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Abstract

In fifth-generation (5G) cellular networks, users feed back to the base station the index of the

precoder (from a codebook) to be used for downlink transmission. The precoder is strongly related

to the user channel and in turn to the user position within the cell. We propose a method by which

an external attacker determines the user position by passively overhearing this unencrypted layer-2

feedback signal. The attacker first builds a map of fed back precoder indices in the cell. Then, by

overhearing the precoder index fed back by the victim user, the attacker finds its position on the map.

We focus on the type-I single-panel codebook, which today is the only mandatory solution in the 3GPP

standard. We analyze the attack and assess the obtained localization accuracy against various parameters.

We analyze the localization error of a simplified precoder feedback model and describe its asymptotic

localization precision. We also propose a mitigation against our attack, wherein the user randomly selects

the precoder among those providing the highest rate. Simulations confirm that the attack can achieve

a high localization accuracy, which is significantly reduced when the mitigation solution is adopted, at

the cost of a negligible rate degradation.
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I. INTRODUCTION

Economic and political interests push for the deployment of technologies to localize users,

to the benefit of companies and states. As a matter of fact, many new services exploit the

knowledge of our position, with a significant added value. For this reason, in the definition of the

5th generation (5G) of cellular systems, a significant emphasis has been placed on localization

services [1]. In order to localize a user, the cellular network may receive the radio signals

transmitted by the user through one or more base stations, possibly equipped with multiple

antennas [2]. In general, for a higher transmission frequency, the localization error obtained

with this technique is reduced, [3]. Therefore, moving from microwaves in 4th generation (4G)

networks (GHz) to millimeter waves (mmWave, at hundreds of GHz) in 5G networks, and then

to sub-millimeter waves (THz) in 6th generation (6G) networks, paves the way for a localization

precision within a few centimeters.

Unfortunately, malicious devices external to the network may also be interested in localizing

specific users, with a severe violation of their privacy. This is a key issue nowadays, with various

personal and societal impacts [4], and motivates the investigation carried out in this paper. Indeed,

position privacy was indicated as one of the critical security issues, in particular of the new 5G

networks [5].

One solution to localize the user is to exploit again its transmitted radio signal, similar to

what is legitimately done by the cellular network. In this respect, various localization methods

are available in the literature based on the channel state information. From the channel state

information, the time of arrival (ToA) or angle of arrival (AoA) can be estimated, and then

trilateration or triangulation can be applied, see [6] and references therein. Another approach

is also called radio fingerprint pattern matching (RFPM) attack [7], [8]. The received signal

strength indicator (RSSI) [9], [10], and the multipath channel impulse response [11] can also

be used to this end. For a survey, see [12] and [13] for applications to massive MIMO in 5G

networks. Among mitigation techniques against these attacks, we mention the privacy-preserving

beamforming [14].

In an alternative approach, the attacker eavesdrops on the demodulated signal coming from the

user and the legitimate base stations. This type of attack may be easier to implement than that

based on channel estimation, as it only requires demodulation and decoding of digital signals. In

particular, it does not require multiple receive antennas (typically needed for localization based
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on channel parameters) and can use standard chip-sets. Its lower complexity potentially makes

it more dangerous for the privacy of user location. In [15], some attacks operating at layer 2 of

the long-term evolution (LTE) protocol are presented, including tracking of user positions and

mapping of user temporary network identity to the temporary radio identity. Eavesdropping the

LTE temporary identifiers enables tracking users also as they move from one cell to another

[16]. 1 In [17] and [18], various attacks are proposed to retrieve the user position, by either

letting the user report its global navigation satellite system (GNSS) position or obtaining the

identifier of its serving base station.

Focusing on truly passive solutions based on eavesdropping of control signals (not exploiting

the reporting of the GNSS position), we note that all attacks in the literature provide only the

information on the cell where the user is, which is a coarse localization. These attacks are also

denoted as cell identifiers (CID) attacks. In this paper, we propose a novel localization attack,

based on eavesdropping the control signal transmitted by users and related to their channel state

information, as provided by the new radio (NR) 3GPP standard specifications of 5G networks. In

particular, 3GPP provides means for the user to estimate the downlink channel and then choose

the best precoder from a predefined codebook; lastly, the user feeds back to the base station the

index of the selected precoder. Indeed, the precoder is related to the channel experienced by the

user, and thus it reveals, in part, its position.

We consider the following attack. The attacker (possibly supported by colluded users) first

builds a map of precoder indices fed back from various positions in the cell. Then, by overhearing

the precoder index fed back by the victim user, the attacker finds its position on the map. We

focus on the type-I single-panel codebook, which is the only mandatory solution in the standard,

as of today. When operating at mmWaves, both the user and the base station must be equipped

with multiple antennas, and a precise beamforming is needed for data communications, thus

a more precise description of the precoder will be fed back. This, in turn, provides a better

localization of the user, similar to what happens in radio localization techniques.

We analyze the attack and assess the obtained localization accuracy against various parameters,

e.g., the feedback mode, the number of subbands, and the size of the cell. We analyze the asymp-

totic localization error of a simplified precoder feedback model as the number of subbands and

channel clusters get large. We also propose a mitigation strategy against our attack, wherein the

1This attack is not possible anymore in 5G networks, where the temporary identifier is refreshed whenever the user changes

cell.
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user randomly selects the precoder among those providing the higher rate. Extensive simulations

on reference channel models confirm that the attack can achieve a high localization accuracy,

which is instead significantly reduced when the mitigation solution is adopted, at the cost of a

negligible rate degradation. Moreover, we compare our technique with the three aforementioned

solutions available in the literature: the CID, the ToA, and the RFPM attacks. Our solution

has a significantly better localization accuracy than the CID attack. Its accuracy improves as

the number of subbands grows, outperforming ToA in most cases, while also requiring simpler

hardware and software. Conversely, its accuracy is lower than that of RFPM, which however

requires more complex hardware and software.

The rest of the paper is organized as follows. Section II explains the system model of the

channel and its spatial correlation. Section III describes the precoder index feedback protocol

defined by the 3GPP standard. The proposed localization attack is described in Section IV. The

mean square error of the localization attack is analyzed in Section V. The numerical results

based on the standard channel model are given in Section VI. Finally, Section VII concludes the

paper.

