
Robust Property-Preserving Hash Functions
for Hamming Distance and More

Nils Fleischhacker1 and Mark Simkin2

1 Ruhr University Bochum, Bochum, Germany
2 Aarhus University, Aarhus, Denmark

Abstract. Robust property-preserving hash (PPH) functions, recently introduced by Boyle, Lavigne,
and Vaikuntanathan [ITCS 2019], compress large inputs x and y into short digests h(x) and h(y)
in a manner that allows for computing a predicate P on x and y while only having access to the
corresponding hash values. In contrast to locality-sensitive hash functions, a robust PPH function
guarantees to correctly evaluate a predicate on h(x) and h(y) even if x and y are chosen adversarially
after seeing h.
Our main result is a robust PPH function for the exact hamming distance predicate

HAMt(x, y) =

{
1 if d(x, y) ≥ t
0 Otherwise

where d(x, y) is the hamming-distance between x and y. Our PPH function compresses n-bit strings
into O (tλ)-bit digests, where λ is the security parameter. The construction is based on the q-strong
bilinear discrete logarithm assumption.
Along the way, we construct a robust PPH function for the set intersection predicate

INTt(X,Y) =

{
1 if |X ∩ Y | > n− t
0 Otherwise

which compresses sets X and Y of size n with elements from some arbitrary universe U into O(tλ)-bit
long digests. This PPH function may be of independent interest. We present an almost matching lower
bound of Ω(t log t) on the digest size of any PPH function for the intersection predicate, which indicates
that our compression rate is close to optimal. Finally, we also show how to extend our PPH function
for the intersection predicate to more than two inputs.

1 Introduction

Compressing data while maintaining some of its properties is one of the most fundamental tasks in com-
puter science. Approximate set membership data structures, such as Bloom Filters [Blo70] or Cuckoo Hash-
ing [PR04], allow for compressing large data sets into small digests that can afterwards be used to test whether
some element x was a member of the original data set or not. Locality-sensitive hash functions [IM98] allow
for compressing data points x and y independently into short digests h(x) and h(y) such that the hash values
can be used to check whether the original points were close or far apart according to some metric like the
euclidean or angular distance. Streaming algorithms [Mut03] enable an observer of a data stream to estimate
certain statistics about the stream while using only a small amount of local storage. All of these algorithms
have two things in common. They are all randomized and thus may fail on certain inputs with some, usually
small, probability and they all assume that the inputs are chosen independently of the random coins used
by the data structure.

Over the past years, a series of works [MNS08, HW13, NY15, CPS19, BLV19, BEJWY20] have inves-
tigated such data structures in the presence of adversarial inputs that are chosen after seeing the random
coins of the data structure. Naor and Yogev [NY15], for instance, study the robustness of Bloom filters in
the presence of an adversary that aims to find an input set X and a value z 6∈ X such that the approximate
membership test on a digest of X and the value z incorrectly reports that z ∈ X. Clayton, Patton, and

Shrimpton [CPS19] extend the work of Naor and Yogev to other data structures such as counting Bloom
filters and count-min sketches. Boyle, LaVigne and Vaikuntanathan [BLV19], referenced as BLV hereafter,
initiated the study of robust property-preserving hash (PPH) functions, which, in a nutshell, combine the
security guarantees of collision-resistant and the functionality of locality-sensitive hash functions.

A bit more formally, a PPH function h : X → Y with evaluation algorithm Eval : Y × Y → {0, 1} for
some predicate P : X ×X → {0, 1} is said to be robust, if no PPT adversary A, who is given (h,Eval), can
produce an output (x, y) such that P (x, y) 6= Eval(h(x), h(y)). The authors construct such a hash function,
which compresses n-bit inputs by some small constant factor, for the gap-hamming predicate

GAP-HAMt
ε(x, y) =

1 if d(x, y) ≥ t(1 + ε)

0 if d(x, y) ≤ t(1− ε)
? Otherwise

for t = O(n/ log n) and an arbitrary small, but constant, non-zero value ε, where d is the hamming distance.
This means that the Eval function can only guarantee that the Hamming distance is at most t(1 + ε) for
output 0 or at least t(1 − ε) for output 1. In the gap between the two values either output is possible and
we get no correctness or security guarantees. It would therefore be desirable to close this gap, i.e., to obtain
a construction for ε = 0, which was left open by the work of BLV.

1.1 Our Contribution

In this work, we construct a robust PPH function for the exact hamming distance predicate, which essentially
corresponds to GAP-HAMt

ε(x, y) with ε = 0, for t ≤ n/cλ for some small constant c > 1. We also show how
to generalize our result to strings over large alphabets, e.g. alphanumeric sequences, and the correspond-
ing generalized hamming distance, which counts the number of positions in which the strings differ.3 Our
construction is based on the q-strong bilinear discrete logarithm assumption in pairing-friendly groups and
compresses n-bit inputs into O(tλ)-bit hash values.

Along the way, we consider the symmetric set difference predicate, which takes two sets X and Y of size
n from some universe U as input and checks whether |(X \ Y)∪ (Y \X)| < t. We construct a PPH function
for this predicate from the same assumptions and with the same O(tλ)-bit long hash values as above. Here it
is insightful to note that for two-input predicates, the symmetric set difference and an intersection predicate
with a threshold on the minimum intersection size are equivalent.

For the symmetric set difference and the intersection predicate, we show that any PPH function has to
have Ω(t log t)-bit long hash values, which indicates that our hash functions are close to optimal in terms of
compression factor.

Finally, we show how to construct PPH functions for the intersection predicate with more than two
inputs.

1.2 Technical Overview

We will start our overview by constructing a robust PPH function for the two-input symmetric set difference
predicate. Obtaining our PPH function for the exact hamming distance predicate will only require one
additional step of encoding the input bit strings into appropriate sets.

The starting point of our work is a simple, yet beautiful, observation about polynomials and rational
function interpolation made by Minsky et al. [MTZ03]4. Consider sets A = {a1, . . . , an} and B = {b1, . . . , bn}

3 Note that encoding strings from a large alphabet into bit strings and then using our construction for binary inputs
does not work, since the hamming distance of the encoded strings has no meaningful interpretation.

4 The work of Minsky et al. has recently found other applications in the context of cryptography in the domain of
communication efficient private set intersection protocols [GS19a].

2

which are encoded into the roots of some polynomials u(x) =
∏n
i=0(x − ai) and v(x) =

∏n
i=0(x − bi) over

some finite field F, and consider the rational function5

w(x) :=
u(x)

v(x)
=

∏
ai 6∈A\B(x− ai)∏
bj 6∈B\A(x− bj)

.

The main observation behind the work of Minsky et al. was the following: the larger the intersection of A
and B, the smaller their symmetric set difference, the more roots of the polynomials u(x) and v(x) “cancel
out”. Furthermore, the smaller the degrees of the remaining polynomials in the numerator and denominator,
the fewer evaluation points are needed for correctly interpolating w(x). More precisely, the degree each
polynomial, once they have been reduced to lowest terms, is exactly |A \ B| = |B \ A|, thus if symmetric
set difference is at most 2t large, then w(x) can be correctly interpolated from ` evaluation points of w(x),
where ` ∈ O (t). Importantly for us, ` can be chosen such that ` − 1 points are not sufficient for correctly
interpolating the rational function if |(A \B) ∪ (B \A)| > 2t.

As a first attempt towards compressing sets A and B of size n into appropriate hash values, one might
want to compute (u(α1), . . . , u(α`)) and (v(α1), . . . , v(α`)), where α1, . . . , α` are some distinct publicly known
fixed evaluation points. Given these two hash values, the evaluation algorithm Eval could compute w(αi) :=
u(αi)/v(αi) for i ∈ [n] and attempt to interpolate a rational function ŵ(x) using these points. Recall that
w(x) = ŵ(x) if |(A \B) ∪ (B \A)| ≤ 2t and w(x) 6= ŵ(x) otherwise.

