] is not in the critical path of
the circuit, kr+1 [i,j] and cr [i,j] can be combined with each other beforehand. Depending
on the value of the round constant bit, we actually only need to use kr+1 [i,j] itself or its
inverted value ¬kr+1 [i,j]. Figure 4 depicts the corresponding circuit to implement each
output bit of the merged function. Please note that the fan-out of each XOR gate in this
circuit is 1. It is important to consider that for CMOS technologies where the XNOR gate
is significantly faster than the XOR gate (such as NanGate 45 nm), it is easily possible to
implement this linear layer with only XNOR gates instead of XORs and simply exchange
the buffers and inverters of the next S-box stage to revert its inverted output.
For the MC operation, we decided to use the same binary cyclic matrix with polynomial
representation of 1 + zα1 + . . . + zαw−1 and multiply it with each column of the state.
Therefore, each output bit of the MC operation is the XOR of w input bits. As explained
above, the optimal choices for w are 3, 7, 15 and so on, so that it is possible to implement
the above mentioned merged function with 2, 3, 4 XOR gate levels, respectively. While in
PRINCE, MIDORI and QARMA block ciphers, this technique of merging is used by applying
cyclic matrices of w = 3 and repeated after each S-box layer, we found that it is a good
trade-off to use cyclic matrices with w = 7, but only after each second S-box layer, which
is effectively cheaper from a latency cost perspective.
For each SPEEDY-r-6ℓ version of the cipher, we need to find a bijective ℓ × ℓ binary cyclic
matrix M with polynomial representation of 1 + zα1 + . . . + zα6 . Finding an appropriate
bijective cyclic matrix with w = 7 being an odd integer, is quite possible for wide range of
ℓ. But, since the value of α = (α1, . . . , α6) is always dependent on the value of ℓ, we leave
it as a parameter of the cipher’s instantiation.
Since, the probability of M being a non-singular matrix is high, we can add extra criteria
regarding the choice of the α parameter.

• All values for α1, α2 − α1, α3 − α2, α4 − α3, α5 − α4, α6 − α5 and ℓ − α6 need
to be smaller or equal to 6. The reason for this criterion is explained later, in the
corresponding paragraph for ShiftColumns. Note that this criterion is only possible
for ℓ ≤ 42.
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• Maximum branch number: Branch number of a matrix is defined as

bn := min
x∈Fℓ

2\{0}
hw(x) + hw(M × xT ) ,

where hw denotes the Hamming weight of a binary array. In case of a bijective ℓ × ℓ
binary cyclic matrix M with polynomial representation of 1 + zα1 + . . . + zαw−1 , the
branch number cannot be higher than w + 1. In our case, we restrict the choice of
the α parameter to the ones which provide maximum branch number, i.e., 8.

• For the corresponding matrix M of parameter α = (α1, . . . , α6), we build a binary
table H such that the element in the position (i, j) is 1, if and only if there is an
x ∈ Fℓ

2 \ {0} with hw(x) = i and hw(M × xT ) = j. Then, we compute the following
three numbers:

bn3 = min
i1,i2,i3

H[i1][i2]=H[i2][i3]=1

i1 + i2 + i3 ,

bn4 = min
i1,i2,i3,i4

H[i1][i2]=H[i2][i3]=H[i3][i4]=1

i1 + i2 + i3 + i4 ,

bn5 = min
i1,i2,i3,i4,i5

H[i1][i2]=H[i2][i3]=H[i3][i4]=H[i4][i5]=1

i1 + i2 + i3 + i4 + i5 . (5)

As explained later in Section 6, larger values for bnr lead to a stronger resistance
of the r-round SPEEDY against differential and linear attacks. Therefore, for all
the possible choices of α which are meeting the first two criteria, we compute the
above bnr numbers and choose one of the corresponding α values which leads to the
maximum bnr values.
It is noteworthy that the branch number bn is the same as bn2 defined as

bn2 = min
i1,i2

H[i1][i2]=1

i1 + i2 .

Besides, bnr with r > 2 can be considered as an extension for the definition of branch
number, and hereafter, we will call it a higher-order branch number.

In the case of SPEEDY-r-192, with ℓ = 32, we applied the above criteria and end
up with 30 choices from which we choose the first one that is α = (1, 5, 9, 15, 21, 26)
with bn3 = 13, bn4 = 20, and bn5 = 25. It is important to mention that the corre-
sponding matrix for inverse of the MC operation is a cyclic matrix with w = 19 and
α−1 = (4, 5, 6, 7, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28).

ShiftColumns: The existence of the first SC operation, right after the first SB makes it
possible that input bits of each S-box in the second SB operation are all from the outputs
of different S-boxes of the first SB operation. Therefore, since the applied S-box has the full
diffusion property (in both straight and inverse direction), each output bit of SB ◦ SC ◦ SB
is a function of 36 consecutive input bits. Namely, for SB ◦ SC ◦ SB, the output bit in
the position [i, j] is a function of all input bits in the position of the form [i + p, q] with
0 ≤ p, q < 6, while for (SB ◦ SC ◦ SB)−1, the output bit [i, j] is a function of all input bits
of the form [i − p, q].
By considering the first criterion for MixColumns, namely that α1, α2 −α1, α3 −α2, α4 −α3,
α5 − α4, α6 − α5 and ℓ − α6 are all smaller or equal to 6, it means that the output bit of
MC◦SB◦SC◦SB and equivalently, output of one key-less round function MC◦SC◦SB◦SC◦SB
is dependent on the whole 6ℓ input bits. The same holds for (MC ◦ SB ◦ SC ◦ SB)−1 in the
decryption side, hence, the input of one key-less round function is dependent on the whole
6ℓ output bits.
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Moreover, the same arguments hold for inserting the second SC, right after the second SB
operation, which means that each output bit of SB◦MC◦SC◦SB depends on the whole 6ℓ input
bits which equivalently holds for the rotated key-less round function SC ◦ SB ◦ MC ◦ SC ◦ SB.
Altogether, one key-less round function or rotated round function, in both encryption and
decryption directions, provides full diffusion. In other words, in a key recovery attack, to
compute one output bit of those functions, the attacker needs to know the value of the
whole input state. Note that knowing the value for the whole input state of these functions
requires knowing the whole state of the round key. This means, if the attacker wants to
extend a distinguisher by appending one complete round (or rotated round) function, to
do a key recovery attack, he needs to guess the whole 6ℓ bits of the key.
It is important to mention that since existence of any key-independent linear operation
right before the ciphertext does not add any security to the encryption, we exclude the MC
and the second SC operations from the last round.

