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Abstract: In this paper we present LiM (‘Less is More’),
a malware classification framework that leverages Fed-
erated Learning to detect and classify malicious apps in
a privacy-respecting manner. Information about newly
installed apps is kept locally on users’ devices, so that
the provider cannot infer which apps were installed by
users. At the same time, input from all users is taken
into account in the federated learning process and they
all benefit from better classification performance. A key
challenge of this setting is that users do not have access
to the ground truth (i.e. they cannot correctly identify
whether an app is malicious). To tackle this, LiM uses a
safe semi-supervised ensemble that maximizes classifica-
tion accuracy with respect to a baseline classifier trained
by the service provider (i.e. the cloud). We implement
LiM and show that the cloud server has F1 score of
95%, while clients have perfect recall with only 1 false
positive in > 100 apps, using a dataset of 25K clean
apps and 25K malicious apps, 200 users and 50 rounds
of federation. Furthermore, we conduct a security anal-
ysis and demonstrate that LiM is robust against both
poisoning attacks by adversaries who control half of the
clients, and inference attacks performed by an honest-
but-curious cloud server. Further experiments with Ma-
MaDroid’s dataset confirm resistance against poisoning
attacks and a performance improvement due to the fed-
eration.
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1 Introduction
Android dominates the mobile operating system market
as the most popular choice amongst smartphone users.
At the same time, this makes Android an attractive tar-
get for malware authors who want to infect as many de-
vices as possible with malicious applications. Malware
classifiers that leverage machine learning (ML) tech-
niques have been proposed to tackle this problem, show-
ing varying degrees of success [4, 12, 19, 20, 23, 25]. Of-
ten, to produce accurate classification results, machine
learning models rely on access to a large and diverse set
of features collected from user devices – which can be
very revealing of the list of apps installed in each de-
vice [5, 25, 32]. This raises privacy concerns: these mod-
els expose all users’ private data to the centralized entity
performing the classification, which may learn private
information about the user; and motivates the need for
decentralized, privacy-respecting malware classifiers for
Android that can effectively protect users from malware
infections without requiring them to expose private in-
formation to third parties.

ML solutions for malware classification can be
grouped in three categories: (i) cloud-based, (ii) client-
based and (iii) hybrid, i.e. a combination of (i) and (ii).
In cloud-based solutions [23, 32], the ML models are
supplied with large sets of features that implicitly reveal
users’ installed apps, which constitute potentially sensi-
tive data. In client-based solutions [4], data is protected
as the ML models are local and compute predictions on
the device itself. This is however a resource-consuming
approach that results in high false positives, as the mod-
els are not trained with sufficient new data as time goes
by [25]. Lastly, in hybrid solutions [5, 25] apps that are
flagged as suspicious on the device are sent to the cloud
for further analysis. Such solutions have a high number
of false positives in the local models and reveal signifi-
cant private data to the cloud.

In general, it cannot be denied that ML algorithms
are effective at detecting malware. However, of notable
concern is the amount of information required for the
ML models to produce good results and the associated
repercussions on users’ privacy. In particular, it can be
observed that the larger the number of raw features
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centrally available for training and testing, the better
the classification results. Additionally, as demonstrated
by Song et al. [27], ML models can memorize and leak
detailed information about training datasets. This ob-
servation coupled with the fact that the list of apps in-
stalled on a mobile device may enable private inferences
about the users’ personal preferences, profile, behavior,
etc. pose a serious threat to their privacy.

To address the aforementioned concern we investi-
gate the following key question: How can we build a
decentralized Android malware classifier that is privacy-
preserving?

In this paper, we present LiM – a hybrid solution
that leverages the power of Federated Learning (FL)
to provide a malware detection solution that has high
classification performance while respecting user privacy.
LiM can classify all the apps installed on users’ devices
regardless of whether they are obtained from an app
store or other sources, allowing users to detect malware
without relying on the hosts of app stores (e.g. Google
for Play Store) for malware classification services. LiM
reduces the dependency of users on app stores in a way
that benefits both privacy and malware detection per-
formance.

State of the art FL models [22, 30, 31] allow users
to keep their testing data locally while the learning pro-
cess is done collaboratively to improve performance, i.e.
users train their client models with a supervised algo-
rithm, while a service provider aggregates the parame-
ters of all models. LiM extends the traditional FL tech-
nique to the safe semi-supervised ML paradigm [11],
enabling the application of FL in settings where users
do not have local access to ground truth, as is the case
with malware classification. Safe semi-supervised mod-
els combine labeled data available to the cloud server
with unlabeled data available to clients. The cloud
server trains fully-supervised models and shares them
with clients, who in turn retrain with their unlabeled
local data without introducing a performance penalty.