At this point we are left with the task of checking whether the interpolated function is the correct one.
Ideally, we would like to simply evaluate the polynomials u(x) and v(x) on some random point r and check
whether u(r)/v(r) = ŵ(r). Over a large enough field and using a uniformly and independently sampled
random value r this allows us to efficiently test the equality of two (rational) functions with only negligible
error. Unfortunately, since we are designing a hash function, rather than an interactive protocol, u(r) and
v(r) would need to be part of the corresponding hash value. This means, r would need to be fixed at the
time of hashing and needs to be the same for all inputs to the hash function. Thus, it has to already be
fixed as part of the sampling of the hash function from its corresponding family and an adversary can choose
sets A and B conditioned on r. Since r is now no longer distributed independently of A,B the adversary
could potentially find two such input sets with |(A \ B) ∪ (B \ A)| > 2t, which result in an interpolation of
a function ŵ(x) 6= w(x) that still passes the check, because the sets are chosen such that ŵ(r) = w(r).

To get around this problem, we need to hide r from the adversary. Towards this goal, we fix a uniformly
random hidden value r in a way that allows for performing the check described above obliviously. Assume the
PPH function description includes values Γ = (g, gr, gr

2

, . . . , gr
n

) for some uniformly random value r. Now
given the coefficients of polynomials u(x), v(x), and Γ , we can evaluate our polynomials in the exponent to
obtain gu(r) and gv(r). Under an appropriate q-type discrete logarithm assumption we can argue that the
actual value r remains hidden and the attack outlined above is no longer possible.

To see how to perform the rational function equality check in the exponent, assume that the interpolation
of ŵ(x) gives us the coefficients of the polynomials v̂(x) and û(x) with ŵ(x) = û(x)/v̂(x). The equation

w(x) =
u(x)

v(x)
=
û(x)

v̂(x)
= ŵ(x)

holds if and only if

u(x)v̂(x) = û(x)v(x)

holds. Finally, given gu(r), gv(r), which are computed independently during hashing, the vector Γ , which
is part of the hash function description, and the coefficients of û(x) and v̂(x), which we obtain from the
interpolation, we can use a bilinear pairing, which allows us to perform a multiplication in the exponent, to
check the desired equation.

5 Note, that the equality does not strictly hold, since the function on the right is defined for x ∈ A∪B, whereas the
one on the left is not. However, the two functions are equivalent for all x except for the removable singularities of
u(x)/v(x) which is exactly what we need.

3

To obtain our construction for the hamming distance predicate, we need to encode the input bit strings
into sets in a way that allows us to translate a threshold on the hamming distance to a threshold on the size
of the symmetric set difference of the corresponding sets. Towards this goal, we simply encode a bit string
x = x1x2 . . . xn into a set Sx := {2i−xi | i ∈ [n]}. For two strings x and y and each bit position i with xi = yi
the corresponding sets Sx and Sy will have one element 2i − xi = 2i − yi in common. For each position i
with xi 6= yi, the sets will contain distinct elements 2i and 2i− 1. With this in mind, it is straightforward to
see that

d(x, y) =
|(Sx \ Sy) ∪ (Sy \ Sx)|

2
,

which means that we can reduce the problem of computing the hamming distance between bit strings to
computing the size of the symmetric set difference of the corresponding set encodings.

2 Preliminaries

This section introduces notation, some basic definitions and lemmas that we will use throughout this work.
We denote by λ ∈ N the security parameter and by poly(λ) any function that is bounded by a polynomial
in λ. A function f is negligible if for every c ∈ N, there exists some N ∈ N such that for all λ > N it holds
that f(λ) < 1/λc. We denote by negl(λ) any negligible function. An algorithm is PPT if it is modeled by a
probabilistic Turing machine with a running time bounded by poly(λ).

Let n ∈ N, we denote by [n] the set {1, . . . , n}. Let X,Y be sets, we denote by |X| the size of X and by
X4Y the symmetric set difference of X and Y , i.e., X4Y = (X∪Y)\(X∩Y) = (X \Y)∪(Y \X). Further,
we denote by Pn(X) = {S ⊆ X | |S| = n} the set of all subsets of size n of X and by x← X the process of
sampling an element of X uniformly at random. Let x, y ∈ {0, 1}n, we write w(x) to denote the Hamming
weight of x and we write d(x, y) to denote the Hamming distance between x and y, i.e., d(x, y) = w(x⊕ y).
For a polynomial p =

∑n
i=0 cix

i, we write coef(p, i) = ci to denote the i-th coefficient of p.

Rational Functions. A rational function is the fraction of two polynomials. The total degree of a rational
function is the sum of the degrees of the numerator and the denominator after they have been reduced to
lowest terms. More precisely, it is defined as follows.

Definition 1 (Total Degree). Let f and g be arbitrary non-zero polynomials. Let r, f ′, g′ be polynomials,
such that f = rf ′, g = rg′ and f ′ and g′ are co-prime. Note that r, f ′, g′ always exist and are unique. The
total degree of the rational function f/g is then defined as tdeg(f/g) = deg(f ′) + deg(g′).

Encoding bit strings as sets. A given bit string x ∈ {0, 1}n can be efficiently encoded into a set as
Sx := {2i − xi | i ∈ [n]}. We have that Sx ∈ Pn([2n]), i.e. the size of Sx is n and its description length in
bits is ndlog 2ne. We call Sx the set encoding of x.

Lemma 1. Let n ∈ N. For any x, y ∈ {0, 1}n, it holds that

2d(x, y) = |Sx 4 Sy|.

Proof. We denote by I := {i ∈ [n] | xi = yi} the set of indices i where xi = yi. Similarly, we denote by
J := {j ∈ [n] | xj 6= yj} the set of indices j where xj 6= yj . By definition of the Hamming distance, we have
|J | = d(x, y) and |I| = n− |J |.

We can now write Sx, Sy in terms of I and J as

Sx ={2i− xi | i ∈ I} ∪ {2j − xj | j ∈ J}
Sy ={2i− yi | i ∈ I} ∪ {2j − yj | j ∈ J}.

By definition of I, we have that {2i− xi | i ∈ I} = {2i− yi | i ∈ I} and therefore that

Sx ∪ Sy = {2i− xi | i ∈ [n]} ∪ {2j − yj | j ∈ J} = Sx ∪ {2j − yj | j ∈ J}

4

Since, by definition of J it must also hold that Sx ∩ {2j − yj | j ∈ J} = ∅ we thus have

|Sx ∪ Sy| = |Sx|+ |J | = n+ d(x, y). (1)

Similarly, by the above observations, it holds that Sx ∩ Sy = {2i− xi | i ∈ I} and thereby

|Sx ∩ Sy| = |I| = n− |J | = n− d(x, y) (2)

Finally, combining the definition of symmetric set difference and Equations 1 and 2 we thus have

|Sx 4 Sy| = |(Sx ∪ Sy) \ (Sx ∩ Sy)| = |Sx ∪ Sy| − |Sx ∩ Sy|
=n+ d(x, y)− (n− d(x, y)) = 2d(x, y)

as claimed. ut

Encoding sets as polynomials. We define the polynomial encoding of a set S = {s1, . . . , sn} ⊆ [N] as the
polynomial pS(z) =

∏n
i=1(z − si) over some field Zq of prime order q > N . For a bit string x ∈ {0, 1}n, we

will abuse notation and write px to denote the polynomial encoding of the set encoding of x. Observe that
the roots of px are all in [2n].

Lemma 2. Let n,N ∈ N such that n < N . For any pair of sets X,Y ∈ Pn([N]), it holds that

|X 4 Y | = tdeg

(
pX
pY

)
.