Key Schedule: Since the main target of our design is to provide a low-latency encryp-
tion routine, and since other cost factors of the implementation such as area or energy
consumption of the circuits are only secondary priorities, one can apply a key schedule
built from costly operations. Yet, since we do not aim for related-key security, and since
the round function has a strong diffusion, we found that using a linear key schedule is
sufficient for our purposes. Besides, updating round keys by a bit-permutation function in
an unrolled implementation has no latency, area or energy costs, thus we decided to use
such a key schedule. Furthermore, we wanted to use a bit-permutation such that it is easy
to generalize for all SPEEDY-r-6ℓ members. To do so, we chose the general affine mapping
in the finite integer field of {0, . . . , 6ℓ − 1}, that the permutation P maps x, an element of
this field, to P (x) = βx + γ mod 6ℓ. The only requirement for P being a bijection is that
β and 6ℓ need to be co-prime, i.e., gcd(β, 6ℓ) = 1.

6 Security Analysis
In this section, we provide details about the cryptographic properties of the SPEEDY family
of block ciphers. We start with differential, linear and algebraic properties of the S-box
S and expand them over a round function of the cipher. By applying properties for the
round function, we discuss the security of an r round structure of SPEEDY.

Cryptographic Properties of the S-box: The S-box S, presented in Section 3, is the
heart of the SPEEDY design and it needs to be studied in detail. As described before the
uniformity and linearity of S is equal to 8 and 24, respectively. This means that the
maximum probability of differentials over S is 8 · 2−6 = 2−3 and the maximum absolute
correlation of linear approximations is 24 · 2−6 = 3 · 2−3 (equally means that the maximum
potential of linear approximations is (3 · 2−3)2 = 9 · 2−6 ≈ 2−2.83). As one important part
of the Differential Distribution Table (DDT) and Linear Approximation Table (LAT), we
present the 1-bit to 1-bit differentials and linear approximations in Table 7. In more detail,
entry (i, j) of the 1-bit to 1-bit DDT denotes the probability that having only one active
bit in the position i of the S-box inputs leads to only one active bit in the position j of the
S-box output. In case of 1-bit to 1-bit LAT, entry (i, j) of the table denotes the absolute
correlation value for the xi = yj linear approximation.
Even though, one of the criteria for building the low-latency S-box was to provide full
dependency of the output bits on the input bits, this is not sufficient to provide all infor-
mation about algebraic properties of the function. We provide the algebraic normal form
(ANF) representation of both S and S−1 below. As shown, not only all the input/output
variables are non-linearly involved in all the output/input coordinates (i.e., the S-box
provides full diffusion in both straight and inverse directions), each coordinate function is
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quite dense with respect to the number of involved terms. Another interesting information
is that the ANF degree for coordinates of S is 5, 3, 3, 3, 4 and 5, respectively, while in the
case of S−1, these numbers are 5, 4, 5, 4, 5 and 5, respectively.

y0 = x3 ⊕ x5x3 ⊕ x5x4x3x2 ⊕ x5x4x1 ⊕ x5x4x3x2x1 ⊕ x1x0 ⊕ x5x4x1x0 ⊕ x3x1x0⊕
x5x4x3x1x0

y1 = x3 ⊕ x4x3 ⊕ x5x4x3 ⊕ x5x3x2 ⊕ x1 ⊕ x3x1 ⊕ x5x2x0 ⊕ x1x0 ⊕ x3x1x0
y2 = 1 ⊕ x5 ⊕ x5x2 ⊕ x4x2 ⊕ x3x2 ⊕ x4x3x2 ⊕ x0 ⊕ x5x0 ⊕ x4x0 ⊕ x4x3x0 ⊕ x2x0⊕

x5x2x0 ⊕ x3x1x0 ,
y3 = x2 ⊕ x3x2 ⊕ x3x1 ⊕ x5x0 ⊕ x2x0 ⊕ x5x2x0 ⊕ x4x2x0 ⊕ x3x2x0 ⊕ x3x1x0
y4 = x5x4 ⊕ x1 ⊕ x4x1 ⊕ x2x1 ⊕ x4x2x1 ⊕ x0 ⊕ x5x4x0 ⊕ x4x3x0 ⊕ x3x2x0 ⊕ x4x3x2x0⊕

x1x0 ⊕ x4x1x0 ⊕ x2x1x0 ⊕ x4x2x1x0 ,
y5 = x4 ⊕ x5x2 ⊕ x4x2 ⊕ x4x1 ⊕ x4x2x1 ⊕ x3x0 ⊕ x4x3x0 ⊕ x5x3x2x0 ⊕ x4x3x2x0⊕

x3x1x0 ⊕ x4x3x1x0 ⊕ x2x1x0 ⊕ x5x2x1x0 ⊕ x5x3x2x1x0 ⊕ x4x3x2x1x0 .