Notation: In this paper, ⊗ denotes the Kronecker product. E[·] denotes the expectation

operator. Scalar variables are indicated in italics, while column vectors and matrices are in

boldface italics, and sets are in calligraphic. ⌊x⌋ and ≺ x ≻ denote the largest integer i ≤ x and

the nearest integer rounding x, respectively; || · ||2 is the L2-norm. Q(·) denotes the Q-function.

x ∼ U([a, b]) means that the random variable x is uniformly distributed in the interval [a, b];

x ∼ CN (µ,Σ) represents a circulant-symmetric Gaussian-distributed variable with mean µ and

variance Σ. IN is the identity matrix of size N × N , whereas det[X], XT , and XH denote

the determinant, transpose, and conjugate-transpose of matrix X , respectively. |X | denotes the

cardinality of set X . atan2(y, x) is the two-argument arctangent.

II. CHANNEL MODEL

As shown in Fig. 1, we consider a circular cell with radius R of a cellular network. 2 The

new-generation node base (gNB) is located at the center of the circle, which coincides with the

origin of coordinates (0,0), while the position of the victim user equipment (UE) has coordinates

p = (px, py).

2We consider here a two-dimensional space, ignoring its altitude, for the sake of a simpler explanation.
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Fig. 1. Schematic description of the channel model for a circular cell of radius R, and a generic cluster ℓ, of coordinates qℓ.

The gNB is equipped with a linear array of N cross-polarized antennas (2N antennas in total),

whereas the UE is equipped with a linear array of N̄ antennas. According to release 16 of the

3GPP cellular network standard, orthogonal frequency division modulation (OFDM) is used in

downlink and subcarriers are grouped in subbands.

We assume that K subbands are assigned to the victim UE p and that the channel is the same

for all subcarriers within the same subband. Let H(p, k) be the downlink channel on subband

k for a UE in position p. The gNB provides one stream (or layer in 3GPP parlance) to the UE

at mmWave: the gNB transmits a digitally modulated symbol sκ(k) on subcarrier κ of subband

k, with a precoding N-size column vector w(k), so that the signal received at the UE is

rκ(k) = H(p, k)w(k)sκ(k) + vκ(k), k = 1, . . . , K, (1)

where vκ(k) is the additive white Gaussian noise (AWGN) N̄ -size column vector with zero-mean

independent entries and variance σ2
v . 3

We now introduce the channel model. First, note that we do not adopt the model defined

by the 3GPP standard [19], since therein the channel realizations do not depend on the UE

position. In reality though, the angle of departure (from the gNB) and of arrival (at the UE) of

each channel path are related to the position of the gNB, the UE, and the reflectors that define

the path. As we exploit this information to localize the UE, we need a spatially-consistent and

location-consistent channel model. Therefore, we first recall the location-consistent model of

3To improve the readability, we use letters v and V consistently for noise variables, whereas letter w is for precoding vectors.
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[20] and then propose a modification to make it also spatially-consistent. Note that this model

is not tailored to the proposed localization method, but it only realistically connects the wireless

channel characteristics to the position of the UE and surrounding objects. Such a model is

therefore useful for the analysis of any localization method based on the channel features.

A. Location-consistent Channel Model

We now provide the channel model for each subband, recalling that all subcarriers of the

same subband experience the same channel. According to [20], the channel between a UE and

its serving gNB is determined by reflections on L clusters, assumed to be static. The position of

cluster ℓ ∈ L = {1, . . . , L} has coordinates qℓ = (qx,ℓ, qy,ℓ). This scenario is illustrated in Fig. 1.

The transmission delay of the path through cluster ℓ is

τℓ(p) =
1

c0

(

||p− qℓ||2 + ||qℓ||2
)

, (2)

where c0 is the speed of light. Then, according to [2], the channel complex gain for all subcarriers

of subband k ∈ K = {1, . . . , K}, relative to cluster ℓ, is

γℓ(p, k) =
√
N
APLgℓ(k)

τℓ(p)
e
−j

2πkτℓ(p)

KTS , (3)

where APL is the path-loss normalization factor, TS is the sampling period, and gℓ(k) is zero-

mean unitary-variance complex Gaussian distributed and independent for each subband and each

cluster. Gain gℓ(k) is also assumed to be time-invariant.

The angle between cluster ℓ and the gNB is

φ′(qℓ) = atan2 (qy,ℓ, qx,ℓ) , (4)

while the angle between cluster ℓ and the UE is

φ̄′(p, qℓ) = atan2 (qy,ℓ − py, qx,ℓ − px) . (5)

For subband k, the angle of departure from the gNB is [19]

φ(p, qℓ, k) = φ′(qℓ) + cASDαℓ(p, k), (6)

while the angle of arrival to the UE is

φ̄(p, qℓ, k) = φ̄′(p, qℓ) + cASAᾱℓ(p, k) + vO, (7)



7

where αℓ(p, k) ∼ U([−1, 1]) and ᾱℓ(p, k) ∼ U([−1, 1]) are spatially correlated (see Section II-B)

and independent per subband, and cASD and cASA are constants [21, Table 7.5-3]; lastly, vO ∼
U([0, 2π)) represents the orientation of the device in the x-y-plane.

For a signal departing from the gNB into the direction of cluster ℓ at subband k, k = 1, . . . , K,

let us define the steering vectors, representing the relative phase shift among antennas as [2]

aℓ(p, k) =
1√
N











e
j 2πd

λk
(−N−1

2 ) sinφ(p,qℓ,k)

...

e
j 2πd

λk
(N−1

2 ) sinφ(p,qℓ,k)











, (8)

where d 4 is the antenna spacing at the gNB,

λk =
c0

fc +∆f (k − (K − 1)/2)
, (9)

is the wavelength at subband k, fc is the central carrier frequency, and ∆f is the subband spacing.

