
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 4, pp. 412–446. DOI:10.46586/tches.v2021.i4.412-446

LifeLine for FPGA Protection: Obfuscated
Cryptography for Real-World Security

Florian Stolz1 , Nils Albartus1,2 , Julian Speith1,2 , Simon Klix1 ,
Clemens Nasenberg2 , Aiden Gula3 , Marc Fyrbiak2,4 ,
Christof Paar1,2 , Tim Güneysu1 and Russell Tessier3

1 Ruhr University Bochum, Horst Görtz Institute for IT Security, Germany
{nils.albartus,florian.stolz,tim.gueneysu}@rub.de

2 Max Planck Institute for Security and Privacy, Bochum, Germany
christof.paar@mpi-sp.org

3 University of Massachusetts Amherst, MA, USA
{agula,tessier}@umass.edu
4 emproof, Bochum, Germany

mfyrbiak@emproof.de

Abstract. Over the last decade attacks have repetitively demonstrated that bitstream
protection for SRAM-based FPGAs is a persistent problem without a satisfying solu-
tion in practice. Hence, real-world hardware designs are prone to intellectual property
infringement and malicious manipulation as they are not adequately protected against
reverse-engineering.
In this work, we first review state-of-the-art solutions from industry and academia
and demonstrate their ineffectiveness with respect to reverse-engineering and design
manipulation. We then describe the design and implementation of novel hardware
obfuscation primitives based on the intrinsic structure of FPGAs. Based on our
primitives, we design and implement LifeLine, a hardware design protection mech-
anism for FPGAs using hardware/software co-obfuscated cryptography. We show
that LifeLine offers effective protection for a real-world adversary model, requires
minimal integration effort for hardware designers, and retrofits to already deployed
(and so far vulnerable) systems.
Keywords: FPGA Security · Hardware Obfuscation · Software Obfuscation ·
Reverse Engineering

1 Introduction
Field Programmable Gate Arrays (FPGAs) combine software flexibility with the perfor-
mance and energy advantages of hardware solutions and are thus widely adopted in a
variety of security and safety-sensitive application domains, including industrial automa-
tion, aviation, defense, medical devices, and performance accelerators for machine-learning
applications. Even though the post-manufacturing re-programmability of FPGAs provides
flexibility, it also opens up a critical attack vector, in particular in settings in which an ad-
versary is able to access the FPGA hardware configuration data (a bitstream). Noticeably,
the majority of FPGAs in use today are based on Static Random Access Memory (SRAM)
technology, and thus requires external non-volatile memory to store bitstreams, which are
often accessible by adversaries [EMP20].

In order to safeguard bitstream confidentiality, integrity, and authenticity, the major
FPGA vendors introduced bitstream encryption schemes about two decades ago. Despite
a seemingly simple cryptographic set-up — the FPGA decrypts the encrypted bitstream
upon boot-up — providing a sound security design has been a vexing problem for the

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-04-15 Accepted: 2021-06-15 Published: 2021-08-11

https://doi.org/10.46586/tches.v2021.i4.412-446
https://orcid.org/0000-0002-0898-8135
https://orcid.org/0000-0003-2449-1134
https://orcid.org/0000-0002-8408-8518
https://orcid.org/0000-0002-9369-2901
https://orcid.org/0000-0002-5219-5300
https://orcid.org/0000-0003-4529-9571
https://orcid.org/0000-0002-4266-7108
https://orcid.org/0000-0001-8681-2277
https://orcid.org/0000-0002-3293-4989
https://orcid.org/0000-0003-0591-7566
mailto:{nils.albartus, florian.stolz, tim.gueneysu}@rub.de
mailto:christof.paar@mpi-sp.org
mailto:{agula,tessier}@umass.edu
mailto:mfyrbiak@emproof.de
http://creativecommons.org/licenses/by/4.0/

F. Stolz, N. Albartus et al. 413

FPGA industry. Over the last decade, numerous real-world attacks have been proposed,
often based on side-channel leakage or protocol failures (cf. Section 2 and Section 3 for
more details). As a result, in many cases, an adversary is able to retrieve cryptographic key
material for bitstream encryption schemes with moderate effort. Note that the proprietary
nature of the bitstream file format also does not offer any security in practice [Syme].
Even additional external secure hardware elements do not provide sufficient protection, as
demonstrated in Section 3.1.

The state of FPGA security has been further weakened by recent advances in bitstream
reverse engineering. While the reverse engineering (and optionally manipulation) of an
unknown bitstream once was a major undertaking due to the proprietary nature of bitstream
file formats, there has been major progress in bitstream reverse-engineering over the past few
years [ESW+19,LG97,ZAT06,NR08,BSH12,DWZZ13,PHK17,Not08,Ngu16,Sym18]. An
active research community has developed tools to translate proprietary bitstreams back to
their gate-level netlist representations. Even though this reverse-engineering can be useful
for legitimate purposes (e.g., design analysis), it also enables Intellectual Property (IP)
infringement and malicious design alteration such as hardware Trojans [WFSP17].

Due to these security shortcomings, Application Specific Integrated Circuits (ASICs)
are sometimes the preferred choice when a higher level of security is desired, since (1)
they cannot be (easily) manipulated after manufacturing, and (2) can only be reverse
engineered with specialized equipment [FWS+18]. However, ASICs may not be the best
choice depending on the use case. In general, an ASIC tape-out is more complex and
has a longer time-to-market. For low quantities, ASICs are not economically feasible.
Furthermore, the possibility of being able to update the FPGA in-field — especially in
security use-cases — is an important advantage. Thus if FPGAs are used in medium or
high-security scenarios, they require additional protection.

Goals and Contributions In this work, we introduce a flexible and user-specific line of
defense to ensure FPGA bitstream confidentiality, integrity, and authenticity. Our goal is
to provide a sound solution against functional reverse-engineering even if an adversary has
access to the design netlist. To this end, we first carefully review the assumptions and
security properties of previous academic and industrial security schemes and demonstrate
how their claimed protection security can be defeated using state-of-the-art adversarial
capabilities. We then introduce our hybrid hardware/software co-obfuscation approach
that is secure against the aforementioned attacks and requires minimal overhead. Our
solution consists of novel primitives, including anti-simulation primitives, hardware self-
integrity checks, and effective hardware-software-binding to couple the security advantages
of hardware and software domains. Our generic implementation strategies require minimal
effort by the hardware designer and can be retrofitted into already deployed systems. In
summary, our main contributions are:

• Generic Hardware Patching Attacks. We carefully analyze various academic
and commercially available protection schemes and – based on our insights – present
an arsenal of manipulation strategies that invalidate security properties in real-world
adversarial settings. Our strategies focus on automated reverse-engineering and
subsequent custom-tailored gate-level netlist manipulation.

• Novel Hardware Obfuscation Primitives. We propose several hardware primi-
tives that take advantage of the intrinsic structure of FPGAs: (1) self-integrity checks
and bitstream manipulation detection based on bitstream structure information,
and (2) covert communication channels based on both partial reconfiguration and
deliberately injected crosstalk for obfuscation purposes.

414 LifeLine for FPGA Security

• LifeLine – Hardware/Software Co-Obfuscation. We present our hybrid hard-
ware-software solution called LifeLine to protect the confidentiality, integrity, and
authenticity of FPGA bitstreams in an almost cryptography-free system. To this end,
we detail how novel hardware security primitives are coupled with custom-tailored
software obfuscation for the embedded domain to yield a dynamic assembly of the
final hardware design. In particular, we demonstrate how to leverage software-based
point-obfuscation in combination with anti-simulation primitives, such as partial
reconfiguration, to yield a strong and efficient obfuscation.

• Comprehensive Evaluation. We design and evaluate an obfuscation scheme to
realize FPGA bitstream security and an IP core license model for currently available
and already-deployed FPGA systems. We demonstrate that our schemes are efficient
in terms of overhead and provide effective protection with respect to state-of-the-art
obfuscation quality criteria.

2 Technical Background on FPGA Security
Bitstream Encryption FPGAs are digital hardware devices that are designed to be user-
programmable after manufacturing. For market-dominating SRAM-based FPGAs, an
external non-volatile memory is required to store a user configuration (bitstream) that
programs the FPGA upon boot-up. Effectively, the bitstream represents a proprietary,
encoded gate-level netlist. To counteract IP theft and reverse engineering, FPGA vendors
have implemented a variety of bitstream encryption schemes. However, it has been
shown that FPGA devices from families across vendors are susceptible to side-channel
attacks [MBKP11,MKP12,MOPS13,MS16,SW12,SMOP15,KHPC19] and, as recently
demonstrated, to protocol-level attacks [EMP20]. Hence for vulnerable FPGA families,
bitstream encryption schemes alone do not provide sufficient protection as an attacker is
able to obtain the decrypted bitstreams.

Bitstream Reverse Engineering and Manipulation Even though FPGA vendors typi-
cally keep bitstream file formats proprietary, numerous works have demonstrated how to
reverse engineer (parts of) a bitstream file-format [ESW+19,LG97,ZAT06,NR08,BSH12,
DWZZ13, PHK17, Not08, Ngu16, Sym18]. To automate the tedious step of file-format
reverse engineering, hardware designs with small differences are typically generated and
bit differences in resulting bitstreams are observed.

...01010...

Bitstream Extraction Bitstream Conversion Gate-Level Netlist

101
010

101
010

Figure 1: Netlist Extraction for FPGAs.

For example, SymbiFlow [Sym18] is an open-source Electronic Design Automation
(EDA) tool-flow for FPGAs. Projects affiliated with SymbiFlow, such as IceStorm (Lattice
iCE40) [Symb], Trellis (Lattice ECP5) [Symc], X-Ray (Xilinx Artix-7, Kintex-7, Zynq-
7) [Syme] and U-Ray (Xilinx UltraScale(+)) [Symd] aim to document proprietary bitstream
file formats. The overall goal of project SymbiFlow is to have a complete open-source tool-
flow from Register Transfer Level (RTL) to bitstream. However, based on the documented
bitstream file format, a bitstream can be translated back into a gate-level netlist. More
precisely, the project provides scripts to translate a given bitstream back to a gate-level
netlist including a constraints file with placement and routing information. Hence, reverse
engineering and manipulation of hardware designs can be conducted.

F. Stolz, N. Albartus et al. 415

Gate-level Netlist Reverse Engineering A gate-level netlist is a low-level hardware design
representation that is comprised of a collection of gates and their interconnections [WH15].
In particular, a flattened netlist translated back from a bitstream contains no high-level
information about functional modules or any form of hierarchies [AHT+20].

To recover high-level (register-transfer) information from an unstructured gate-level
netlist, a reverse-engineer must use (1) control path analysis and (2) data-path analysis.
Control path information can be extracted with the identification and extraction of Finite
State Machines (FSMs) [STGR10,MZJ16,McE01,MJTZ16,BBS19,AHT+20]. First the
FSM candidate circuits are identified and then the state transition graph is reconstructed.
To recover data-path information, word-level structures are identified using sub-circuit
identification and matching [LGS+13, STP+13], or topology analyses of the underlying
graph [FWR+20,AHT+20].

Selected Implementation Attacks on FPGAs Successful third-party FPGA manipula-
tion attacks have been demonstrated. Swierczynski [SFKP15] et al. demonstrated an
attack on an FPGA-based USB flash drive by manipulating an AES circuit to weaken its
cryptographic properties. Moreover, Swierczynski et al. [SMOP15] introduced bitstream
fault injections that leak key material of cryptographic implementations even if bitstream
encryption is enabled. Moraitis et al. [MD20] demonstrated the extraction of Snow 3G keys
by modifying Look-Up Table (LUT) configurations. Most recently Kataria et al. [KHPC19]
demonstrated the ability to bypass the security of a Cisco Trust Anchor using targeted
direct bitstream manipulation.

3 (In-)Effectiveness of State-of-the-Art Solutions
In this section, we discuss industry and academic solutions that attempt to overcome the
security weaknesses presented in Section 2.

3.1 Industrial Solution for FPGA Authentication
Commercial security solutions generally provide limited protection for FPGA designs. To
this end, we analyze the solution from a large security vendor1. The key idea of this
security solution is to prevent counterfeit IP (e.g., a valid bitstream cannot be applied to
a second FPGA of the same model). The solution is based on an external hardware chip,
an authenticator, shown in Figure 2. Both the authenticator chip and the FPGA store
cryptographic values which are processed in an authentication step. The authenticator
solution is promoted for use-cases in medium-security settings, including FPGAs that do
not support bitstream encryption.

Reference Implementation Figure 2 shows the design and implementation. The center-
piece of the solution is a challenge-response protocol between an FPGA IP core (Hash
Recipient) and the authenticator Integrated Circuit (IC) (Hash Originator). Both the
FPGA and the authenticator compute a value based on a secret. If and only if these values
match, the FPGA is authenticated and then activated. Value computation leverages a
hash function, such as SHA-256, that takes the secret, device data, and a random challenge
as input. The authentication status is determined by the comparison circuit using the
authenticator IC hash value and the FPGA output value from the SHA-256, yielding a
1-bit signal that indicates if both values are equal.

