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Abstract—Intelligent reflecting surfaces (IRS) have great po-
tential for achieving higher spectral and energy efficiency. How-
ever, the expected benefits depend strongly on the accuracy
of the channel estimation. Most of the current work assumes
perfect channel state information, which is impractical in real
communication systems. Moreover, state-of-the-art IRS channel
estimation algorithms are proposed under the assumption of
perfect transceivers. These algorithms cannot be applied in the
case of imperfect transceivers. In this work, we propose a novel
channel estimation algorithm that takes into account phase noise
from the local oscillator, which is the major contributor to
the transceiver impairments. More specifically, we estimate the
channel from uplink pilots transmission. Utilizing the obtained
channel estimates the downlink ergodic rate is analyzed, where
we find that the IRS-assisted system becomes more robust to
phase noise as the number of reflective elements increases.
Additionally, the impact of additive receiver noise in uplink
vanishes when the number of reflective elements approaches
infinity.

Index Terms—Intelligent reflecting surfaces (IRS), phase noise,
communication rate

I. INTRODUCTION

Intelligent reflection surface (IRS) aided wireless commu-
nication systems, as a promising technology to improve the
spectral and energy efficiency for 5G and beyond networks,
has received increasing attention. An IRS is a thin metal
plate consisting of passive scattering elements that can be
controlled by a low-cost electronic circuit. Recent works have
proven that IRS-assisted systems can achieve higher spectral
and energy efficiency at a lower cost than other technologies,
such as conventional multi-input multi-output (MIMO) and
relay-aided systems [1]–[3].

However, most prior works assume perfect knowledge of
channel state information (CSI), which is highly unlikely
given in practice. Especially for IRS-aided systems, obtaining
accurate CSI is challenging. Unlike conventional transmitters
and receivers that can transmit or receive pilot signals, IRS
does not have radio resources or signal processing capabilities
to estimate the channel. To address this issue, recent works
estimate the cascaded channel instead of estimating the BS
to IRS channel and the IRS to user channel separately [4]
[5]. More specifically, in [4] the least-square (LS) based
channel estimation is proposed, while a minimum mean square
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mean square error (MMSE) based algorithm is applied in
[5]. However, these works assume perfect transceivers. Yet,
in practical systems phase noise from the local oscillator,
which is the main contributor to transceiver impairments, has
a detrimental effect on system performance. In particular,
high-frequency oscillators suffer from strong phase noise [6].
Therefore, systems operating in the high-frequency range, such
as terahertz (THz), are severely impacted by phase noise [7],
[8]. The impact of additive phase noise in an IRS-assisted
system is studied in [9]. In addition to the additive phase
noise, the transceiver also suffers from multiplicative phase
noise. Compared to additive phase noise, it can cause more
severe degradation of system performance [10], [11]. Yet, the
impact of the multiplicative phase noise has not been studied
in an IRS-assisted system.

To fill this gap in research, in this work, we study the impact
of the multiplicative phase noise in an IRS-assisted system.
We consider an IRS-assisted system with multiplicative phase
noise both at the BS and user. A novel channel estimation
algorithm is proposed considering the phase noise. Particularly,
we assume that the system operates in time division duplex
(TDD) mode, the channel estimates are obtained from uplink
pilots transmission. Exploiting the channel reciprocity we
investigate the system performance in the downlink, more
specifically, we derive the ergodic communication rate in
closed form. Simulation results verify the correctness of the
closed-form expression. We observe that the system becomes
more robust against the phase noise as the number of reflective
elements increases. Moreover, the influence of the additive
receiver noise in uplink vanishes as the number of reflecting
elements grows asymptotically large.