Similarly, for a signal received at the UE, the steering vectors are

āℓ(p, k) =
1√
N̄











e
j 2πd̄

λk
(− N̄−1

2 ) sin φ̄(p,qℓ,k)

...

e
j 2πd̄

λk
( N̄−1

2 ) sin φ̄(p,qℓ,k)











, (10)

where d̄ is the UE antenna spacing. Lastly, the narrowband channel at subband k is modeled as

the N̄ × 2N matrix [2]

H(p, k) =
∑

ℓ∈L

γℓ(p, k)āℓ(p, k)









cosµ

sinµ



⊗ aℓ(p, k)





H

, (11)

where µ ∼ U([0, 2π)) is the co-phasing angle, related to the orientation of the UE with respect

to the gNB. Note that (11) is the stacked version of two channel vectors of length N , each

corresponding to one of the two polarizations of the 2N antennas.

This model is location-consistent, since any UE in position p will experience reflections from

(fixed) clusters, thus having the same γℓ(p, k) and aℓ(p, k). Only the co-phasing angle µ is

independent for each UE in the same position, as the orientation of each UE does not depend

on its position.

4Throughout the paper, all distances are denoted with the letter d.
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B. Channel Spatial Correlation

Channels of UEs at different positions are spatially correlated, as confirmed by a vast liter-

ature, [21]–[25]. Therefore, all UE channels are determined by the same clusters while other

parameters are changing slowly in space. In order to obtain a spatially consistent model, we

assume αℓ(p, k) to be spatially correlated at different locations p, thus (see [21])

E[αℓ(p1, k)αℓ(p2, k)] = e
−

||p1−p2||2
2dS , (12)

where dS is the spatial correlation distance. Note that {αℓ(p, k)} are spatially correlated (in p),

while still being independent in ℓ and k.

III. PRECODER INFORMATION FEEDBACK

The precoder w(k) to be used on subband k (see (1)) is determined by the UE, according

to its channel conditions. To this end, the gNB periodically transmits a pilot signal to the UE.

From the received signal, the UE obtains the channel estimate at subband k, modeled as

Ĥ(p, k) = H(p, k) + V , (13)

where matrix V represents the AWGN estimation error vector, with independent zero-mean

complex Gaussian distributed entries, i.e., (V )n̄,n ∼ CN (0, σ2), n̄ = 1, . . . , N̄ , n = 1, . . . , 2N .

Based on Ĥ(p, k), the UE selects the precoder w(k) from a codebook shared with gNB, as

detailed in the following. Note that 3GPP [26] does not mandate a precise algorithm to select the

precoding vectors. Here, we assume that the UE aims at maximizing the downlink throughput

achieved with the selected precoder. Assuming perfect modulation and coding schemes, the

spectral efficiency of each subcarrier of subband k can be estimated from (1) as

R [{w(k)}] =
K
∑

k=1

log2 det

[

IN̄ +
Ĥ(p, k)w(k)w(k)HĤ(p, k)H

σ2
v

]

.
(14)

Note that (14) is an estimate of the spectral efficiency, while the actual spectral efficiency has a

similar expression, with Ĥ(p, k) replaced by H(p, k).

Once the UE has selected the precoding vectors {w(k)}, it transmits to the gNB a sequence

of bits, identifying them within the codebook. The 3GPP standard [27] defines a large codebook
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and then specifies two procedures for the selection of vector and the feedback of their indices.

We denote these two procedures as feedback modes.

In the rest of this section, first, we describe the codebook construction, and then the two

feedback modes. Lastly, we describe a new feedback mode, not included in the standard, that

will be useful in the performance analysis of our localization technique.

A. Codebook Construction

Several codebook types are defined in release 16 of the 3GPP standard [26]. In first NR

deployments, UEs will be mandated to support only the type-I single-panel codebook, while

other codebook types are optional [27]. Therefore, here we focus on this codebook.

Each precoding vector is identified by the couple (m,n), where m ∈ M = {0, 1, . . . , NO−1},

wherein O is denoted as oversampling factor, and n ∈ N = {0, . . . , 3}. Index m identifies the

vector

w̃m =

(

1, exp

(

j2πm

NO

)

, . . . , exp

(

j2π(N − 1)m

NO

))T

. (15)

Index n is associated with the co-phasing angle between the polarization of antennas couples

ψn = exp (j2πn/4). Then, the precoding vector associated with the couple (m,n) is defined

as 5

wm,n =
1√
N





w̃m

ψnw̃m



 m ∈ M, n ∈ N . (16)

Note that the construction of the tuples (m,n) varies through the different feedback modes.

B. Feedback Mode 1

In feedback mode 1, the same precoding vector is used for all subbands, whereas a subband-

dependent co-phasing of the two polarizations is applied. The UE selects the precoder as the

solution of the following rate maximization problem:

(m⋆, {n⋆(k)}) = argmax
m,{n(k)}

R
[

{w(k) = wm,n(k)}
]

, (17)

where m ∈ M and n(k) ∈ N , for each subband k.

5Each codebook vector has also a horizontal and vertical component. As the antenna array is linear in the considered scenario,

the vertical component is fixed to 1. Therefore, only the horizontal component is present in each codebook vector.
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The feedback to the gNB comprises two indices, i1,1 and i2, which provide subband-independent

regarding subband-dependent information, respectively. For feedback mode 1, they are defined

as follows:

• i1,1 is the log2(NO)-bits unsigned integer representation of m⋆ ∈ M;

• i2(k), k = 1, . . . , K, is the 2-bits unsigned integer representation of n⋆(k). This requires

the feedback of 2K bits overall.

C. Feedback Mode 2

In feedback mode 2, the choice of both precoding vectors and co-phasing of the two polariza-

tions is subband-dependent. 6 The co-phasing of the two polarizations is chosen as for feedback

mode 1. Then, the UE selects the precoder by solving the throughput maximization problem

(m⋆, {δ⋆(k)}, {n⋆(k)}) =

argmax
m,{δ(k)},{n(k)}

R
[

{w(k) = w2m+δ(k),n(k)}
]

,
(18)

where m ∈ {0, . . . , (NO)/2− 1} and δ(k) ∈ {0, . . . , 3} for each subband.