Proof. Let X ′ := X \ Y , Y ′ := Y \X and W := X ∩ Y . We have by definition of the polynomial encoding
that

pX(z) =
∏
x∈X

(z − x) =

(∏
w∈W

(z − w)

)
·

(∏
x∈X′

(z − x)

)
and

pY (z) =
∏
y∈Y

(z − y) =

(∏
w∈W

(z − w)

)
·

∏
y∈Y ′

(z − y)

.
Since X ′ ∩ Y ′ = ∅, the two polynomials

∏
x∈X′(z − x) and

∏
y∈Y ′(z − y) are coprime, while

∏
w∈W (z − w)

is a common factor in pX and pY . By Definition 1, it thus holds that

tdeg

(
pX(z)

pY (z)

)
=deg

(∏
x∈X′

(z − x)

)
+ deg

∏
y∈Y ′

(z − y)

=|X ′|+ |Y ′| = |X ′ ∪ Y ′| = |(X \ Y) ∪ (Y \X)|
=|X 4 Y |

as claimed. ut

Proposition 3 ([MTZ03]). For polynomials f ∈ F≤n[X] and g ∈ F≤m[X], the rational function h(z) =
f(z)/g(z) can be uniquely interpolated (up to equivalences) from distinct evaluation points z1, . . . , zd and
f(z1), g(z1), . . . , f(zd), g(zd), where d = n+m+ 1, as well as upper bounds on n and m.

Remark 1. We denote by RatInt the algorithm that takes as input a list of d points (x1, y1), . . . , (xd, yd) ∈ Fq
and tries to find a rational function p/q with degrees of p and q at most b(d−1)/2c, such that p(xi)/q(xi) = yi
for 1 ≤ i ≤ d. Upon success it outputs p/q. Otherwise it outputs the constant 0 function.

5

Two-Input Predicates. We define the following two-input predicates, which will be the main focus of this
work.

Definition 2 (Hamming Predicate). For x, y ∈ {0, 1}n and t > 0, the two-input predicate is defined as

HAMt(x, y) =

{
1 if d(x, y) ≥ t
0 Otherwise

Definition 3 (Symmetric Set Difference Predicate). For a universe U , natural number n, X,Y ∈
Pn(U), and t > 0, the two-input symmetric set difference predicate is defined as

SSDt(X,Y) =

{
1 if |X 4 Y | ≥ t
0 Otherwise

Bilinear Groups and Pairings. A bilinear group is described by a tuple (G1,G2,GT , q, e), where G1,G2,GT
are groups of order q and e : G1 ×G2 → GT is a (non-degenerate) bilinear asymmetric map, called pairing,
such that for all a, b ∈ Zq and g1 ∈ G1 and g2 ∈ G2 it holds that

e(ga1 , g
b
2) = e(g1, g2)ab.

If G1 and G2 are cyclic and g1 and g2 are generators of those groups respectively, then e(g1, g2) is a generator
of GT .

Let GGen be a PPT algorithm that take as input the security parameter 1λ and outputs bilinear map
parameters (G1,G2,GT , q, e, g1, g2), where G1,G2,GT are the groups of prime order q = q(λ). e : G1 ×
G2 → GT is a (non-degenerate) bilinear map and g1 and g2 are generators of G1 and G2 respectively. Our
constructions will rely on the following q-type extension of the discrete logarithm assumption over bilinear
groups.

Definition 4 (q-Strong Bilinear Discrete Logarithm (q-SBDL) Assumption). The q-sBDL assump-
tion holds relative to GGen if for all PPT algorithms A it holds that

Pr

[
r = A

(
G1,G2,GT , q, e,

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

))]
≤ negl(λ) ,

where the probability is taken over (G1,G2,GT , q, e, g1, g2)← GGen(1λ) and r ← Zq.

To the best of our knowledge, and unlike the regular q-strong discrete logarithm (q-SDL) assumption [GOR11],
this exact assumption has not been used before. However, it is in fact implied by, and thus weaker than,
other related q-type assumptions such as the q-BDHI [BB04] assumption.

Hash Functions. We first recall the standard definition of collision-resistant hash functions.

Definition 5 (Collision Resistant Hash Function Family). For a λ ∈ N a hash function family F =
{f : {0, 1}∗ → {0, 1}λ} consists of a pair of efficiently computable algorithms:

Sample(1λ)→ f is an efficient randomized algorithm that samples an efficiently computable random hash
function from F with security parameter λ.

Hash(f, x)→ y is an efficient deterministic algorithm that evaluates the hash function h on x.

The family F is collision resistant if, for any PPT adversary A it holds that,

Pr[f ← Sample(1λ); (x1, x2)← A(f) : f(x1) = f(x2)] ≤ negl(λ) ,

where the probability is taken over the internal random coins of Sample and A.

6

The following definition of property-preserving hash functions is taken almost verbatim from [BLV19].
In this work, we consider the strongest of several different security notions that were proposed by BLV.

Definition 6 (Property-Preserving Hash). For a λ ∈ N an η-compressing property preserving hash
function family Hλ = {h : X → Y } for a two-input predicate P : X×X → {0, 1} requires the following three
efficiently computable algorithms:

Sample(1λ)→ h is an efficient randomized algorithm that samples an efficiently computable random hash
function from H with security parameter λ.

Hash(h, x)→ y is an efficient deterministic algorithm that evaluates the hash function h on x.

Eval(h, y1, y2)→ {0, 1}: is an efficient deterministic algorithm that on input h, and y1, y2 ∈ Y outputs a
single bit.

We require that H must be compressing, meaning that log |Y | ≤ η log |X| for 0 < η < 1.

For notational convenience we write h(x) for Hash(h, x).

Definition 7 (Direct-Access Robustness). A family of PPH functions H = {h : X → Y } for a two-input
predicate P : X ×X → {0, 1} is a family of direct-access robust PPH functions if, for any PPT adversary A
it holds that,

Pr

[
h← Sample(1λ);

(x1, x2)← A(h)
: Eval(h, h(x1), h(x2)) 6= P (x1, x2)

]
≤ negl(λ) ,

where the probability is taken over the internal random coins of Sample and A.

3 PPH for Symmetric Set Difference

In this section we construct property preserving hash functions for symmetric set difference. We start by
presenting a construction for sets with elements from a universe of bounded size in Section 3.1 and show
how to extend the construction to sets with elements from an arbitrarily large universe in Section 3.2.

3.1 PPH for Symmetric Set Difference of Pn([N])

Theorem 4. Let GGen be a bilinear group generation algorithm that generates groups of prime order q = q(λ)

with q > 2λ. Then, for any n = poly(λ), N ∈ N with n ≤ N ≤ 2λ−1 and any t < n(logN−logn)
log q(λ) − 1, the

construction in Figure 1 is a (t+1) log q(λ)

log (Nn)
≤ (t+1) log q(λ)

n(logN−logn) -compressing direct-access robust property preserving

hash function family for the two-input predicate SSDt and domain Pn([N]), if the n-SBDL assumption holds
relative to GGen.

Proof. Let A be an arbitrary PPT adversary against the direct access robustness of H. We have

Pr[Eval(h, h(X1), h(X2)) 6= SSDt(X1, X2)]

= Pr[Eval(h, h(X1), h(X2)) = 1 | SSDt(X1, X2) = 0] · Pr[SSDt(X1, X2) = 0]

+ Pr[Eval(h, h(X1), h(X2)) = 0 | SSDt(X1, X2) = 1] · Pr[SSDt(X1, X2) = 1],

where the probabilities are taken over h ← Sample(1λ) and (X1, X2) ← A(h). We consider the two cases
separately.

Claim 5. Pr[Eval(h, h(X1), h(X2)) = 1 | SSDt(X1, X2) = 0] = 0

7

Sample(1λ)

(G1,G2,GT , q, e, g1, g2)← GGen(1λ)

r ← Zq \ [N]

Γ :=

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)
return h := (G1,G2,GT , q, e,Γ)

Hash(h,X)

parse h as (G1,G2,GT , q, e,Γ)

a :=
(
pX(N + 1), . . . , pX(N + t)

)
b :=

n∏
i=0

Γ
coef(pX ,i)
1,i+1 = g

pX (r)
1

return (a, b)

Eval(h, (a, b), (ã, b̃))

parse h as (G1,G2,GT , q, e,Γ)

for 1 ≤ i ≤ t

si :=

(
N + i,

ai
ãi

)
(u, v) := RatInt(s1, . . . , st)

return e

(
b,

n∏
i=0

Γ
coef(v,i)
2,i+1

)
?

6= e

(
b̃,

n∏
i=0

Γ
coef(u,i)
2,i

)

Fig. 1. A family of direct-access robust PPH for the predicate SSDt over the domain Pn([N]) for any N ∈ N with
N ≤ 2λ−1.