The rest of this paper is organized as follows. Sec. II
describes the system model. In Sec. III we propose the
channel estimation algorithm and analyze the downlink rate.
Simulation results are provided in Sec. IV. Finally, Sec. V
concludes the paper.
Notation : Boldface lower and upper case symbols are used

to denote the vectors and matrices, respectively. (·)T , (·)∗
and (·)H represent the transpose, conjugate and Hermitian
transpose operators. We use E [·] to denote the expectation
operator, diag(a) is a diagonal matrix with vector a on its
main diagonal, and IN ia a N × N identity matrix. tr(X),
‖X‖ and vec(X) denote the trace, norm and vectorization
with respect to the matrix X. ⊗ is the Kronecker product.
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Fig. 1: IRS-assisted single user system: downlink channel
(dashed lines) and uplink channel (solid lines)

II. SYSTEM MODEL

We consider a multiple-input single-output (MISO) system
in which a BS with M antennas communicates with a user
with a single antenna by means of an IRS composed of N
reflective elements, as illustrated in Fig. 1. The phase shift in-
duced by the IRS is controlled by a micro-controller connected
to the BS. In addition, we assume that the channel between the
BS and the user is blocked by obstacles, which is mostly the
case in practice [12]. In this work, a block-fading channel is
assumed. We use T to denote the channel coherence time. Fur-
thermore, the communication system operates in TDD mode.
We use [τ1, ..., τB ] ∈ T and D , {1, . . . , T}\ {τ1, . . . , τB} to
denote the time indices for uplink pilots and downlink data
transmission, respectively. The received signal at the user is
modeled as

ydlt =
(
DtH1diag

(
φdl
t

)
h2

)T
wtςt + ndlt

=
(
DtHcasφ

dl
t

)T
wtςt + ndlt , t ∈ D, (1)

where Dt = diag
(
ejθt,1 , ejθt,2 , · · · , ejθt,M

)
denotes the multi-

plicative phase-drifts caused by the imperfect local oscillators
at BS and user. Also, θt,m = θBSt,m + θUEt , where θBSt,m and
θUEt are, respectively, the phase-drifts at the m-th BS antenna
and the user. Furthermore, θBSt,m and θUEt are modeled as a
discrete-time independent Wiener process [11]

θBSt,m = θBSt−1,m + ∆θBSm , (2)

θUEt = θUEt−1 + ∆θUE , (3)

where ∆θBSt,m ∼ N
(
0, σ2

BS,m

)
and ∆θUEt ∼ N

(
0, σ2

UE

)
denote the random phase increment caused by the imperfect
local oscillator at the BS and user, respectively. We assume that
each antenna of the BS has its own local oscillator. Besides,
we let σ2

BS,m = σ2
BS for each oscillator for simplicity. The

phase noise variance is given by σ2
BS/UE = 4π2f2c TsζBS/UE ,

where fc, Ts, ζBS/UE are the carrier frequency, the symbol
interval and a constant that depends on the quality of the local
oscillator, respectively. In addition, Hcas ∈ CM×N represents
the IRS-assisted channel given as Hcas = H1diag(h2), where
H1 ∈ CM×N and h2 ∈ CN denote the BS to IRS and IRS
to user channel, respectively. We model the entries of Hcas

as independent and identically distributed complex circularly
symmetric Gaussian variables with variance βcas. Moreover,
we use φdl

t ∈ CN to denote the phase shifts vector at
the IRS during the downlink transmission at time t, and

wt ∈ CM is the precoding vector designed according to the
channel estimates, which will be introduced in the following
section. ςt ∈ C is the transmit symbol with power constraint
E
[
|ςt|2

]
= P , and nDL

t ∼ CN (0, σ2
d) is the additive complex

Gaussian noise in the downlink. Similarly, we model the
received signal at the BS as

yul
t =

(
DtHcasφ

ul
t

)
xt + nul

t , t ∈ [τ1, ..., τB ], (4)

where φul
t ∈ CN denotes the phase shifts vector at the IRS

during the uplink pilots transmission at time t, and xt is the
pilots signal with E

[
|xt|2

]
= 1 . Lastly, nul

t ∼ CN (0, σ2
uIM )

is the additive receiver noise at the BS with covariance σ2
uIM .

III. CHANNEL ESTIMATION SCHEME AND DOWNLINK
ANALYSIS

In this section, we introduce the MMSE channel estimation
algorithm in Sec. III-A. The obtained channel estimate is
utilized to analyze the downlink performance in Sec. III-B.

A. Channel Estimation

To study the impact of the phase noise on the system
performance, we propose the MMSE based channel estimation
algorithm, by which the channel and the phase noise are
jointly estimated. Exploiting the channel reciprocity in the
TDD mode, we obtain the downlink channel from the uplink
pilots signal. Since the pilot transmission is corrupted by the
random phase drifts caused by the imperfect local oscillator,
the conventional IRS channel estimation algorithms in [4], [5],
[13] cannot be applied. To solve this problem, we propose an
MMSE channel estimator considering the phase noise in the
following.

