
Noisy Simon Period Finding

Alexander May? , Lars Schlieper? , and Jonathan Schwinger
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Abstract. Let f : Fn
2 → Fn

2 be a Boolean function with period s. It is
well-known that Simon’s algorithm finds s in time polynomial in n on
quantum devices that are capable of performing error-correction. How-
ever, today’s quantum devices are inherently noisy, too limited for error
correction, and Simon’s algorithm is not error-tolerant.

We show that even noisy quantum period finding computations may lead
to speedups in comparison to purely classical computations. To this end,
we implemented Simon’s quantum period finding circuit on the 15-qubit
quantum device IBM Q 16 Melbourne. Our experiments show that with
a certain probability τ(n) we measure erroneous vectors that are not
orthogonal to s. We propose new, simple, but very effective smoothing
techniques to classically mitigate physical noise effects such as e.g. IBM
Q’s bias towards the 0-qubit.

After smoothing, our noisy quantum device provides us a statistical dis-
tribution that we can easily transform into an LPN instance with param-
eters n and τ(n). Hence, in the noisy case we may not hope to find periods
in time polynomial in n. However, we may still obtain a quantum advan-
tage if the error τ(n) does not grow too large. This demonstrates that
quantum devices may be useful for period finding, even before achieving
the level of full error correction capability.

Keywords: Noise-tolerant Simon period finding, IBM-Q16, LPN, quan-
tum advantage

1 Introduction

The discovery of Shor’s quantum algorithm [23] for factoring and computing
discrete logarithms in 1994 had a dramatic impact on public-key cryptogra-
phy, initiating the fast growing field of post-quantum cryptography that studies
problems supposed to be hard even on quantum computers, such as e.g. Learning
Parity with Noise (LPN) [3] and Learning with Errors (LWE) [20].

For some decades, the common belief was that the impact of quantum al-
gorithms on symmetric crypto is way less dramatic, since the effect of Grover
search can easily be handled by doubling the key size. However, starting with
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the initial work of Kuwakado, Morii [17] and followed by Kaplan, Leurent, Lev-
errier and Naya-Plasencia [15] it was shown that (among others) the well-known
Even-Mansour construction can be broken with quantum CPA-attacks [5] in
polynomial time using Simon’s quantum period finding algorithm [24]. This is
especially interesting, because Even and Mansour [12] proved that in the ideal
cipher model any classical attack on their construction with n-bit keys requires
Ω(2

n
2 ) steps.

These results triggered a whole line of work that studies the impact of Si-
mon’s algorithm and its variants for symmetric key cryptography, including
e.g. [21,18,2,6,14,8,7]. In a nutshell, Simon’s quantum circuit produces for a peri-
odic function f : Fn2 → Fn2 with period s ∈ Fn2 , i.e. f(x) = f(z) iff z ∈ {x,x+ s},
via quantum measurements uniformly distributed vectors y that are orthogonal
to s. It is not hard to see that from a basis of y’s that spans the subspace or-
thogonal to s, the period s can be computed via elementary linear algebra in
time polynomial in n. Thus, Simon’s algorithm finds the period with a linear
number of quantum measurements (and calls to f), and some polynomial time
classical post-processing. On any purely classical computer however, finding the
period of f requires in general Ω(2

n
2 ) operations [19]. Let us stress again that

we consider quantum CPA attacks via Simon, i.e. the attacker has access to a
cipher that is implemented quantumly—a very powerful attack model.

Our contributions. We implemented Simon’s algorithm on IBM’s freely available
Q16 Melbourne [1], called IBM-Q16 in the following, that realizes 15-qubit
quantum circuits. Since Simon’s quantum circuit requires for n-bit periodic func-
tions 2n qubits, we were able to implement functions up to n = 7 bits. Due to
its limited size, IBM-Q16 is not capable of performing full error correction [9]
for n > 1. However, we show that error correction is no necessary requirement
for achieving quantum speedups.

Implementation. Our experiments show that with some (significant) error
probability τ , we measure on IBM-Q16 vectors y that are not orthogonal to s.
The error probability τ depends on many factors, such as the number of 1- and
2-qubit gates that we use to realize Simon’s circuit, IBM-Q16’s topology that
allows only limited 2-qubit applications, and even the individual qubits that we
use. We optimize our Simon implementation to achieve minimal error τ . Since
increasing n requires an increasing amount of gates, we discover experimentally
that τ(n) grows as a function of n. For the function f that we implemented,
we found τ -values ranging between τ(2) = 0.09 and τ(7) = 0.13. We would like
to stress that our choice of f is highly optimized to minimize IBM-Q16’s error.
Any realistic real-word cryptographic f would at the moment result in outputs
close to random noise, i.e. with τ(n) close to 1

2 .

For our simple f despite the errors we still qualitatively observe the desired
quantum effect: Vectors y orthogonal to s appear with significant larger proba-
bilities than vectors not orthogonal to s. Similar experimental observations have
been achieved in Tame et al. [25].
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Smoothing techniques. In the error free case, Simon’s circuit produces vectors
that are uniformly distributed. However, on IBM-Q16 this is not the case. First,
IBM-Q16’s qubits have different noise level, hence different reliability. Second,
we experimentally observe vectors with small Hamming weight more frequently,
the measured qubits have a bias towards 0.

To mitigite both effects we introduce simple, but effective smoothing tech-
niques. First, the quality of qubits can be averaged by introducing permutations
that preserve the overall error probability τ . Second, the 0-bias can be removed
by suitable addition of vectors, both quantumly and classically. In combination,
our smoothing methods are effective in the sense that they provide a distribu-
tion where vectors orthogonal to s appear uniformly distributed with probability
1− τ , and vectors not orthogonal to s appear uniformly distributed with prob-
ability τ . Note that our smoothing techniques do not reduce the overall error τ ,
but smooth the error distribution.

We call the problem of recovering s ∈ Fn2 from such a distribution Learning
Simon with Noise (LSN) with parameters n and τ . Notice that intuitively it
should be hard to distinguish orthogonal vectors from non-orthogonal ones.

Hardness. We show that solving LSN with parameters n, τ is tightly polyno-
mial time equivalent to solving the famous Learning Parity with Noise (LPN)
problem with the same parameters n, τ . The core of our reduction shows that
LSN samples coming from smoothed quantum measurements of Simon’s circuit
can be turned into perfectly distributed LPN samples, and vice versa. Hence,
smoothed quantum measurements of Simon’s circuit realize a physical LPN or-
acle.

From an error-tolerance perspective, our LPN-to-LSN reduction may at first
sound quite negative, since it is commen belief that we cannot solve LPN (and
thus also not LSN) in time polynomial in (n, τ) — not even on a quantum com-
puter.

Error Handling. On the positive side, we may use the converse LSN-to-LPN
reduction to handle errors from noisy quantum devices like IBM-Q16 via LPN-
solving algorithms. Theoretically, the best algorithm for solving LPN with con-
stant τ is the BKW-algorithm of Blum, Kalai and Wasserman [4] with time

complexity 2
O
(

n
log(n

τ
)

)
. This already improves on the classical time 2

n
2 for period

finding.