About the feedback information we have:

• i1,1 is a (log2(NO)− 1)-bits unsigned integer carrying the index m⋆;

• i2(k), k = 1, . . . , K, is a 4-bits packet, whose 2 most and 2 least significant bits carry the

(unsigned integer) value of δ⋆(k) and n⋆(k), respectively. This requires the feedback of 4K

bits overall.

D. Feedback Mode 3

In order to dig deeper into the comparison of position errors for a different number of subbands,

we consider a non-standard feedback procedure, where we report a different precoding vector for

each subband, thus with different values of both m(k) and n(k). We find the couple of indices

for each subband k = 1, . . . , K as

({m⋆(k)}, {n⋆(k)}) =

argmax
{m(k)},{n(k)}

R
[

{w(k) = wm(k),n(k)

]

.
(19)

6We are considering here the subband mode of operation of [26].
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About the feedback information we have:

• i2(k), k = 1, . . . , K, is an unsigned integer, whose the log2(NO) most significant bits

represent m⋆(k) and the 2 least significant bits represent of n⋆(k). This requires the feedback

of K(log2(NO) + 2) bits overall.

Note that, for K = 1, all considered feedback modes coincide.

IV. UE LOCALIZATION ATTACK AND MITIGATION

We now first characterize the attacker, and then describe how the attack is performed, in order

to localize the victim UE. Lastly, we propose a mitigation strategy against the attack.

A. Attacker Model

The attacker is a device able to overhear the control plane signal exchange between the gNB

and the UE. In particular, here we assume that the attacker eavesdrops the precoder feedback of

the UE, i.e., i1,1 and {i2(k)}.

As observed in Section II, UEs in the same position experience different polarizations and

noise, yielding different values of i1,1 and {i2(k)}. As the attacker is interested only in the UE

position, he will neglect the information related to polarization, namely indices n of wm,n (see

(16)). This corresponds to completely ignoring i2(k) in feedback mode 1, and the two least

significant bits of i2(k) in feedback modes 2 and 3.

In the following, b(p) = [b1, . . . , bK ]
7 denotes the vector of bits useful for localization

(obtained from m⋆(k) or m⋆ with or without δ⋆(k)) fed back in position p for each subband

k, k = 1, . . . , K. In addition, B is the set of possible values of bk. Note that the quantization

process is still affected by noise, yielding different feedback vectors b(p) from the same location

p.

B. Proposed Localization Attack

We propose a novel UE localization attack that comprises two stages: 1) the preliminary

stage, wherein the attacker creates a map that associates to each position s in the cell the bit

vector b(s) fed back from there, and 2) the attack stage, wherein the victim UE is localized

by matching its fed back bit vector b to the map constructed in the preliminary stage. We now

provide a detailed description of the two stages.

7For readability, we denote all variables related to feedback bits with the letters b, B, and β.
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a) Preliminary Stage: We assume that, in the preliminary stage, the attacker benefits from

the collaboration of colluded UEs that move within the cell and collect the precoder feedback

bits. Further observations on this assumption are provided in Section IV-C. Let S be the set of

explored positions in this stage. Depending on the effects of noise, even for the same position,

we can collect different feedback bit vectors. Let us define the probability of occurrence of

vector b(s) = β, s ∈ S, as

pmap(β, s) = P[b(s) = β] . (20)

This probability provides a probabilistic map of feedback vectors to positions in the cell and

will be exploited by the attacker to localize the victim UE in the next stage. We also define the

probability of occurrence of feedback vector β as

p(β) = E[P[b(p) = β] ] , (21)

where the expectation is taken with respect to the position p.

b) Attack Stage: In the attack stage, the attacker overhears the fed back bit vector b∗ sent

by the victim UE from an unknown position. Then, the attacker finds the position of the UE by

averaging all points having as fed back bits b∗, i.e.,

p̂(b∗) = (p̂x, p̂y) =
∑

s∈S

pmap(b
∗, s)

p(b∗)
s. (22)

We observe that a suitable estimate of the probabilities pmap(β, s) and p(β) can be obtained

from the collected samples in the preliminary stage.

C. Potential Practical Implementation of the Proposed Attack

Some comments are needed now on the proposed attack. First, we observe that the proposed

attack is different from the localization solutions based on a trilateration of channel parameters,

such as angles of arrival and departure and RSSI. Indeed, negligible signal processing is needed

or performed by the attacker on the fed back bit vector, since only a simple mapping is required.

To this end, the attacker may be equipped with a single antenna only, whereas multiple antennas

are needed for an accurate localization by trilateration. Moreover, off-the-shelf chip-sets for the

decoding of control signals can be used for the proposed attack without dedicated hardware; the

software part is also very elementary, being only a database of positions and feedback vectors.
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In terms of the computational complexity entailed with the construction of the map, we observe

that, when the feedback bits are collected by colluded UEs in a known position, minor data

processing, is required. Still, it may require some time and the availability of colluded users to

extensively explore the cell. The localization precision is also dictated by the density of points

of the map for which a correspondence between the position and the feedback bits is available.

Moreover, the map should be refreshed whenever the wireless propagation environment changes.

As an alternative, the attacker may infect neighboring UEs (but not the victim UE itself to exclude

the trivial case) with a virus application that sends the current UE position to the attacker, which

then associates it to the feedback bits [17].

Another approach may include the use of machine-learning techniques, such as self-organizing

maps [28], for automatic construction of the map, even without knowledge of user position. Note

also that the correspondence between positions and feedback bits changes over time due to the

movement of objects, therefore the map should be periodically updated. The two solutions (virus

injection and use of self-organizing maps) can be run continuously, providing a constant update

of the map.

D. Mitigation Solutions

In order to mitigate the effects of the attack based on feedback eavesdropping, one possibility is

to use an asymmetric encryption algorithm when transmitting the feedback vector b(p). With this

solution, only a ciphertext can be eavesdropped, such that different locations are indistinguishable

for the attacker. However, this solution yields an encryption overhead and requires a change of

the standardized transmission protocol.

We consider a second mitigation option, that can be implemented with the current standard.

The UE first selects the U precoders in the codebook providing the highest rates. Then, the UE

chooses uniformly at random one among the U precoders, and feeds back its index to the gNB.