We rewrite the received signal at the BS (4) as

yul
t = ((φult )

T ⊗ IM ) (IN ⊗Dt) hxt + nt

= ((φult )
T ⊗ IM )h̃txt + nt, (5)

where h = vec(Hcas) is a MN dimensional vector, and we
define h̃ = (IN ⊗Dt) h as the effective channel. Note that
the real channel h is constant with the coherence time, while
the effective channel h̃ is, in contrast, time variant due to the
random phase noise. During the uplink pilots transmission,
we design the IRS phase shifts vector φulτi as the i-th row of
a B × N DFT matrix Φ, which is shown to be the optimal
design of the IRS during uplink channel estimation [4], [5],
[13]. Next, we introduce the MMSE estimator of h̃t.

Lemma 1. Given the combined uplink pilots signal ψ ,[
yT
τ1 . . .y

T
τB

]T ∈ CBM , the MMSE channel estimate of the
effective channel ĥt is given by

ĥt =
βcas

Nβcas + σ2
u

(
(ΦHD̃)⊗ IM

)
ψ, (6)

where

D̃ = diag
(
x∗τ1e

−σ
2
BS+σ2UE

2 |t−τ1| . . . x∗τBe
−σ

2
BS+σ2UE

2 |t−τB |
)
.

(7)



The corresponding covariance matrix of the channel estimates
is given as

Ψt = E
[
ĥtĥt

]
=

β2
cas

Nβcas + σ2
u

(
ΦHD̃D̃HΦ

)
⊗ IM , (8)

while the estimation error covariance matrix is

Ct = E
[(

h̃t − ĥt

)(
h̃t − ĥt

)H]
= βcasIMN −

β2
cas

Nβcas + σ2
u

(
ΦHD̃D̃HΦ

)
⊗ IM . (9)

Proof. The proof is provided in Appendix A.

B. Downlink Performance Analysis

Utilizing the channel estimates proposed in Sec. III-A, we
investigate the impact of the phase noise on the downlink
performance. According to (1), we define the received instan-
taneous SNR as

γt =
P

σ2
d

∣∣∣(DtHcasφ
dl
t

)T
wt

∣∣∣2 , (10)

where the precoding vector wt depends on the channel esti-
mates. More specifically, we design the precoding vector under
maximum ratio transmission (MRT), which is given as

wt =

(
Ĥcas,tφ

dl
t

)∗
(

E

[∥∥∥Ĥcas,tφdl
t

∥∥∥2]) 1
2

. (11)

Here, we normalize the precoding vector over the average of
many channel realizations for analytical tractability. Next, we
optimize the IRS by maximizing the received SNR given in
(10). Thus, the optimal IRS is given as [5], [13]

φDL
t,opt = exp

(
j∠
(
H̃H
cas,t1N

))
. (12)

Plugging (11) and (12) into (10), the instantaneous SNR can be
observed under the optimized IRS. We now define the ergodic
communication rate as

R =
1

T

∑
t∈D

log2 (1 + E [γt]) . (13)

We notice that the ergodic rate depends on the averaged SNR
E [γt], which can be naively computed by taking the average
over many instantaneous SNR. However, it leads to high com-
putational complexity, particularly when the communication
system has a large number of antennas at the BS or reflective
elements at the IRS. To overcome this issue, we present the
averaged SNR in a closed-form in the following theorem.

Theorem 1. Given the MMSE channel estimates proposed in
Sec. III-B , the averaged SNR with random IRS is given by

γ̄t,a =
P

σ2
d

((M − 1)Nη +Nβcas) , (14)

while the averaged SNR with optimized IRS is given by

γ̄t,opt =
P

σ2
d

((
(M − 1) +

Nπ

4
− 1

)
Nη +Nβcas

)
, (15)

where η = (βcas)
2

Nβcas+σ2
u

∑N
i=1 e

−(σ2
BS+σ

2
UE)(t−i).

Proof. The proof is provided in Appendix B.