1Please note that after consultation with the vendor, we agreed to leave out specific product details
and names, due to security concerns raised by the vendor.

416 LifeLine for FPGA Security

BRAM

Master
Secret

More
values

SHA-256 == IP-Core

EN

Authenticator

FPGA

Authenticator IC Hash Value

Figure 2: Overview on the FPGA Authentication using an Authenticator IC.

High-Level Attack The vendor indicates that bitstream file format (and subsequent
gate-level netlist) reverse-engineering is indeed possible, although due to the obscurity,
complexity, and size of the bitstream the process is claimed to be difficult and time
consuming. However, this type of reverse engineering is now more feasible than it was six
years ago (cf. Section 2). Bitstream translation to a gate-level netlist is an automated
task that can already be achieved for several FPGA families. We now demonstrate how to
invalidate the system’s security using two distinct attacks that leverage automated gate-level
netlist reverse-engineering and manipulation for Xilinx 7-Series devices, see Figure 2.

A detailed description of the official implementation is only available under Non-
Disclosure Agreement (NDA), so we re-implemented the solution to be close to what is
publicly described in marketing information, application notes, and technical documents.
To this end, we used an open-source SHA-256 core [sec] and implemented a results
comparator in Verilog that compares the hash function output to an external value.

1 Result Comparison Patching As noted earlier, the authentication process ends at a
comparison circuit implemented on the FPGA. Hence, we manipulate this circuit so that
it will always report true irregardless of the available input. In order to automatically
identify the circuit’s comparators in the gate-level netlist, we exploit their unique inherent
structure that allows for automated identification, as proposed by Fyrbiak et al. [FWS+18].
For this purpose, we first located comparator circuits in the gate-level netlist, computed
their Boolean functions, and then performed formal equivalence checks against a predefined
comparator model using the z3 theorem prover. Specifically, we searched for comparators
exhibiting the distinct output size of 256 bits. After identification, the respective comparator
circuit output net in the bitstream is manipulated to generate a fixed value. An attacker
could also manipulate LUTs utilized in the comparator or re-route the source of the enable
signal for the IP core to global VCC or a register that always holds ’1’, however, even
small manual changes to the routing can be complex to implement.

We implemented this attack on a Basys3 board that features a Xilinx Artix-7 35T
FPGA. To translate the bitstream back to its gate-level netlist, we used the fasm2bels
tool [Syma]. We then implemented a plugin for HAL [HAL] to automatically identify the
aforementioned comparator circuit. Once the entry point for our manipulation has been
identified, we attack the programmable interconnect in the bitstream by cutting the wire.
The user-programmable routing on Xilinx 7-series FPGAs uses switch matrices containing
numerous Programmable Interconnect Points (PIPs) that are bitstream configurable.

F. Stolz, N. Albartus et al. 417

Hence, disabling an active PIP directly translates to cutting the corresponding net within
the netlist. In our experiments on Xilinx 7-Series FPGAs, we verified that most PIPs, if
unconnected, output a logical ’1’. Therefore, by cutting the net from the comparator, the
comparator output signal is fixed to a constant ’1’ and the hash value check is bypassed
entirely. For the final step, we developed a tool based on Project X-Ray [Syme] that
reads a bitstream, manipulates its configuration (including the PIPs), and outputs the
modified bitstream. After the design manipulation, our tool updates the Cyclic Redundancy
Check (CRC) and other Error Correction Code (ECC) values in the bitstream.

2 BRAM Secret Extraction As shown in Figure 2, the shared master secret is “obfus-
cated in the bit file memory” and thus its confidentiality is based upon the proprietary
nature of the bitstream file format. More precisely, the vendor states that the shared
secret is stored in Block-RAM (BRAM) and recommends that in the final design, it is best
to change the memory-mapped address so a hacker will not know the actual location in
memory. Since the initial BRAM content is also stored within the bitstream, an attacker
can explore the memory in the gate-level netlist in a straightforward manner. Note that
the vendor does not mention any additional obfuscation measures to securely store the
secret, but merely provides guidance on how to introduce a new 256-bit shared secret by
updating the initial BRAM content using Xilinx tooling.

3.2 Vulnerabilities in Academic Solutions
To implement security, most systems require secure key storage to store root-of-trust
secret keys. To this end, most academic research focuses on (1) hard-coded device
keys [MSV12,VMK+15], (2) Physical Unclonable Functions (PUFs) [GKST07,USZ+20],
or (3) obfuscation [HAN18,ZLL+13]. However, in our real-world adversary model virtually
all proposed solutions can be circumvented in a straightforward and mostly automated
manner as described in the following.

Hard-Coded Device Keys Schemes developed by, for example, Maes et al. [MSV12] use a
licensing scheme based on a fixed decryption key. It is embedded into a bitstream encrypted
with a device-key and provided by a Trusted Third Party (TTP), so it is unknown to
the end-user. However, reverse engineering tools such as DANA [AHT+20] can be used to
identify the key register once the bitstream encryption is broken. Dynamic analysis and
netlist patching adds another way to leak the key by rerouting the output to an attacker
controller port [WFSP17].

Physical Unclonable Function In these solutions, weak PUFs are used to form a unique
device key that provides an input for unlocking mechanisms. PUFs thus represent secure
key storage. Static analysis and simulation are unable to identify weak PUFs, however,
they are susceptible to dynamic analysis. By probing the signals on the FPGA via netlist
patching, the attacker can learn the challenge-response pair. Most solutions use only one
or a restricted amount of challenge-response pairs. Therefore, the attacker can patch out
the PUF by rerouting the input of the unlocking logic. This patch can either be a static
register or an attacker’s own logic, which provides an expected response.

Obfuscation FSM obfuscation, e.g., by appending dummy power-up states [HAN18],
and Logic Locking, e.g., using a PUF output to mask core logic [ZLL+13], are flawed as
shown by Fyrbiak et al. [FWD+18] and Engels et al. [EHP19]. Thus, binding the device
identifier to a unlocking mechanism is ineffective and can be reversed and patched out
using automatic tool such as HAL cf. Section 2.

418 LifeLine for FPGA Security

4 Takeaways and Security Considerations
Based on previous approaches from industry (cf. Section 3.1) and academia (cf. Section 3.2),
it is evident that the use of cryptography alone does not provide a satisfactory level of
security in real-world systems. In particular, FPGA applications are faced with the
challenge that (vulnerable) bitstream encryption schemes cannot be updated once deployed
in FPGA platforms. Moreover, the proprietary nature of bitstream file formats is not
an effective measure to prevent reverse-engineering and manipulation. Hence, targeted
malicious design manipulation (even for a single wire, cf. Figure 2) can collapse system
security.

Design Considerations From a security engineering point of view, we require a mechanism
that is able to load an encrypted bitstream onto the FPGA using a computational black
box that an adversary cannot inspect. Moreover, we require a solution that retrofits to
vulnerable in-field FPGAs. Thus, the approach cannot add custom security hardware, e.g.,
secure elements or Hardware Security Modules (HSMs), in the FPGA control-plane. This
implies that a trust-anchor must be implemented in the (potentially attacker-controlled)
FPGA design itself.

Hence, a sound obfuscation scheme is our last line of defense for many (commercial)
applications as it meets the aforementioned requirements and avoids the weaknesses of
established but limited solutions. Even though many hardware obfuscation schemes exist,
they are not sufficient in our setting where we need a strong trust anchor. A key idea
of LifeLine is that a combined hardware-software co-obfuscation results in a system
with a dramatically higher security level than pure hardware or pure software obfuscation
provides in isolation.

Research Question Several hardware obfuscation primitives, including FSM-based obfus-
cation [FWD+18] and opaque predicates [HP18], are available. Our research explores which
obfuscation primitives must be used and how they can be integrated into a complete system
to ensure sound protection capabilities within a realistic adversary model. To address
the research question, we first introduce several novel hardware obfuscation primitives
in Section 5 and combine them with state-of-the-art software obfuscation primitives in
Section 6 to leverage the advantages of both worlds.

4.1 Attacker Capabilities
The goal of the adversary is to invalidate the confidentiality, integrity, or authenticity of the
FPGA design (e.g., motivated by IP infringement, competitive design analysis, or malicious
design manipulation). Analogous to prior research, we assume that the adversary is capable
of recovering a perfect, error-free flattened netlist (meaning no hierarchy information is
available) from the bitstream. We also assume that the adversary can manipulate the
netlist (e.g., adding an on-chip debugger to leak run-time hardware information). The
adversary has a variety of capabilities at hand, as explained in the following.

Static Analysis Static analysis examines design functionality at the netlist level without
executing the design. The netlist is often interpreted as a directed graph which enables
the usage of graph theory. The reverse engineer can employ detection algorithms to, e.g.
identify the control path or perform data-path analysis (cf. Section 2). Tools such as the
open-source framework HAL [HAL] can be employed for static gate-level netlist analysis.

F. Stolz, N. Albartus et al. 419

Dynamic Analysis (Simulation) A reverse engineer can observe the behavior of the chip
over time using dynamic analysis. Types of dynamic analysis include simulation-based and
on-chip. Due to the sheer size of a netlist, dynamic analysis cannot usually be carried
out without static analysis since the points of interest that the reverse engineer wants to
analyze must be identified first. A common tool that can be used to simulate the design is
the open-source simulator Verilator [Ver]. To simulate a given netlist, the designer needs
the correct functionality description of each gate, which is defined by the gate library.

Dynamic Analysis (On-Chip) If an attacker is capable of analyzing on-chip behavior,
the execution environment can be observed. This approach allows values processed on
the FPGA (e.g. cryptographic keys) to leak. Furthermore, the reverse engineer can e.g.,
observe the behavior of a state machine or deduce data flow on the chip. To conduct
on-chip analysis, an attacker must insert a logic analyzer into the bitstream, which can be
a challenging task.

Design Manipulation To analyze system behavior, the attacker can perform manipulation
of the target design (e.g., patch a self-test and observe whether the design still performs
its operation). In particular, the behavior of manipulated and non-manipulated designs
can be combined with information from static and dynamic analysis.

4.2 System Overview
We now provide a high-level overview of our complete system to guide the reader through
Section 5 and Section 6. To develop a sound obfuscation scheme that withstands state-of-
the-art reverse-engineering (and manipulation), we build our solution on two simplified
key observations: (1) data-flow in hardware is static and it is challenging for the reverse-
engineer to identify the control-flow, (2) the control-flow in software is static and it is
challenging for the reverse-engineer to identify the data-flow2.

We design our system with a dynamic data-flow in hardware (e.g., via partial re-
configuration) and a dynamic control-flow in software (by building on well-established
software obfuscation methods). Moreover, we aim to bind hardware control-flow and
software data-flow via cryptography (e.g., a software-based hash function that depends
on hardware values). In particular, the latter step is crucial for our system security to
force an attacker to reverse-engineer both hardware and software where each is armed with
custom-tailored obfuscation (e.g., anti-simulation primitives in hardware). In addition, we
equip our system with integrity checks to detect hardware and software manipulations.
With this approach, we achieve a deep coupling of hardware and software primitives, which
creates the foundation for strong hardware/software co-obfuscation.

A Cryptographer’s Perspective From a high-level perspective, our system is based on
the decryption of a payload bitstream that makes use of a strongly obfuscated decryption
engine in software that is interwoven with hardware features, cf. Section 7. The payload
bitstream is decrypted on the FPGA system and configured with the help of partial
reconfiguration. Coupling of our software and hardware is, among others, established
through the cryptographic hash-based key derivation used for the bitstream decryption that
is dependent on both obfuscated values in software and hardware. Note that this forces
a reverse engineer to analyse both the hardware obfuscation primitives and obfuscated
software as a whole.

2We acknowledge that the statements about hardware and software systems and reverse-engineering
views do not hold for all applications, but we opted for a simplistic view for motivational purposes.

420 LifeLine for FPGA Security

5 FPGA Obfuscation and Security Primitives
We now introduce the design and implementation of our hardware obfuscation primitives
based on partial reconfiguration (Section 5.1), covert data-flow based on partial reconfigura-
tion (Section 5.2), crosstalk (Section 5.3), and bitstream self-integrity checks (Section 5.4).
From a high-level point of view, each hardware obfuscation method aims to defend against
static analysis, dynamic analysis, and hardware design manipulation, respectively.

Table 1: Overview of Hardware Obfuscation Primitives.

Technique Anti-Static
Analysis Anti-Simulation Anti-On-Chip

Debugging Integrity

Partial Reconfiguration †

Covert Channel †

Crosstalk
BIMAD ∗ ∗

LifeLine ∗

† – Anti-simulation protection via partial configuration can only be guaranteed for Xilinx devices.
∗ – Integrity/on-chip debugging prevention only for user pre-defined routes.

5.1 Partial Reconfiguration

To increase FPGAs hardware resource utilization and transform FPGAs into self-adaptable
and more flexible systems, partial reconfiguration is used to dynamically reconfigure parts
of the FPGA at run-time. Examples include demand-driven instruction set modification
and secure updates of cryptographic algorithms in FPGA-based secure elements [VF18].
Even though tools support partial reconfiguration in hardware designs, the simulation of
partial reconfiguration is often not supported by vendors (i.e., Xilinx does not provide
simulation features for partial reconfiguration [Xil21]).