x0 = y4 ⊕ y5y4 ⊕ y5y4y2 ⊕ y5y1 ⊕ y4y1 ⊕ y5y4y3y1 ⊕ y5y3y2y1 ⊕ y4y3y2y1 ⊕ y5y4y3y2y1⊕
y5y0 ⊕ y5y4y0 ⊕ y2y0 ⊕ y4y2y0 ⊕ y3y2y0 ⊕ y4y3y2y0 ⊕ y5y1y0 ⊕ y2y1y0 ,

x1 = y5y3 ⊕ y5y4y3 ⊕ y5y3y2 ⊕ y5y4y3y2 ⊕ y4y1 ⊕ y5y4y1 ⊕ y3y1 ⊕ y4y3y1 ⊕ y2y1⊕
y4y2y1 ⊕ y3y2y1 ⊕ y4y3y2y1 ⊕ y4y0 ⊕ y5y4y0 ⊕ y3y0 ⊕ y4y3y0 ⊕ y5y4y3y0 ⊕ y2y0⊕
y5y2y0 ⊕ y4y2y0 ⊕ y3y2y0 ⊕ y5y3y2y0 ⊕ y4y3y2y0 ⊕ y4y1y0 ⊕ y5y4y1y0 ⊕ y3y1y0⊕
y4y3y1y0 ,

x2 = y5 ⊕ y5y4 ⊕ y3 ⊕ y5y3 ⊕ y4y3 ⊕ y5y2 ⊕ y4y2 ⊕ y5y3y2 ⊕ y5y3y1 ⊕ y5y2y1 ⊕ y4y2y1⊕
y5y4y2y1 ⊕ y5y4y3y2y1 ⊕ y0 ⊕ y4y0 ⊕ y5y4y0 ⊕ y3y0 ⊕ y4y3y0 ⊕ y5y4y3y0 ⊕ y2y0⊕
y5y4y2y0 ⊕ y5y3y2y0 ⊕ y5y1y0 ⊕ y5y2y1y0 ⊕ y4y2y1y0 ,

x3 = y5 ⊕ y5y4 ⊕ y5y2 ⊕ y5y4y2 ⊕ y1 ⊕ y5y1 ⊕ y4y1 ⊕ y3y1 ⊕ y5y3y1 ⊕ y2y1 ⊕ y4y2y1⊕
y5y4y2y1 ⊕ y3y2y1 ⊕ y4y3y2y1 ⊕ y0 ⊕ y5y0 ⊕ y4y0 ⊕ y5y2y0 ⊕ y1y0 ⊕ y5y1y0⊕
y4y1y0 ⊕ y3y1y0 ⊕ y5y3y1y0 ⊕ y4y3y1y0 ⊕ y2y1y0 ⊕ y3y2y1y0 ,

x4 = y5y4 ⊕ y3 ⊕ y5y3 ⊕ y4y3 ⊕ y5y4y3 ⊕ y5y2 ⊕ y5y4y2 ⊕ y3y2 ⊕ y5y4y3y2 ⊕ y5y3y1⊕
y2y1 ⊕ y4y2y1 ⊕ y5y4y2y1 ⊕ y3y2y1 ⊕ y5y3y2y1 ⊕ y0 ⊕ y4y0 ⊕ y3y0 ⊕ y5y3y0⊕
y4y3y0 ⊕ y5y4y3y0 ⊕ y5y2y0 ⊕ y4y2y0 ⊕ y5y4y2y0 ⊕ y3y2y0 ⊕ y1y0 ⊕ y2y1y0⊕
y4y2y1y0 ⊕ y4y3y2y1y0 ,

x5 = 1 ⊕ y4 ⊕ y5y4 ⊕ y3 ⊕ y5y3 ⊕ y2 ⊕ y4y2 ⊕ y5y4y2 ⊕ y3y2 ⊕ y4y1 ⊕ y5y4y1 ⊕ y4y3y1⊕
y5y4y3y1 ⊕ y5y2y1 ⊕ y4y2y1 ⊕ y5y4y2y1 ⊕ y5y3y2y1 ⊕ y0 ⊕ y4y0 ⊕ y3y0 ⊕ y5y3y0⊕
y4y3y0 ⊕ y5y4y3y0 ⊕ y2y0 ⊕ y4y2y0 ⊕ y3y2y0 ⊕ y5y4y1y0 ⊕ y5y3y1y0 ⊕ y5y2y1y0⊕
y3y2y1y0 ⊕ y4y3y2y1y0 .

Cryptographic Properties of SB ◦ SC ◦ SB: Since in the round function of SPEEDY, two
SB operations are connected through the SC operation which is a simple bit permutation,
it is necessary to look at the properties of this combination. We first investigate the 1-bit

Table 7: 1-bit to 1-bit differential probabilities and linear correlations of the SPEEDY S-box.

differential (×2−5) linear (×2−4)
i\j 0 1 2 3 4 5
0 - 1 3 2 1 1
1 4 3 4 4 - -
2 1 1 3 3 1 1
3 1 3 - 2 3 -
4 2 2 4 4 2 1
5 2 4 2 4 - 2

i\j 0 1 2 3 4 5
0 3 - 4 - 4 4
1 6 4 4 4 2 4
2 1 - - 4 4 6
3 6 4 4 - 6 2
4 4 4 - 4 - 3
5 4 4 4 4 4 5
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to 1-bit differentials and linear approximations of SB ◦ SC ◦ SB. Since each input bit of
the second SB operation comes from a different first-stage S-box, 1-bit to 1-bit transitions
over SB ◦ SC ◦ SB are possible if and only if the transitions over the first and second SB
operations, both are 1-bit to 1-bit transitions. Besides, without any extra assumption (such
as independency between the state bits), it can be proven that probability or correlation
of this 1-bit to 1-bit transitions over SB ◦ SC ◦ SB is the multiplication of probabilities or
correlations over two active S-boxes (one from the first SB and another from the second SB
operation).
Since SC does not change the column position of active bits, it is easily possible to compute
these probabilities. Table 8 presents the 1-bit to 1-bit differential probabilities and linear
correlations over SB◦SC◦SB such that entry [i, j] denotes the maximum possible probabilities
or linear correlations that an active input bit in the column i transits to an active output
bit in the column j. To compute these values, we used the following equation which T1
and T2 denote the Table 7 and Table 8, respectively.

T2[i, j] = max
k

T1[i, k] · T1[k, j] .