Proof (Claim 5). Since SSDt(X1, X2) = 0, we know that |X1 4X2| < t. By Lemma 2 this means that

tdeg

(
pX1

pX2

)
< t.

From Proposition 3 it follows that the rational function pX1
/pX2

can (up to equivalences) be uniquely
interpolated from t points. We observe that for 1 ≤ i ≤ t it holds that pX2

(N + i) 6= 0, since roots of pX2

are in the interval [N] by construction. Therefore, si = pX1(N + i)/pX2(N + i) is well-defined and thus

pX1

pX2

=
u

v

where u/v is the rational function computed by RatInt in Eval(h, h(X1), h(X2)). Finally, we observe that

e

(
g
pX1

(r)
1 ,

n∏
i=0

Γ
coef(v,i)
2,i+1

)
= e

(
g
pX2

(r)
1 ,

n∏
i=0

Γ
coef(u,i)
2,i

)
⇐⇒ e(g1, g2)pX1

(r)
∑n
i=0(coef(v,i)·r

i) = e(g1, g2)pX2
(r)

∑n
i=0(coef(u,i)·r

i)

⇐⇒ e(g1, g2)pX1
(r)v(r) = e(g1, g2)pX2

(r)u(r),

which is true whenever

pX1
(r) · v(r) = pX2

(r) · u(r)

⇐⇒ pX1(r)

pX2
(r)

=
u(r)

v(r)
,

which is true for all r and thus the last inequality in Eval(h, h(X1), h(X2)) is never satisfied. ut

8

Claim 6. If the n-SBDL assumption holds relative to GGen, then

Pr[Eval(h, h(X1), h(X2)) = 0 | SSDt(X1, X2) = 1] · Pr[SSDt(X1, X2) = 1]

≤negl(λ) .

Proof (Claim 6). Since SSDt(X1, X2) = 1, it must hold that t ≤ |X1 4X2| ≤ 2n. By Lemma 2 this means
that

t ≤ tdeg

(
px1

px2

)
≤ 2n.

On the other hand, by construction u/v is the rational function of total degree at most t − 1 uniquely
determined by s1, . . . , st. It must therefore hold that

u

v
6= px1

px2

.

For the last inequality in Eval(h, h(X1), h(X2)) to hold, pX1
/pX2

and u/v must therefore be two different
rational functions that agree on point r. This means that r must be one of the at most n+ (t− 1)/2 roots
of the rational function

pX1

pX2

− u

v
=
pX1 · v − pX2 · u

pX2
· v

.

Whenever A would be successful, we could therefore find r by testing the roots of the polynomial pX1
· v −

pX2
· u. We give a formal reduction as follows:
R takes as input

G1,G2,GT , q, e,Γ :=

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)
and invokes A on h := (G1,G2,GT , q, e,Γ) and receives X1, X2.

If SSDt(X1, X2) = 0, R aborts. Otherwise it computes (u, v) as in Eval and determines the set X of roots

of the polynomial pX1
· v − pX2

· u. For each r′ ∈ X, R checks whether gr
′

1
?
= Γ1,2 and returns r′ if it holds.

If the equality holds for no r′ ∈ X, R aborts.
Since A is PPT and finding the roots of a polynomial is possible in polynomial time, it follows that R is

PPT and must, by assumption, have a negligible success probability against the n-SBDL problem.
Note that r from the input of the reduction is distributed uniformly in Zq, while A expects r to be

uniformly distributed in Zq \ [N]. However, since N ≤ 2λ−1 and q > 2λ, it holds that r ∈ Zq \ [N] with
probability at least 1/2. Furthermore, once we condition on r 6∈ [N], the distribution of h is identical to the
one expected by A.

Now, observe that the reduction R is successful, if A outputs X1, X2, such that SSDt(X1, X2) = 1 and r
is one of the roots of pX1

· v − pX2
· u. As argued above, the latter must be true, if Eval(h, h(x1), h(x2)) = 0.

Therefore, it holds that

negl(λ)

≥Pr

[
r = R

(
G1,G2,GT , q, e,

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

))]
≥Pr

[
r 6∈ [N]

]
· Pr

[
r = R

(
G1,G2,GT , q, e,

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)) ∣∣∣∣ r 6∈ [N]

]
≥1

2
· Pr[Eval(h, h(X1), h(X2)) = 0 | SSDt(X1, X2) = 1] · Pr[SSDt(X1, X2) = 1]

and, thus, the claim follows. ut

Using Claims 5 and 6 we can thus conclude that

Pr[Eval(h, h(X1), h(X2)) 6= SSDt(X1, X2)] ≤ 0 + negl(λ) = negl(λ) .

9

Therefore, H is direct access robust as claimed. It remains to show that it is also compressing. The domain
of the hash function is Pn([N]), the codomain is Ztq(λ) ×G1. It follows that the compression factor is

η =
log |Ztq(λ) ×G1|

log |Pn([N])|
=

log q(λ)t+1

log
(
N
n

) ≤ log q(λ)t+1

log
(
N
n

)n =
(t+ 1) log q(λ)

n(logN − log n)

as claimed. The construction is thus compressing, if

(t+ 1) log q(λ)

n(logN − log n)
< 1 ⇐⇒ t <

n(logN − log n)

log q
− 1.

ut

3.2 PPH for Symmetric Set Difference of Arbitrary Sets.

To obtain our construction for sets with elements from an arbitrarily large universe, we make use of a
collision-resistant hash function. We simply first hash the elements of the input sets into a smaller universe
and then apply our construction from the previous section.

Sample(1λ)

h← H.Sample(1λ)

f ← F .Sample(1λ)

return h′ := (h, f)

Hash((h, f), X)

X ′ := {f(x) | x ∈ X}
y := h(X ′)

return y

Eval((h, f), y, ỹ)

b := H.Eval(h, y, ỹ)

return b

Fig. 2. A family of direct-access robust PPH for SSDt on Pn({0, 1}`).

Theorem 7. Let Hλ = {h : Pn({0, 1}λ)→ Y } be an η-compressing direct-access robust property preserving
hash function family for SSDt. Let F = {f : {0, 1}` → {0, 1}λ} be a collision resistant hash function family.

Then the construction in Figure 2 is a η · log (2λ

n)
log (2`

n)
≤ η · log e+λ−logn`−logn -compressing direct-access robust PPH for

SSDt and domain Pn({0, 1}`).

Proof. Let A be an arbitrary PPT adversary against the direct-access robustness of H′. We have that

Pr[Eval(h′, h′(X1), h′(X2)) 6= SSDt(X1, X2)]

= Pr[H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X1, X2)]

= Pr
[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X1, X2)

∣∣∣ |X ′1 4X ′2| = |X1 4X2|
]

· Pr
[
|X ′1 4X ′2| = |X1 4X2|

]
+ Pr

[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X1, X2)

∣∣∣ |X ′1 4X ′2| 6= |X1 4X2|
]

· Pr
[
|X ′1 4X ′2| 6= |X1 4X2|

]
(3)

where the probability is taken over the sampling of h′ = (h, f) ← Sample′(1λ) and (X1, X2) ← A(h′).
Equation 3 follows by applying the definition of H′ and then splitting the probability. We will now upper
bound the two parts of the sum in Claims 8 and 9.

10

Claim 8. If H is direct-access robust, it holds that

Pr
[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X1, X2)

∣∣∣ |X ′1 4X ′2| = |X1 4X2|
]

·Pr
[
|X ′1 4X ′2| = |X1 4X2|

]
≤ negl(λ) .

Proof (Claim 8). By the direct access robustness of H, we have

negl(λ)

≥Pr
[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X ′1, X

′
2)
]

≥Pr
[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X ′1, X

′
2)
∣∣∣ |X ′1 4X ′2| = |X1 4X2|

]
· Pr
[
|X ′1 4X ′2| = |X1 4X2|

]
= Pr

[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X1, X2)

∣∣∣ |X ′1 4X ′2| = |X1 4X2|
]

· Pr
[
|X ′1 4X ′2| = |X1 4X2|

]
where the last equality follows from the fact that |X ′1 4X ′2| = |X1 4X2| implies that SSDt(X ′1, X

′
2) =

SSDt(X1, X2). Thus the claim follows. ut

Claim 9. If F is collision resistant, it holds that

Pr
[
|X ′1 4X ′2| 6= |X1 4X2|

]
≤ negl(λ) .