Practically, the current LPN records with errors τ ∈ [0.09, 0.13]—as ob-
served in our IBM-Q16 experiments— are solved with variants of the algo-
rithms Pooled Gauss and Well-Pooled Gauss of Esser, Kübler, May [11].
We show that Pooled Gauss solves LSN for τ ≤ 0.292 faster than classical pe-
riod finding algorithms. Well-Pooled Gauss even improves on any classical
period finding algorithm for all errors τ < 1

2 .

Well-Pooled Gauss is able to handle errors in time 2cn, where c < 1
2 is

constant for constant τ . For the error-free case τ = 0, we obtain polynomial
time as predicted by Simon’s analysis. In the noisy case 0 < τ < 1

2 we achieve
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exponential run time, yet still improve over purely classical computation. This
indicates that we achieve quantum advantage for the Simon period finding prob-
lem on sufficiently large computers, even in the presence of errors: Our quantum
oracle helps us in speeding up computation! But as opposed to the exponential
speedup from the (unrealistic) error-free Simon setting τ = 0, we obtain in the
practically relevant noisy Simon setting 0 < τ < 1

2 only a polynomial speedup
with a polynomial of degree 1

2c > 1.

Assume that in a possibly far future one could build a quantum device
with 486 qubits performing Simon’s circuit on a 243-bit realistic real-world
cryptographic periodic function with error τ(486) = 1

8 . Then our smoothed
techniques could translate the noisy quantum data into an LPN-instance with
(n, τ) = (243, 18 ). Such an LPN instance was solved in [11] on 64 threads in only
15 days, whereas classically period finding would require 2121 steps.

We would like to stress that our introduction of a simple error parameter τ
is to indicate at which point in the future quantum devices may help to speed
up Simon-based quantum cryptanalysis. We do not give any predictions how
τ(n) behaves for future devices, nor for realistic cryptographic functions. This
remains an open problem.

Our paper is organized as follows. In Section 2 we recall Simon’s original
quantum circuit, and already introduce our LSN Error Model. In Section 3 we
run IBM-Q16 experiments, and show in Section 4 how to smooth the results of
the quantum computations1 such that they fit our error model. In Section 5 we
show the polynomial time equivalence of LSN and LPN. In Section 6 we theoret-
ically show that quantum measurements with error τ in combination with LPN-
solvers outperform classical period finding for any τ < 1

2 . Eventually, in Section 7
we experimentally extract periods from noisy IBM-Q16 measurements.

2 Simon’s Algorithm in the Noisy Case

Notation. All logs in this paper are base 2. Let x ∈ Fn2 denote a binary vector

with coordinates x = (xn−1, . . . , x0) and Hamming weight h(x) =
∑n−1
i=0 xi. Let

0 ∈ Fn2 be the vector with all-zero coordinates. We denote by U the uniform
distribution over F2, and by Un the uniform distribution over Fn2 . If a random
variable X is chosen from distribution U , we write X ∼ U . We denote by Berτ
the Bernoulli distribution for F2, i.e. a 0, 1-valued X ∼ Berτ with P[X = 1] = τ .

Two vectors x,y are orthogonal if their inner product 〈x,y〉 :=
∑n−1
i=0 xiyi mod

2 is 0, otherwise they are called non-orthogonal. Let s ∈ Fn2 . Then we denote the
subspace of all vectors orthogonal to s as

s⊥ = {x ∈ Fn2 | 〈x, s〉 = 0} .

Let Y = {y1, . . . ,yk} ⊆ Fn2 . Then we define Y ⊥ = {x | 〈x,yi〉 = 0 for all i}.
1 IBM-Q16 data can be found in our supplementary material.
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For a Boolean function f : Fn2 → Fn2 we denote its universal (quantum)
embedding by

Uf : F2n
2 → F2n

2 with (x,y) 7→ (x, f(x) + y).

Notice that Uf (Uf (x,y)) = (x,y).
Let |x〉 ∈ C2 with x ∈ F2 be a qubit. We denote by H the Hadamard function

x 7→ 1√
2

(|0〉+ (−1)x |1〉).

We briefly write Hn for the n-fold tensor product H⊗. . .⊗H. Let |x〉 |y〉 ∈ C4 be
a 2-qubit system. The cnot (controlled not) function is the universal embedding
of the identity function, i.e. |x〉 |y〉 7→ |x〉 |x+ y〉. We call the first qubit |x〉 control
bit, since we perform a not on |y〉 iff x = 1.

A Simon function is a periodic (2 : 1)-Boolean function defined as follows.

Definition 2.1 (Simon function/problem). Let f : Fn2 → Fn2 . We call f
a Simon function if there exists some period s ∈ Fn2 \ {0} such that for all
x 6= y ∈ Fn2 we have

f(x) = f(y)⇔ y = x + s.

In Simon’s problem we have to find s given oracle access to f .

In order to solve Simon’s problem classically, we have to find some collision
x 6= y satisfying f(x) = f(y). It is well-known that this requires Ω(2

n
2 ) function

evaluations.
Simon’s quantum algorithm [24], called Simon (see Algorithm 1), solves Si-

mon’s problem with only O(n) function evaluations on a quantum circuit. It is
known that on input |0n〉⊗ |0n〉 a measurement of the first n qubits of the quan-
tum circuit QSimon

f depicted in Figure 1 yields some y ∈ Fn2 that is orthogonal

to s. Moreover, y ∈ Fn2 is uniformly distributed in the subspace s⊥, i.e. we obtain

|0n〉 Hn
Uf

Hn

|0n〉

Fig. 1: Quantum circuit QSimon
f

each y ∈ s⊥ with probability 1
2n−1 .

Simon repeats to measure QSimon
f un-

til it has collected n − 1 linearly in-
dependent vectors y1, . . . ,yn−1, from
which s can be computed via linear
algebra in polynomial time. It is not
hard to see that the collection of n−1
linearly independent vectors requires only O(n) function evaluations.

At this point we should stress that Simon only works for noiseless quantum
computations. Hence we have to ensure that each y is indeed in s⊥. Assume that
we obtain in line 4 of algorithm Simon at least a single y with 〈y, s〉 = 1. Then
the output of Simon is always false! Thus, Simon is not robust against noisy
quantum computations.

More precisely, if we obtain in line 4 erroneous y /∈ s⊥ with probability
τ , 0 < τ ≤ 1

2 , then Simon outputs the correct s only with exponentially small
probability success probability (1−τ)n. This motivates our following quite simple
error model.
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Algorithm 1: Simon

Input : Simon function f : Fn
2 → Fn

2 .
Output: Period s ∈ Fn

2

1 Set Y = ∅.
2 repeat
3 Run QSimon

f on |0n〉 ⊗ |0n〉.
4 Let y ∈ Fn

2 be the measurement of the first n qubits.
5 If y /∈ span(Y ), then include y in Y .