Note that the maximum entry for differential transitions is 2−6 and for linear transitions
it is 15 · 2−7 ≈ 2−3. We are only interested in 1-bit to 1-bit transitions, because the
probability or the correlation of such transitions are among the highest ones and also
because based on such transitions, we can build differential or linear characteristics with a
high differential probability or linear correlation.
Again due to the fact that SC does not change the column position of the bits and each
input bit of the second SB is the output of a different S-box, it is possible to compute the
algebraic degree of SB ◦ SC ◦ SB. The degree of any output bit in the columns 0, 1, . . . and
5 is equal to 19, 15, 13, 13, 13 and 20, respectively.
It is important to mention that replacing the current S-box with another bit-permutation
equivalent S-box will change differential, linear and algebraic properties of SB ◦ SC ◦ SB.
While in Section 3, we ended up with a bit-permutation equivalency class of S-boxes, we
tried all the S-boxes of this class to find an S-box such that the maximum entry in Table 8
and also the number of entries with maximum value are as small as possible. Moreover, we
want the minimum algebraic degree over SB ◦ SC ◦ SB coordinates to be as large as possible.
Note that due to the structure of the round function, since encryption with S-box Pout ◦
S ◦ Pin is identical to encryption with S-box Pin ◦ Pout ◦ S (up to a column permutation
in the state of plaintext, ciphertext, round key and round constants), we can consider one
of them to be the identity bit-permutation and only need to choose the other one.

Differential and Linear Attacks Since there are 1-bit to 1-bit differential and linear
approximations over SB ◦ SC ◦ SB and the corresponding probability or correlation of those
transitions are quite significant, it is necessary to choose a strong MC operation. The

Table 8: 1-bit to 1-bit differential probabilities and linear correlations over SB ◦ SC ◦ SB.

differential (×2−10) linear (×2−8)
i\j 0 1 2 3 4 5
0 4 6 9 9 6 3
1 12 12 12 12 12 4
2 4 9 9 9 9 3
3 12 9 12 12 6 3
4 8 12 12 12 12 4
5 16 12 16 16 12 4

i\j 0 1 2 3 4 5
0 16 16 16 16 16 24
1 24 16 24 16 24 24
2 24 24 24 24 24 30
3 24 24 24 24 24 24
4 24 16 16 16 24 16
5 24 20 20 20 24 25
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criterion of having branch number bn = 8 ensures that the maximum expected differential
probability (EDP) of differential trails and the maximum expected linear potential (ELP)
of linear trails over two rounds of SPEEDY is equal to (2−6)8 = 2−48.
To discuss the resistance of r-round SPEEDY, we use the higher-order branch number bnr

defined in Equation 5 to have an overview about the minimum number of active S-boxes
in differential or linear trails. Therefore, using this estimation the maximum EDP of
differentials and the ELP of linear trails over r-round SPEEDY is estimated by 2−6·bnr .
In case of SPEEDY-r-192, with the recommended α parameter, we have

bn3 = 13 , bn4 = 20 , bn5 = 25 , bn6 = 32 .

Hence, we estimate that EDP (resp. ELP) of any differential (resp. linear) trails over 3,
4, 5 and 6 rounds is smaller than 2−78, 2−120, 2−150 and 2−192. Actually, assuming that
all the 1-bit to 1-bit differential or linear transitions through the S-box are possible, and
by considering that there are at most 8 active words (of 6-bit) per state of operations,
we searched for the minimum number of active S-boxes. We found that this number is
13, 23 and 35 for 2, 3 and 4 rounds. Assuming that all these 1-bit to 1-bit transitions
occur with differential probability (or linear potential) of 2−3, the EDP (resp. ELP) of
any differential (resp. linear) trails over 2, 3 and 4 rounds is smaller than 2−39, 2−69 and
2−105. We emphasize that these values are an upper bound, which means that a trail with
such EDP or ELP must not necessarily exist.

Higher-Order Differential, Integral and Cube Attacks SPEEDY’s round function has
a strong diffusion and high algebraic degree. While, we investigate these properties for
one complete round precisely, for a larger number of rounds, we expect that the ANF
representation would be dense with respect to the number of involved terms. Therefore,
we believe that these attacks are weaker than differential and linear attacks and less of a
concern.

Number of Rounds For a low-latency block cipher, a large security margin is not
reasonable and is usually considered as wasteful. Since the attacker cannot add more than
one round to extend a distinguisher and therefore to use the distinguisher in a key recovery
attack, we believe a security margin of one round is sufficient. Therefore, we recommend
to choose the number of rounds with respect to the required security level of the block
cipher’s application. For example, in case of the SPEEDY-r-192 instance, we recommend to
use SPEEDY-6-192 and SPEEDY-7-192 for 128-bit and 192-bit security levels, respectively,
while for more practical applications, such as a security level of 2128 time and 264 data
complexity, we recommend to use SPEEDY-5-192.

Impossible Differential and Zero-Correlation Linear-Hull Attacks One active bit, with
respect to both differentials and linear correlations, and in both forward and backward
directions can propagate to all the state bits over one (rotated) key-less SPEEDY round
function and more importantly, none of this activeness is deterministic. But, it should be
noted that the activeness of these bits can be related to each other if the last operation is
MC. Therefore, by combining one round propagation in the forward direction and one round
propagation in the backward direction, it might be possible to find impossible differentials
or zero-correlation linear-hulls over two (rotated) key-less round functions. But, if we add
one SB operation in the middle, we ensure that there are no such distinguishers; in other
words, there are no impossible differentials or zero-correlation linear-hulls over

(SB ◦ SC ◦ SB ◦ SC ◦ MC) ◦ SB ◦ (SC ◦ SB ◦ SC ◦ MC ◦ SB)

or
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(SB ◦ SC ◦ MC ◦ SB ◦ SC) ◦ SB ◦ (SC ◦ MC ◦ SB ◦ SC ◦ SB).