Configuration
Port (ICAP)

Reconfiguration
Controller in
Fabric

FPGA

static partition

reconfigurable partition

partial
bitstream

netlist visible
implicit connection

Figure 3: Partial Reconfiguration Overview.

F. Stolz, N. Albartus et al. 421

Security Consideration We leverage partial reconfiguration as an anti-static analysis
hardware obfuscation primitive. If partial reconfiguration simulation capabilities are not
available for an FPGA (e.g., for Xilinx FPGAs), partial reconfiguration also forms an anti-
simulation primitive analogous to Fyrbiak et al. [FWD+18]. The key idea is to transform
hardware resources that handle sensitive data into a partial design. Module configuration
of these resources is performed at run-time. Hence an attacker only receives an incomplete
static gate-level netlist and a partial gate-level netlist.

5.1.1 Design

To leverage the security properties of partial reconfiguration for hardware obfuscation,
we use a standard design flow that consists of 1 partitioning of the hardware design
and then 2 extension of the hardware design with a partial reconfiguration controller to
manage dynamic reconfiguration.

1 Hardware Design Partitioning In general, partial reconfiguration requires the par-
titioning of a hardware design into a static partition and one or more reconfigurable
partitions. To this end, the hardware designer performs a floorplanning step post-synthesis
in which physical resources are allocated for each reconfigurable partition including their
physical location on the FPGA. From the viewpoint of the static partition, modules in
the reconfigurable partition(s) are computational black boxes and translated to partial
bitstreams independently. Note that a partial bitstream only represents configuration bits
for the reconfigurable partition, so if a module only consists of 10% of FPGA resources,
its partial bitstream is approx. 10% the size of a complete bitstream [VF18].

2 Partial Reconfiguration Controller To configure a partial bitstream into its respective
partition, the static design is extended to include a partial reconfiguration controller. In
particular, the partial reconfiguration controller handles communication with the hardware
(re-)configuration engine and manages which partial bitstream is configured into the
reconfigurable partition at a specific point in time. Depending on the reconfigurable
partition size (and application-specific hardware overhead requirements), the partial
bitstreams can be stored either on the FPGA (e.g., in BRAM) or loaded at run-time from
external resources (e.g., external flash or even via network).

5.1.2 Implementation

Since hardware design partitioning can be handled as a standard floorplanning step in the
EDA toolchain, we refer the interested reader to the respective Xilinx User Guide [Xil21].
We now detail our implementation of the partial reconfiguration controller. From a high-
level perspective, the controller consists of an FSM that handles communication with the
FPGA family-specific configuration port.

In this work, we leverage a Zynq-7000 FPGA (ZedBoard) as an implementation
and evaluation platform. Its ICAPE2 controller [Xil18], which handles dynamic writes
to the FPGA bitstream configuration port, is instantiated. Other Xilinx architectures
offer additional configuration ports. The partial bitstream header contains all required
commands for the ICAPE2 interface to perform configuration. The ICAP is restricted
to a maximum frequency of 100 MHz, limiting data throughput in certain applications.
Optimized controllers (e.g., based on Direct Memory Access (DMA) [LPF10]) have been
developed to saturate ICAP capabilities.

422 LifeLine for FPGA Security

5.2 Covert Communication with Partial Reconfiguration
In this subsection we describe how partial reconfiguration can be used to create a covert
communication channel. This approach hinders static and simulation analysis for Xilinx
FPGAs. The high-level idea is to populate parts of the datapath via partial reconfiguration.
We take advantage of the fact that Flip-Flops (FFs) can be preset by the designer to
specific values (INIT values) as a result of reconfiguration. This approach allows us to
write arbitrary values to registers, without revealing a source within the netlist.

INIT VALUE
0011...0110

Register
D Q

EN
Subcircuit 1

Random
Logic reconfigurable block

netlist visible
implicit connection

covert channel via
partial reconfiguration

constant
zero

Figure 4: High-Level Overview of Covert Communication with Partial Reconfiguration.

Security Consideration Since the data source connection for the preset value is not
visible in the netlist, the reverse engineer cannot conduct static analysis, breaking many
automated identification algorithms and tools, such as DANA [AHT+20], due to false and
missing connections. Not only is the connection not visible in the netlist, but the FF can
be connected to a dummy input making the re-configurable register look like it is driven
from different logic. This makes identification of the data channel nearly impossible.

5.2.1 Design

To realize the covert channel, we use the partial reconfiguration controller, as described in
Section 5.1.1. Figure 5 shows the setup for covert communication. Whenever the subcircuit
wants to transmit specific data, it issues a send command to the RISC-V softcore (1).
Depending on the data to transmit, the software selects the partial bitstream which contains
the specific INIT values for the register the subcircuit wants to write (2). To transmit 4
bits, as depicted in the workflow, 16 partial bitstreams are needed to realize all possible
communications (from 0000, 0001, ... 1111). Once the correct partial bitstream has been
selected, it is sent to the reconfiguration controller (3), which in turn reconfigures the
register in the dynamic partition (4). In this case, the reconfiguration controller is a
RISC-V softcore. The value to be transmitted from subcircuit 1 is written to a memory
mapped register. The core handles the partial reconfiguration by communicating with the
reconfiguration port.

Since the register D input is connected to random logic, the designer must ensure that
the register enable EN is never set to ’1’. This goal can be achieved by connecting the
enable to one of the memory mapped registers of the softcore that is never set to ’1’. This
configuration disguises the connection to look real to the reverse engineer, while at the
same time ensuring that the intended value of the register is not overwritten. The setup

F. Stolz, N. Albartus et al. 423

leaves almost no chance for the reverse engineer to figure out the correct connection with
static analysis or simulation-based analysis for Xilinx FPGAs.

0001

0000

1111

p1.bit

...

p0.bit

p15.bit

Memory

Reconfiguration
Controller

Subcircuit 2

Subcircuit 1

Configuration Port
(ICAP)

Register

data to transmit
select partial
bitstream

configure
partial
bitstream

reconfigure
dynamic
partition

dynamic partition

implicit connection, not
present in bitstream/netlist

Figure 5: Setup for Covert Communication with Partial Reconfiguration.

5.2.2 Implementation
We implemented the register as a simple Verilog module which contains a flip-flop holding
a specific initial value. In the netlist, it appears that the register value may be overwritten
by input from random logic. To ensure that the Xilinx toolchain does not optimize the
register away, a DONT_TOUCH attribute is attached to the register to avoid circuit changes
during synthesis. The RESET_AFTER_RECONFIG flag for the corresponding reconfigurable
partition is also used to reset the register to its initial value after reconfiguration.

On the Zynq-7000 platform, each partial bitstream consumes about 50 kBytes on
average with bitstream compression enabled. On platforms with more flexible partial
reconfiguration, such as UltraScale devices, it is possible to create even smaller partial
bitstreams, as reconfigurable regions (pBlocks) must not obey strict size rules [Xil21].

Improvements In the current implementation it is necessary to store 2n partial bitstreams
for data transmission of n bits. This issue could be overcome by storing a single partial
bitstream for the register in addition to the FF position and INIT value in the bitstream.
The reconfiguration controller would need to adjust the error correction bits in the
associated frame for each FF where the INIT value is changed, and the CRC checksum for
the partial bitstream. The corresponding bitstream positions in Xilinx 7-Series devices
can be found in the Project X-Ray database.

5.3 Crosstalk
It has recently been shown that neighboring wires in an FPGA routing channel influence
each other’s delay in measurable ways [RPD+18,GRE18]. This signal crosstalk3 allows a
covert communication channel to be formed between adjacent wires in a routing channel
that is not physically connected to each other. Recent work [RPD+18, GRE18] has
focused on an attacker using crosstalk to snoop on an adjacent wire of a victim if multiple
independent users simultaneously share an FPGA substrate. In this work, we use adjacent-
wire FPGA crosstalk as a covert communication channel within a single user’s design in a
deliberate effort to further obfuscate circuit function from a potential attacker with access
to the design netlist.

3The term “crosstalk” often refers specifically to capacitive coupling between wires. In this paper we
use the word crosstalk in a more general sense to describe the unspecified interaction between neighboring
wires.

424 LifeLine for FPGA Security

Security Considerations Effectively, we use crosstalk between two adjacent FPGA wires
as a primitive to transmit values between a transmitter/receiver pair without a physical
connection. The implementation mitigates the risk of functional reverse engineering
from a netlist by hiding communication between sub-circuits (cf. Figure 6). To identify
possible crosstalk communication, an attacker needs logic synthesis, placement, and routing
information. The attacker also needs to know the routing channel layout of the device.
The information needed to locate and analyze this data far exceeds what is needed to
simply analyze the gate-level netlist.

Subcircuit
1

Subcircuit
2

invisible data
connection

crosstalk

Figure 6: High-Level Idea of Crosstalk Communication.

A crosstalk obfuscation primitive protects against both static and simulation analysis,
and partially against on-chip debugging. An attacker cannot correctly simulate or statically
analyze the netlist since the adjacent-wire communication channel connection is not
represented in the netlist and the datapath connection is only present on the device itself.
Since crosstalk parameters vary across FPGA families, an attacker would need to analyze
the design physically on a specific device to understand what type of communication is
taking place.

5.3.1 Implementation

To detect the logic state of an adjacent wire, an asynchronous Ring Oscillator (RO) [GRE18]
is used as the receiver. The ring oscillator’s frequency is affected by the state of the adjacent
transmitter wire. The oscillator frequency is greater when an adjacent wire holds a high
voltage and vice versa when the wire is low. The preceding characteristic allows the receiver
to make a guess of the transmitter state with high probability over some predetermined
sampling period (T). The magnitude of this effect is dependent upon the device family,
length of the wire overlap, technology node, and is partly influenced by the unique silicon
variation of the device. A binary counter is connected to a RO output to determine how
many oscillations take place during the sampling period. Higher counts (reduced RO delay)
indicate the presence of a static logic ’1’ on the adjacent wire.

Figure 7 demonstrates the crosstalk effect and its influence on the RO count depending
on the logic state of the transmitter on a Zynq 7000 device. Each of the 120 experiments
resulted in a count obtained after T = 2.1 ms. First, an experiment was performed with
a transmitted logic ’1’ (blue dot) followed by an experiment with a logic ’0’ (red dot).
This procedure was repeated for the rest of the measurements. Counts obtained for each
experiment are shown in the figure. The channel wires overlap for a span of 140 logic slices.
The black line shows a classification point that can be used by the receiver to guess the
state of the transmitted data. Since there is no 1-D line that classifies every possible point
correctly, the transmission accuracy is not 100% for all samples. Therefore, error detection
is utilized to minimize errors on the receiving side.

F. Stolz, N. Albartus et al. 425

0 20 40 60 80 100 120

Experiment Number

212620

212640

212660

212680

212700

212720

212740

212760

O
sc
ill
at
or
C
ou
nt

Crosstalk Ring Oscillator Count
Logic 1
Logic 0

Figure 7: Ring Oscillator Count with 120 Experiments Performed.

To use crosstalk for data transfer, the design is split into two parts that do not have
physical connections. One part includes the transmitter, which encodes the data while
simultaneously shifting it out onto a transmitter wire at a specified frequency. The
other module includes the receiver, which monitors the effective frequency of the RO and
dynamically decides what logic state has been transmitted. The data is then decoded and
determined to be valid or invalid based on error checking. To successfully send data, the
transmitter and receiver are synchronized at the same data throughput rate. Figure 8
demonstrates the architecture for crosstalk-based data transmission.

Binary
Counter

x

Pattern
GeneratorEncoder

Interpreter
LogicDecoder

(Ring Oscillator)

Transmitter

Receiver

Input
Data

Output Data

Valid

Transmit
Period

Crosstalk

Figure 8: Crosstalk Primitive Overview.
The transmitter wire and receiver wire overlap in a routing channel is achieved by

using directed routing constraints and logic isolation to reduce noise during FPGA design
compilation. The length of this overlap linearly influences the intensity of the crosstalk
effect. The encoder module employs an 8-bit CRC per chunk of transmitted data (e.g., 16
bits) for error detection. The pattern generator module includes a shift register that is
controlled by the transmit period. The binary counter measures the effective frequency
of the RO. The interpreter module uses the synchronized counter value to determine the
logic state of the transmitter. At the start of each transmission request, a configuration
sequence is used to synchronize the interpreter. The decoder then accumulates all values
and validates data integrity based on the code word that comes through the channel. If
the codeword is invalid, the controlling entity (Section 7) must initiate a new transmission.

426 LifeLine for FPGA Security

5.3.2 Evaluation
In this subsection, we evaluate the bandwidth in bits per second (bps) and Bit Error
Rate (BER), i.e., the percentage of bits transmitted in error, of data transmitted in 16- or
32-bit chunks with an 8-bit CRC per chunk.