6 until |Y | = n− 1

7 Compute the unique s ∈ Y ⊥ \ {0}.
8 return s.

Definition 2.2 (LSN Error Model). Let τ ∈ R with 0 ≤ τ ≤ 1
2 . Upon mea-

suring the first n qubits of QSimon
f , our quantum device outputs with probability

1 − τ some uniformly random y ∈ s⊥, and with probability τ some uniformly
random y ∈ Fn2 \ s⊥. That is, the output distribution is

P[QSimon
f outputs y] =

{
1−τ
2n−1 if y ∈ s⊥

τ
2n−1 else

. (1)

We call τ the error rate of our quantum device. We call the problem of comput-
ing s from the distribution in Equation (1) Learning Simon with Noise (LSN).
We further refine LSN in Definition 5.2.

In the subsequent Section 3 we show that the results of our IBM-Q16 imple-
mentation only roughly follows the LSN Error Model of Definition 2.2. However,
we also introduce in Section 4 simple smoothing techniques such that the IBM-
Q16 measurements can be transformed into almost perfectly matching our error
model.

Notice that intuitively there is no efficient way to tell whether y ∈ s⊥. This
intuition is confirmed in Section 5, where we show that solving LSN is tightly
as hard as solving the Learning Parity with Noise (LPN) problem.

3 Quantum Period Finding on IBM-Q16

We ran our experiments on the IBM-Q16 Melbourne device, which (despite its
name) realizes 15-qubit circuits. Let us number IBM-Q16’s qubits as 0, . . . , 14.
Our implementation goal was to realize quantum period finding for Simon func-
tions f : Fn2 → Fn2 with error rate as small as possible. To this end we used the
following optimization criteria.

Gate count. IBM-Q16 realizes several 1-qubit gates such as Hadamard and
rotations, but only the 2-qubit gate cnot. On IBM-Q16, the application of
any gates introduces some error, where especially the 2-qubit cnot introduces
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approximately as much error as ten 1-qubit gates (see Figure 2). Therefore, we
introduce a circuit norm that defines a weighted gate count, which we minimize
in the following.

Definition 3.1. Let Q be a quantum circuit with g1 many 1-qubit gates and g2
many 2-qubit gates. Then we define Q’s circuit-norm as CN(Q) := g1 + 10g2.

Topology. IBM-Q16 can only process 2-qubit gates on qubits that are adjacent
in its topology graph, see Figure 2. Let G = (V,E) be the undirected topology
graph, where node i denotes qubit i.

Fig. 2: Topology graph G(V,E) of IBM-Q16.

×
=

• •
× •

Fig. 3: Realisation of swap via 3 cnots.

If {u, v} ∈ E then we can di-
rectly implement cnot(u, v), respec-
tively cnot(v, u), where u, respec-
tively v, serves as the control bit.
Hence, we call qubits u, v adjacent iff
{u, v} ∈ E.

Let us assume that we want to realize cnot(1, 3) in our algorithm. Since
{1, 3} /∈ E we may first swap the contents of qubits 2 and 3 by realizing a swap
gate via 3 cnots as depicted in Figure 3. Thus, with a total of 3 cnots we swap
the content of qubit 3 into 2. Since {1, 2} ∈ E, we may now apply cnot(1, 2).

3.1 Function Choice

Notice that in Definition 2.1 of Simon’s problem, we obtain oracle access to a
Simon function f . In a quantum-CPA attack we assume that a cryptographic
function f is realized via its quantum embedding Uf . An attacker gets black-box
access to Uf , i.e. he can query Uf on inputs of his choice in superposition.

We choose the following function fs whose Ufs is not too expensive to realize
on IBM-Q16.
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Definition 3.2. Let s ∈ Fn2 \ {0}, and let i ∈ [0, n − 1] be the smallest i with
si = 1. We define

fs : Fn2 → Fn2 , x 7→ x + xi · s.

Let us first show that fs is indeed a Simon function as given in Definition 2.1.
Moreover, we show that every Simon function – no matter whether it is efficiently
computable or not – is of the form fs followed by some permutation.

Lemma 3.1. Let fs(x) = x + xi · s as in Definition 3.2. Then the following
holds.

(1) fs is a Simon function with period s, i.e. fs(x) = fs(y) iff y ∈ {x,x + s}.
(2) Any Simon function is of the form P ◦ fs for some bijection P : Fn2 → Fn2 .

Proof. (1) We have for all x ∈ Fn2 that

fs(x + s) = x + s + (x + s)i · s = x + s + (xi + 1) · s = x + xi · s = fs(x).

Thus, f has period s. It remains to show that fs is (2 : 1), i.e. that fs(x) = fs(y)
implies that y = x or y = x + s. From fs(x) = fs(y) we conclude

x + xi · s = y + yi · s.

In the case xi = yi this implies x = y, whereas in the case xi 6= yi this implies
y = x + s.

(2) Let g be an arbitrary Simon function with period s. We have to write g in
the form g = P ◦ fs. By (1), we know that fs(x) = fs(y) iff y ∈ {x,x + s}. So
fs and g already have the same arguments that collide. It remains to map fs(x)
to the correct image g(x) via P . To this end define the bijection

P : Fn2 → Fn2 , x 7→ g(x + xis).

For all x ∈ Fn2 we obtain

P ◦ fs(x) = P (x + xis) = g(x + xis + (x + xis)i · s)

= g(x + xis + (x + 1)i · s) = g(x + s) = g(x),

which implies g = P ◦ fs.

Instantiation of Function Choice. Throughout the paper, we instantiate our
function fs with the period s = (sn−1, . . . , s0) = 0n−211 and xi = x0. We may
realize fs with n cnot-gates for copying x, and an additional 2 cnot-gates for
the controlled addition of s via control bit 0. See Figure 4 for an implementation
of fs with n = 3.

8



0 : x0 H • • • H

1 : x1 H • H

2 : x2 H • H

3 : y0

4 : y1

5 : y2

Fig. 4: Simon circuit Q1 with our realization of
fs and CN(Q1) = 56. The first 3 cnots copy x,
the remaining two cnots add s = 110.

Our function choice has
the advantage that it can be
implemented with only n + 2
cnot gates (if we are able
to avoid swaps). In addi-
tion, we need 2n Hadamards
for realizing Simon. Thus we
obtain a small circuit norm
CN = 10(n + 2) + 2n, which
in turn implies a relatively
small error on IBM-Q16. We
perform further circuit norm
minimization in Section 3.2.

Discussion of our Simple Function Choice. As shown in Lemma 3.1, our function
fs is general in the sense that any Simon function is of the form g = P ◦ fs(x).
However, for obtaining small circuit norm we instantiate our Simon function
with the simplest choice, where P is the identity function. In general, we could
instantiate non-trivial P via some variable-length PRF with fixed key such as
SiMeck [26]. This would however result in an explosion of the circuit norm and
therefore in an explosion of IBM-Q16’s noise rate τ(n).

|0〉 H

Ufs

H

...
...

|0〉 H H

|0〉

P
...