We validate the design by implementing a prototype
of LiM and evaluating its performance and its security
against poisoning and inference attacks. We carry out
experiments using a dataset of 25K malware apps and
25K clean apps, simulating federations of 200 clients
over 50 rounds. The results show that the cloud can
reach 95% F1 score, and clients has as few as 1 false
positive. Additionally, faced with a strategic adversary
that controls 50% of the clients and whose goal is to
perform a poisoning attack, the remaining honest clients
are able to correctly identify the targeted, poisoned app.
Moreover, we demonstrate that the cloud server is un-

able to infer whether a specific app was installed by any
of the clients, making LiM resistant against member-
ship inference attacks. Finally, we validate LiM’s capa-
bility to learn from the federation using MaMaDroid’s
dataset [23], as well as its resistance against poisoning
attacks.
Our contributions:
1. We present a first, comprehensive design and imple-

mentation of a privacy-respecting Android malware
classifier.

2. We demonstrate an effective way to combine FL and
safe semi-supervised ensemble learning to enhance
malware detection accuracy and privacy at the same
time.

3. We conduct a security analysis to illustrate the ro-
bustness of LiM against poisoning and inference at-
tacks.

4. In the spirit of open science, we make our code avail-
able at https://git.sr.ht/~rafagalvez/lim-python.

Terminology. To improve readability of the remaining
sections, we provide our working definitions of key terms
used throughout the paper.
– Client refers to the ML model that resides locally

on the user’s mobile device.
– Cloud refers to the global ML model which is

present at the service provider’s side.
– SAFEW is an ensemble classifier composed of a set

of individual base learners and their weights.
– Baseline classifier is a standalone classifier whose

performance has to be met by all base learners (com-
bined) as a lower bound; also referred to as baseline.

Roadmap. The rest of the paper is organized as fol-
lows: in section 2, we provide background knowledge
about Federated Learning, semi-supervised learning and
Android malware classification. Section 3 describes the
threat model of LiM. In section 4, we elaborate on safe
semi-supervised FL and how it is implemented in LiM.
Section 5 provides the details of the LiM architecture
and its associated building blocks, followed by the em-
pirical results and security analysis in section 6. Sec-
tion 7 presents a discussion based on the empirical re-
sults and avenues for future work together with relevant
related work in section 8 and concluding remarks in sec-
tion 9.

https://git.sr.ht/~rafagalvez/lim-python


Less is More: A privacy-respecting Android malware classifier using federated learning 3

2 Background
Federated Learning (FL), also referred to as ‘Collabora-
tive Learning’, is a technique where an ML algorithm is
iteratively trained in a distributed setting with a client-
server architecture [13]: a large number of clients con-
tribute locally-computed learning model parameters to
a service provider (e.g. a cloud server) that aggregates
those client parameters to compute updated parameters
for the federated model, which is in turn sent back to
clients for the next iteration. Each iteration, or round,
improves the performance of the client models thanks
to 1) the newly available local data that can further re-
fine training, and 2) the aggregated parameters shared
by the cloud server, which improve the model based on
learning done by the ensemble of all clients.

FL offers privacy advantages compared to purely
centralized models where the service provider collects
raw input data from all clients in order to train the
model. FL models keep data local to the clients and
instead share model parameters. However, the client-
server architecture creates opportunities for adversaries
that compromise a fraction of clients or the service
provider to impact performance and privacy guarantees.
On the one hand, poisoning attacks [6] may harm the
performance of the federated model if adversarial clients
submit maliciously crafted parameters to the server.
On the other hand, client-provided parameters may be
exploited by a curious server that conducts inference
attacks [18] to identify the training examples used by
clients. In this paper, we tackle both threats by making
use of safe semi-supervised learning to: 1) enable the
cloud server to exclude poisoned parameters by using
locally available data, and 2) allow clients to share hy-
per parameters rather than the parameters of individual
classifiers, which cannot be exploited to infer training
inputs.

LiM uses FL for malware classification. One limita-
tion of current FL solutions is that they rely on super-
vised learning, requiring clients to have access to ground
truth for the local training process [11]. While applica-
tions such as predictive typing can benefit from this
approach (since the client can locally test predictions
against actual inputs from the user), this assumption
does not hold in malware classification use cases, where
clients do not have local knowledge of the ground truth.

LiM solves this problem using a safe semi-supervised
learning algorithm that allows clients to use unlabeled
data for training, while guaranteeing that the perfor-

mance will be at least as good as that of a baseline
classifier.

2.1 Safe semi-supervised learning

Semi-supervised learning (SSL) uses both labeled and
unlabeled data to train a classifier. Labeling data can
be expensive, while collecting and learning labels from
raw data has become easier with the commoditization
of internet access and the plethora of apps installed on
smartphones. One of the main challenges for the success
of an SSL algorithm is to ensure it indeed learns use-
ful information from unlabeled samples, as there is no
ground truth for the algorithm to verify its predictions
for those samples.

Safe SSL addresses this concern by ensuring that a
minimum baseline performance is always achieved, i.e.
that unlabeled information does not worsen the perfor-
mance of another (fully supervised) classifier. A well-
performing strategy to achieve safe SSL is to use an
ensemble of learners that, combined through a set of
learned weights, are likely to outperform the baseline
model [15, 16].