0 5 10 15 20 250

200

400

600

Sample Period (ms)

B
an

dw
id
th

(b
ps
)
(b
lu
e)

0

2

4

6

B
it
Er

ro
r
R
at
e
(%

)
(r
ed

)Bit Error Rate
Bandwidth

(a) Crosstalk Performance at 16 Bits.

0 5 10 15 20 250

200

400

600

Sample Period (ms)

B
an

dw
id
th

(b
ps
)
(b
lu
e)

0

2

4

6

B
it
Er

ro
r
R
at
e
(%

)
(r
ed

)Bit Error Rate
Bandwidth

(b) Crosstalk Performance at 32 Bits.

Figure 9: Crosstalk Evaluation. Transmission Bandwidth (blue) and BER (red) for Data
Transmitted in 16- and 32-Bit Chunks. 8-Bit CRC Included with Each Chunk.

Figure 9 shows the BER and communication bandwidth (bps) as a function of the binary
counter sample period (each sample represents one bit transfer). The x-axis represents
the sample period (T), i.e., the amount of time each bit stays on the transmitter. The
bandwidth results account for the overhead of re-transmitting data when the received code
word is invalid. The CRC bits are not included as part of the bandwidth but are included
as part of the BER.

The data demonstrate that both the communication bandwidth and BER are inversely
related to the sample period. The relationship between both metrics is very similar and
experiences drastic changes if the frequency of transmission is too fast making the system
infeasible for data transfer. The most consistent results are achieved when transmitting
16-bits with a sample period between 2.1 ms and 21 ms. As the data width per transmission
increases from 16 to 32 bits, the error rate increases significantly. This increase is attributed
to the error detecting code being employed. Since the code word is applied to a bit field,
all values of that field must be correct, otherwise, re-transmission is necessary. The
transmission rate and other parameters can be tuned for target FPGA device.

Improvements The CRC codeword could be directly transmitted between the encoder
and decoder instead of using transmission via crosstalk to improve transmission stability
and increase performance. This approach circumvents the possibility of errors in the CRC,
allowing an increased error tolerance on the data payload. Furthermore, reducing the CRC
transmission overhead also increases the raw bandwidth significantly. Our experimentation
shows that removing the CRC codeword from the crosstalk transmission stream increases
bandwidth by 4× while retaining a BER of nearly zero during 4 KB of data transfer. The
improvement allows for a sample period decrease to 1 ms with the same data integrity as the
2.1 ms baseline for 16-bit transmission data width. However, the direct CRC transmission
approach does create a physical connection between the transmitter and receiver module
that could help a reverse engineer identify and isolate the transmission circuitry.

Environmental and Aging Effects To detect analogous crosstalk communication effects,
we analyze the relative differences in wire delays. Note that these delays are induced by the
logic value of neighboring wires. For example, the delay decreases in case the neighboring
wire is a logic ’1’. In addition, wire delay differences are generally unaffected by transistor

F. Stolz, N. Albartus et al. 427

aging or environmental effects. More precisely, both sender and receiver transistors are
equally affected by the physical phenomena and the detection only focuses on wire delay
differences. For more details see Sapatnekar et al. [Sap13] and Wang et al. [WKK+14].

5.4 BIMAD - Bitstream Manipulation Detection
The deterrence of static and dynamic analysis via hardware obfuscation is only one part
of a comprehensive (hardware) obfuscation scheme. Based on our adversary model in
Section 4.1, we also assume that a design may be manipulated (e.g., the addition of
in-circuit debug circuitry to disclose sensitive information), cf. Figure 10.

CLBSwitch Matrix

PIP Junction:
ER1BEG1

PIP Junction:
EE4END0

H
or

iz
on

ta
lI

nt
er
co

nn
ec

t

H
or

iz
on

ta
lI

nt
er
co

nn
ec

t

Vertical Interconnect

I/
O

In
te
rfa

ce

SLICE
(LUTs, FFs...)

SLICE
(LUTs, FFs...)

Figure 10: Bitstream Manipulations Targeting Route Through PIP from Source Junction
EE4END0 to Destination Junction ER1BEG1.

Before we detail our approach for run-time bitstream integrity checking, we provide
fundamental details of the Xilinx 7-Series FPGA architecture and its bitstream format.
This information helps illustrate the mechanics of bitstream-level manipulations and our
defense strategy.

Bitstream-Level Design Manipulation Modern FPGAs leverage programmable switch
matrices to flexibly connect programmable logic/memory resources organized within a
grid of tiles. For details on switch matrices, see Section 3.1. The configuration information
for logic/memory resources and switch matrices is stored in the bitstream, cf. [Xil18] for
Xilinx 7-Series bitstream details. From a high-level perspective, a bitstream consists of
configuration packets that transmit commands to the FPGA to set up and control the
device’s initialization process. The configuration of the FPGA fabric, i.e., its programmable
logic and routing, resides within the payload of these packets. The fabric’s configuration
information is split into frames that consist of 101 32-bit words each. In principle, an
attacker can add, change, and remove any logic, memory, or programmable interconnect
from the configuration, as demonstrated in Section 3.1. Figure 10 presents two potential
attack vectors targeting the FPGA’s configurable routing. For example, a switch matrix
input may be redirected to other source logic or registers 1 and a switch matrix output
can be wiretapped to snoop the data-path at run-time 2 .

428 LifeLine for FPGA Security

Security Consideration We apply self-integrity measures from the software obfuscation
domain to hardware to examine a bitstream for manipulations at run-time. In particular,
our integrity check consist of two parts: (1) run-time bitstream readback of selected frames
(this section), and (2) verification of the readback data’s validity (Section 7.1). In general,
readback and integrity verification of an entire bitstream is discouraged. A bitstream for
even medium-sized FPGA families contains multiple megabytes (rendering the readback
time impractical).

5.4.1 Design

To better describe bitstream self-integrity checks to support hardware obfuscation, we
now present (1) the choice of relevant parts to check for integrity, and (2) a controller
that reads back selected parts of the configured bitstream at run-time. This obfuscation
primitive requires an understanding of (parts) of the proprietary bitstream file format.
Even though our design and implementation focus on Xilinx 7-Series FPGAs, the defense
principles can be generalized to other FPGA families and vendors as well.

Choosing Relevant Parts of the Design for Integrity Checks To select which FPGA
bitstream configuration frames must be read back, it is necessary to first select the
application-specific hardware design portions that are targeted for protection (e.g., a wire
path between a source and a destination register). The EDA tool report is then analyzed
for detailed place-and-route information to identify the affected hardware components.
Afterwards, the documented bitstream file format is leveraged to automatically map this
information to configuration bits in the bitstream, i.e., determine which bits have to be set
or unset to activate or disable the desired functionality.

Readback Controller To query the regarding configuration bits at run-time, we leverage
a readback controller that communicates with the internal FPGA configuration unit,
cf. Section 5.1. Configuration bit information is processed by software (Section 7.1).

1 $> report_route_status -of_objects [get_nets icap_data_in [0]]
2 CLBLM_L_X20Y23 / CLBLM_L . CLBLM_M_AQ -> CLBLM_LOGIC_OUTS4
3 INT_L_X20Y23 / INT_L . LOGIC_OUTS_L4 ->> EE4BEG0
4 INT_L_X24Y23 / INT_L .EE4END0 ->> ER1BEG1
5 ...
6 LIOI3_X0Y1 / LIOI3 . IOI_OLOGIC0_D1 ->> LIOI_OLOGIC0_OQ
7 LIOI3_X0Y1 / LIOI3 . LIOI_OLOGIC0_OQ ->> LIOI_O0

Listing 1: Exemplary Output of Xilinx Vivado’s Place-and-Route Report Analysis Tool
for Net icap_data_in[0].

External Readout Protection Xilinx offers a feature that allows for the readout of the
entire configured bitstream during run-time via JTAG. In the design process, the designer
has the option to set the security level so that readout can be prevented. Readout protection
is controlled by a single bit in the bitstream, hence manipulation is straightforward.
Additionally, the readout status can be determined via the on-chip reconfiguration interface
(ICAP). This information can be incorporated into the integrity check if the designer wants
to ensure that readout is disabled. Note that the readout protection status is queried in
combination with partial reconfiguration. The partial bitstream is only configured if the
readout bit is not set to hinder leakage of any design information from the partial design.
The readout protection cannot be enabled externally once the bitstream is loaded.

F. Stolz, N. Albartus et al. 429

5.4.2 Implementation
Our implementation targets the Xilinx Zynq-7000 XC7Z020 System-on-Chip (SoC) using
the Xilinx Vivado toolchain.

Choosing Relevant Parts of the Design for Integrity Checks The bitstream format
database provided by Project X-Ray [Syme] is leveraged to translate the selected gates and
routes to their corresponding configuration bit-patterns in the bitstream. As noted earlier
in this subsection, FPGA fabric configuration information in the bitstream is organised in
frames of 101 32-bit words each. The database maps features, e.g., a PIP connection or
a LUT configuration and their locations within the FPGA’s tile grid, onto specific bits
within the bitstream. The Project X-Ray database utilizes the naming and placement
conventions prescribed by Xilinx, thus allowing for the direct correlation of data gathered
from Xilinx Vivado to information stored within the database. Having extracted the
desired feature names and locations from the EDA tool report, cf. Listing 1, the database
enables the generation and storage of (1) frame address, (2) word index within the frame,
and (3) bit index within the word tuples for each of the features. This information reveals
the bits configuring the respective features and their target state.

Readback Controller Similar to Section 5.1, the ICAPE2 controller (cf. Section 5.1.2)
is leveraged to handle dynamic reads of the FPGA bitstream configuration. A fixed
command sequence that handles mode switching and byte-ordering is used. The required
commands, which follow the SelectMAP protocol, can be found in Table 6-2 of the Xilinx
User Guide [Xil18]. The procedure involves the initialization of the start address and the
number of frames to be read via the FDRO register.

External Readout Protection The ICAP controller can be queried to obtain the config-
ured status of the readout protection. The readout configuration is stored in the CTL0
register, which can be read using Xilinx’s SelectMAP protocol [Xil18].

6 Software Obfuscation Methods
We now provide an overview of the selected software obfuscation methods relevant for
this work. Over the years, numerous software obfuscation methods have been proposed,
cf. Collberg [CTL97] for a comprehensive overview, and we thus focus on the most
prominent techniques (that are also extensively used in commercial obfuscators such
as VMProtect [VMP] or Tigress [Tig]) based on virtualization-based obfuscation
(Section 6.1), Mixed Boolean Arithmetic (MBA) (Section 6.2), and software integrity
measures (Section 6.3).

6.1 Virtual Machine-based Obfuscation
Virtual Machine (VM)-based obfuscation protects software by translating it into a custom
Instruction Set Architecture (ISA). The virtual instruction stream is referred to as bytecode.
The bytecode is then interpreted by a virtual software-based Central Processing Unit (CPU),
cf. Figure 11. This obfuscation technique forces a reverse engineer to first understand
the ISA as well as VM implementation and then reconstruct the underlying code from
the bytecode which is a time-consuming task in practice. In general, virtualization is
implemented using a decode-and-dispatch loop that fetches each virtual instruction from
memory, decodes it via a large switch-case statement, and then transfers execution to the
respective VM handler (that typically performs the operation in native code).

More advanced implementation strategies aim to hide this characteristic software
pattern via diverse dispatcher strategies such as indirect dispatch or call dispatch, cf. [Tig].
For virtual instruction sets, an obfuscation designer is free to deviate from classical RISC

430 LifeLine for FPGA Security

Device
MemoryRegisters

R0

R15
R14
R13
R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1

Special
Registers

PC
Stack Pointer

Figure 11: Visualization of a Generic VM Structure.

or CISC architectures. For example, Anckaert et al. [AJV06] and Fang et al. [FWWH11]
proposed designs in which VM instructions may execute whole basic blocks or even
complete algorithms. Based on Instruction Set Randomization (ISR), it is moreover
possible to change the ISA on-the-fly during execution [CLGJ19]. Even though the effort
for static analysis significantly increases with VM-based obfuscation, execution traces can
reveal the bytecode location and may lead to further understanding of the virtualization
handlers [SLGL09].

6.2 Mixed Boolean Arithmetic
MBA connects arithmetic operations (e.g, addition, multiplication, . . .) with logical
operations (e.g., exclusive or, bit-shifts, . . .) [ZMGJ07]. For example, the computation
of x + y is semantically equivalent to (x ⊕ y) + 2 · (x ∧ y). MBAs are well-established
building blocks for software obfuscation as they enable expression transformation to prevent
simplification back to their original form (e.g., to apply instruction substitution or assemble
opaque predicates [JRWM15]). MBA expression reduction to simplified expressions is
considered NP-hard [ZMGJ07]. With the aforementioned VM-based obfuscation in mind,
MBAs are valuable in obfuscating VM handler semantics and thus challenge the reverse
engineering of a virtual instruction set architecture even further.