...
...

|0〉

Fig. 5: Simon with a general Simon
function P ◦ fs.

Thus, Simon with a general Simon
function could be implemented as de-
picted in Figure 5, where the permu-
tation P is quantumly implemented
in-place on the last n qubits (with
at most one ancilla bit as shown in
[22]). But already from Figure 5 one
observes that P does not at all ef-
fect the Simon algorithm. In fact, Si-
mon outputs the measurement of the
first n qubits, which only depend on
which arguments x,x + s collide un-
der fs, but not which function value
fs(x) = fs(x + s) they take (which is

controlled by P ). So, quantumly the choice of a non-trivial P would just unnec-
essarily increase the error rate τ .

However, we would like to point out that choosing P as the identity function
implies that classically extract the period s is not hard. Notice that fs(x) ∈
{x,x + s}. Thus, we may compute fs(1

n) + 1n = s. The reason that fs(x)
classically reveals its period so easily is that the image x + s together with the
argument x directly gives us s. This correlation between argument x and image
x + s is destroyed by a random P , which explains why in general period finding
classically becomes as hard as collision finding.

However, as explained above, Simon does not profit from a trivial P , since
Simon is oblivious to concrete function values.
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3.2 Minimizing the gate count of fs

We may implement fs on IBM-Q16 directly as the circuit Q1 from Figure 4.
Since Q1 uses 6 Hadamard- and 5 cnot-gates, we have circuit norm CN(Q1) =
56, but only when ignoring IBM-Q16’s topology. As already discussed, IBM-
Q16 only allows cnots between adjacent qubits in the topology graphG = (V,E)
of Figure 2.

Thus, IBM-Q16 compiles Q1 to Q2 as depicted in Figure 6. Let us check that
Q2 realizes the same circuit as Q1, but only acts on adjacent qubits. Let Ufs :
F6
2 → F6

2 be the universal quantum embedding of fs with (x,y) 7→ (x, fs(x) +
y) = x + x0s + y). In Ufs we first add each xi to yi via cnots, see Figure 4.
Thus, we have to make sure that each xi is adjacent to its yi. Second, we add
s = 011 via cnots controlled by x0. Thus, we have to ensure that x0 is adjacent
to y0 and y1.

We denote by i : j that qubit i contains the value j. This allows us to define
the starting configuration as

0 : x0 1 : x1 2 : x2 3 : y0 4 : y1 5 : y2.

Step 1 of Q2 (see Figure 4) performs swap(2, 3) and thus results in configuration

0 : x0 1 : x1 2 : y0 3 : x2 4 : y1 5 : y2.

Step 2 of C2 performs swap(1, 2) as well as swap(4, 3). This results in configu-
ration

0 : x0 1 : y0 2 : x1 3 : y1 4 : x2 5 : y2.

Since {0, 1}, {2, 3}, {4, 5} ∈ E, in Step 3 we now compute cnot(0, 1), cnot(2, 3)
and cnot(4, 5). This realizes the computation of x + y. Eventually, Step 4 of C2

performs swap(0, 1) and swap(2, 3) resulting in

0 : y0 1 : x0 2 : y1 3 : x1 4 : x2 5 : y2.

For realizing the addition of xi · s = x0 · 011, in Step 5 we compute cnot(1, 0)
and cnot(1, 2) using {0, 1}, {1, 2} ∈ E.

0 : x1 H • H

1 : y1

2 : x0 H • • • H

3 : y0

4 : x2 H • H

5 : y2

Fig. 7: Circuit Q3.

In total Q2 consumes six 1-
bit gates and twenty 2-bit gates
and thus has CN(Q2) = 206,
as compared to CN(Q1) =
56. In the following, our goal
is the construction of a quan-
tum circuit that implements Q1’s
functionality with minimal cir-
cuit norm on IBM-Q16.

In Figure 7 we start with cir-
cuit Q3, for which our optimiza-
tion eventually results in circuit
Q4 (Figure 10) that can be real-
ized on IBM-Q16 with gate count
only CN(Q4) = 33.

10



0 : x0 H • • •

1 : x1 H • • • • • H

2 : x2 H • • • • • •

3 : y0 • • • • H

4 : y1 • • H

5 : y2

Step 1 Step 2 Step 3 Step 4 Step 5

Fig. 6: IBM-Q16 compiles Q1 to Q2 with CN(Q2) = 206.

H • H
=

H H •

Fig. 8: Control bit change.

From the discussion before, it
should not be hard to see that Q3

realizes QSimon
fs

, but yet it has to
be optimized for IBM-Q16. First
of all observe that cnot is self-
inverse, and thus we can eliminate
the two cnot(2, 3) gates. After-
wards, we can safely remove qubit
3. The resulting situation for qubits 0, 1, 2 is depicted in Figure 9, where we use
a control bit change (see Figure 8).

H • H

= H • H H • H = H • • H

H • H

Fig. 9: Optimization of Q3.

From Figure 9 we see that the change of control bits from cnot(0, 1), cnot(2, 1)
to cnot(1, 0), cnot(1, 2) leads to some cancellation of self-inverse Hadamard
gates. Moreover, the secondHadamard of qubit 1 can be eliminated, since it does
not influence the measurement. We end up with circuit Q4 with an optimized
gate count of CN(Q4) = 33.

Since {0, 1}, {1, 2}, {4, 5} ∈ E, all three cnots of Q4 can directly be realized
on IBM-Q16. Notice that a configuration with optimal circuit norm is in general
not unique. For our example, the following configuration yields the same circuit
norm as the configuration of Q4:

3 : y0 4 : x0 5 : y1 6 : x1 8 : y2 9 : x2.

We optimized our IBM-Q16 implementation by choosing among all configu-
rations with minimal circuit norm the one using IBM-Q16’s qubits of smallest

11



0 : x1

1 : y1 H • •

2 : x0

4 : x2 H • H

5 : y2

Fig. 10: Optimized circuit Q4 on IBM-Q16 with CN(Q4) = 33.

error rate (see Figure 2). The choice of our configurations is given in Table 1,
a complete list of optimized circuits of this table can be found in Appendix A,
Figure 17.

@
@@n
q

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CN

2 y1 x0 y0 x1 21

3 y1 x0 y0 x2 y2 x1 33

4 y1 x0 x3 y3 y0 x2 y2 x1 45

5 y1 x0 x3 y3 y0 x2 y2 x4 y4 x1 57

6 y1 x0 x3 y3 y0 x2 y2 x4 y4 x5 y5 x1 69

7 y1 x0 x6 y6 x3 y3 y0 x2 y2 x4 y4 x5 y5 x1 81

Table 1: Table of configurations.

3.3 Experiments on IBM Q 16

For each dimension n = 2, . . . , 7 we took 8192 measurements on IBM-Q16 of
our optimized circuits from the previous section. The resulting relative frequen-
cies are depicted in Figure 11. For each n, let S(n) denote the set of erroneous

measurements in Fn2 \ s⊥. Then we compute the error rate τ(n) as τ(n) = |S(n)|
8192 .