It is easy to see that under perfect CSI, i.e., σ2
BS =

σ2
UE = 0 and σ2

u = 0, η in (14) and (15) is equiva-
lent to the channel gain βcas. Thus, we use η to denote
the gain of the channel estimates. Furthermore, we have
η a.s.
N→∞

βcas
N

∑N
i=1 e

−(σ2
BS+σ

2
UE)(t−i), which shows that the

impact of the additive noise during channel estimation with
variance σ2

u gradually vanishes as N → ∞. Meanwhile, we
observe that η is increasing with N , implying that the system
can tolerate stronger phase noise as N increases. The proof is
omitted due to lack of space. Finally, by substituting (14) and
(15) to (13) we observe the ergodic communication rate with
random and optimized IRS, respectively.

Remark 1. Note that the entries of the channel estimates ĥt in
Lemma 1 are correlated due to the phase noise, since Ψt in (8)
is not a diagonal matrix. However, the variance of the phase
noise σ2

BS and σ2
UE is usually small in practice, which makes

the entries on the main diagonal of Ψt dominant compared
to the other entries. Therefore, for simplicity, we ignore the
correlation of the channel estimates in this work. We consider
Theorem 1 as a reasonable lower bound for the averaged SNR,
while an exact analysis considering the correlation will be
introduced in our future work.

IV. SIMULATION RESULTS

In this section, the system performance in terms of ergodic
rate is presented when the proposed channel estimates are
applied for downlink data transmission. More specifically, we
study how the additive noise during uplink channel estimation
and the multiplicative phase noise affect the system perfor-
mance.

Throughout the simulation, we set the center frequency fc =
2.5 GHz, the symbol time interval Ts = 10−7 s. Additionally,
the number of the BS antennas is set to 16, and the length
of the coherence block is T = 500. Furthermore, we assume
a transmit power P = 30 dBm and a noise variance σ2

d =
−80 dBm. The path loss parameter of βcas is modeled as

βcas = C0

(
dcas
D0

)−α
, where we set the reference path loss

C0 = −30 dB, the path distance dcas = 100 m, and the path
loss factor α to 2. The markers in the following figures are the
theoretical results according to Theorem 1, while the curves
are the simulation results. As described in Remark 1, we also
ignore the correlation between the channel estimates in our
simulations. We simulate the channel estimate ĥ that follows
complex Gaussian distribution with covariance ηIMN .

We first investigate the impact of the additive noise during
the uplink under the assumption of perfect hardware. Fig. 2
(a) plots the ergodic rate with random (Rand.) and optimized
(Opt.) IRS utilizing the proposed MMSE channel estimates.
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Meanwhile, the ergodic rate under the MMSE channel esti-
mates and perfect CSI are compared. We notice that the sim-
ulation results agree perfectly with the analytical expressions.
Furthermore, the ergodic rate decreases with increasing σ2

u.
This is because σ2

u affects the gain of the channel estimates η
as introduced in Sec. III-B. We also find that the system with
optimized IRS performs better than that with random IRS.
To study the influence of the number of reflective elements
N on system performance, we plot the individual normalized
ergodic rate in Fig. 2 (b), which is computed by dividing
the ergodic rate under MMSE estimate by it under perfect
CSI. It can be clearly seen that the impact of noise becomes
weaker as N increases for both random and optimized IRS.

An interesting observation is that the system with random IRS
is slightly more robust to the additive noise when N is small,
i.e. N = 16, while as N increases, the system with optimized
IRS becomes more robust than with random IRS.

Next, we study the effects of phase noise on the ergodic
communication rate. In Fig. 3 (a), we compare the ergodic rate
of the optimized and random IRS with respect to the phase
noise parameter. It can be seen that the communication rate
under imperfect CSI approaches the rate of the perfect CSI as
the phase noise becomes smaller. Furthermore, we find that
the system with optimized IRS still outperforms the system
with random IRS when phase noise is taken into account. The
individual normalized ergodic rate as a function of the phase



noise parameter is shown in Fig. 3 (b), from which we see
that the impact of phase noise decreases with increasing N .
Moreover, with increasing N , the robustness of the system
with optimized IRS to phase noise becomes higher than that
of the system with random IRS.