6.3 Software Integrity
Software obfuscation that deters static and dynamic analyses is only one part of a com-
prehensive protection plan. A reverse-engineer may also learn about the inner workings
of the software by manipulation (e.g., changing the control flow). We now describe
various strategies to achieve software integrity (in a non-cryptographic sense). In gen-
eral, self-checksumming can be used to validate code changes within a software program.
Horne et al. [HMST01] separate self-checksumming into two categories: static checksum-
ming that only runs during start-up and therefore is only invoked once, and dynamic
checksumming that runs multiple times during program execution. From a high-level point
of view, the responsible code for self-checksumming, a guard, is added to the software
that examines various properties and thus protects parts of the software. To stop a
reverse-engineer from disabling certain guards, each guard may protect other guards to
form a circular network of protection, see Figure 12. For example, a guard may read back

F. Stolz, N. Albartus et al. 431

Memory

protects protects

protects

Guard Protected area

Figure 12: Dynamic Self-Checksumming Realized by a Circular Guard Network Protecting
Code and Guards.

parts of code memory or data memory, or even measure execution timings of certain parts.
Once manipulation is detected by violation of a property, a guard may invoke a tamper
response to counteract the identified manipulation. Note that an immediate response (e.g.,
system reset) is typically undesirable in practice as the attacker can directly observe what
causes the tamper response. Instead, checksum values are often used at a later point in
time to attempt to hide immediate effects [TCJ06].

7 LifeLine - Design, Implementation, Case Studies
We now present the design (Section 7.1) and implementation (Section 7.2) of LifeLine,
its application in use-cases (Section 7.5), and a security analysis (Section 7.4).

7.1 LifeLine - Design
As introduced in Section 4.2, our key contribution is a system with dynamic control-flow in
hardware and dynamic data-flow in software including a tight integration of both worlds.
Similar to a standard bitstream encryption scheme flow, our obfuscated authenticator
software takes control upon the start of configuration and validates its environment using
our hardware obfuscation primitives. If validation succeeds, the encrypted partial bitstream
of the protected IP core is decrypted and configured on the FPGA. If the software detects
any anomalies, our validation fails quietly and decrypts a false partial bitstream.

Hardware Our hardware setup is comprised of the obfuscation primitives introduced
in Section 5. LifeLine uses a soft-core CPU as a main controller, see Figure 13. Note
that we used a RISC-V CPU, however, our design is agnostic to the selected ISA. Our
reconfiguration controller realizes both the dynamic partial reconfiguration as well as the
dynamic bitstream readback for the hardware self-integrity check as detailed in Section 5.1
and Section 5.4. Note that BIMAD ensures that security-relevant gates and routes (e.g., from
the soft-core to the reconfiguration controller) have been not tampered with. Crosstalk-
based transmission of FPGA-unique device IDs safeguards the hardware system from
simulation (even for FPGAs that are capable to simulate partial reconfiguration). Note
that IDs are used optionally in our system to bind decryption to a specific FPGA device
instance. To connect the hardware and software worlds, hardware components are accessible
via memory-mapped IO within the soft-core. The encrypted bitstream can either be stored
in BRAM or on external non-volatile storage.

432 LifeLine for FPGA Security

Software Our software comprises of the obfuscation primitives introduced in Section 6.
Since any soft-core in our design is typically resource-limited, we designed our virtual
machine ISA with a low memory footprint in mind. Hence, we opted for an accumulator
machine with a 1-byte instruction format. Nonetheless, we equipped handlers of our virtual
machine with MBAs to hinder analysis. Therefore, we used an MBA synthesis approach
that allows for the generation of MBAs of arbitrary complexity [BCAH17]. To safeguard
software integrity, we read back the memory of code and data in software.

BRAM

RISC-V

Reconfiguration
Controller (ICAP)

authentication
software

+
partial

bitstream

Software
Obfuscation

BIMAD

Crosstalk

Unique Device ID

BIMAD

Authenticator Protected IP-Core

CORE

dynamic partition

Connections in Fabric via Reconfiguration Controller

Figure 13: LifeLine Design Overview.

Hardware/Software Co-Obfuscation Since the partial bitstream is encrypted based on
a (symmetric) encryption algorithm, we have to generate the cryptographic key in a secure
manner. Note that from a cryptographer’s perspective key storage without dedicated secure
elements can be typically easily circumvented, but with a tight coupling of hardware and
software obfuscation we can achieve an efficient security level of a software-based secure key
memory in practice. To generate the key, we utilize a hash-based approach where specific
device data is accumulated via a hash function, i.e. k = H(data1||H(data2||H(...)). Note
that datai is hardware or software data source (e.g., crosstalk-based transmitted FPGA
ID or code memory location bytes for self-integrity). Hence, manipulation of a single bit
of a data source results in a deviation of the cryptographic key (based on the avalanche
property of the cryptographic hash function). So malicious changes to the unique hardware
ID or the validated bitstreams configuration bits from BIMAD have direct consequences on
the hash computation and inevitably change the key. Note that our main requirement is
that the hardware obfuscation primitives feed data into the computation of k, so that the
software black-box cannot be analyzed as a single component and thus creates a strong
dependency between hardware and software. To overcome these obstacles an adversary
has to simultaneously attack multiple levels from software and hardware to change both
the places where computation takes place and the self-integrity checks report their status.
Without knowledge when which data feeds into the stream and an easy way to manipulate
the software and hardware integrity checks will require considerable effort for which there
is currently no known way on how this may be automated.

7.2 LifeLine - Proof-of-Concept Implementation
We now detail our proof-of-concept implementation of LifeLine. Note that we acknowledge
run-time limitations as we focused on an implementation with a minimal hardware footprint,
so we left out optimizations based on custom instruction set extension or software/hardware
co-design accelerators.

F. Stolz, N. Albartus et al. 433

Hardware We opted for a custom RISC-V soft core (running at 100 MHz) that uses
shared Random Access Memory (RAM)/Read-Only Memory (ROM) (implemented using
BRAM blocks) to store its software and the encrypted partial bitstream of the protected
hardware design. For development purposes, we also added communication modules
to load and inspect software at run-time. Our hardware primitives from Section 5 are
instantiated as described before and accessible to the CPU software via memory-mapped
Input/Output (I/O). To protect the hardware design from tampering, we opted to guard
the connections from the CPU to its peripherals via BIMAD. To generate FPGA unique
device IDs, we leverage the Xilinx-specific Device DNA [Xil18]. Note that we applied
crosstalk-based communication from the ID register to the software as the identifier is
only transmitted once. On average, transmitting the 57-bit ID requires around 10ms using
the fastest crosstalk configuration with a sample rate of 2.1 ms. For our reconfiguration
controller, we use the Xilinx ICAPE2 port as stated in Section 5.1.

The hardware resource overhead of our components is listed in Table 2 and requires
overall around 10% of available resources on our target Xilinx Zynq-7000 FPGA.

Software As noted in Section 7.1, we opted for a VM architecture with minimal memory
footprint using an accumulator machine and a compact decode-and-dispatch loop. Note
that all computations are exclusively carried out between an operand register and the
accumulator. We use a 1-Byte instruction format in which 4-Bit are reserved for the
operation selection and 4-Bit for the operand register selection. To protect semantics of
VM handlers, we synthesized MBAs based on the approach by [SBC+21]. For example,
Listing 2 shows the C implementation of the VM handler for a Boolean AND operation
equipped with an automatically generated MBA. As a proof-of-concept, we leverage a
single guard for software integrity that reads back all code and data from software memory.

1 switch (opcode) {
2 ...
3 case AND: {
4 // r0 is the accumulator register and ry the operand register
5 r0 = (~ ((((0 x2 << ((~ (- ((r0 + 0 xffffffff) ^ 0 xffffffff))) & 0x1f))

| (~ ((~ (((~ r0) ^ (~ ((- (((- r0) + 0x2) << ((((- r0) + 0x2) <<
0x2) & 0x2))) + 0x2))) & (~ (- (~ (ry ^ (~ ry))))))) & (~ (~ (((~
((~ ((~ ((~ ((~ ((((- r0) + 0x1) | (r0 | ((r0 ^ (~ (r0 | (r0 & (- (
ry + 0 xffffffff)))))) | 0x2))) & ((r0 ^ (~ (r0 | (r0 & (- (ry + 0
xffffffff)))))) | 0x2))) | (((r0 ^ (~ (r0 | (r0 & (- (ry + 0
xffffffff)))))) | 0x2) << ((- ((r0 ^ (~ (r0 | (r0 & (- ((- ((- ((~
((~ (r0 | ((~ (ry & 0x2)) | 0x2))) | ry)) & ry)) + 0x1)) + ry))))))

| 0x2)) & 0x1f)))) | ((r0 ^ (~ (r0 | (r0 & (- (ry + 0 xffffffff))))
)) | 0x2))) | (~ ry))) | (~ ry))) ^ ry) & ry)))))) & (~ ((~ ((~ r0)

^ (~ (- (~ ((- r0) ^ 0 xffffffff)))))) & (((r0 ^ (- ((- ((- (~ (-
r0))) + 0 xffffffff)) + 0x1))) | 0x2) & ry)))) | (~ r0)));

6 break ;
7 }
8 ...
9 }

Listing 2: Example: A hardened VM handler for r0 = r0 ∧ ry equipped with an MBA
expression.

Hardware/Software Co-Obfuscation We implemented the hash-based generation of a
decryption key using Simon 32/64 (in Davies-Meyer mode) where the cryptographic
round-function is implemented using our hardened VM. Note that we compiled our C-
implementation of the virtual machine and hash-based key generation, and decryption
using an adapted riscv-gcc toolchain and optimized the software for performance with
O3. Our final software requires 32 kByte of memory (excluding the partial bitstream).We now provide an overview of the run-time of different hardware/software components
including interaction based on the computation of the data hash with the protected Simon

434 LifeLine for FPGA Security

implementation. Our crosstalk-based readout of the FPGA ID requires around 10ms on
average as the analog crosstalk behavior features an irregular run-time due to required
error detection. Note that the transmission can be enabled upon FPGA boot-up and the
value read later. For the self-integrity readback and software check via BIMAD, we require
around 3 ms on average for a route for both eavesdropping and manipulation detection.
In our experiments, we selected a route spanning across 4 PIPs, which would have to be
checked for manipulation. To safeguard for eavesdropping 52 additional configurations
of the selected PIP have to be added, to ensure no additional destinations can be added.
The amount of additional PIPs to check, depends however on the regarding PIP. Our tool
is able to identify all necessary PIPs for the eavesdropping connection. Each configuration
consists of around 1-5 bits in the bitstream that have to be checked for that matter.

The actual encryption/decryption uses a hash-based approach. The key is derived
from multiple hardware and software values (cf. Section 7.1). It is used in combination
with the Simon cipher in CTR mode. The output is then used as a seed for ISAAC, a
fast software Pseudo Random Number Generator (PRNG) [Jen96], to generate a 1 kB
keystream. The partial bitstream is split into 1 kB chunks and each chunk is decrypted
using a newly generated keystream.

7.3 Area and Performance Overhead
Our proof-of-concept induce minor hardware overhead, as seen in Table 2, because we only
require a simplistic soft-core with two additional peripherals. Most security mechanisms
are implemented in software and requires 135 KB of memory space, i.e. BRAM, while 62
KB of the 135 KB are used to store the partial bitstream.

Table 2: Hardware Resource Overhead for Xilinx Zynq-7000 FPGA (ZedBoard).
LUT FF BRAM LUT-RAM

RISC-V 2643 2743 32 160
Crosstalk Communication Primitive 330 348 0 0
ICAP Controller 146 118 0 0
Total Used 3119 3209 32 160
Total Available 53 200 106 400 140 17 400

LifeLine creates a one-time start-up penalty of 560 ms for the key generation, cf.
Table 3, and 591 ms for the decryption. After the authentication process LifeLine does
not influence the user design except for the static area overhead. The majority of the
time is spent on checking the environment integrity and to perform the partial bitstream
decryption. Note that the decryption itself is hardened with software obfuscation and thus
is by nature slower than a native implementation.

Table 3: Time overhead for key generation of LifeLine at 100 MHz
Average Execution Time

DNA Transmission via Crosstalk 10 ms
57 BIMAD Checks 228 ms
Software Self-Integrity Check 260 ms
Key Accumulation via Hashing 34 ms
Partial Reconfiguration 28 ms
Total 560 ms

We want to emphasize that our soft-core does not implement any optimizations such
as a pipeline and only runs at 100 MHz. Hence, the use of a different, i.e. optimized
soft-core may drastically decrease the start-up penalty (while increasing the hardware area
overhead).