In Figure 11 we draw horizontal lines 1−τ(n)
2n−1 , respectively τ(n)

2n−1 , for the prob-

12



ability distributions of our LSN Error Model for orthogonal, respectively non-
orthogonal, vectors.
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(f) τ(7) = 0.117

Fig. 11: IBM-Q16 measurements of our optimized circuits (see Appendix A,
Figure 17).

On the positive side, we observe that vectors in s⊥ are much more frequent.
Hence, IBM-Q16 is noisy, but in principle works well for period finding. E.g.
for n = 3, we have {s}⊥ = {011}⊥ = {000, 011, 100, 111}, and we measure one
of these vectors with probability 1− τ ≈ 90%.
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On the negative side, we observe the following effects.

– Different qubit quality. We deliberately ordered our qubits by error rate
to make the quality effect visible. Using the IBM-Q16 calibration, we choose
lowest error rate for the least significant bit x0 up to highest error rate for
the most significant bit xn−1 (nevertheless e.g. for n = 4 it seems that the
qubit for x2 performed worse than the one for x3).

– Bias towards 0. In Figure 11 we ordered our measurements on the x-axis
lexicographically. It can be observed that in general measurements with small
Hamming weight appear with larger frequencies than large Hamming weight
measurements. This indicates a bias towards the |0〉 qubit, which seems to
be a natural physical effect since |0〉 is a non-activated ground state.

– Increasing τ(n). The error rate τ(n) is a function increasing in n. This is
what we expected, since the circuit norm increases with n, and for larger n
we also had to include lower quality qubits.

Remark 3.1. We experimented with different periodic fs, especially more com-
plex than our choice from Definition 3.2. Qualitatively, we observed similar effects
albeit with larger error rates τ(n).

The effects of different qubit quality and bias towards 0 obviously violate our
LSN Error Model from Definition 2.2, since they destroy the uniform distribution
among orthogonal, respectively non-orthogonal, vectors. However, we introduce
in the subsequent Section 4 simple smoothing technique that (almost perfectly)
mitigate both effects.

4 Smoothing Techniques

Let us first introduce a simple permutation technique that mitigates the different
qubit quality.

Permutation Technique. We already saw in Section 3.2 that configurations
for some quantum circuit C with minimal circuit norm are not unique. Let M be
the set of configurations with minimal circuit norm, including all permutations of
qubits. Then we may perform measurements for circuits randomly chosen from
M , see Algorithm 2. This approach averages over the qubit quality, while due
to its invariant circuit norm preserving the error rate τ(n).

Algorithm 2: Permutation Technique.

1 Let M := {Configurations of C with minimal circuit norm}.
2 Evaluate C with configurations chosen randomly from M .

Instantiation of M in our experiments. First we chose a set of of highest quality
qubits {i1, . . . , i2n−1} together with a starting configuration with minimal circuit
norm. Let this be

14



i1 : x0 i2 : x1 i3 : y1 i4 : x2 . . . i2n−2 : xn−1 i2n−1 : yn−1.

We then chose b ∼ U and a random permutations π on {2, . . . , n−1}. This gives
us circuit-norm preserving configurations

i1 : xb i2 : x1−b i3 : y1 i4 : xπ(2) . . . i2n−2 : xπ(n−1) i2n−1 : yπ(n−1).

We took 50 circuit-norm preserving configurations, and for each we performed
8192 measurements on IBM-Q16.

The experimental results of our Permuation Technique are illustrated for
n = 5 in Figure 13b. In comparison, we have in Figure 13a the unsmoothed
distribution for 8192 measurements of a single optimal configuration (as in Fig-
ure 11). We already see a significant distribution smoothing, especially vectors
with the same Hamming weight obtain similar probabilities. But of course, there
is still a clear bias towards 0, which cannot be mitigated by permutations.

Double-Flip Technique. To mitigate the effect that vectors with small Ham-
ming weight are measured more frequently than vectors with large Hamming

|0n〉
QSimon

fs

X X

|0n〉

Fig. 12: Double-Flip circuit QDF . Triple
lines represent classical wires.

weight, we flip in Simon’s circuit all
bits via NOT-gatesX before measure-
ment, see Figure 12. This flipping in-
verts the bias towards 0 that comes
from the quantum measurement (not
from the previous quantum computa-
tion). Since after flipping we measure
the complement, we have to again
flip all bits (classically) after measure-
ment and combine them with the original measurements.

Experimental Results and Discussion. We performed 8192 measurements with
circuit QDF from Figure 12, the results are illustrated in Figure 13c. As ex-
pected, we now obtain a bias towards 1. Hence, in the Double-Flip Technique
we put together the original measurements with 0-bias from Figure 13a and the
flipped measurements with 1-bias from Figure 13c, resulting in the smoothed
distribution from Figure 13d.

From Figure 13d we already see that the Double-Flip Technique is quite
effective. Moreover, similar to the Permutation Technique, Double-Flip is a gen-
eral smoothing technique that can be applied for other quantum circuits as well.
However, there is also a significant drawback of Double-Flip, since it requires
additional (small) quantum circuitry for performing X. Thus, as opposed to the
Permutation Technique the Double-Flip does not preserve circuit norm. This
implies that it slightly increases the error rate τ , as we will see in Section 4.1,
where we study more closely the quality of our smoothing techniques.
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(a) Unsmoothed measurements, n=5.
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(b) Permutation Technique.
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(c) Measurements QDF (Figure 12).
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(d) Double-Flip Technique.
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(e) Complemented measurements.
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(f) Hamming Technique.

Fig. 13: Smoothed IBM-Q16 measurements.

Hamming Technique. The Hamming Technique is similar to the Double-
Flip Technique, but as opposed to Double-Flip Hamming is specific to Simon-
type problems and a purely classical post-processing of data without adding any
additional circuitry.
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Let Q ⊆ Fn2 be a multiset of quantum measurements, e.g. the set of 8192
measurements from Figure 13a. Then consider the complementary multiset

Q̄ = {q + 1n | q ∈ Q},

where we flip all bits. Let q ∈ Q ∩ s⊥, i.e. q is a measurement in the subspace
orthogonal to s. By complementing Q we want to preserve orthogonality, i.e. we
want to have q + 1n ∈ s⊥ which is true iff 1n ∈ s⊥ by the subspace structure.

Thus, complementation preserves orthogonality iff 1n ∈ s⊥, which is in turn
equivalent to even Hamming weight h(s). Similar to Double-Flip, in the Ham-
ming Technique we combine both measurements Q∪Q̄. The Hamming Technique
mitigates the effect that for each q ∈ Q with large frequency (due to the 0-bias)
we also obtain q + 1n with small frequency (due to the 0-bias), and vice versa.
Thus, averaging both frequencies should smooth our distribution closer to uni-
formity.