Therefore, by applying the 2-round distinguisher and extending by one round for key
recovery, it might be possible to have a successful attack on 3-round SPEEDY, but we expect
that more than 3 rounds are secure against those attacks.

Meet-in-the-Middle Attack The maximum number of attacked rounds using meet-in-
the-middle technique can be evaluated considering the maximum length of three features:
partial-matching, initial structure and splice-and-cut. For partial-matching, the number of
rounds in both forward and backward directions cannot reach the full diffusion rounds
which for SPEEDY in both directions is smaller than one round. The condition for the
initial structure is that the key differential trails in both forward and backward directions
do not share active non-linear components. As any key differential in SPEEDY affects the
whole state after one complete round in both directions, there is no such differential which
shares active S-box(es) in more than one round. Therefore, it only works up to one round.
Splice-and-cut may extend the number of attacked rounds up to the number of full diffusion
rounds, i.e., again one round. Thus, it is not possible for the attacker to mount a successful
meet-in-the-middle attack on a (2+1+1) = 4-round SPEEDY.

Implementation Attacks The protection of SPEEDY against implementation attacks like
timing, power analysis or fault injection attacks is not a focus of this work. Clearly, a
straightforward and unprotected implementation of SPEEDY will be susceptible to adver-
saries who are capable of observing the characteristics of the implementation during its
execution. Although this attacker model traditionally requires physical access to the
executing device and therefore is typically considered to be less of a concern for desktop
and server CPUs (the targeted application area for SPEEDY) there have been more and
more successful remote power analysis attacks on such devices recently, most notably the
PLATYPUS attack [LKO+21]. Thus, even in such contexts, physical adversaries can no
longer be ignored and protecting SPEEDY against said attacks is a great direction for future
research.
In that regard, a recent work has pointed out that, although it is hardly feasible to apply
hardware masking to unrolled low-latency cryptography without sacrificing a large portion
of its performance due to the necessary inclusion of register stages, simple reset methods
(i.e., randomly pre-charging the combinatorial circuit) deliver very promising results against
passive side-channel attacks if applied properly [Moo20]. The parallelism, speed and asyn-
chronicity of SPEEDY are assumed to be even higher than for the investigated PRINCE
instance. Thus, we believe that this kind of protection mechanism can most reasonably
be applied to unrolled SPEEDY in hardware without causing a large performance penalty.
According to [Moo20], the cost of this countermeasure is either that the throughput is
halved, or that the area is doubled when instantiating the unrolled cipher twice and
alternating between pre-charging or encrypting with each circuit. Additionally, the cost
for the Random Number Generator (RNG) has to be considered.

7 Hardware Implementation
In this section, we analyze the minimum achievable latency of fully-unrolled SPEEDY hard-
ware implementations as well as the area required for the time-constrained circuits and
compare them to a number of other cryptographic primitives that have been suggested
for high-speed single-cycle encryption in literature. Implementing SPEEDY in hardware
is rather straightforward since almost all round operations which require any logic and
may not be realized through wiring alone are already chosen as circuit representations. In
detail, Figure 3 shows the hardware circuitry for the 6-bit high-speed S-box while Figure 4
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Table 9: Minimum latency of fully-unrolled encryption-only circuits of different crypto-
graphic primitives.

Minimum Latency [ns]
Commercial Foundry NanGate OCL

Cipher 90 nm LP 65 nm LP 40 nm LP 28 nm HPC 45 nm 15 nm

Gimli E-M 4.532467 3.330192 2.794736 1.178424 4.537304 0.435069
MANTIS6 4.625529 3.405490 2.891383 1.278725 4.479773 0.437595
MANTIS7 5.201681 3.722473 3.234409 1.421365 5.074452 0.492703
MANTIS8 5.823127 4.233543 3.631438 1.594997 5.739020 0.552384
Midori 5.061255 3.582221 3.142355 1.362237 4.934847 0.481522
Orthros 3.862139 2.678637 2.401275 1.087139 3.774836 0.369497
PRINCE 4.101177 2.866749 2.521302 1.108886 4.059997 0.389144

PRINCEv2 4.047311 2.944367 2.509131 1.103273 4.077636 0.387146
QARMA5-64-σ0 4.075846 2.920377 2.498908 1.134901 4.014516 0.385281
QARMA6-64-σ0 4.770325 3.418600 2.951308 1.308331 4.554445 0.448931
QARMA7-64-σ0 5.449707 3.909138 3.389576 1.538606 5.336362 0.517093
QARMA8-64-σ0 6.103768 4.396543 3.814078 1.697027 5.966323 0.575525
QARMA5-64-σ1 4.515514 3.284252 2.815788 1.219624 4.367899 0.408580
QARMA6-64-σ1 5.297867 3.808675 3.271455 1.388353 4.944635 0.472798
QARMA7-64-σ1 6.014477 4.371963 3.745959 1.601572 5.800633 0.542712
QARMA8-64-σ1 6.720944 4.904521 4.202632 1.797539 6.498429 0.608985

SPEEDY-5-192 2.994643 2.178075 1.867064 0.847761 3.187368 0.300466
SPEEDY-6-192 3.637978 2.639186 2.277422 1.032206 3.848132 0.366762
SPEEDY-7-192 4.261928 3.087257 2.663004 1.217946 4.515505 0.431032

SPEEDY-5-192 * 2.941130 2.121748 1.820950 0.826217 2.817971 0.290961
SPEEDY-6-192 * 3.559981 2.573561 2.223863 1.011173 3.382270 0.353391
SPEEDY-7-192 * 4.174183 3.029217 2.620612 1.186598 3.995325 0.413950
* = Optimized HDL code with direct instantiation of library cells based on Figures 3 and 4.

depicts the logic circuit that implements the combined Akr+1 ◦ Acr
◦ MC function. The