F. Stolz, N. Albartus et al. 435

7.4 Security Analysis
In the following we detail how any missing obfuscation primitive would yield a circumvention
of the protection and thus it shows that our selected primitives for hardware and software
obfuscation are minimal but offer adequate protection. Note that in general our coupling of
hardware and software via hash-based key-generation does not allow for single-component
analysis as described in the following.
Hardware On the hardware side, as an attacker, we deter any static analysis by partial
reconfiguration as the design is only unfold at run-time. In this way, an attacker is resort
to simulation or on-chip debugging (coupled with malicious design alterations) to analyze
the system. To this end, an attacker may attempt to alter the routing inside the FPGA
to eavesdrop on the values exchanged between the softcore peripherals or to reroute the
ICAP peripheral to his own malicious implementation. To counteract such manipulation,
we read back selected parts of the bitstream information and incorporate these values in
the key derivation (cf Section 5.4). We want to emphasize that an adversary may attempt
to alter the software (e.g., to overwrite returned values), however, since our software
is again protected with obfuscation measures and feedback to the hardware (via covert
communication) reverse-engineering and manipulation becomes a chicken-and-egg problem
for an attacker. Note that in principle an attacker can analyze hardware and software
simultaneously, but such a software-hardware co-deobfuscation cannot be automated to
the best of our knowledge (with respect to state-of-the-art tools). Moreover, our hardware
implementation can also feature CPU implementations with randomized instruction set
architectures [FRB+18] so that a reverse-engineer would have to also reverse-engineer the
instruction set architecture first (required to disassemble the obfuscated software). In
addition, an attacker may attempt to insert a malicious reconfiguration controller into
the system that correctly answers all read requests (even though the configured routes
differ from the returned values). To this end, a malicious reconfiguration controller has to
store the original bitstream (which requires significant memory space), and it must meet
the same timing requirements as its original counterpart. Note that our implementation
requires precise timing and thus acts similar to a run-time integrity check via the entire
SelectMAP protocol. In summary, we want to emphasize that our selected arsenal of
hardware obfuscation primitives is minimal, i.e. when one of the primitives is removed an
attacker may find a semi-automated approach to attack the system.
Software On the software side, VM-based obfuscation requires an attacker to the tedious
task and manual to understand the VM architecture. Even though semi-automated
approaches to reverse-engineer VM-based obfuscation exists (e.g., symbolic execution or
program synthesis [BCAH17]), the effectiveness of the attacks typically decrease with an
increasing complex handler. Hence, without the additional drastically-increasing syntactic
complexity by MBAs our simplistic VM architecture would be targeted by semi-automated
approaches. We want to note that with automatically generated MBAs and a flexible VM
architecture we are able to generate a diverse set of implementations. Note that without
the software integrity measures by guard networks an adversary may be able to introduce
breakpoints or replace cryptographic operations with simplified linear expressions to observe
divergent behavior and draw conclusions about utilized decryption keys. However, patching
cyclic guard networks is a non-trivial task in practice, cf. Section 6.3. Moreover, we want to
emphasize that we are free to choose the selected decryption algorithm and use secure but
proprietary randomized variants (e.g., an Advanced Encryption Standard (AES) with a
randomized Sbox or a proprietary key schedule still offers the same security guarantees). In
this way, the proprietary nature of the cipher implementation renders side-channel attacks
meaningless as the adversary cannot generate correct key hypotheses. In summary, we
want to emphasize that our selected arsenal of software obfuscation primitives is minimal,
i.e. when one of the primitives is removed an attacker may find a semi-automated approach
to attack the system.

436 LifeLine for FPGA Security

7.4.1 Towards a Systematic Security Analysis of the Proposed Scheme
A systematic security analysis of obfuscation metric is hard to perform in a general sense,
because of the human factor (particularly different skill levels and approaches) introduced
by the reverse engineer that cannot be quantified so far [BWA+20,WAH+19,HP18]. In
1997 Collberg et al. introduced certain criteria for software transformation/obfuscation
which can be partly applied to hardware in order to evaluate the strength of the obfuscation
method. Three main criteria as measurement of quality are characterized: (1) the amount
of obscurity added to the program (potency), (2) the difficulty to break for an automatic
deobfuscator (resilience), and (3) the computational overhead added by the obfuscation
(cost) [CTL98,HP18]. Note that the cost criteria is discussed in Section 7.3.

Potency Our deep coupling of various software and hardware obfuscation techniques
forces the attacker to carry out the attack simultaneously at both hardware and software
levels. He cannot attack the software without analyzing/attacking the hardware nor
attack the hardware without control and a deep understanding of the software. Thus, an
interdisciplinary team of experts in both hardware reverse engineering and software reverse
engineering is required. To successfully attack the system, the self-integrity checks by
BIMAD on both hardware and software have to be circumvented first. While the checks are
issued from the software and then performed in hardware, its hardware results are again
handled in software and influence the key derivation used for decryption. In particular, the
attacker does not know what checks are performed at which point in time. As mentioned
before, an attacker may simulate the response from the hardware side, however, this
requires a malicious ICAP controller while meeting timing requirements mandated by the
protocol. In addition, the device ID transmission (obfuscated with the help of crosstalk)
cannot be simulated and has to be carried out on the device. Again the device ID is
also used in software as part of the key derivation and thus adds another coupling of
both software and hardware. Once the attacker overcomes these barriers, he is faced with
reverse-engineering of software that is equipped with several well-researched obfuscation
mechanisms, as mentioned in the preceding section.

Resilience LifeLine has high resilience, in regards to state-of-the-art automated de-
obfuscation approaches. Currently, there are not completely automated methods for
hardware reverse engineering, in particular gate-level netlist reverse engineering. Even
though various automated methods exist (e.g., to detect FSMs [STGR10,FWD+18] or
registers [AHT+20]), these methods only provide support in the manual analysis phase.
Even though various automated methods exist to extract information from an (obfuscated)
software binary (e.g., symbolic execution or program synthesis [BCAH17]), reverse engi-
neering of virtualization-based obfuscation generally includes several crucial manual steps
(before automated methods can be applied) such as examination of the virtual machine
and design of its intermediate language [SBC+21].
Based on these criteria LifeLine provides strong additional security. The creation of a
strong bond between software and hardware significantly increases the effort of the attacker.
He is not able to analyze all components in isolation but has to attack the whole system
on different levels at once, making it a time-consuming task.
7.5 Use-Cases of LifeLine
We now outline two different application use-cases for LifeLine to implement (1) a
bitstream encryption feature and (2) a pay-per-use IP core license scheme.

Use-Case: Bitstream Encryption One application of LifeLine is to implement bitstream
protection that retrofits a security solution to FPGA families with vulnerable bitstream
encryption schemes. To achieve bitstream protection, the design that is supposed to be
protected has to be put into the dynamic partition, so it can be dynamically reconfigured by

F. Stolz, N. Albartus et al. 437

LifeLine. To this end, we require to declare a re-configurable region that fills almost all of
the FPGA (except for a small static region designated for LifeLine). However, this imposes
design restrictions as re-configurable partitions inside of other re-configurable partitions are
not properly supported yet (as it requires custom tooling such as GoAhead [BKT12]).

Thus, LifeLine provides protection against reverse engineering (and targeted manip-
ulation). With the bitstream encrypted and obfuscated in software, the bitstream will
only be applied on the allowed devices with the correct device ID. Our various levels of
obfuscation ensure that the adversary has to take a considerable effort and attack LifeLine
at several points in hardware and software simultaneously. A read-out of the configured
bitstream at run-time, i.e. after LifeLine performed the bitstream decryption, is also
not possible, even if the original bitstream of LifeLine (containing the design that is
flashed on start-up of the design) is modified by toggling the read-out protection bit since
LifeLine sets the read-out protection bit again internally (cf. Section 5.4).

Use-Case: IP Core Licensing In addition to encryption of a whole hardware design,
LifeLine can be used to build an IP core license scheme with a binding to specific FPGA
instances. As noted in Section 7.1, we leverage the unique FPGA device ID as key-
dependent data. Hence the software (or in this case the license file) cannot be transferred
from one FPGA to another (with a different device ID) without prior reverse-engineering
and manipulation of both hardware and software. Hence, an IP core provider can use issue
licenses based on LifeLine equipped with the device ID and thus control in a fine-granular
way on how many devices an IP user is allowed to run the protected IP core.

8 Discussion
In the following, we will discuss the generality and implications of our approach and
provide a prospect for future research directions.

Generality Even though our techniques and our proof-of-concept focus on Xilinx SRAM-
based FPGAs, our technique can be adapted to other SRAM-based FPGAs of other
vendors as well. For example, Intel/Altera feature a unique hardware ID and partial
reconfiguration, but with the drawback (from a security engineer’s point of view) that
partial reconfiguration can be simulated [Cor19]. Moreover, BIMAD and crosstalk are not
restricted to the SRAM programming technology and can be implemented on flash-based
FPGAs to deter reverse engineering. As noted before our software obfuscation is not
restricted to RISC-V and any ISA can be utilized as a soft-core. Hardware/software
co-obfuscation can therefore be a potential solution to the particular problem of FPGA
bitstream security on insecure platforms.

Implications In Section 7 we demonstrated the effectiveness of our defenses with respect
to static and dynamic analysis for both hardware and software. Hence, we increase the
effort of an attack by a large factor, since it requires the attacker to have knowledge in
both hardware and software reverse-engineering. Thus, obfuscation in general, especially
hardware/software co-obfuscation, can therefore be a potential solution to the pressing
problem of real-world FPGA security. It should be noted that the interplay between
software and hardware must be carefully designed in order for the scheme to be effective
such that it can not easily be circumvented. Moreover, our work demonstrated again
that reverse-engineering and targeted manipulation of FPGA bitstreams it not only a
theoretic attack vector, cf. Section 3.1, and various security schemes can be circumvented
for vulnerable FPGA families.

438 LifeLine for FPGA Security

Limitations We acknowledge the limitation that in case FPGA vendors offer a secure
cryptographic implementation to decrypt the bitstream, the hardware bitstream encryption
scheme should be used rather than LifeLine. However, for none or insecure bitstream
encryption schemes, our solution yields an effective security level for practical applications.
From a cryptography point of view we acknowledge the limitation of our insecure-by-design
obfuscation based approach, however, obfuscation is the only alternative to retrofit any
security to vulnerable FPGAs.

Additional Obfuscation Primitives PUFs are an alternative solution that offers similar
security properties such as anti-simulation. Especially on devices that do not feature a
unique identifier, such as Xilinx’s device DNA, a PUF could be used instead of or even in
addition to providing additional security features. As PUFs require a higher implementation
and integration effort in general, we decided not to include them. Especially for the license-
based approach, where an IP-Core is potentially integrated into tens of thousands of
devices, the designer has to perform extensive configuration and evaluation during the
enrollment phase for each device. Note that various strong PUFs (in a cryptographic
sense) have been shown to be prone to modeling attacks [VPPK16].

Comparison to Academic Solutions Partial reconfiguration run-time environments have
been proposed in other security solutions before. For example, Huss et al. [HS17] use a
hardware/software co-design to create a software-managed mutating environment with
the goal to minimize power side-channels, i.e. by mapping implementation parts to
different processing units with slightly different power characteristics at run-time. Maes
et al. [MSV12] leverage partial reconfiguration to create a pay-per-use licensing scheme. A
similar scheme as been proposed by Zhang et al. [ZC14]. Compared to LifeLine, their
startup penalty and resource usage are neglectable, since they only require an (encrypted)
decryption core with an embedded key. However, analogously to many other schemes,
this solution requires the usage of a TTP and an enrollment phase. This is not necessary
for LifeLine, because it does not use the built-in bitstream decryption engine (that is
vulnerable to automated implementation attacks for certain families) and thus does not
require an enrollment phase. In addition, the IP vendor can host all necessary services.
Guajardo et al. [GKST07] use a PUFs instead of the device-specific key and built-in
decryption engine. Therefore, they have also feature a neglectable startup penalty at the
cost of a TTP protocol. Kumar et al. [KSM+17] employ a more flexible scheme similar
to LifeLine without the requirement of a TTP. However, the scheme is completely
implemented in hardware compared to the hardware/software co-obfuscation by LifeLine.
Note that Kumar et al. assume that a hash and a decryption engine are located on-chip and
since the IP core is encrypted using RSA a significant time overhead is added. Furthermore,
some of the above schemes can be broken, cf. Section 3.2.

Future Work In this work, we demonstrated crosstalk and partial reconfiguration as
an anti-simulation method that also helps to deter static analysis. In future work, it
should be explored what other hardware primitives may be suitable as anti-simulation
methods, especially if there is improved tooling available to simulate partial reconfiguration.
Moreover, another direction for future research is the combination of ISA and hardware
obfuscation features in order to challenge software reverse engineering similar to Fyrbiak
et al. [FRB+18]. In particular, ISA diversification with dynamic self-modification may be
a fruitful research path to harden software obfuscation features.

F. Stolz, N. Albartus et al. 439

9 Conclusion
Numerous attacks on the bitstream encryption schemes of SRAM-based FPGAs have
demonstrated that FPGA are in need for a solution to provide sound protection even
under the assumption that its cryptographic implementation is vulnerable. In this work,
we first reviewed various FPGA design protection schemes from academia and industry
and demonstrated how to straightforward design manipulation on the bitstream-level
enables to circumvent protection in automated manner. We then provided design and
implementation of novel hardware obfuscation primitives by leverage of dynamic hardware
reconfiguration and configuration readback coupled with bitstream architecture details,
and physical effects by means of crosstalk. Based on the foundation of our primitives,
we designed and implemented LifeLine a hardware design protection for FPGAs using
hardware/software co-obfuscated cryptography. We demonstrated that our defense offers
effective protection in a realistic adversary model, requires minimal integration effort, and
retrofits to already deployed and so far vulnerable systems.