What happens if 1n /∈ s⊥? We want to add some vector v ∈ Fn2 with Ham-
ming weight as large as possible. It is not hard to see that there always exists
some v ∈ s⊥ with h(v) ≥ n − 1. Thus, we can simply try all n + 1 possible
vectors.

Experimental Results. Since our instantiation of fs from Section 3.1 uses even-
weight periods s, we can use the multiset Q̄ (with 1n), which was done in Fig-
ure 13e and is a direct mirroring of Q in Figure 13a. The multiset of measurement
Q ∪ Q̄ is then depicted in Figure 13f.

In comparison with Double-Flip from Figure 13d, we see that the Hamming
technique provides in Figure 13f a distribution which is closer to the uniform
distribution among orthogonal and non-orthonal vectors. Thus, for our experi-
mental data one should prefer the Hamming technique over Double-Flip.

Combination of techniques. The same preference can be observed when we
combine the Permutation technique with either Double-Flip (see Figure 14a) or
with Hamming (see Figure 14b).
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Fig. 14: Smoothing using a combination of techniques.
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The combination Permutation/Hamming seems to outperform Permutation/
Double-Flip, and Permutation/Hamming almost optimally follows our LSN Er-
ror Model from Definition 2.2.

4.1 Quality Measures Statistics.

Let us introduce a well-known statistical distance that quantitatively measures
the effectiveness of our smoothing techniques. Recall that we require error dis-
tributions close to our LSN Error Model, in order to justify the proper use of
LPN solvers in subsequent sections.

The Kullback-Leibler divergence describes the loss of information when going
from a distribution P – e.g. our LSN Error Model distribution – to another
distribution Q – e.g. our smoothed IBM-Q16 measurements.

Definition 4.1 (Kullback–Leibler divergence (KL)). The Kullback-Leibler
divergence of two probability distributions P towards Q on Fn2 is

DKL(P ||Q) :=
∑
y∈Fn2

P (Y ) log

(
P (y)

Q(y)

)
.

We compute KL and the error rate τ on the data from Figures 13 and 14.
The results are given in Table 2.

XXXXXXXXXSmoothing
Measure

KL τ

None 0.04644 0.10730
Permutation 0.01596 0.10954
Double-Flip 0.00600 0.13104

Permutation/Double-Flip 0.00297 0.12044
Hamming 0.00139 0.10730

Permutation/Hamming 0.00011 0.10954

Table 2: Kullback–Leibler applied to our Smoothing Techniques.

As we would expect for KL, Hamming is more effective than Double-Flip.
Also as predicted, Double-Flip increases the error rate τ , whereas the other
techniques leave τ (basically) unchanged. In particular, Hamming leaves τ un-
changed, since it is only a classical post-processing of our quantum data. We
have already seen qualitatively in Figure 14 that the combination Permuta-
tion/Hamming performs best. This is supported also quantitatively in Table 2:
KL is very close to zero, indicating that via Permutation/Hamming smoothed
IBM-Q16 quantum measurements almost perfectly agree with the LSN Error
Model.

The results of applying Permutation/Hamming to all n = 2, . . . , 7 are de-
picted in Figure 15.
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(c) n = 4, τ = 0.09546, KL = 0.00009.
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(d) n = 5, τ = 0.10954, KL = 0.00011.
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(e) n = 6, τ = 0.11602, KL = 0.00038.
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(f) n = 7, τ = 0.12398, KL = 0.00022.

Fig. 15: Via Permutation/Hamming Technique smoothed IBM-Q16 measure-
ments for n = 2, . . . , 7. KL is the Kullback-Leibler divergence to the LSN Error
Model distribution.
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5 LSN is Polynomial Time Equivalent to LPN

In the previous section, we smoothed our IBM-Q16 experiments to the LSN
Error Model (Definition 2.2). Recall that the LSN Error Model states that with
probability τ we measure in the quantum circuit QSimon

fs
some uniformly dis-

tributed y ∈ Fn2 \ s⊥. The question is now whether such erroneous y as in our
error model can easily be handled, i.e. whether LSN can be efficiently solved.

In this section, we answer this question in the negative. Namely, we show
that solving LSN is tightly as hard as solving the well-studied LPN problem,
which is supposed to be hard even on quantum computers.

Definition 5.1 (LPN-Problem). Let s ∈ Fn2 \ {0} be chosen uniformly at
random, and let τ ∈ [0, 12 ). In the Learning Parity with Noise problem, de-
noted LPNn,τ , one obtains access to an oracle OLPN(s) that provides samples
(a, 〈a, s〉+ ε), where a ∼ Un and ε ∼ Berτ . The goal is to compute s.

Definition 5.1 explicitly excludes s = 0 in LPN. Notice that the case s = 0
implies that the LPN oracle has distribution Un × Berτ , whereas in the case
s 6= 0 we have Pa[〈a, s〉 = 0] = 1

2 and therefore Pa[〈a, s〉 + ε = 0] = 1
2 . Hence,

for s 6= 0 the LPN samples have distribution Un × U . This allows us to easily
distinguish both cases by a majority test, whenever τ is polynomially bounded
away from 1

2 . In conclusion, s = 0 is not a hard case for LPN and may wlog be
excluded.

Let us now define the related Learning Simon with Noise problem that reflects
the LSN Error Model.

Definition 5.2 (LSN-Problem). Let s ∈ Fn2 \ {0} be chosen uniformly at
random, and let τ ∈ [0, 12 ). In the Learning Simon with Noise problem, denoted
LSNn,τ , one obtains access to an oracle OLSN(s) that provides samples y, where
y ∈ Fn2 is distributed as in Definition 2.2, i.e.

P[y] =

{
1−τ
2n−1 , if y ∈ s⊥

τ
2n−1 , else

and therefore P[〈y, s〉 = 0] = 1− τ.

The goal is to compute s.

In the following we prove that LSNn,τ is polynomial time equivalent to
LPNn,τ by showing that we can perfectly mutually simulateOLPN(s) andOLSN(s).
The purpose of excluding s 6= 0 from LPNn,τ is to guarantee in the reduction
non-trivial periods s 6= 0 in LSNn,τ .

Theorem 5.1 (Equivalence of LPN and LSN). Let A be an algorithm
that solves LPNn,τ (respectively LSNn,τ ) using m oracle queries in time T with
success probability εA. Then there exists an algorithm B that solves LSNn,τ (re-
spectively LPNn,τ ) using m oracle queries in time T with success probability
εB ≥ εA

2 .
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Algorithm 3: LPN ⇒ LSN

Input : n, τ,OLSN(s),m
Output: s

1 Choose z ∼ Un.
2 for i = 1 to m do
3 Set yi ← OLSN(s).
4 Choose bi ∼ U .

5 end
6 s← ALPN(n, τ, (y1 + b1z, b1), . . . , (ym + bmz, bm))

Proof. Assume that we want to solve LSN via an algorithm ALPN with success
probability εA as in Algorithm 3.