Proof (Claim 9). Note that, since f is a function, it must hold that |X ′1 ∪X ′2| ≤ |X1 ∪X2|. Further, if
|X ′1 ∪X ′2| = |X1 ∪X2| then it must hold that |X ′1 ∩X ′2| ≥ |X1 ∩X2|. By definition of symmetric set differ-
ence it therefore holds that

Pr
[
|X ′1 4X ′2| 6= |X1 4X2|

]
≤Pr

[
|X ′1 ∪X ′2| < |X1 ∪X2| ∨ |X ′1 ∩X ′2| > |X1 ∩X2|

]
= Pr

[
∃ x1, x2 ∈ X1 ∪X2 : x1 6= x2 ∧ f(x1) = f(x2)

]
.

Since F is a family of collision resistant hash functions, the probability that A finds a collision is negligible
and thus the claim follows. ut

Combining Equation 3 with Claims 8 and 9, it thus follows that

Pr[Eval(h′, h′(X1), h′(X2)) 6= SSDt(X1, X2)] ≤ negl(λ)

and the theorem follows. ut

We obtain the following Corollary by combining Theorems 7 and 4.

Corollary 10. Let GGen be a bilinear group generation algorithm that generates bilinear groups of prime
order q = q(λ) with q > 2λ relative to which the n-SBDL assumption holds. Let F = {f : {0, 1}` → {0, 1}λ}
be a collision resistant hash function family. Then for any n = poly(λ), and any t < n(`−logn)

log q(λ) −1 there exists

a (t+1) log q(λ)

log (2`

n)
≤ (t+1) log q(λ)

n(`−logn) -compressing direct-access robust PPH for for the two-input predicate SSDt and

domain Pn({0, 1}`).

11

4 PPH for Hamming Distance

In this section, we construct a PPH function for the hamming distance predicate. To hash a string x ∈ {0, 1}n,
we apply our PPH function for the symmetric set difference predicate to the set encoding Sx of x.

Theorem 11. Let Hλ = {h : Pn([2n]) → Y } be an η-compressing direct-access robust property preserv-

ing hash function family for SSD2t. Then the following construction H′ is a η · log (2n
n)

n ≤ η · (1 + log e)-

compressing direct-access robust PPH for HAMt and domain {0, 1}n. H′ is defined by (Sample′,Hash′,Eval′)
with Sample′ = Sample, Hash′(x) := Hash(Sx), and Eval′ = Eval.

Proof. Let A be an arbitrary PPT adversary against the direct-access robustness of H′. We have that

Pr[Eval′(h′, h′(x1), h′(x2)) 6= HAMt(x1, x2)]

= Pr[Eval(h, h(Sx1
), h(Sx2

)) 6= HAMt(x1, x2)] (4)

= Pr[Eval(h, h(Sx1), h(Sx2)) 6= SSD2t(Sx1 , Sx2)] (5)

≤negl(λ) (6)

where Equation 4 follows from the definition of H′, Equation 5 follows from the fact that by Lemma 1 for
any x, y ∈ {0, 1}n it holds that d(x1, x2) > t ⇐⇒ |Sx1 4 Sx2 | > 2t. Finally Equation 6 follows from the
direct-access robustness of the underlying property preserving hash function family H.

The inputs to the hash functions are of length n and are first mapped to elements of Pn([2n]) before
being hashed with an η-compressing function. The total compression is thus

η ·
log
(
2n
n

)
n

≤ η ·
log
(
e·2n
n

)n
n

= η · log 2e = η · (1 + log e)

as claimed. ut
Combining Theorems 11 and 4, we immediately get the following Corollary.

Corollary 12. Let GGen be a bilinear group generation algorithm that generates bilinear groups of prime
order q = q(λ) with q > 2λ relative to which the n-SBDL assumption holds. Then for any n = poly(λ), and

any t < n
2 log q(λ) −

1
2 there exists a (2t+1) log q(λ)

n -compressing direct-access robust PPH for for the two-input

predicate HAMt and domain {0, 1}n.

4.1 Generalization to Different Alphabets

Previously, we have defined Hamming distance specifically for binary strings. This notion, however, as well
as the corresponding predicate, can easily be generalized to strings over an arbitrary alphabet Σ. Let Σ be
an alphabet and let x, y ∈ Σn be strings. The Hamming distance between the two strings is the number of
indices i ∈ [n], such that xi 6= yi, formally d(x, y) = |{i ∈ [n] | xi 6= yi}|.

Using this generalized definition of Hamming distance, it is straightforward to generalize the Hamming
predicate defined in Definition 2 to a predicate HAMΣ,t for strings over an arbitrary alphabet Σ.

To generalize the construction from Theorem 11 to this predicate, we merely need to define a set-encoding
for strings over Σ. Let Σ = {a1, . . . , a`} be an alphabet of size ` and let x = xi . . . xn = ai1 . . . ain ∈ Σn

be an arbitrary string over Σ. We define the set encoding of x as Sx = {` · j − ij | j ∈ [n]}. Using this set

encoding in the construction from Theorem 11 immediately gives us a PPH function for HAMΣ,t as stated
in the following.

Proposition 13. Let H = {h : Pn([`n])→ Y } be an η-compressing direct-access robust property preserving

hash function family for SSD2t. Then the following construction H′ is a η · log (`nn)
log `n ≤ η ·(1+ log e

log `)-compressing

direct-access robust PPH for HAMΣ,t and domain Σn. H′ is defined by (Sample′,Hash′,Eval′) with Sample′ =
Sample, Hash′(x) := Hash(Sx), and Eval′ = Eval.

The proof easily follows from the proof of Theorem 11, by extending Lemma 1 to strings over arbitrary
alphabets. Note, that the proof of Lemma 1 already proves this stronger statement.

12

5 PPH for Multi-Input Predicates

In this section, we show how to extend our constructions to the multi-input intersection predicate, which we
introduce below. The basic idea underlying our construction is reminiscent to an idea used by Ghosh and
Simkin [GS19a]6 for constructing interactive protocols that are secure against semi-honest adversaries for the
so-called multiparty threshold private set intersection problem. Since we consider an active adversary and
would like to construct a non-interactive primitive, our setting is quite a bit more challenging and requires
a more intricate security analysis.

Definition 8 (Intersection Predicate). For sets X1, . . . , X` ∈ Pn(U) of size n with elements from the
universe U and threshold t > 0, the multi-input set intersection predicate is defined as

INTt`(X1, . . . , X`) =

{
1 if |X1 ∩ · · · ∩X`| > n− t
0 Otherwise

Before presenting our construction in this section, we observe that the symmetric set difference and the
intersection predicate are equivalent for the two-input setting.

Proposition 14. For all n ∈ N, for all sets X,Y ∈ Pn(U) of size n with elements from the universe U and
for all t ∈ N, it holds that INTt2(X,Y) = 1− SSD2t(X,Y).