Acknowledgments
This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy (EXC 2092 CASA 390781972),
through ERC grant 695022, BMBF project grant VE-HEP (16KIS1345) and NSF grant
CNS-1563829.

References
[AHT+20] Nils Albartus, Max Hoffmann, Sebastian Temme, Leonid Azriel, and Christof

Paar. DANA universal dataflow analysis for gate-level netlist reverse en-
gineering. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(4):309–336,
2020.

[AJV06] Bertrand Anckaert, Mariusz H. Jakubowski, and Ramarathnam Venkatesan.
Proteus: virtualization for diversified tamper-resistance. In Moti Yung, Kaoru
Kurosawa, and Reihaneh Safavi-Naini, editors, Proceedings of the Sixth ACM
Workshop on Digital Rights Management, Alexandria, VA, USA, October 30,
2006, pages 47–58. ACM, 2006.

[BBS19] Michaela Brunner, Johanna Baehr, and Georg Sigl. Improving on state
register identification in sequential hardware reverse engineering. In IEEE
International Symposium on Hardware Oriented Security and Trust, HOST
2019, McLean, VA, USA, May 5-10, 2019, pages 151–160. IEEE, 2019.

[BCAH17] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz.
Syntia: Synthesizing the semantics of obfuscated code. In Engin Kirda and
Thomas Ristenpart, editors, 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017, pages 643–659.
USENIX Association, 2017.

[BKT12] Christian Beckhoff, Dirk Koch, and Jim Torresen. Go ahead: A partial
reconfiguration framework. In 2012 IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines, pages 37–44. IEEE, 2012.

[BSH12] Florian Benz, André Seffrin, and Sorin A. Huss. Bil: A tool-chain for bitstream
reverse-engineering. In Dirk Koch, Satnam Singh, and Jim Tørresen, editors,
22nd International Conference on Field Programmable Logic and Applications
(FPL), Oslo, Norway, August 29-31, 2012, pages 735–738. IEEE, 2012.

440 LifeLine for FPGA Security

[BWA+20] Steffen Becker, Carina Wiesen, Nils Albartus, Nikol Rummel, and Christof
Paar. An exploratory study of hardware reverse engineering - technical and
cognitive processes. In Heather Richter Lipford and Sonia Chiasson, editors,
Sixteenth Symposium on Usable Privacy and Security, SOUPS 2020, August
7-11, 2020, pages 285–300. USENIX Association, 2020.

[CLGJ19] Xiaoyang Cheng, Yan Lin, Debin Gao, and Chunfu Jia. Dynopvm: Vm-based
software obfuscation with dynamic opcode mapping. In Robert H. Deng,
Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung, editors, Applied
Cryptography and Network Security - 17th International Conference, ACNS
2019, Bogota, Colombia, June 5-7, 2019, Proceedings, volume 11464 of Lecture
Notes in Computer Science, pages 155–174. Springer, 2019.

[Cor19] Altera Corporation. Intel partial reconfiguration ip core. https://www.intel.
com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-
partrecon.pdf, Apr 2019. Accessed: 2021-04-09.

[CTL97] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of
obfuscating transformations. Technical report, Department of Computer
Science, The University of Auckland, New Zealand, 1997.

[CTL98] Christian S. Collberg, Clark D. Thomborson, and Douglas Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In David B. MacQueen and
Luca Cardelli, editors, POPL ’98, Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Diego,
CA, USA, January 19-21, 1998, pages 184–196. ACM, 1998.

[DWZZ13] Zheng Ding, Qiang Wu, Yizhong Zhang, and Linjie Zhu. Deriving an NCD
file from an FPGA bitstream: Methodology, architecture and evaluation.
Microprocess. Microsystems, 37(3):299–312, 2013.

[EHP19] Susanne Engels, Max Hoffmann, and Christof Paar. The end of logic locking?
A critical view on the security of logic locking. IACR Cryptol. ePrint Arch.,
2019:796, 2019.

[EMP20] Maik Ender, Amir Moradi, and Christof Paar. The unpatchable silicon: A full
break of the bitstream encryption of xilinx 7-series fpgas. In Srdjan Capkun
and Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 1803–1819. USENIX Association,
2020.

[ESW+19] Maik Ender, Pawel Swierczynski, Sebastian Wallat, Matthias Wilhelm,
Paul Martin Knopp, and Christof Paar. Insights into the mind of a tro-
jan designer: the challenge to integrate a trojan into the bitstream. In
Toshiyuki Shibuya, editor, Proceedings of the 24th Asia and South Pacific
Design Automation Conference, ASPDAC 2019, Tokyo, Japan, January 21-24,
2019, pages 112–119. ACM, 2019.

[FRB+18] Marc Fyrbiak, Simon Rokicki, Nicolai Bissantz, Russell Tessier, and Christof
Paar. Hybrid obfuscation to protect against disclosure attacks on embedded
microprocessors. IEEE Trans. Computers, 67(3):307–321, 2018.

[FWD+18] Marc Fyrbiak, Sebastian Wallat, Jonathan Déchelotte, Nils Albartus, Sinan
Böcker, Russell Tessier, and Christof Paar. On the difficulty of fsm-based hard-
ware obfuscation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):293–
330, 2018.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-partrecon.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-partrecon.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-partrecon.pdf

F. Stolz, N. Albartus et al. 441

[FWR+20] Marc Fyrbiak, Sebastian Wallat, Sascha Reinhard, Nicolai Bissantz, and
Christof Paar. Graph similarity and its applications to hardware security.
IEEE Trans. Computers, 69(4):505–519, 2020.

[FWS+18] Marc Fyrbiak, Sebastian Wallat, Pawel Swierczynski, Max Hoffmann, Se-
bastian Hoppach, Matthias Wilhelm, Tobias Weidlich, Russell Tessier, and
Christof Paar. HAL-The Missing Piece of the Puzzle for Hardware Reverse En-
gineering, Trojan Detection and Insertion. IEEE Transactions on Dependable
and Secure Computing, 2018.

[FWWH11] Hui Fang, Yongdong Wu, Shuhong Wang, and Yin Huang. Multi-stage binary
code obfuscation using improved virtual machine. In Xuejia Lai, Jianying Zhou,
and Hui Li, editors, Information Security, 14th International Conference, ISC
2011, Xi’an, China, October 26-29, 2011. Proceedings, volume 7001 of Lecture
Notes in Computer Science, pages 168–181. Springer, 2011.

[GKST07] Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim Tuyls.
FPGA intrinsic pufs and their use for IP protection. In Pascal Paillier and
Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems
- CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13,
2007, Proceedings, volume 4727 of Lecture Notes in Computer Science, pages
63–80. Springer, 2007.

[GRE18] Ilias Giechaskiel, Kasper B. Rasmussen, and Ken Eguro. Leaky wires. Pro-
ceedings of the 2018 on Asia Conference on Computer and Communications
Security, May 2018.

[HAL] HAL. HAL — The Hardware Analyzer. [Online]. Available: https://github.
com/emsec/hal.

[HAN18] Noor Ahmad Hazari, Faris Alsulami, and Mohammed Niamat. Fpga ip
obfuscation using ring oscillator physical unclonable function. In NAECON
2018-IEEE National Aerospace and Electronics Conference, pages 105–108.
IEEE, 2018.

[HMST01] Bill G. Horne, Lesley R. Matheson, Casey Sheehan, and Robert Endre Tarjan.
Dynamic self-checking techniques for improved tamper resistance. In Tomas
Sander, editor, Security and Privacy in Digital Rights Management, ACM
CCS-8 Workshop DRM 2001, Philadelphia, PA, USA, November 5, 2001,
Revised Papers, volume 2320 of Lecture Notes in Computer Science, pages
141–159. Springer, 2001.

[HP18] Max Hoffmann and Christof Paar. Stealthy opaque predicates in hardware -
obfuscating constant expressions at negligible overhead. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(2):277–297, 2018.

[HS17] Sorin A. Huss and Marc Stöttinger. A Novel Mutating Runtime Architecture
for Embedding Multiple Countermeasures Against Side-Channel Attacks, pages
165–184. Springer International Publishing, Cham, 2017.

[Jen96] Robert J Jenkins. Isaac. In International Workshop on Fast Software Encryp-
tion, pages 41–49. Springer, 1996.

[JRWM15] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. Obfuscator-
LLVM – software protection for the masses. In Brecht Wyseur, editor, Proceed-
ings of the IEEE/ACM 1st International Workshop on Software Protection,
SPRO’15, Firenze, Italy, May 19th, 2015, pages 3–9. IEEE, 2015.

https://github.com/emsec/hal
https://github.com/emsec/hal

442 LifeLine for FPGA Security

[KHPC19] Jatin Kataria, Rick Housley, Joseph Pantoga, and Ang Cui. Defeating cisco
trust anchor: A case-study of recent advancements in direct FPGA bitstream
manipulation. In Alex Gantman and Clémentine Maurice, editors, 13th
USENIX Workshop on Offensive Technologies, WOOT 2019, Santa Clara,
CA, USA, August 12-13, 2019. USENIX Association, 2019.

[KSM+17] K. Sudeendra Kumar, Sauvagya Ranjan Sahoo, Abhishek Mahapatra,
Ayas Kanta Swain, and Kamala Kanta Mahapatra. A flexible pay-per-device
licensing scheme for FPGA IP cores. In 2017 IEEE Computer Society Annual
Symposium on VLSI, ISVLSI 2017, Bochum, Germany, July 3-5, 2017, pages
677–682. IEEE Computer Society, 2017.

[LG97] Eric Lechner and Steve Guccione. The java environment for reconfigurable
computing. In Wayne Luk, Peter Y. K. Cheung, and Manfred Glesner, editors,
Field-Programmable Logic and Applications, 7th International Workshop, FPL
’97, London, UK, September 1-3, 1997, Proceedings, volume 1304 of Lecture
Notes in Computer Science, pages 284–293. Springer, 1997.

[LGS+13] Wenchao Li, Adrià Gascón, Pramod Subramanyan, Wei Yang Tan, Ashish
Tiwari, Sharad Malik, Natarajan Shankar, and Sanjit A. Seshia. Wordrev:
Finding word-level structures in a sea of bit-level gates. In 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust, HOST
2013, Austin, TX, USA, June 2-3, 2013, pages 67–74. IEEE Computer Society,
2013.

[LPF10] Shaoshan Liu, Richard Neil Pittman, and Alessandro Forin. Minimizing partial
reconfiguration overhead with fully streaming DMA engines and intelligent
ICAP controller (abstract only). In Peter Y. K. Cheung and John Wawrzynek,
editors, Proceedings of the ACM/SIGDA 18th International Symposium on
Field Programmable Gate Arrays, FPGA 2010, Monterey, California, USA,
February 21-23, 2010, page 292. ACM, 2010.

[MBKP11] Amir Moradi, Alessandro Barenghi, Timo Kasper, and Christof Paar. On the
vulnerability of FPGA bitstream encryption against power analysis attacks:
extracting keys from xilinx virtex-ii fpgas. In Yan Chen, George Danezis,
and Vitaly Shmatikov, editors, Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS 2011, Chicago, Illinois, USA,
October 17-21, 2011, pages 111–124. ACM, 2011.

[McE01] Kenneth S. McElvain. Methods and apparatuses for automatic extraction of
finite state machines, 2001.

[MD20] Michail Moraitis and Elena Dubrova. Bitstream modification attack on SNOW
3g. In 2020 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2020, Grenoble, France, March 9-13, 2020, pages 1275–1278. IEEE,
2020.

[MJTZ16] Travis Meade, Yier Jin, Mark Tehranipoor, and Shaojie Zhang. Gate-level
netlist reverse engineering for hardware security: Control logic register identi-
fication. In IEEE International Symposium on Circuits and Systems, ISCAS
2016, Montréal, QC, Canada, May 22-25, 2016, pages 1334–1337. IEEE, 2016.

[MKP12] Amir Moradi, Markus Kasper, and Christof Paar. Black-box side-channel
attacks highlight the importance of countermeasures - an analysis of the xilinx
virtex-4 and virtex-5 bitstream encryption mechanism. In Orr Dunkelman,
editor, Topics in Cryptology - CT-RSA 2012 - The Cryptographers’ Track at

F. Stolz, N. Albartus et al. 443

the RSA Conference 2012, San Francisco, CA, USA, February 27 - March 2,
2012. Proceedings, volume 7178 of Lecture Notes in Computer Science, pages
1–18. Springer, 2012.

[MOPS13] Amir Moradi, David F. Oswald, Christof Paar, and Pawel Swierczynski. Side-
channel attacks on the bitstream encryption mechanism of altera stratix II:
facilitating black-box analysis using software reverse-engineering. In Brad L.
Hutchings and Vaughn Betz, editors, The 2013 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’13, Monterey, CA,
USA, February 11-13, 2013, pages 91–100. ACM, 2013.