ShiftColumns operation does not require any logic, which means that only the initial and
the final AddRoundKey functions remain. Obviously these are implemented with a single
stage of regular XOR gates.
Table 9 presents the minimum latency results achieved for different instances of Gimli,
MANTIS, Midori, Orthros, PRINCE, PRINCEv2, QARMA, and SPEEDY (in alphabetical order).
All results have been obtained by synthesizing the fully-unrolled cipher circuits between
two register stages for minimum clock period using the Synopsys Design Compiler Version
O-2018.06-SP4 software while executing four stages of the compile_ultra command (three
incremental). We have repeated the analysis with 6 different standard cell libraries, 4 of
which are manufacturable cell libraries from a commercial foundry, while the remaining 2
are open-source libraries which are not manufacturable but can be used for producing uni-
versally comparable and reproducible synthesis results. Please note that Gimli is a key-less
permutation. Therefore, in order to create an encryption circuit from the primitive we have
realized it in Even-Mansour scheme [EM97] with two different keys at the beginning and
end. With respect to our SPEEDY implementations we distinguish between results that are
achieved when giving the regular behavioral (or dataflow) description of the cipher to the
synthesis tool and those results we have obtained by optimizing the code and instantiating
the desired standard cells directly in the HDL code (according to the gate-level descriptions
shown in Figures 3 and 4). It is obvious that this optimization has a significant impact on
the performance in NanGate libraries, but less of an impact in the commercial technologies.
In order to force the synthesizer to use our suggested gate-level structures for MC and SB we
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Table 10: Area consumption of fully-unrolled encryption-only circuits of different crypto-
graphic primitives when synthesized for minimum latency.

Area [GE]
Commercial Foundry NanGate OCL

Cipher 90 nm LP 65 nm LP 40 nm LP 28 nm HPC 45 nm 15 nm

Gimli E-M 72644.00 82781.00 63100.50 144036.33 52038.67 57551.25
MANTIS6 21045.75 23264.50 20448.25 36073.33 12660.67 15954.00
MANTIS7 23229.25 26385.75 23192.50 43220.33 14225.67 17522.50
MANTIS8 26365.75 30316.75 25429.75 50793.00 15663.33 19707.50
Midori 18678.50 21964.00 17562.25 41450.67 10675.33 13927.25
Orthros 49639.75 61657.00 44715.75 74384.67 31317.33 39165.00
PRINCE 16244.25 19877.75 17177.00 38145.33 9873.33 13291.00

PRINCEv2 17661.25 18798.25 16556.50 33470.33 10332.00 13069.50
QARMA5-64-σ0 19590.75 21706.75 20255.00 31703.00 11824.67 14880.75
QARMA6-64-σ0 22624.25 25349.50 22689.00 38813.67 14165.67 17621.75
QARMA7-64-σ0 25614.00 29323.00 24656.25 40494.33 15769.33 19770.25
QARMA8-64-σ0 28813.75 32780.75 28262.75 47952.33 17908.00 22074.00
QARMA5-64-σ1 20264.75 23753.00 20202.25 34302.00 12350.33 15588.75
QARMA6-64-σ1 23162.25 26941.25 23333.75 45419.00 15066.00 18164.00
QARMA7-64-σ1 26563.75 31495.00 27059.50 52108.00 16641.00 20670.25
QARMA8-64-σ1 30534.50 35787.75 29116.50 54967.00 18963.67 22761.75

SPEEDY-5-192 47364.00 53856.00 47528.50 74467.00 27903.33 34649.00
SPEEDY-6-192 57322.00 64438.25 56816.00 88932.00 34085.00 41443.25
SPEEDY-7-192 68370.00 75273.00 65422.00 95235.67 39853.33 48727.75

SPEEDY-5-192 * 49902.00 58796.25 55846.75 80313.33 29839.00 38075.25
SPEEDY-6-192 * 59688.00 70653.00 66553.00 98950.00 36523.33 46266.50
SPEEDY-7-192 * 73397.75 84745.00 77519.75 111754.33 42813.33 54193.25
* = Optimized HDL code with direct instantiation of library cells based on Figures 3 and 4.

set a size-only attribute on the relevant cells in Synopsys Design Compiler before the first
compile_ultra command. The synthesizer then only scales the drive strengths of these
cells. In a next step three compile_ultra -incremental commands are executed without
size-only attribute, so that all optimizations are allowed again. With that technique the
highest quality of results is achieved and the majority of manually-instantiated cells still
remain unchanged.
It is obvious from Table 9 that SPEEDY-5-192 and SPEEDY-6-192 produce the small-
est latencies among all implementations. The next fastest primitives are Orthros and
PRINCE/PRINCEv2. Gimli, performs respectably well given its large state (384 bit) and
number of rounds (24). Yet, the claim that it outperforms PRINCE by a significant margin,
made in [GKD20], is very doubtful considering our results. Please note that for all ciphers
except Midori we have used hardware implementations written by the original authors of
the corresponding papers (Qameleon authors for QARMA).
Table 10 shows the corresponding area consumption for the fully-unrolled and highly
latency constrained circuits. Clearly, SPEEDY requires a larger circuit area compared to all
other ciphers except Gimli. However, this is mainly caused by its 192-bit state (which
is larger than for all other ciphers in the table except Gimli). In more detail, when
multiplying the area of the 64-bit ciphers by 3 (to encrypt 192 bit at once) many of them
require a larger area than SPEEDY-5-192 and all MANTIS and QARMA instances even exceed
the area of SPEEDY-6-192. Thus, we believe that for their block widths and the high
security and performance levels that the SPEEDY instances provide, their area consumption
is acceptable. Power consumption figures for all circuits are given in Appendix A, Table 12.
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Table 11: Comparison of pre-layout and post-layout latencies in a commercial 65 nm
CMOS technology.