Proof. Let X and Y be two sets of size n with elements from an arbitrary universe U . We observe that

|X 4 Y | =|(X \ Y) ∪ (Y \X)|
=|(X \ (X ∩ Y)) ∪ (Y \ (X ∩ Y))|
=n− |X ∩ Y |+ n− |X ∩ Y |
=2n− 2|X ∩ Y |

and therefore

SSD2t(X,Y) = 1 ⇐⇒ |X 4 Y | ≥ 2t

⇐⇒ 2n− 2|X ∩ Y | ≥ 2t

⇐⇒ n− t ≥ |X ∩ Y | ⇐⇒ INTt2(X,Y) = 0

and equivalently SSD2t(X,Y) = 0 ⇐⇒ INTt2(X,Y) = 1. ut

5.1 PPH for the Intersection Predicate INTt
`

The intuition for our PPH function for INTt` is as follows. Let X1, . . . , X` be sets encoded into polynomials
pX1

(z), . . . , pX`(z) over a field Zq of prime order. Let W = X1 ∩ · · · ∩ X` be the intersection of those sets
and let c1, . . . , c` be field elements, then

c1 · pX1
(z) + · · ·+ c`−1 · pX`−1

(z)

c1 · pX`(z)

=
pW (z)

(
c1 · pX1\W (z) + · · ·+ c`−1 · pX`−1\W (z)

)
pW (z) · c` · pX`\W (z)

=
c1 · pX1\W (z) + · · ·+ c`−1 · pX`−1\W (z)

c` · pX`\W (z)

6 Their multiparty protocols can be found in the extended abstract [GS19b] on ePrint.

13

If |W | > n − t, then for each i ∈ [`] the degree of pXi\W (z) is upper bounded by t. This implies that
the degree of the two polynomials in the numerator and denominator are upper bounded by t respectively,
resulting in an upper bound of 2t for the total degree of the rational function. This is stated formally in the
following lemma.

Lemma 15. Let n,N ∈ N such that n < N and let Zq be a field of prime order q > N . For all X1, . . . , X` ∈
Pn([N]) and all c1, . . . , c` ∈ Z∗q it holds that

2
(
n−

∣∣∣⋂
i∈[`]

Xi

∣∣∣) ≥ tdeg

(∑
i∈[`−1] ci · pXi
c` · pX`

)

Proof. Let W = X1 ∩ · · · ∩X` be the intersection of the sets. We have

pX`(z) =
∏
x∈X`

(z − x) =
(∏
x∈X`\W

(z − x)
)
·
(∏
x∈W

(z − x)
)

= pX`\W (z) · pW (z)

and thus the degree of the denominator is at most n− |W |. Similarly, for any 1 ≤ i ≤ `− 1, we have

ci · pXi(z) = ci · pXi\W (z) · pW (z)

and thus the degree of each individual polynomial in the numerator is at most n − |W |. Since the sum of
polynomials of degrees d1, . . . , d`−1 is a new polynomial of degree max(d1, . . . , d`), the lemma follows. ut

To obtain something equivalent to Lemma 2, i.e. that the degree of the rational function corresponds
exactly to n−t, we would like to argue that if |W | ≤ n−t, then the degree of numerator and denominator are
also at least t. However, this is not necessarily the case. Even though, after factoring out pW (z) the remaining
polynomials pXi\W (x) no longer share any common roots, the sum of polynomials in the numerator could
share an additional root with the numerator. However, by choosing the ci with a random oracle and choosing
our parameters appropriately, we can ensure that no efficient algorithm will be able to find such a combination
with non-negligible probability. We formally state the following lemma.

Lemma 16. Let n,N ∈ N with n < N and let δ ≥ λ+ ` log2 λ+ logN + 1. Let Zq be a field of prime order
q > 2δ and let R : Pn([N])→ Z∗q be a random oracle. Then for any PPT algorithm A it holds that

Pr

2
(
n−

∣∣∣⋂
i∈[`]

Xi

∣∣∣) > tdeg

(∑
i∈[`−1]R(Xi) · pXi
R(X`) · pX`

) ≤ negl(λ) ,

where the randomness is taken over (X1, . . . , X`)← AR(·)(1λ) and the choice of the random oracle.

Proof. Denote by (X1, . . . , X`) the output of A and by W = {w | pX1(w) = · · · = pX`−1
(w) = 0} the set of

common roots of the polynomials in the numerator. We first note, that the degree of the rational function
can only be smaller than (n − |

⋂
i∈[`]Xi|), if an additional root of pX1

cancels out. For this to be the case,

the sum in the numerator must have a root z ∈ [N] \W . To prove the lemma, it thus suffices to show that

Pr
[∑
i∈[`−1]

R(Xi) · pXi(z) = 0 ∧ ∃i ∈ [`− 1]. pXi(z) 6= 0
]
≤ negl(λ) .

Denote by Q the set of queries made to the random oracle R before A produces its output. For any fixed
z ∈ [N] \W , and any index i it holds that

Pr
[∑
j∈[`−1]

R(Xj) · pXj (z) = 0
∣∣∣ ∃ Xi 6∈ Q. pXi(z) 6= 0

]

14

= Pr
[
R(Xi) = −p−1Xi (z) ·

∑
j∈[`−1]\{i}

R(Xj) · pXj (z)
∣∣∣ ∃ Xi 6∈ Q. pXi(z) 6= 0

]
≤ 2−δ,

since the left-hand side is an independently and uniformly distributed element of Z∗q . By a union bound this
gives us the following probability that there exists any such z ∈ [N] \W and Xi 6∈ Q:

Pr
[
∃ z ∈ [N] \W.

∑
j∈[`−1]

R(Xj) · pXj (z) = 0 ∧ ∃ Xi 6∈ Q. pXi(z) 6= 0
]

≤
∑

z∈[N]\W

Pr

[∑
j∈[`−1]

R(Xj) · pXj (z) = 0 ∧ ∃ Xi 6∈ Q. pXi(z) 6= 0

]

≤
∑

z∈[N]\W

Pr

[∑
j∈[`−1]

R(Xj) · pXj (z) = 0

∣∣∣∣ ∃ Xi 6∈ Q. pXi(z) 6= 0

]
=

∑
z∈[N]\W

2−δ ≤ N · 2−δ.

Thus we can conclude that for any z and any (X1, . . . , X`) the adversary has to query R on all polynomials
that are not vanishing at z to have any hope of succeeding at that evaluation point. At this point, the
adversary’s task is effectively reduced to finding a sequence (X1, . . . , Xk) ∈ Qk of length k ∈ [` − 1] such
that pX(z) 6= 0 for all Xi, but ∑

i∈[k]

R(Xi) · pXi(z) = 0.

Given such a sequence, the adversary can then win by simply “filling up” the sequence to length `− 1 using
sets corresponding to polynomials that vanish at z.

Since A runs in polynomial time, there exists a µ = poly(λ) such that |Q| = µ. Let Yi denote the ith
query made by A and let Qi = {Y1, . . . , Yi} ⊆ Q denote the set of the first i queries.

Fix an arbitrary z ∈ [N] and consider the set Zi = {R(Y) · pY (z) | Y ∈ Qi ∧ pY (z) 6= 0} with |Zi| ≤
|Qi| = i, which is a set of independent uniformly random elements of Z∗q because R is a random oracle and
none of the involved polynomials is 0 at point z. The number of sequences7 of elements from Zi of length at
most `− 1 can be bounded as ∣∣∣⋃

k∈[`−1]

Zki

∣∣∣ ≤∑
k∈[`−1]

ik ≤ 2i`−1,

Assume that a sequence that sums up to zero does not exist in Zi−1. Then for each of those sequences of
Zi elements, there is at most one value of R(Yi) · pYi(z) that would make the sequence sum up to zero. Let
ZERO be the event that at least one sequence summing up to zero occurs in Zµ and let ZEROi be the event
that the first such sequence occurs after the ith query. Then by the above observation, we have

Pr[ZERO] =

µ∑
i=1

Pr[ZEROi] ≤
µ∑
i=1

Pr
[∧
j∈[i−1]

¬ZEROj
]
· 2i`−1

2δ

≤21−δ ·
µ∑
i=1

i`−1

≤21−δµ`

≤21−δλ` log λ = 21+` log
2 λ−δ

7 Taking into account the commutativity of addition in F, many of these sequences are actually equivalent. It would
be sufficient to count the number of possible multi-sets instead. However, counting sequences is an upper bound
on this actual number and gives a simpler, though slightly worse, bound for δ.