We show in the following that Algorithm 3 perfectly simulates the oracle
OLPN(s) via OLSN(s) if the vector z ∼ Un chosen in Line 1 satisfies 〈z, s〉 = 1.
Since s 6= 0, we have Pz[〈z, s〉 = 1] = 1

2 . Therefore Algorithm 3 succeeds with
probability

εB ≥ Pz[〈z, s〉 = 1 ∩ A outputs s] =
εA
2
.

Let us now show correctness of Algorithm 3. We first show that the con-
structed LPN samples (y + bz, b) have the correct distribution. Let ε = 〈y +
bz, s〉+ b. Since 〈z, s〉 = 1, we have

Py[ε = 1] = Py[〈y+bz, s〉+b = 1] = Py[〈y, s〉+b〈z, s〉+b = 1] = Py[〈y, s〉 = 1] = τ.

It remains to show that y + bz is uniformly distributed. To this end, we show
that

p0 = Py,b[y + bz | 〈y, s〉 = 0] =
1

2n
.

Analogous, it follows that p1 = Py,b[y + bz | 〈y, s〉 = 1] = 1
2n . From both

statements we obtain

Py,b[y + bz] = Py[〈y, s〉 = 0] · p0 + Py[〈y, s〉 = 1] · p1 =
1− τ

2n
+

τ

2n
=

1

2n
,

as desired. It remains to show that

p0 = Py,b[y + bz | 〈y, s〉 = 0]

= Pb[b = 0] · Py[y | 〈y, s〉 = 0] + Pb[b = 1] · Pa[y + z | 〈y, s〉 = 0]

=
1

2

(
1− τ
2n−1

+
τ

2n−1

)
=

1

2n
.

This completes the analysis of Algorithm 3.
For Algorithm 4 we conclude the success probability analogous to the reason-

ing for Algorithm 3, i.e. we succeed when 〈z, s〉 = 1 and ALSN succeeds. So let
us assume in the following correctness analysis that we are in the case 〈z, s〉 = 1.
This implies for the constructed LSN samples a + bz that

〈a + bz, s〉 = 0⇔ 〈a, s〉+ b〈z, s〉 = 0⇔ 〈a, s〉 = b.
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Algorithm 4: LSN ⇒ LPN

Input : n, τ,OLPN(s),m
Output: s

1 Choose z ∼ Un.
2 for i = 1 to m do
3 Set (ai, bi)← OLPN(s).
4 end
5 s← ALSN(n, τ,a1 + b1z, . . . ,am + bmz)

Let ε = 〈a, s〉+ b. It follows that

Pa,b[〈a + bz, s〉 = 0] = Pa,b[〈a, s〉 = b] = Pa,b[ε = 0] = 1− τ.

We also have to show that we obtain a uniform distribution among all a+bz ∈ s⊥.
This follows from

Pa,b[a + bz | 〈a + bz, s〉 = 0] = Pa,b[a + bz | 〈a, s〉 = b]

= Pa[〈a, s〉 = 0] · Pa,b[a + bz | 〈a, s〉 = b = 0] +

Pa[〈a, s〉 = 1] · Pa,b[a + bz | 〈a, s〉 = b = 1]

=
1

2
· Pa[a | 〈a, s〉 = 0] +

1

2
· Pa[a + z | 〈a, s〉 = 1]

=
1

2
· 1

2n−1
+

1

2
· 1

2n−1
=

1

2n−1
.

Analogous, we can show that we obtain a uniform distribution among all
a + bz ∈ Fn2 \ s⊥. This proves that we perfectly simulate LSN-samples via OLPN,
and thus shows correctness of Algorithm 4.

Theorem 5.1 shows that under the LPN assumption we cannot expect to
solve LSN in polynomial time. However, it does not exclude that quantum mea-
surements that lead to an LSN distribution are still useful in the sense that
they help us to solve period finding faster than on classical computers. In the
following section, we show that LSN distributed quantum outputs indeed lead
to speedups even for large error rates τ .

6 Theoretical Error Handling for Simon’s Algorithm

It is well-known [19] that period finding for n-bit Simon functions classically re-
quires time Ω(2

n
2 ). So despite the hardness results of Section 5 we may still hope

that even error-prone quantum measurements lead to period finding speedups.
Indeed, it is also known that for any fixed τ < 1

2 the BKW algorithm [4] solves

LPNn,τ — and thus by Theorem 5.1 also LSNn,τ — in time 2O
(

n
logn

)
. This

implies that asymptotically the combination of LSN samples together with a
suitable LPN-solver already outperforms classical period finding.
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In this work, we focus on the LPN-solvers of Esser, Kübler, May [11] rather
than the class of BKW-type solvers [4,13,16,10], since they have a simple de-
scription and runtime analysis, are easy to implement, have low memory con-
sumption, are sufficiently powerful for showing quantum advantage even for large
errors τ < 1

2 , and finally they are practically best for the IBM-Q16 error rates
τ ∈ [0.09, 0.13].

We start with the analysis of the Pooled Gauss algorithm [11]. Pooled

Gauss solves LPNn,τ in time Θ̃
(

2log(
1

1−τ )·n
)

using Θ̃
(
n2
)

samples.

The following theorem shows that period finding with error-prone quantum
samples in combination with Pooled Gauss is superior to purely classical pe-
riod finding whenever the error τ is bounded by τ ≤ 0.293.

Theorem 6.1. In the LSN Error Model (Definition 2.2), Pooled Gauss finds
the period s ∈ Fn2 of a Simon function fs using Θ̃

(
n2
)

many LSNn,τ -samples,
coming from practical measurements of Simon’s circuit QSimon

fs
with error rate τ ,

in time Θ̃
(

2log(
1

1−τ )·n
)

. This improves over classical period finding for error

rates

τ < 1− 1√
2
≈ 0.293.

Proof. We use Algorithm 3, where any OLPN(s)-call is provided by a measure-
ment of QSimon

fs
. In the LSN Error Model, this gives us an LSNn,τ -instance which

is transformed by Algorithm 3 into an LPNn,τ -instance. We use Pooled Gauss
as the LPN-solver ALPN inside Algorithm 3. This immediately implies time com-

plexity Θ̃
(

2log(
1

1−τ )·n
)

.

It remains to show outperformance of the classical algorithm, i.e. log
(

1
1−τ

)
<

1
2 . Notice that our condition τ < 1− 1√

2
implies that 1

1−τ <
√

2 and therefore

log

(
1

1− τ

)
< log(

√
2) =

1

2
.

Theorem 6.1 already shows the usefulness of a quite limited quantum oracle
that only allows us polynomially many measurements, whenever its error rate τ
is small enough.

If we allow for more quantum measurements, the Well-Pooled Gauss
algorithm [11] solves LPNn,τ in improved time and query complexity Θ̃(2f(τ)n),
where f(τ) = 1− 1

1+log( 1
1−τ )

. The following theorem shows that Well-Pooled

Gauss in combination with error-prone quantum measurements improves on
classical period finding for any error rate τ .