Minimum Latency [ns]
65 nm LP

Cipher Pre-Layout Post-Layout Overhead

Gimli E-M 3.330192 3.902397 17.18 %
MANTIS6 3.405490 3.810253 11.89 %
MANTIS7 3.722473 4.225445 13.51 %
MANTIS8 4.233543 4.785156 13.03 %
Midori 3.582221 4.005088 11.80 %
Orthros 2.678637 3.166256 18.20 %
PRINCE 2.866749 3.236980 12.91 %

PRINCEv2 2.944367 3.324928 12.93 %
QARMA5-64-σ0 2.920377 3.302898 13.10 %
QARMA6-64-σ0 3.418600 3.869228 13.18 %
QARMA7-64-σ0 3.909138 4.432907 13.40 %
QARMA8-64-σ0 4.396543 5.078354 15.51 %
QARMA5-64-σ1 3.284252 3.696785 12.56 %
QARMA6-64-σ1 3.808675 4.294109 12.75 %
QARMA7-64-σ1 4.371963 4.929371 12.75 %
QARMA8-64-σ1 4.904521 5.519027 12.53 %

SPEEDY-5-192 2.178075 2.612023 19.92 %
SPEEDY-6-192 2.639186 3.142331 19.06 %
SPEEDY-7-192 3.087257 3.717537 20.42 %

SPEEDY-5-192 * 2.121748 2.572030 21.22 %
SPEEDY-6-192 * 2.573561 3.136378 21.87 %
SPEEDY-7-192 * 3.029217 3.696695 22.03 %

* = Optimized HDL code with direct instantiation of library cells based on Figures 3 and 4.

Because synthesis results disregard the impact of wire capacitances on the latency of
hardware circuits, we have exemplarily taken all netlists generated for the 65 nm tech-
nology through a Place and Route (PnR) process in order to estimate the post-layout
latencies. These are given in comparison to the pre-layout values in Table 11. Naturally,
the overhead introduced by the physical layout is greater for the circuits that have a larger
area footprint, e.g., Gimli, Orthros and SPEEDY, because connected cells might be wider
apart from each other and longer wire lengths are required to connect them (also because
metal utilization increases and wires have to be routed on higher, thicker metal layers).
However, despite the slightly larger overhead SPEEDY-5-192 and SPEEDY-6-192 are still
the fastest encryption primitives after PnR.

7.1 Decryption
For the most part of this work we have ignored the SPEEDY decryption. SPEEDY is primarily
designed to offer ultra fast encryption of data with a high level of security. As discussed
by the authors of the Orthros low-latency PRF, it is sufficient for many use cases to
have a one directional primitive [BIL+21]. Among these use cases are several popular
block cipher modes of operation, such as CTR, CMAC and GCM, which all require no
decryption routine, as well as applications such as pointer authentication and memory
encryption schemes based on Merkle trees [BIL+21]. According to [BIL+21] even a memory
encryption scheme applied inside Intel’s Software Guard Extensions (SGX) uses adapted
variants of GMAC and GCM without requiring the underlying primitive to be invertible.
However, since SPEEDY does not lack invertibility like Orthros does, it can also be used in



Leander, Moos, Moradi and Rasoolzadeh 29

application scenarios where invertibility and decryption are indeed required, but where
it is acceptable that only one direction is extremely efficient. In Appendix B, Table 13
implementation results (latency, area, power) are presented for the SPEEDY decryption.
Although it is not nearly as efficient as the encryption, the SPEEDY-5-192 decryption is
faster than the Midori encryption and many others (cf. Table 9) and the SPEEDY-6-192
decryption is still faster than the QARMA7-64-σ1 encryption and a few more (cf. Table 9).

7.2 Code and Reproducibility
A reference software implementation in C and hardware implementations of SPEEDY-r-192
encryption and decryption in VHDL, along with synthesized netlists in NanGate libraries
and associated synthesis scripts, are all available in our GitHub repository found here:
https://github.com/Chair-for-Security-Engineering/SPEEDY.

8 Conclusion
In this work we have introduced SPEEDY, a family of ultra low-latency block ciphers
developed for extremely high execution speed in CMOS hardware and dedicated to
semi-custom, i.e., standard-cell-based, integrated circuit design. The primary targets
for SPEEDY are security architectures in high-end CPUs which require ultra low-latency
encryption, such as secure caches, dedicated hardware extensions, memory encryption,
pointer authentication and many more. SPEEDY achieves higher performance than any
competitor because of hardware-specific gate- and transistor-level observations that have
been exploited in its design to make it extremely performant in CMOS hardware. While
SPEEDY can be instantiated with different block and key sizes, the default is 192 bit.
Based on our analysis, we are confident that 7 rounds provide full security, while 5
rounds already provide a higher security level than PRINCE or PRINCEv2 for example. Our
extensive evaluation of hardware implementations demonstrates that both SPEEDY-5-192
and SPEEDY-6-192 are faster than any proposed version of PRINCE, PRINCEv2, MANTIS,
QARMA, Midori, Gimli and Orthros. Thus, SPEEDY is a significant upgrade over the state
of the art for any application where area and energy are secondary design goals while high
performance is the number one priority.
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A Power Consumption

Table 12: Estimated power consumption of fully-unrolled encryption-only circuits of
different cryptographic primitives when synthesized for minimum latency. Estimated for
100 MHz operation.