15

Sample(1λ)

(G1,G2,GT , q, e, g1, g2)← GGen(1λ)

r ← Zq \ [N]

Γ :=

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)
return h := (G1,G2,GT , q, e,Γ)

HashR(h,X)

parse h as (G1,G2,GT , q, e,Γ)

c := R(X)

a :=

 c · pX(N + 1)
...

c · pX(N + 2t)

b :=

n∏
i=0

Γ
coef(c·pX ,i)
1,i+1 = g

c·pX (r)
1

return (a, b)

EvalR
(
h,
(
a(1), b(1)

)
, . . . ,

(
a(`), b(`)

))
parse h as (G1,G2,GT , q, e,Γ)

for 1 ≤ i ≤ 2t

si :=

(
N + i,

∑
j∈[`−1] a

(j)
i

a
(`)
i

)
(u, v) := RatInt(s1, . . . , st)

return e
(∏
j∈[`−1]

b(j),

n∏
i=0

Γ
coef(v,i)
2,i+1

)
?
= e
(
b(`),

n∏
i=0

Γ
coef(u,i)
2,i

)

Fig. 3. A family of direct-access robust PPHs for INTt`.

where the last inequality follows from the fact that µ ≤ λlog λ for large enough λ. By a union bound over
z ∈ [N], we get that

Pr
[
∃z ∈ [N]. ∃ (X1, . . . , Xk) ∈

⋃
j∈[`−1]

Qj .
∑
i∈[k]

pXi(z) = 0
]

= 2logN+1+` log2 λ−δ.

Note that this event is exactly the event that the adversary can find the desired sequence described above.
Since by the lemma statement, δ ≥ λ+ (`+ 1) log2 λ+ logN + 1 the lemma follows. ut

Equipped with these observations, our construction will now be a natural extension of our previous
constructions for the two-input case. The proof of Theorem 17 will therefore mirror the proof of Theorem 4
closely.

Theorem 17. Let n = poly (λ), N ∈ N with n ≤ N ≤ 2λ. Let GGen be a bilinear group generation
algorithm that generates bilinear groups of prime order q(λ) > 2δ, where δ ≥ λ+ ` log2 λ+ logN + 1 and let

R : Pn([N])→ Z∗q be a random oracle. Then for any any t < n(logN−logn)
2 log q(λ) − 1

2 the construction in Figure 3

is a (2t+1) log q(λ)
n(logN−logn) -compressing direct-access robust PPH for for the multi-input predicate INTt` and domain

Pn([N]) if the n-SBDL assumption holds relative to GGen.

Proof. Let A be an arbitrary PPT adversary against the direct access robustness of H. We have

Pr[Eval(h, h(X1), . . . , h(X`)) 6= INTt`(X1, . . . , X`)]

= Pr[Eval(h, h(X1), . . . , h(X`)) = 0 | INTt`(X1, . . . , X`) = 1]

· Pr[INTt`(X1, . . . , X`) = 1]

16

+ Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INTt`(X1, . . . , X`) = 0]

· Pr[INTt`(X1, . . . , X`) = 0],

where the probabilities are taken over h← Sample(1λ) and (X1, . . . , X`)← A(h). We consider the two cases
separately.

Claim 18. Pr[Eval(h, h(X1), . . . , h(X`)) = 0 | INTt`(X1, . . . , X`) = 1] = 0

Proof (Claim 18). Let ci = R(Xi). Since INTt`(X1, . . . , X`) = 1, it holds that |X1 ∩ · · · ∩X`| > n− t and by
Lemma 15 that

tdeg

(∑
i∈[`−1] ci · pXi
c` · pX`

)
< 2t.

By Proposition 3, it follows that the rational function can thus be uniquely (up to equivalences) interpolated
from 2t points. We observe that for 1 ≤ i ≤ 2t it holds that c` · pX`(N + i) 6= 0, since the roots of pX` are in
the interval [N] by construction and c1 ∈ Z∗q . Therefore,

si =

∑
j∈[`−1] cj · pXj (N + i)

c` · pX`(N + i)

are well-defined and thus ∑
j∈[j−1] cj · pXj
c` · pX`

=
u

v
(7)

where u/v is the rational function computed by RatInt in Eval(h, h(X1), . . . , h(X`)). Finally we observe that

e
(∏
j∈[`−1]

b(j),

n∏
i=0

Γ
coef(v,i)
2,i+1

)
= e
(
b(`),

n∏
i=0

Γ
coef(u,i)
2,i

)
⇐⇒ e

(
g
∑
j∈[`−1] cj ·pXj (r)

1 , g
v(r)
2

)
= e
(
g
c`·pX` (r)
1 , g

u(r)
2

)
⇐⇒ e(g1, g2)

(∑
j∈[`−1] cj ·pXj (r)

)
·v(r) = e(g1, g2)c`·pX` (r)·u(r)

⇐⇒
(∑
j∈[`−1]

cj · pXj (r)
)
· v(r) = c` · pX`(r) · u(r)

⇐⇒
∑
j∈[`−1] cj · pXj (r)
c` · pX`(r)

=
u(r)

v(r)
,

which due to Equation 7 is always true and thus Eval always returns 1 in this case. ut

Claim 19. If the n-SBDL assumption holds relative to GGen, then

Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INTt`(X1, . . . , X`) = 0] · Pr[INTt`(X1, . . . , X`) = 0]

≤ negl(λ) .

Proof (Claim 19). Since INTt`(X1, . . . , X`) = 0, it must hold that 0 ≤ |X1 ∩ · · · ∩X`| ≤ n− t. By Lemma 16,
since A is a PPT algorithm, this means that except with negligible probability

2t ≤ tdeg

(∑
i∈[`−1] ci · pXi
c` · pX`

)
≤ 2n.

17

On the other hand, by construction u/v is the rational function of total degree at most 2t − 1 uniquely
determined by s1, . . . , s2t. It must therefore hold that

u

v
6=
∑
i∈[`−1] ci · pX`
c` · pX`

.

For the last inequality in Eval(h, h(X1), . . . , h(X`)) to hold, (
∑
i∈[`−1] ci·pX`)/(c1·pX`) and u/v must therefore

be two different rational functions that agree on point r. This means that r must be one of the at most
n+ (t− 1)/2 roots of the rational function∑

i∈[`−1] ci · pX`
c` · pX`

− u

v
=
v ·
∑
i∈[`−1] ci · pX` − c` · pX` · u

c` · pX` · v
.

WheneverA would be successful, we could therefore find r by testing the roots of the polynomial v·
∑
i∈[`−1] ci·

pX` − c` · pX` · u. We give a formal reduction as follows:
R takes as input

G1,G2,GT , q, e,Γ :=

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)
and invokes A on h := (G1,G2,GT , q, e,Γ) and receives X1, . . . , X`.

The reduction then checks whether INTt`(X1, . . . , X`) = 0 and aborts otherwise. We denote this event as
INT0. Next R checks whether

tdeg

(∑
i∈[`−1] ci · pXi
c` · pX`

)
≥ 2t

and again aborts otherwise. We denote this event as TDEG≥2t. Note, that as argued above, by Lemma 16

Pr[TDEG≥ | INT0] ≥ 1− negl(λ) .

If it has not aborted, R then computes (u, v) as in Eval and determines the set X of roots of the polynomial

v ·
∑
i∈[`−1] ci · pX` − c` · pX` · u. For each r′ ∈ X, R checks whether gr

′

1
?
= Γ1,2 and returns r′ if it holds. If

the equality holds for no r′ ∈ X, R aborts.
The reduction R essentially performs three steps, executing A, checking the total degree of a rational

function, and finding the roots of a polynomial. Each of those steps can be performed in polynomial time. It
follows that R is PPT and must, by assumption, have a negligible success probability against the n-SBDL
problem.