V. CONCLUSION

In this work, we have investigated the effects of phase
noise in an IRS-assisted MISO communication system. We
proposed a MMSE-based channel estimation algorithm that
takes into account the phase noise caused by the imperfect
local oscillator. Using the proposed MMSE estimates, we
studied the ergodic downlink rate numerically and analytically,
where we find that the robustness to the phase noise increases
as the number of reflecting elements increases. We have
also shown that the influence of additive noise during uplink
channel estimation vanishes as N approaches infinity.

APPENDIX

A. Proof of Lemma 1

According to [14] the MMSE estimator of the effective
channel is given by

ĥt = E
[
h̃tψ

H
] (

E
[
ψψH

])−1
ψ. (16)

where the first term is

E
[
h̃tψ

H
]

(a)
=E

[
(IN ⊗Dt)hhH(ΦH ⊗ IM )

diag
[
x∗τ1D

H
τ1 , ..., x

∗
τB ,D

H
τB

]]
=βcasIMNE

{
(ΦH ⊗ IM )

diag
[
x∗τ1DtD

H
τ1 , ..., x

∗
τBDtD

H
τB

]}
(b)
=βcasIMN (ΦH ⊗ IM )diag

[
x∗τ1e

−σ
2
BS+σ2UE

2 |t−τ1|IM

. . . , x∗τBe
−σ

2
BS+σ2UE

2 |t−τB |IM

]
=(βcasΦ

HD̃)⊗ IM , (17)

in which (a) exploits the fact that the additive noise is uncorre-
lated with the channel h, and (b) utilizes E

[
ejθt1,mejθt2,m

]
=

e−
σ2BS+σ2UE

2 |t1−t2|. D̃ in (17) is given in (7). Furthermore, we
have

E
[
ψψH

]
= E

{
diag [xτ1Dτ1 , ..., xτBDτB ] (Φ⊗ IM ) hhH

(ΦH ⊗ IM )diag
[
x∗τ1D

H
τ1 , ..., x

∗
τBDH

τB

]}
+ σ2IMB

(a)
= Ω⊗ IM , (18)

where (a) is because of the orthogonality of the DFT matrix,
and the (i, j)-th element of Ω is given as

[Ω]i,j =

{
Nβcas |xτi |

2
+ σ2

u, i = j,
0, i 6= j.

(19)

For simplicity, we let |xτi |
2

= 1. Then, plugging (17) and (18)
into (16), we get the MMSE estimator given as

ĥt = ((βcasΦ
HD̃)⊗ IM )(Ω⊗ IM )

−1
ψ

= ((βcasΦ
HD̃)⊗ IM )

(
Ω−1 ⊗ IM

)
ψ

=
βcas

Nβcas + σ2
u

(
(ΦHD̃)⊗ IM

)
ψ. (20)

Moreover, the covariance matrix of the channel estimate is
given as

Ψt = E
[
ĥtĥ

H
t

]
= E

[
h̃tψ

H
] (

E
[
ψψH

])−1 (E [h̃tψH
])H

= β2
cas

(
(ΦHD̃Ω−1)⊗ IM

)(
(D̃HΦ)⊗ IM

)
=

β2
cas

Nβcas + σ2
u

(
ΦHD̃D̃HΦ

)
⊗ IM . (21)

The corresponding estimation error covariance is given as

Ct = E
[
∆ht∆hHt

]
= E

[
h̃th̃

H
t

]
− E

[
ĥtĥ

H
t

]
= βcasIMN −

β2
cas

Nβcas + σ2
u

(
ΦHD̃D̃HΦ

)
⊗ IM . (22)

B. Proof of Theorem 1

Based on (10) and (11) the averaged SNR is given as

E [γ̂t] =
P

σ2
d

E

[∣∣∣∣(DtH̃casφ
dl
t

)T
wt

∣∣∣∣2
]

=
P

σ2
d

(
E
[∥∥∥Ĥcas,tφ

dl
t

∥∥∥2])−1
E

[∣∣∣∣(H̃cas,tφ
dl
t

)T (
Ĥcas,tφ

dl
t

)∗∣∣∣∣2
]
, (23)

where the first term of (23) for random IRS is simplified as

E
[∥∥∥Ĥcas,tφ

dl
t

∥∥∥2]
=E

[∥∥∥((φdlt )T ⊗ IM

)
ĥt

∥∥∥2] = E
[∥∥∥ĥt∥∥∥2]