Power [mW]
Commercial Foundry NanGate OCL

Cipher 90 nm LP 65 nm LP 40 nm LP 28 nm HPC 45 nm 15 nm

Gimli E-M 16.3489 12.4244 4.1035 8.5614 9.4797 2.7762
MANTIS6 0.2848 0.2108 0.0889 0.3755 0.3680 0.2101
MANTIS7 0.3140 0.2409 0.0986 0.4509 0.4107 0.2318
MANTIS8 0.3503 0.2806 0.1072 0.5269 0.4479 0.2605
Midori 0.2652 0.2104 0.0798 0.4512 0.3131 0.1848
Orthros 0.6626 0.5814 0.1935 0.7978 0.8711 0.4959
PRINCE 0.2162 0.1856 0.0756 0.4079 0.2930 0.1759

PRINCEv2 0.2390 0.1827 0.0721 0.3629 0.3041 0.1708
QARMA5-64-σ0 0.2652 0.2044 0.0867 0.3285 0.3448 0.1997
QARMA6-64-σ0 0.2993 0.2364 0.0973 0.3973 0.4099 0.2332
QARMA7-64-σ0 0.3367 0.2640 0.1054 0.4087 0.4529 0.2614
QARMA8-64-σ0 0.3846 0.2964 0.1205 0.4935 0.5121 0.2896
QARMA5-64-σ1 0.2669 0.2187 0.0872 0.3672 0.3607 0.2059
QARMA6-64-σ1 0.3052 0.2443 0.1004 0.4879 0.4350 0.2385
QARMA7-64-σ1 0.3544 0.2795 0.1161 0.5599 0.4769 0.2700
QARMA8-64-σ1 0.3903 0.3246 0.1263 0.5906 0.5418 0.2946

SPEEDY-5-192 11.6227 7.9766 3.0922 3.9246 4.9508 1.7998
SPEEDY-6-192 14.2678 9.7228 3.7569 4.7595 6.1494 2.1764
SPEEDY-7-192 17.2552 11.5149 4.4061 5.1270 7.2578 2.5978

SPEEDY-5-192 * 11.7005 8.6807 3.6014 5.8412 5.3485 2.0160
SPEEDY-6-192 * 14.2010 10.6287 4.3671 5.1269 6.6413 2.4959
SPEEDY-7-192 * 17.8889 12.9823 5.1331 5.8412 7.8866 2.9508

* = Optimized HDL code with direct instantiation of library cells based on Figures 3 and 4.
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B SPEEDY Decryption Implementation Results

Table 13: Estimated latency, area, and power consumption of the SPEEDY decryption
routine.

Minimum Latency [ns]
Commercial Foundry NanGate OCL

Cipher 90 nm LP 65 nm LP 40 nm LP 28 nm HPC 45 nm 15 nm

SPEEDY-5-192 4.827471 3.469787 2.953934 1.387975 5.088359 0.471568
SPEEDY-6-192 5.845453 4.197634 3.586378 1.680402 6.174353 0.572912
SPEEDY-7-192 6.887968 4.937893 4.240692 1.987920 7.259925 0.672681

Area [GE]

SPEEDY-5-192 101401.50 118295.50 107298.50 123458.67 70771.33 86302.50
SPEEDY-6-192 120336.75 138823.50 127010.00 146688.00 83632.67 102160.50
SPEEDY-7-192 138292.50 161802.50 142642.25 163059.67 97923.33 117827.25

Power [mW]

SPEEDY-5-192 21.6051 15.7708 6.4204 5.7405 11.6600 4.1493
SPEEDY-6-192 26.2426 18.7986 7.7360 6.9424 14.0370 4.9956
SPEEDY-7-192 30.3541 22.0906 8.6553 7.7193 16.5390 5.8020
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C Test Vectors for SPEEDY-r-192

SPEEDY-5-192

K 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
P 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C E0 D5 6F BD 95 56 A8 71 CA 49 35 7A 82 2D 04 81 A8 50 2D DD 16 FE CE 0F

K 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
P 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF
C 12 3A 5D 7A D4 5D E4 4A 27 64 0B EF 01 F4 8D 42 01 7C FA D0 F2 22 3C 3C

K 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF
P 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C FC FB 8E 9C 23 0A 07 81 B0 63 30 76 FD 62 BF 7D CE F4 98 BA 2C 2B 29 6C

K 76 4C 4F 62 54 E1 BF F2 08 E9 58 62 42 8F AE D0 15 84 F4 20 7A 7E 84 77
P A1 3A 63 24 51 07 0E 43 82 A2 7F 26 A4 06 82 F3 FE 9F F6 80 28 D2 4F DB
C 01 DA 25 A9 3D 1C FC 5E 4C 0B 74 F6 77 EB 74 6C 28 1A 26 01 93 B7 75 5A

SPEEDY-6-192

K 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
P 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C A6 D5 18 A2 E5 73 75 15 15 93 11 0A 16 1E D7 C6 27 8A BC D0 31 CB E8 6C

K 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
P 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF
C CB 44 11 34 1F FF B3 00 03 00 1A 8C 1F 06 FE D8 7F F6 89 C5 2D 1E AB 65

K 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF
P 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C 4B F4 3B 6A 64 8E 81 6A EF 4F C9 88 A9 4C 76 7F A8 36 BA 25 A8 D2 A3 EF

K 76 4C 4F 62 54 E1 BF F2 08 E9 58 62 42 8F AE D0 15 84 F4 20 7A 7E 84 77
P A1 3A 63 24 51 07 0E 43 82 A2 7F 26 A4 06 82 F3 FE 9F F6 80 28 D2 4F DB
C 88 BF D3 DC 14 0F 38 BC 53 A6 66 87 F5 30 78 60 56 0E BE C4 11 00 66 2D

SPEEDY-7-192

K 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
P 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C 24 7D 30 80 D2 63 F7 4C B0 3D DE 6E 57 5C 68 EE 68 EE E9 57 E1 C2 9C 50

K 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
P 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF
C B4 8F 32 16 AB 33 AE 01 99 14 2F 6A 07 43 E8 48 1B FC 37 62 5C BB DC 4F

K 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF 01 23 45 67 89 AB CD EF
P 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
C 55 65 08 92 98 E4 C1 34 CE 03 12 B2 7E 75 BA 21 A6 8C 0B 4F 46 33 7F 2D

K 76 4C 4F 62 54 E1 BF F2 08 E9 58 62 42 8F AE D0 15 84 F4 20 7A 7E 84 77
P A1 3A 63 24 51 07 0E 43 82 A2 7F 26 A4 06 82 F3 FE 9F F6 80 28 D2 4F DB
C ED 3D 0E A1 1C 42 7B D3 25 70 DF 41 C6 FD 66 EB BF 49 16 E7 60 ED 09 43
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