Therefore, multiple precoding vectors (and fed back bit vectors) will be associated to the same

position, decreasing the localization accuracy of the attack. Consider for example the feedback

mode 1, and let m⋆
u, u = 1, . . . , U , be distinct feedback values (remember that for localization

purposes n⋆ is not useful), i.e.,

m⋆
u1

6= m⋆
u2

for u1 6= u2, u1, u2 ∈ {1, 2, . . . , U} (23)
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for which the rates on subband k are in decreasing order, i.e.,

R[{w(k) = wm⋆
1,n

⋆
1(k)

}] ≥ . . . ≥ R[{w(k) = wm⋆
U
,n⋆

U
(k)}] . (24)

Now, the UE generates u with equal probability in the set of integers 1, . . . , U , and feeds back

(m⋆
u, {n⋆(k)}u). Clearly, on one hand the localization will be less accurate. On the other hand,

the UE incurs into a rate reduction of forthcoming data downlink transmissions, due to the

suboptimal choice of the precoding vector.

V. MSE PERFORMANCE ANALYSIS

The effectiveness of our attack can be assessed in terms of the mean square error (MSE) of

the position estimation, i.e.,

MSE = E[||p̂− p||2], (25)

or equivalently, in terms of the root MSE RMSE =
√
MSE.

We now derive the MSE of the position estimation in a specific scenario. We have the following

assumptions on the UE and the gNB:

1) use of feedback mode 3;

2) perfect channel estimation at the UE;

3) fixed UE polarization with µ = π/4.

Assumption 1) is useful for understanding the impact of the feedback for multiple subbands. By

assumptions 2) and 3), there will be a deterministic feedback vector b(p) from each location p.

About the channel model, we further assume:

4) random and independent αℓ(p, k) at each position (dS = 0);

5) random and independent αℓ(p, k) at each channel observation time;

6) one receive antenna (N̄ = 1);

7) channel on subband k, k = 1, . . . , K, determined only by the cluster ℓ⋆(k), having the

highest channel gain;

8) uniform distribution of UEs in the cell area.

Assumption 4) removes the spatial consistency of αℓ(p, k). With assumption 5) we assume that

αℓ(p, k) changes even when the UE stands (or pass again) in the same position. Therefore, as the

attacker collects samples to build the probabilistic map pmap(β, s), the value of αℓ(p, k) changes.
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Under assumption 6), the selected beamformer is the (quantized version of the) maximal ratio

transmit beamformer, which, under assumptions 3) and 7) is

w(k) =





aℓ⋆(k)(p, k)

aℓ⋆(k)(p, k)



 . (26)

Assumptions 6) and 7) are strictly related: indeed, when using multiple antennas at the receiver,

two clusters may be exploited. Hence, the beamformer chosen according to (18) will not be

matched to either of the two, but it will split the signal power between the two, also according

to the clusters’ gains. Lastly, about assumption 7), from (3) and (11), we can compute the index

of the cluster having the highest channel gain. In particular, indicating the distance between

the gNB and cluster ℓ as dℓ = ||qℓ||2, and the distance between position p and cluster ℓ as

d̄ℓ(p) = ||p− qℓ||2, let us define

ζℓ(p, k) =
ξℓ(k)

(

d̄ℓ(p) + dℓ
)2 , (27)

and

ξℓ(k) = |gℓ(k)|2. (28)

Then, the index of the cluster chosen from subband k is obtained at the maximum of γℓ(p, k)

with respect to ℓ, i.e., from (3) and ignoring irrelevant constants,

ℓ⋆(k) = argmax
ℓ∈L

ζℓ(p, k). (29)

In this case, we say that the UE is linked to cluster ℓ⋆(k).

A. Conditional MSE for Given Cluster Positions and Gains

First, we derive the feedback statistics for given cluster positions {qℓ} and gains {ξℓ}. For

given cluster positions, the distance between the gNB and cluster dℓ is deterministic, and, for a

given UE position p, also the distance between cluster and the UE, d̄ℓ(p) is deterministic.

Let X(p, {qℓ}, {ξℓ}, k) be a NO-size vector, whose entry Xi(p, {qℓ}, {ξℓ}, k) is the proba-

bility that the UE on subband k (linked to cluster ℓ⋆(k)) feeds back i2(k) = i. We now consider

Assumptions 4) and 5), and include the effects of α(p, k) in our analysis. In particular, since

the selected beamformer is the (quantized version of the) maximal ratio combining beamformer
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to aℓ⋆(k)(p, k), from (6), (8), and (15), we have

Xi(p, {qℓ}, {ξℓ}, k)

= P

[

d

λk
sinφ(p, qℓ⋆(k), k) ∈

[

i− 0.5

NO
− ō,

i+ 0.5

NO
− ō

)]

,
(30)

where ō ∈ {0, 1}. For the computation of (30), let us define

θ1(i, k, τ, ō) =
1

cASD

{

arcsin

[

λk(i− 0.5− ōNO)

dNO

]1

−1

− (−1)τφ′
(

qℓ⋆(k)

)

− τπ

}

, (31)

θ2(i, k, τ, ō) =
1

cASD

{

arcsin

[

λk(i+ 0.5− ōNO)

dNO

]1

−1

− (−1)τφ′
(

qℓ⋆(k)

)

− τπ

}

, (32)

where, [x]a2a1 = min(max(x, a1), a2). From (6) and recalling that αℓ⋆(k)(p, k) ∼ U([−1, 1]), after

some algebraic steps, we obtain the close-form expression

Xi(p, {qℓ}, {ξℓ}, k)

=
1

2

∑

τ∈Z

1
∑

ō=0

∣

∣

[

[θ1(i, k, τ)]
1
−1, [θ2(i, k, τ)]

1
−1

)∣

∣ . (33)

For a feedback bit-vector b, let also

B(b) =
K
∑

k=1

(NO)k−1bk. (34)

Since the channel gains are independent per subband, bk will be independent for k = 1, . . . , K, for

given positions. Hence, the column vector Y (p, {qℓ}) of length (NO)K of the joint probability

mass function (PMF) of the feedback bit vector has entries

YB(b)(p, {qℓ}, {ξℓ}) =
K
∏

k=1

Xi2(k)(p, {qℓ}, {ξℓ}, k), b ∈ B. (35)

The average joint PMF over all UE positions is

ȲB(b)({qℓ}, {ξℓ}) =
1

A

∫

YB(b)(p, {qℓ}, {ξℓ})dp, (36)

where A =
∫

dp = πR2 is the cell area and b ∈ B.
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The reconstruction MSE for given cluster positions and gains is obtained as

MSE({qℓ}, {ξℓ})

=
1

A

∑

b

∫

||p− p̂(b)||2YB(b)(p, {qℓ}, {ξℓ})dp . (37)

This integral can be computed by numerical methods.