Note that r from the input of the reduction is distributed uniformly in Zq, while A expects r to be

uniformly distributed in Zq \ [N]. However, since and q > 2δ ≥ 2λ+` log
2 λ+logN+1 ≥ N · 2λ+` log2 λ+1, it holds

that r ∈ Zq \ [N] with probability at least 1− 2−λ−` log
2 λ−1. Furthermore, once we condition on r 6∈ [N], the

distribution of h is identical to the one expected by A.
Now, observe that the reduction R is successful, if A outputs X1, . . . , X`, such that INT0 and TDEG≥2t

both occur and r is one of the roots of v ·
∑
i∈[`−1] ci · pX` − c` · pX` · u. As argued above, conditioned on the

first two, the latter must be true, if Eval(h, h(X1), . . . , h(X`)) = 1. Therefore, it holds that

negl(λ)

≥Pr

[
r = R

(
G1,G2,GT , q, e,

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

))]
≥Pr

[
r 6∈ [N]

]
· Pr

[
r = R

(
G1,G2,GT , q, e,

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)) ∣∣∣∣ r 6∈ [N]

]
≥(1− negl(λ)) · Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INT0,TDEG≥2t]

· Pr[TDEG≥2t | INT0] · Pr[INT0]

18

≥Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INT0,TDEG≥2t] · Pr[TDEG≥2t | INT0] · Pr[INT0]

− negl(λ)

≥Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INT0] · Pr[INT0]− Pr[¬TDEG≥2t | INT0]− negl(λ)

≥Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INT0] · Pr[INT0]− negl(λ)

and the claim follows. ut

Using Claims 18 and 19 we can thus conclude that

Pr[Eval(h, h(X1), . . . , h(X`)) 6= INTt`(X1, . . . , X`)] ≤ 0 + negl(λ) = negl(λ) .

Therefore, H is direct access robust as claimed. It remains to show that it is also compressing. The domain
of the hash function is Pn([N]), the codomain is Ztq(λ) ×G1. It follows that the compression factor is

η ≤
log |Z2t

q(λ) ×G1|
log |Pn([N])|

=
log q(λ)2t+1

log
(
N
n

) ≤ log q(λ)2t+1

log(Nn)n
=

(2t+ 1) log q(λ)

n(logN − log n)

as claimed. The construction is thus compressing, if

(2t+ 1) log q(λ)

n(logN − log n)
< 1 ⇐⇒ t <

n(logN − log n)

2 log q
− 1

2
.

ut

6 Lower Bounds

In this section, we show that the compression rate of our constructions for the SSDt and INTt2 predicates
are close to optimal. In a similar fashion to BLV, we prove our lower bound on the size of a hash value by
drawing connections to one-round communication complexity lower bounds. More precisely, we prove our
lower bound by making use of the following lower bound for the set disjointness problem.

Theorem 20 ([DKS12]). For a universe U , let X,Y ⊆ Pn(U). Let the set disjointness predicate be defined
as follows:

DISJ(X,Y) =

{
1 if X ∩ Y = ∅
0 Otherwise

For n <
√
|U |, the one-way randomized communication complexity of DISJ(X,Y) in the common random

string model is Ω(n log n).

In contrast to BLV, who prove the non-existence of PPH functions for certain parameters, we prove a
lower bound on the size of the hash value for parameters where PPH functions are feasible.

Theorem 21. Let H = {h : Pn(U) → Y } be a family of direct-access robust PPH functions for the sym-
metric set difference predicate SSDt for some universe U with |U | > t2/4 + n− t/2. Then,

log |Y | ∈ Ω(t log t).

Proof. We assume without loss of generality, that t is even.8 Fix an arbitrary set S ∈ Pn−t/2(U). We prove the
stated theorem by using H to construct a communication efficient one-round protocol for the set disjointness
problem for input sets of size t/2 from the universe U ′ = U \S. Let R be the common random string that the

8 Note that for sets of equal size, the symmetric set difference is always even and therefore SSD2i−1 = SSD2i for all
i ∈ N+.

19

parties can access in the set disjointness problem. Let A,B ∈ Pn′(U ′) be the input sets of the two parties.
The protocol proceeds as follows:

The parties define A′ = A ∪ S and B′ = B ∪ S. We note that |A′| = |B′| = n and that SSDt(A′, B′) = 1
if and only if A ∩ B = ∅. I.e., SSDt(A′, B′) = DISJ(A,B). Both parties then sample a hash function h ∈ H
using randomness R and security parameter n. We let party PA holding A send z = h(A′) to party PB
holding B. Party PB computes b = Eval(h, z, h(B′)) and outputs b. Note, that A′, B′ are fixed before and
independently of h. It follows from the direct access robustness of H that for any such a priori fixed A′, B′

it holds that

Pr[Eval(h, h(A′), h(B′) = SSDt(A′, B′)] ≥ 1− negl(n)

where the probability is taken over the random choice of h ∈ H. It therefore holds that Pr[b = DISJt(A,B)] ≥
1− negl(n).

Observe that by definition of U ′ and S, it holds that |U ′| = |U | − |S| = |U | − (n− t/2). By the condition
on |U | from the theorem statement, it thus follows that

|U ′| > t2

4
+ n− t/2− (n− t/2) =

t2

4
,

and thereby
√
|U ′| > t/2. Since the protocol described above works for sets of size t/2, Theorem 20 therefore

applies. The total communication of our protocol consists of z ∈ Y , thus by Theorem 20 we have that
log |Y | ∈ Ω(t log t). ut

Via the equivalence of the SSDt and INTt predicate proven in Proposition 14, we immediately also get
the following lower bound on size of a hash value of a PPH function for INTt2.

Corollary 22. Let H = {h : Pn(U) → Y } be a family of direct-access robust PPH functions for the two-
input intersection predicate INTt2 for some universe U with |U | > t2 + n− t. Then,

log |Y | ∈ Ω(t log t).

References

BB04. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 223–238, Interlaken, Switzerland, May 2–6,
2004. Springer, Heidelberg, Germany.

BEJWY20. Omri Ben-Eliezer, Rajesh Jayaram, David P Woodruff, and Eylon Yogev. A framework for adversarially
robust streaming algorithms. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 63–80, 2020.

Blo70. Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the
ACM, 13(7):422–426, 1970.

BLV19. Elette Boyle, Rio LaVigne, and Vinod Vaikuntanathan. Adversarially robust property-preserving hash
functions. In Avrim Blum, editor, ITCS 2019: 10th Innovations in Theoretical Computer Science Con-
ference, volume 124, pages 16:1–16:20, San Diego, CA, USA, January 10–12, 2019. LIPIcs.

CPS19. David Clayton, Christopher Patton, and Thomas Shrimpton. Probabilistic data structures in adversarial
environments. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019: 26th Conference on Computer and Communications Security, pages 1317–1334. ACM
Press, November 11–15, 2019.

DKS12. Anirban Dasgupta, Ravi Kumar, and D Sivakumar. Sparse and lopsided set disjointness via information
theory. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 517–528. Springer, 2012.

GOR11. Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash functions. In Yuval Ishai,
editor, TCC 2011: 8th Theory of Cryptography Conference, volume 6597 of Lecture Notes in Computer
Science, pages 182–200, Providence, RI, USA, March 28–30, 2011. Springer, Heidelberg, Germany.

20

GS19a. Satrajit Ghosh and Mark Simkin. The communication complexity of threshold private set intersection.
In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part II, volume 11693 of Lecture Notes in Computer Science, pages 3–29, Santa Barbara, CA, USA,
August 18–22, 2019. Springer, Heidelberg, Germany.

GS19b. Satrajit Ghosh and Mark Simkin. The communication complexity of threshold private set intersection.
Cryptology ePrint Archive, Report 2019/175, 2019. https://eprint.iacr.org/2019/175.

HW13. Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive inputs? In Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM Symposium on Theory of
Computing, pages 121–130, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

IM98. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of di-
mensionality. In 30th Annual ACM Symposium on Theory of Computing, pages 604–613, Dallas, TX,
USA, May 23–26, 1998. ACM Press.

MNS08. Ilya Mironov, Moni Naor, and Gil Segev. Sketching in adversarial environments. In Richard E. Ladner
and Cynthia Dwork, editors, 40th Annual ACM Symposium on Theory of Computing, pages 651–660,
Victoria, BC, Canada, May 17–20, 2008. ACM Press.

MTZ03. Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with nearly optimal communi-
cation complexity. IEEE Transactions on Information Theory, 49(9):2213–2218, 2003.

Mut03. S. Muthukrishnan. Data streams: algorithms and applications. In 14th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 413–413, Baltimore, MD, USA, January 12–14, 2003. ACM-SIAM.

NY15. Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of
Lecture Notes in Computer Science, pages 565–584, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany.

PR04. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, May 2004.

21

https://eprint.iacr.org/2019/175

	Robust Property-Preserving Hash Functions for Hamming Distance and More