(a)
=
MN(βcas)

2

Nβcas + σ2
u

N∑
i=1

e−(σ2
BS+σ

2
UE)|t−i|

(b)
=MNη, (24)

where (a) follows computing tr(Ψt), and (b) is by introducing
η = (βcas)

2

Nβcas+σ2

∑N
i=1 e

−(σ2
BS+σ

2
UE)|t−i| for readability. Next,

we derive E
[∥∥∥Ĥcas,tφ

dl
t

∥∥∥2] for optimized IRS. By simula-

tions we find that averaged SNR with optimized IRS according
(12) is the same with φDL

t,opt = exp
(
j∠
(
ĥHcas,t

))
, where

ĥcas,t denotes any row of H̃cas,t. This is also observed in [1].
Therefore, we derive the average SNR with optimized IRS
according to φDL

t,opt = exp
(
j∠
(
ĥHcas,t

))
in the following.



We use Ĥ′cas,t to denote a (M − 1)×N submatrix of Ĥcas,t

except for the row ĥcas,t, then we have

E
[∥∥∥Ĥcas,tφ

dl
t,opt

∥∥∥2]
(a)
=E

[∣∣∣ĥcas ,tφt, opt

∣∣∣2 +
∥∥∥Ĥ′cas,tφt,opt∥∥∥2]

=E

( N∑
n=1

∣∣∣ĥcas ,t(n)
∣∣∣)2
+ E

[∥∥∥Ĥ′cas,tφt,opt∥∥∥2]
(b)
=N2πη

4
+ (M − 1)Nη, (25)

where (a) is exploiting the property of the vector norm, and
the first term of (b) is because h̃cas,t(n) follows Rayleigh
distribution. While the second term of (b) is derived fol-
lowing same approach as used in (24), since φt,opt is only
related to ĥcas,t, it can be considered as a random vector in

E
[∥∥∥Ĥ′cas,tφt,opt∥∥∥2]. Then, the last term of (23) with random

IRS is obtained as

E

[∣∣∣∣(H̃cas,tφ
dl
t

)T (
Ĥcas,tφ

dl
t

)∗∣∣∣∣2
]

=E

[∣∣∣∣((Ĥcas,t + ∆Hcas,t

)
φt

)T (
Ĥcas,tφt

)∗∣∣∣∣2
]

=E

[∣∣∣∣(Ĥcas,tφt

)T (
Ĥcas,tφt

)∗∣∣∣∣2
]

+ E
[∣∣∣(∆Hcas,tφt)

T
(
Ĥcas,tφt

)∗∣∣∣2]
=(MNη)

2
+MN2βcasη −M(Nη)2, (26)

where the last equality follows from algebraic computation of
the two independent variables. Similarly, for optimized IRS
we have

E

[∣∣∣∣(H̃cas,tφt,opt

)T (
Ĥcas,tφt,opt

)∗∣∣∣∣2
]

=
(
N2πη

4
+ (M − 1)Nη

)2
+ tr

(
N(β1β2 − η)diag

([
N2π

4
η,Nη, ..., Nη

]))
=
(
N2πη

4
+ (M − 1)Nη

)2
+N(β1β2 − η)

(
N2π

4
η + (M − 1)Nη

)
. (27)

Finally, by plugging (24) (26) into (23), and (25) (27) into
(23) we observe theorem 1.

C. Proof of ∆η ≥ 0

We observe the distance of η between N and N − 1 as

∆η =
βcas
N

N∑
i=1

e−(σ2
BS+σ

2
UE)(t−i)

− βcas
N − 1

N−1∑
i=1

e−(σ2
BS+σ

2
UE)(t−i)

≥βcase
−(σ2

BS+σ
2
UE)t

N(N − 1)

(
(N − 1)e(σ

2
BS+σ

2
UE)N −

(N − 1)e(σ
2
BS+σ

2
UE)(N−1)

)
≥ 0,

where the equality holds when σ2
BS = σ2

UE = 0. Thus, η is
increasing with N .
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