B. MSE Expectation

Assuming that, in the preliminary stage, the UE collects the feedback bits from all positions,

(22) becomes

p̂(b) = E[p] =

∫

p
YB(b)(p, {qℓ}, {ξℓ})
AȲB(b)({qℓ}, {ξℓ})

dp, (38)

where division by A comes from the uniform distribution of UE position p in the cell.

The average MSE with respect to cluster and gNB positions is obtained by integrating (37)

over the PDF of cluster positions and gains, i.e.,

MSE =

∫∫

· · ·
∫∫

MSE({qℓ}, {ξℓ})
AL

(

L
∏

ℓ=1

K
∏

k=1

exp(ξl(k))

)

dq1dξ1 · · ·dqLdξL. (39)

If the clusters are assumed to be within the cell, the integrals are over the entire cell area and

for a circular cell. The integrals can be computed by numerical methods.

C. Asymptotic Analysis

Since the explicit computation of the MSE and thus the RMSE in (39) requires the solution

of integrals by numerical methods, it is also interesting to explore the asymptotic behavior of

the RMSE, as the number of subbands or clusters of gNB antennas goes to infinity.

First, we consider the case wherein no feedback is available. Thus, the attacker has no specific

information on the position of the victim UE, apart from the knowledge that it is uniformly

distributed in the cell. From the circular shape of the cell, the minimum MSE position is the

center of the cell. Therefore, in this extreme case of K = 0, the RMSE (denoted RMSE0) turns

out to be

RMSE0 =

√

1

A
2π

∫ R

0

R2RdR =

√

1

A

2π

4
R4 =

1√
2
R. (40)
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Note that this value also describes the accuracy of a localization technique based on the user’s

temporary network identity when not involving tracking. With our approach, there will always

be more feedback information available than what is considered in this approximation. Hence,

(40) is an upper-bound of the RMSE of our attack.

Next, let us consider the case wherein the attacker overhears a feedback from the victim UE,

and in particular the feedback mode 3 is employed. We also consider a gNB equipped with a

large number of antennas, i.e., N → ∞. By approximating ξℓ(k) with its mean ξℓ(k) ≈ E[ξℓ(k)],

from (27) and (29), we have that the UE is always linked to the cluster with the shortest path-

length and each cluster leads to a different feedback index. Under the assumption of a large

number of clusters (L → ∞) and a uniform distribution of the clusters in the circle, we can

approximate the resulting regions assigned to the individual precoders as Voronoi regions around

the clusters as circles of radius r ≈ R/
√
L. Hence, when the number of gNB antennas goes to

infinity, we localize the UE into the Voronoi region of its nearest cluster, (39), thus the RMSE

can be approximated as

RMSE∞ = lim
L,N→∞

RMSE(K) ≈ R√
2L
. (41)

For intermediate values of N > 0, we localize the UE by overlapping K maps, each with

NO regions. Although maps are different for each subband, they all are obtained from the same

cluster positions, being strongly related to each other. Thus, the RMSE decreases exponentially

with decaying factor

lim
K→∞

log RMSE(K)

K
= −1

η
logNO, (42)

where η takes into account the correlation of maps among subbands.

Lastly, from (40), (41), and (42), we have

RMSE ≈ R√
2L

+

(

1− 1√
L

)

R√
2
(NO)−K/η . (43)

Note that this result is not based on the assumptions done at the beginning of this section.

Moreover, this analysis can also be applied to feedback modes 1 and 2, by properly adjusting η.

In addition to the correlation of maps at the various subbands, η can also take into account the

information feedback reduction due to correlation in the choice of precoders among subbands

in modes 1 and 2. In the next section, we will assess the accuracy of this asymptotic result for
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TABLE I

PARAMETER AND THEIR VALUES

cASA 10° cASD 10°

fc 28GHz ∆f 5.76MHz
K 4 L 70

N {2, 16} O 4
Px 100 Py 100
R 25m dS 2m
LS 1m d/λ 0.5

σw 1

various system configurations.

VI. NUMERICAL RESULTS

We consider the scenario of Section II, with the parameters reported in Table I. Note that K =

13 subbands correspond to a 74.88MHz channel bandwidth, with 48 subcarriers per subband

[26].

The spatial correlation of αℓ(p, k) has been obtained as follows. First, we define a grid having

square meshes on an area containing the cell, with points g(n,m) = (n∆x, m∆y), n ∈ {−Gx +

1, . . . , Gx−1}, m ∈ {−Gy+1, . . . , Gy−1}, ∆x = ηR/Gx, ∆y = ηR/Gy, and ||g(n,m)||2 ≤ ηR.

For each point of the grid we generate independent Gaussian random variables {Z(n,m)}, with

zero mean and unitary variance. Then, we filter {Z(n,m)} with the 2D filter [29]

Z(p) =
∑

n

∑

m

Z(n,m) sin

[

π

6
e
−

||p−g(n,m)||2
2dS

]

. (44)

Lastly, in order to obtain a uniform distribution for αℓ(p, k), we apply the transformation [29]

αℓ(p, k) = 2(1−Q(Z(p))− 1 . (45)

By considering the preliminary stage of the attack, the explored positions are inside the circle

of radius R on a square lattice s ∈ S, with

S =
{

s = (LSnx, LSny)
T
∣

∣ ||s||2 ≤ R, nx ∈ Z, ny ∈ Z
}

, (46)

where LS is the lattice spacing.
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Fig. 2. Precoding vector index for each location in color-code, for different feedback modes and N , K = 4 subbands, and

without measurement noise.