Theorem 6.2. In the LSN Error Model (Definition 2.2), Well Pooled Gauss
finds the period s ∈ Fn2 of a Simon function fs using Θ̃(2f(τ)n) many LSNn,τ -
samples, coming from practical measurements of Simon’s circuit QSimon

fs
with
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error rate τ , in time Θ̃(2f(τ)n), where

f(τ) = 1− 1

1 + log( 1
1−τ )

.

This improves over classical period finding for all error rates τ < 1
2 .

Proof. As in the proof of Theorem 6.1 we use Algorithm 3, where measurements
of QSimon

fs
provide the OLPN(s)-calls and Well Pooled Gauss is the LPN-

solver ALPN. Correctness and the claimed complexities follow immediately.

It remains to show outperformance of any classical period finding algorithm.
Notice that τ < 1

2 implies 1
1−τ < 2 and therefore log( 1

1−τ ) < 1. This in turn
implies

f(τ) = 1− 1

1 + log( 1
1−τ )

< 1− 1

2
=

1

2
.

The results of Theorem 6.1 and Theorem 6.2 show that quantum measure-
ments of QSimon

fs
help us (asymptotically) even for large error rates τ , provided

that our error model is sufficiently accurate.

7 Practical Error Handling for Simon’s Algorithm

In this section, we compare the practical runtimes needed to find periods s with
the smoothed experimental data from our IBM-Q16 quantum measurements
(see Figure 15) with purely classical period finding.

Notice that our LPN-solvers incur some polynomial overhead, which makes
them for very small n as on IBM-Q16 inferior to purely classical period finding.
Moreover, we would like to stress the experimental result of Section 3 that IBM-
Q16’s error rate τ(n) is a function increasing in n. So even if asymptotically LPN-
solvers outperform classical period finding, a fast convergence of τ(n) towards 1

2
prevents practical quantum advantage.

Periods classically. Let us start with the description of an optimal classical
period finding algorithm, inspired by [19]. Naively, one may think that it is
optimal to query fs at different random points xi, until one hits the first collision
fs(xi) = fs(xj). However, assume that we have already queried the set of points
P = {x1,x2,x3}, without obtaining a collision. This gives us the information
that s is not in set of distances D = {x1 + x2,x2 + x3,x1 + x3}. This implies
that we should not ask x1 +x2 +x3, since it lies at distance x1 +x2 of x3. Hence
on optimal algorithm keeps track of the set D of all excluded distances. This is
realized in our algorithm Period, see Algorithm 5.
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Algorithm 5: Period

Input : Access to fs.
Output: Secret s.

1 begin
2 Set P = {(0, fs(0))}. . Set of queried points.

3 Set D = {0}. . Set of distances.

4 repeat
5 Select x ∈ argmax{|{s′ ∈ D | (x + s′, ·) 6∈ P}|}. . Optimal next query.

6 P := P ∪ (x, fs(x)) . Update queries.

7 for (x′, fs(x
′)) ∈ P do

8 D := D ∪ {x + x′} . Update distances.

9 end

10 until ∃x′ 6= x : (x′, fs(x)) ∈ P or |D| = 2n − 1
11 if |D| = 2n − 1 then return s ∈ Fn

2 \D. . Only possible period.

12 else return x + x′. . Collision found.

13 end

Periods quantumly. By the result of Section 5 we may first transform our
quantum measurements into LPN samples, and then use one of the LPN-solvers
from Section 6. Since the error rates from our smoothed IBM-Q16 measurements
(Figure 15) are below 1

8 , according to Theorem 6.1 we may use Pooled Gauss.
Instead of applying the LSN-to-LPN reduction to our smoothed data, we

directly adapt Pooled Gauss into an LSN-solver, called Pooled LSN (Algo-
rithm 6). Pooled LSN can be considered as a fault-tolerant version of Simon
(Algorithm 1) that iterates until we obtain an error-free set of n − 1 linearly
independent vectors. Notice that error-freeness can be tested, since the resulting
potential period s′ is correct iff fs(s

′)=fs(0).

Algorithm 6: Pooled LSN

Input : Pool P ⊂ Fn
2 of LSN samples with |P | ≥ n− 1

Output: Secret s
1 begin
2 repeat
3 Randomly select a linearly independent set Y = {y1, . . . ,yn−1} ⊆ P .

4 Compute the unique s′ ∈ Y ⊥ \ {0}.
5 until fs(s

′)
?
= fs(0)

6 return s′.

7 end

Run time comparison. Period and Pooled LSN exponentially often it-
erate their repeat-loops, where each iteration runs in polynomial time (using
the right data structure). Hence, asymptotically the number of iterations dom-
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inate runtimes for both algorithms. For ease of simplicity, we take as cost mea-
sure only the exponential number of loops, ignoring all polynomial factors (the
polynomial factors actually dominate in practice for our small dimensions n).

2 3 4 5 6 7

1

2

3

Dimension
It

er
at

io
n

(l
og

)

Pooled LSN loops
Period loops

Fig. 16: Log-scaled loop iterations of
Pooled LSN and Period, averaged
over 10.000 iterations.

Using this (over-)simplified loop cost
measure, we ran 10.000 iterations of
Period for n = 2, . . . , 7 and averaged
over the runtimes. For the quantum
period finding we took as pool P the
complete smoothed data of Figure 15.
We then also ran 10.000 iterations of
Pooled LSN for n = 2, . . . , 7 and av-
eraged over the runtimes. The result-
ing log-scaled runtimes are depicted in
Figure 16.

As expected, Period’s experi-
mental runtime exponent is n

2 . For
Pooled LSN, we obtain an experi-
mental regression line of roughly n

3 ,
where the slope seems to decrease
with n. This results in a cut-off point
for the loop numbers between n = 4
and n = 5. Thus, experimentally we obtain quantum advantage, at least for our
loop cost measure.
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A Appendix

0 : y1 H • •

1 : x0

14 : x1

(a) n = 2

0 : y1 H • •

1 : x0

8 : x2 H • H

9 : y2

14 : x1

(b) n = 3

0 : y1 H • •

1 : x0

4 : x3 H • H

5 : y3

8 : x2 H • H

9 : y2

14 : x1

(c) n = 4

0 : y1 H • •

1 : x0

4 : x3 H • H

5 : y3

8 : x2 H • H

9 : y2

10 : x4 H • H

11 : y4

14 : x1

(d) n = 5

0 : y1 H • •

1 : x0

4 : x3 H • H

5 : y3

8 : x2 H • H

9 : y2

10 : x4 H • H

11 : y4

12 : x5 H • H

13 : y5

14 : x1

(e) n = 6

0 : y1 H • •

1 : x0

2 : x6 H • H

3 : y6

4 : x3 H • H

5 : y3

8 : x2 H • H

9 : y2

10 : x4 H • H

11 : y4

12 : x5 H • H

13 : y5

14 : x1

(f) n = 7

Fig. 17: Optimized circuits for n = 2, . . . , 7 with s = 0n−211. We omit qubits 6, 7
and so input y0, which is not required after optimization.
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