[MS16] Amir Moradi and Tobias Schneider. Improved side-channel analysis attacks on
xilinx bitstream encryption of 5, 6, and 7 series. In François-Xavier Standaert
and Elisabeth Oswald, editors, Constructive Side-Channel Analysis and Secure
Design - 7th International Workshop, COSADE 2016, Graz, Austria, April 14-
15, 2016, Revised Selected Papers, volume 9689 of Lecture Notes in Computer
Science, pages 71–87. Springer, 2016.

[MSV12] Roel Maes, Dries Schellekens, and Ingrid Verbauwhede. A pay-per-use licensing
scheme for hardware IP cores in recent sram-based fpgas. IEEE Trans. Inf.
Forensics Secur., 7(1):98–108, 2012.

[MZJ16] Travis Meade, Shaojie Zhang, and Yier Jin. Netlist reverse engineering for
high-level functionality reconstruction. In 21st Asia and South Pacific Design
Automation Conference, ASP-DAC 2016, Macao, Macao, January 25-28,
2016, pages 655–660. IEEE, 2016.

[Ngu16] Jean-Francois Nguyen. Analysing the Bitstream of Altera’s MAX-
V CPLDs. https://lse.epita.fr/lse-summer-week-2016/slides/lse-
summer-week-2016-07-maxv_cpld.pdf, July 2016.

[Not08] Jean-Baptiste Note. debit. https://github.com/djn3m0/debit/tree/
master/altera, January 2008.

[NR08] Jean-Baptiste Note and Éric Rannaud. From the bitstream to the netlist. In
Mike Hutton and Paul Chow, editors, Proceedings of the ACM/SIGDA 16th
International Symposium on Field Programmable Gate Arrays, FPGA 2008,
Monterey, California, USA, February 24-26, 2008, page 264. ACM, 2008.

[PHK17] Khoa Dang Pham, Edson L. Horta, and Dirk Koch. BITMAN: A tool and API
for FPGA bitstream manipulations. In David Atienza and Giorgio Di Natale,
editors, Design, Automation & Test in Europe Conference & Exhibition, DATE
2017, Lausanne, Switzerland, March 27-31, 2017, pages 894–897. IEEE, 2017.

[RPD+18] Chethan Ramesh, Shivukumar Basanagouda Patil, Siva Nishok Dhanuskodi,
George Provelengios, Sébastien Pillement, Daniel Holcomb, and Russell Tessier.
Fpga side channel attacks without physical access. pages 45–52, 04 2018.

[Sap13] Sachin S. Sapatnekar. What happens when circuits grow old: Aging issues in
CMOS design. In 2013 International Symposium on VLSI Design, Automation,
and Test, VLSI-DAT 2013, Hsinchu, Taiwan, April 22-24, 2013, pages 1–2.
IEEE, 2013.

[SBC+21] Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Aschermann, Julius
Basler, Thorsten Holz, and Ali Abbasi. Loki: Hardening code obfuscation
against automated attacks. arXiv preprint arXiv:2106.08913, 2021.

https://lse.epita.fr/lse-summer-week-2016/slides/lse-summer-week-2016-07-maxv_cpld.pdf
https://lse.epita.fr/lse-summer-week-2016/slides/lse-summer-week-2016-07-maxv_cpld.pdf
https://github.com/djn3m0/debit/tree/master/altera
https://github.com/djn3m0/debit/tree/master/altera

444 LifeLine for FPGA Security

[sec] secworks. SHA-256 verilog Core. [Online]. Available: https://github.com/
secworks/sha256.

[SFKP15] Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, and Christof Paar. FPGA
trojans through detecting and weakening of cryptographic primitives. IEEE
Trans. on CAD of Integrated Circuits and Systems, 34(8):1236–1249, 2015.

[SLGL09] Monirul I. Sharif, Andrea Lanzi, Jonathon T. Giffin, and Wenke Lee. Auto-
matic reverse engineering of malware emulators. In 30th IEEE Symposium
on Security and Privacy (S&P 2009), 17-20 May 2009, Oakland, California,
USA, pages 94–109. IEEE Computer Society, 2009.

[SMOP15] Pawel Swierczynski, Amir Moradi, David F. Oswald, and Christof Paar.
Physical security evaluation of the bitstream encryption mechanism of altera
stratix II and stratix III fpgas. ACM Trans. Reconfigurable Technol. Syst.,
7(4):34:1–34:23, 2015.

[STGR10] Yiqiong Shi, Chan Wai Ting, Bah-Hwee Gwee, and Ye Ren. A highly efficient
method for extracting fsms from flattened gate-level netlist. In International
Symposium on Circuits and Systems (ISCAS 2010), May 30 - June 2, 2010,
Paris, France, pages 2610–2613. IEEE, 2010.

[STP+13] Pramod Subramanyan, Nestan Tsiskaridze, Kanika Pasricha, Dillon Reisman,
Adriana Susnea, and Sharad Malik. Reverse engineering digital circuits using
functional analysis. In Enrico Macii, editor, Design, Automation and Test in
Europe, DATE 13, Grenoble, France, March 18-22, 2013, pages 1277–1280.
EDA Consortium San Jose, CA, USA / ACM DL, 2013.

[SW12] Sergei Skorobogatov and Christopher Woods. Breakthrough silicon scan-
ning discovers backdoor in military chip. In Emmanuel Prouff and Patrick
Schaumont, editors, Cryptographic Hardware and Embedded Systems - CHES
2012 - 14th International Workshop, Leuven, Belgium, September 9-12, 2012.
Proceedings, volume 7428 of Lecture Notes in Computer Science, pages 23–40.
Springer, 2012.

[Syma] Project SymbiFlow. fasm2bels. [Online]. Available: https://github.com/
emsec/hal.

[Symb] Project SymbiFlow. Proejct IceStorm. [Online]. Available: https://github.
com/emsec/hal.

[Symc] Project SymbiFlow. Project Trellis. [Online]. Available: https://github.
com/SymbiFlow/prjtrellis.

[Symd] Project SymbiFlow. Project U-Ray. [Online]. Available: https://github.
com/SymbiFlow/prjuray.

[Syme] Project SymbiFlow. Project X-Ray. [Online]. Available: https://github.
com/SymbiFlow/prjxray.

[Sym18] SymbiFlow. Project X-Ray, 2018.

[TCJ06] Gang Tan, Yuqun Chen, and Mariusz H. Jakubowski. Delayed and controlled
failures in tamper-resistant software. In Jan Camenisch, Christian S. Collberg,
Neil F. Johnson, and Phil Sallee, editors, Information Hiding, 8th International
Workshop, IH 2006, Alexandria, VA, USA, July 10-12, 2006. Revised Selcted
Papers, volume 4437 of Lecture Notes in Computer Science, pages 216–231.
Springer, 2006.

https://github.com/secworks/sha256
https://github.com/secworks/sha256
https://github.com/emsec/hal
https://github.com/emsec/hal
https://github.com/emsec/hal
https://github.com/emsec/hal
https://github.com/SymbiFlow/prjtrellis
https://github.com/SymbiFlow/prjtrellis
https://github.com/SymbiFlow/prjuray
https://github.com/SymbiFlow/prjuray
https://github.com/SymbiFlow/prjxray
https://github.com/SymbiFlow/prjxray

F. Stolz, N. Albartus et al. 445

[Tig] Tigress. Tigress. [Online]. Available: https://tigress.wtf/.

[USZ+20] Florian Unterstein, Tolga Sel, Thomas Zeschg, Nisha Jacob, Michael Tem-
pelmeier, Michael Pehl, and Fabrizio De Santis. Secure update of fpga-based
secure elements using partial reconfiguration. IACR Cryptol. ePrint Arch.,
2020:833, 2020.

[Ver] Veripool. Verilator, the fastest Verilog/SystemVerilog simulator. [Online].
Available: https://www.veripool.org/wiki/verilator.

[VF18] Kizheppatt Vipin and Suhaib A. Fahmy. FPGA dynamic and partial reconfig-
uration: A survey of architectures, methods, and applications. ACM Comput.
Surv., 51(4):72:1–72:39, 2018.

[VMK+15] Jo Vliegen, Nele Mentens, Dirk Koch, Dries Schellekens, and Ingrid Ver-
bauwhede. Practical feasibility evaluation and improvement of a pay-per-use
licensing scheme for hardware IP cores in xilinx fpgas. J. Cryptogr. Eng.,
5(2):113–122, 2015.

[VMP] VMProtect. VMProtect. [Online]. Available: https://vmpsoft.com.

[VPPK16] Arunkumar Vijayakumar, Vinay C. Patil, Charles B. Prado, and Sandip
Kundu. Machine learning resistant strong PUF: possible or a pipe dream?
In William H. Robinson, Swarup Bhunia, and Ryan Kastner, editors, 2016
IEEE International Symposium on Hardware Oriented Security and Trust,
HOST 2016, McLean, VA, USA, May 3-5, 2016, pages 19–24. IEEE Computer
Society, 2016.

[WAH+19] Carina Wiesen, Nils Albartus, Max Hoffmann, Steffen Becker, Sebastian
Wallat, Marc Fyrbiak, Nikol Rummel, and Christof Paar. Towards cognitive
obfuscation: impeding hardware reverse engineering based on psychological
insights. In Toshiyuki Shibuya, editor, Proceedings of the 24th Asia and
South Pacific Design Automation Conference, ASPDAC 2019, Tokyo, Japan,
January 21-24, 2019, pages 104–111. ACM, 2019.

[WFSP17] Sebastian Wallat, Marc Fyrbiak, Moritz Schlögel, and Christof Paar. A look
at the dark side of hardware reverse engineering - a case study. In IEEE 2nd
International Verification and Security Workshop, IVSW 2017, Thessaloniki,
Greece, July 3-5, 2017, pages 95–100. IEEE, 2017.

[WH15] Neil HE Weste and David Harris. CMOS VLSI design: a circuits and systems
perspective. Pearson Education India, 2015.

[WKK+14] Xiaofei Wang, John Keane, Tony Tae-Hyoung Kim, Pulkit Jain, Qianying
Tang, and Chris H. Kim. Silicon odometers: Compact in situ aging sensors
for robust system design. IEEE Micro, 34(6):74–85, 2014.

[Xil18] Xilinx. 7 series fpgas configuration: User guide. https://www.xilinx.com/
support/documentation/user_guides/ug470_7Series_Config.pdf, Au-
gust 2018. Accessed: 2021-04-09.

[Xil21] Xilinx. Vivado design suite user guide: Dynamic function exchange. https:
//www.xilinx.com/content/dam/xilinx/support/documentation/sw_
manuals/xilinx2020_2/ug909-vivado-partial-reconfiguration.pdf,
February 2021. Accessed: 2021-04-09.

https://tigress.wtf/
https://www.veripool.org/wiki/verilator
https://vmpsoft.com
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2020_2/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2020_2/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/sw_manuals/xilinx2020_2/ug909-vivado-partial-reconfiguration.pdf

446 LifeLine for FPGA Security

[ZAT06] Daniel Ziener, Stefan Assmus, and Jürgen Teich. Identifying FPGA ip-cores
based on lookup table content analysis. In Proceedings of the 2006 Inter-
national Conference on Field Programmable Logic and Applications (FPL),
Madrid, Spain, August 28-30, 2006, pages 1–6. IEEE, 2006.

[ZC14] Li Zhang and Chip-Hong Chang. A pragmatic per-device licensing scheme for
hardware IP cores on sram-based fpgas. IEEE Trans. Inf. Forensics Secur.,
9(11):1893–1905, 2014.

[ZLL+13] Jiliang Zhang, Yaping Lin, Yongqiang Lyu, Gang Qu, Ray C. C. Cheung,
Wenjie Che, Qiang Zhou, and Jinian Bian. FPGA IP protection by binding
finite state machine to physical unclonable function. In 23rd International
Conference on Field programmable Logic and Applications, FPL 2013, Porto,
Portugal, September 2-4, 2013, pages 1–4. IEEE, 2013.

[ZMGJ07] Yongxin Zhou, Alec Main, Yuan Xiang Gu, and Harold Johnson. Information
hiding in software with mixed boolean-arithmetic transforms. In Sehun Kim,
Moti Yung, and Hyung-Woo Lee, editors, Information Security Applications,
8th International Workshop, WISA 2007, Jeju Island, Korea, August 27-29,
2007, Revised Selected Papers, volume 4867 of Lecture Notes in Computer
Science, pages 61–75. Springer, 2007.

	Introduction
	Technical Background on FPGA Security
	(In-)Effectiveness of State-of-the-Art Solutions
	Industrial Solution for FPGA Authentication
	Vulnerabilities in Academic Solutions

	Takeaways and Security Considerations
	Attacker Capabilities
	System Overview

	FPGA Obfuscation and Security Primitives
	Partial Reconfiguration
	Covert Communication with Partial Reconfiguration
	Crosstalk
	BIMAD - Bitstream Manipulation Detection

	Software Obfuscation Methods
	Virtual Machine-based Obfuscation
	Mixed Boolean Arithmetic
	Software Integrity

	LifeLine - Design, Implementation, Case Studies
	LifeLine - Design
	LifeLine - Proof-of-Concept Implementation
	Area and Performance Overhead
	Security Analysis
	Use-Cases of LifeLine

	Discussion
	Conclusion