As we mentioned, for each position p we have multiple associated feedback bit vectors,

depending on the orientation (polarization) of the UE. Fig. 2 shows, by an associated color, the

index of the most probable feedback bit vector b(p), collected in the preliminary phase of the

attack in each position p, for an example instance of the simulated scenario. The four plots show

maps for feedback modes 1 and 2, and N = 2 and 16, in the absence of measurement noise

(σ = 0).

For feedback mode 1 and N = 2, the large monochrome regions indicate a low localization

accuracy, as all points with the same color have the same feedback vector, thus are not dis-

tinguishable by the attacker. Also, note that some feedback vectors have a higher occurrence

than others, which further decreases the accuracy, assuming a uniform UE distribution in space.

Clearly, increasing the number of antennas N helps, as the codebook gets larger: for feedback

mode 1 and N = 16, we see more colors, while we still see various points with the same

feedback vector.

Feedback mode 2 further increases the variety of colors and yields a more homogeneous

distribution of colors on the map, from which we expect a much better localization accuracy.

A. RMSE of the Disclosed Position
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Fig. 3. RMSE vs the number of subbands K for different feedback modes (mode) and numbers of transmit (N ) and receive

(N̄ ) antennas, in the absence of measurement noise (σ = 0).

We have simulated our attack with a map of lattice S. Fig. 3 shows the RMSE as a function

of the number of subbands K for different feedback modes and numbers of transmit antennas

N . This figure has been obtained in the absence of measurement noise (σ = 0), while other

parameters are as in Table I.

Regarding feedback mode 1, as it only reports a single precoder for all subbands, the resulting

position RMSE does not vary with K. Also, feedback mode 1 has a much higher RMSE than

feedback mode 2, as also expected from the maps of Fig. 2. Indeed, the RMSE of feedback

mode 1 even slightly increases as we increase the number of antennas (thus increasing the

number of feedback bits): although the codebook size increases, the additional bits are used for

a better description of the single precoder for all subbands, thus not being useful for localization

purposes. We then conclude that using feedback mode 1 is actually an effective solution to obtain

location privacy.

More interesting results are obtained with feedback mode 2. In this case, using more subbands

significantly lowers the RMSE, with an exponentially decaying behavior, as predicted by the

analysis of Section V-C. We also note that a slightly better localization is achieved by increasing

the number of antennas. In particular, multiple-antenna UEs (N̄ > 1) outperform devices with



22

Fig. 4. RMSE over the cell-edge radius R, from left to right for feedback modes 2 and 3 for different numbers of transmit and

receive antennas and K = 4 subbands.

a single antenna, for a large value of K. This can be explained as follows. From the resulting

precoding vectors with N̄ columns, the attacker can identify reflections on N̄ clusters, thus having

more accurate information on the victim location, implicitly doing a triangulation/trilateration

as N̄ > 1. Clearly, also by increasing N , the RMSE (for a large K) decreases as the codebook

gets larger and precoding vectors become denser, revealing more details on the channel, and

thus on the UE location. However, note that, for small values of K, having more antennas at the

receiver (larger N̄) actually worsens the localization. With feedback mode 2 and a large number

of subbands K, we can achieve a location precision (in the absence of noise) significantly below

1m.

Fig. 4 shows the RMSE as a function of the cell radius R, for the different feedback modes

and different numbers of antennas. Here, we let the average density of clusters per unit area

unchanged with respect to the other figures, by setting the number of clusters L =≺ 0.112R2 ≻,

thus L = 70 for R = 25m as from Table I. We observe that the RMSE increases with the radius

as the cell map becomes larger while the size of the codebook does not increase. Indeed, as the

feedback does not increase, the precision in associating feedback bits to positions is reduced

for a larger cell. Regarding the different modes and number of antennas, the observations are

similar to those obtained for the previous simulation scenarios.
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Fig. 5. CCDF of the error, for feedback mode 2 and different numbers of transmit antennas.

B. Uncertainty of the Disclosed Position

Fig. 5 shows the complementary cumulative density function (CCDF) of the estimation error

in the absence of noise, for different feedback modes and numbers of antennas. The CCDF

P[RMSE > a] can also be read as the average percentage of points in the map with the same

color (thus feedback bits), being at a distance larger than a threshold a from the reconstructed

position, i.e.,

||p− p̂(β)||2 > a, (47)

where b(p) = β. For N = 16, N̄ = 1, and K = 4, in less than 20% of the cases, we have a

localization error of more than 10m, and in most cases, the localization error is significantly

smaller.

C. Comparison with Analytical Results

We now focus on the analysis of Section V. Fig. 6 shows the RMSE obtained with the general

model of Sections II and III (circle mark) and with the analytical results of Section IV (star and

cross marks). For the asymptotic results of (43), we set η = 9, which provides a good fit with
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Fig. 6. RMSE for feedback mode 3 for different numbers of transmit antennas N , vs the number of subbands, with the general

model of Sections II and III (circle mark), and with the analytical results of Section V (star and cross marks).

the analytical results for both values of N . Note that we only show the RMSE (39) up to K = 3

for N = 16 since the computational complexity of (35) becomes excessive for higher values of

K, as B(b) takes (NO)K possible values.

Since the analytical model of Section IV has various additional assumptions on both the

channel and the precoding feedback, we expect some difference to the simulation results obtained

with the general model. The major difference comes from the fact that the analysis is obtained for

a channel determined by a single cluster ℓ⋆(k) in each subband (assumption 7)). In the simulation

results, instead, the optimal angle of departure is a combination of the angles of departure of

multiple clusters. Thus, a larger number of angles can be optimal. Indeed, the RMSE obtained

with (39) is an approximation of the RMSE obtained with the general model results.

The asymptotic approximation (43) shows a good match with the RMSE (39) for both values

of N . Also, Fig. 6 validates that for low values of K, the asymptotic approximations are matching

the numerical results well. For large values of K, the analytical results can be seen as an upper

bound. This confirms its validity and practical usefulness.



25

Fig. 7. RMSE over the number of subbands K from left to right for feedback modes 2 and 3 for N = 2 and N̄ = 1 while

measurement noise is present. The dB values refer to the SNR.

Fig. 8. RMSE over the number of subbands K from left to right for feedback modes 2 and 3 for N = 16 and N̄ = 1 while

measurement noise is present. The dB values refer to the SNR.

D. Comparison With Reference Localization Techniques

We now compare the proposed localization attack with three reference solutions, namely a

CID, a ToA and an RFPM attacks. Our proposed attack is denoted as precoder feedback (PF)

attack.

In case of the CID attack, only the cell serving the victim user is identified, without any further
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location specification. This attack requires the eavesdropping of control signals that enable to

identify the user, as in [15] and [16]. Moreover, it requires the knowledge of the gNB position

and the cell area. Similarly to our PF attack, the CID attack operates on control signals. However,

as already observed in Section V, the localization RMSE of CID, i.e., RMSE0 of (40), is rather

large and indeed always larger than the localization RMSE of PF.

ToA attack utilizes three adversarial receivers, uniformly distributed within the cell area. Based

on the ToA measurement at each receiver, the linear least squares method LLS-II-RS discussed

in [6] is used to localize the UE. Herein, we consider the ToA of the shortest path between

UE and the receiver, through any of the clusters. In the simulated model, the locations of the

adversarial receivers are distributed uniformly within the cell. 8

The RFPM attack [7], [8] is based on the estimation of the channel, which is subsequently

compared to a database with cell positions to obtain the most likely estimate. We consider an

attacker equipped with 2N antennas, which is identical to the legitimate gNB. To cope with the

random orientation of the UE the time-reversal resonating strength (TRRS) algorithm is used to

compare the observed uplink channel estimate [8], [30] with those in the database. This technique

is based on overhearing reference signals transmitted by the UE, to estimate the uplink channel.

This attack requires (as the PF attack) a preliminary stage, by means of which channels features

are mapped to locations; for this reason, we included it in our comparison. However, differently

from the PF attack, RFPM also requires sophisticated hardware and specialized signal processing

capabilities and solutions for channel estimation, including the use of multiple antennas.

The RMSEs of the CID, ToA, RFPM, and proposed PF methods are compared in Fig. 7 and

Fig. 8, for different numbers of subbands K and both feedback modes of PF (cfr. Section III).

The RMSE of feedback mode 3 is illustrated for values of signal-to-noise ratio (SNR) at the

cell border, defined as follows

SNR =
Ei,j |H(pR, k)|2i,j

σ2
, (48)

where pR is a position on the cell border. In particular, we consider SNR ∈ {5, 10, 15} dB and

noise-free reception (referred to as w/o noise in Fig. 7 and Fig. 8). A degradation of the location

accuracy as the SNR decreases is evident. Switching the focus to the accuracy delivered by

8We ensure that the three receivers are not located within one line by excluding all cases in which the difference between the

angles of any receiver to the two others is smaller than 0.01π.
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Fig. 9. RMSE vs K with attack mitigation, for U = 2 and 4, and comparison with the RMSE achieved without the attack

mitigation.

the PF method for different feedback modes, we note that the PF attack with feedback mode 3

yields a lower RMSE than mode 2, thanks to the larger amount of information on each subband

provided by the former.

When comparing the PF attack with CID, ToA, and RFM attacks, we note that the proposed

attack significantly outperforms the CID attack, by reducing the RMSE from tens of meters to

less than 1m, as the SNR and the number of subbands K increase. The ToA attack achieves

an accuracy of only a few meters, thus being outperformed by PF for large enough values of

K. The lowest RMSE values are observed with the RFPM attack, which provides a precision

of about 1m, even when only 2 subbands are used. This is expected, since RFPM exploits

the unquantized channel state information, differently from PF, which operates on quantized

feedback information. However, the better performance of RFPM comes at the cost of more

complex hardware and software, including the need for more antennas.

E. Attack Mitigation

Lastly, we show the performance of our mitigation solution, wherein the UE selects one out of

the U precoders that provide the U highest rates. Fig. 9 shows the RMSE obtained with U = 2
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Fig. 10. Rate over number of subbands for U = 2 and 4, and comparison with the rate achieved without the attack mitigation.

and 4, with N = 16, N̄ = 1, codebook mode 2, and all other parameters as reported in Table I.

Note that the conventional receiver without mitigation corresponds to U = 1, where the chosen

precoder maximizes the rate. We see that even with U = 2 or U = 4, the RMSE significantly

increases, thus confirming that this technique is effective in protecting the location information

privacy.

Note also that, for a high number of subbands K, U = 4 leads to a better localization accuracy

than U = 2. The reason is that with low U not all feedback vectors are optimal at any location,

and this leads to a more similar occurrence of the different precoders when U increases.

Now, the mitigation approach may yield a reduction of the downlink data rate, due to the

use of a suboptimal precoder at the gNB. Therefore, Fig. 10 shows the rate (14) achieved under

the mitigation approach for U = 2, and 4, under the same setting of Fig. 9. Here, feedback

mode 2 is used. For reference, we also include the case without mitigation. We note that the rate

reduction is negligible. We can then conclude that the mitigation approach is very successful and

can be adopted by receivers using the current standard and being recommended for all receivers

in future releases of the standard.
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VII. CONCLUSIONS

In this paper, we have proposed a novel attack, by which an attacker localizes a UE by

eavesdropping the precoding feedback signal, which is transmitted in clear in the current 3GPP

standard. We have detailed the operations to be performed by the attacker and analyzed the

localization RMSE achieved using various feedback modes. We also proposed a mitigation

technique, wherein the UE randomly selects one of the precoders among those providing the

highest rates. Numerical results confirm that the attack is effective against the mandatory feedback

mode 2 of the 3GPP standard, being able to localize the user within a few decimeters in a circular

cell of radius 25m. Moreover, asymptotic results provide an insight into the trends of the RMSE,

as the number of subbands, antennas, or clusters increases. Lastly, the mitigation solution has

proven to be very effective by increasing the localization RMSE to multiple meters, with a

negligible reduction of the downlink data rate.
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