An example of this kind of classifier is SAFEW [15].
Its goal is to combine a set of classifiers, called base
learners, through a set of weights αi, i ∈ [1, b] that leads
the ensemble to perform always better than a given
baseline classifier. SAFEW achieves this goal assuming
the ground truth label assignment of the unlabeled data
f∗ can be realized as a convex combination of the predic-
tions from the base learners b, i.e. f∗ =

∑b
i=1 αifi [15].

Using this assumption, SAFEW can compute the error
of the baseline classifier f0 and final f ∈ {+1,−1} predic-
tions with respect to the ground truth f∗ using the loss
function l, and make l(f , f∗) as small as possible com-
pared to l(f0, f

∗) even in the worst case, maximizing the
minimum difference as shown in equation 1.

max
f∈{+1,−1}

min
α
l(f0,

b∑
i=1

αifi)− l(f ,
b∑
i=1

αifi) (1)

SAFEW does not impose restrictions on which clas-
sifiers to use as base learners to predict fi: results do not
depend on the amount of base learners but on their qual-
ity, and different learning algorithms can be used, for
instance Support Vector Machines together with Ran-
dom Forests. Similarly, there is no a priori restriction on
the loss function that can be used as l. However, to re-
duce computation time and find optimal weights α∗, Li
et al. [15] show that using the hinge loss function turns
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equation 1 into a convex optimization problem that can
be solved with common optimization packages like the
ones supported by CVXPY [1, 8]. Prior knowledge can
be embedded as constraints in this problem formulation
in order to enhance the information extracted from the
unlabeled data. The final predictions f̄ can then be ob-
tained through equation 2.

f̄ =
b∑
i=1

α∗i fi (2)

The solution proposed by SAFEW assumes a cen-
tralized setting where labeled and unlabeled data rest
in the same place. Such scenario requires users to share
data with the service provider, potentially leaking sen-
sitive information. LiM addresses this gap by federating
SAFEW, letting users keep their data local while shar-
ing only the weights that enable SAFEW to improve
performance over baseline. Moreover, LiM also aims to
be resistant against membership inference and poison-
ing attacks, addressing the increasingly important se-
curity and privacy concerns that arise from the use of
advanced machine learning in the wild.

2.2 Android

2.2.1 Android manifest file

In the Android OS, apps are distributed as Android
application package (APK) files. These files are simple
archives which contain bytecode, resources and meta-
data. A user can install or uninstall an app (the APK
file) by directly interacting with the smartphone. When
an Android app is running, its code is executed in a
sandbox. In theory, an app runs isolated from the rest
of the system, and it cannot directly access other apps’
data. The only way an app can gain access is via the me-
diation of inter-process communication techniques made
available by Android. These measures are in place to
prevent the access of malicious apps to other apps’ data,
which could potentially be privacy-sensitive.

Since Android apps run in a sandbox, they are sub-
ject to restrictions on the usage of shared memory and
most system resources. The Android OS provides an ex-
tensive set of Accessible Programming Interfaces (APIs)
that allows access to system resources and services.
In particular, the APIs that give access to potentially
privacy-violating services (e.g., camera, microphone) or
sensitive data (e.g., contacts) are protected by the An-
droid Permission System [7]. Developers have to explic-
itly mention the permissions that require user’s approval

in the AndroidManifest.xml file (hereon referred to as
the Manifest file).

Besides permissions, the Manifest file also includes
information about the app components [9], such as
activities, services, broadcast receivers and content
providers. An activity is the representation of a single
screen that handles interactions between user and apps.
Services are components that run in the background of
the OS to perform long-running operations while a dif-
ferent application is running in the foreground. Broad-
cast receivers respond to broadcast messages from other
applications or the system. They allow an app to re-
spond to broadcast announcements outside of a regular
user flow. A content provider manages a shared set of
app data and stores them in the file system. It also sup-
plies data from one app to another on request.

It is worth noting that the information present in a
Manifest file is not obfuscated and can be extracted via
static analysis. It is in the app developer’s best interest
to not obfuscate the file as it would result in breaking
the functionalities of the app, rendering it useless. In
section 6, we provide further details about the features
used by our proposed classifier, LiM, to conduct mal-
ware detection.

2.2.2 Android malware classification

There are several proposals for ML classifiers that can
detect malicious APKs targeting Android. We divide
them in three categories: centralized, local and hybrid.

Centralized approaches use a cloud classifier to pre-
dict if an app is malicious or clean. Cloud-based ap-
proaches can accurately predict big testing datasets
thanks to the advanced feature engineering a cloud in-
frastructure can handle [23]. Both static and dynamic
analysis can be performed, for e.g. such as taking into
account the API call graphs of the apps and behavioral
characteristics of an app during execution.

Local approaches install an already-trained classifier
on the user’s device. Due to the constrained resources
available to the classifier, the feature set and the detec-
tion algorithm must be considerably more lightweight
than in centralized approaches [4]. Lightweight dynamic
analysis can be performed together with static analysis
(for e.g. features from the Manifest file).

Hybrid approaches combine local and cloud models.
A first screening of the app is performed on the client
device itself using a lightweight feature set, and if nec-
essary more features are collected and sent to the cloud
to verify the prediction [5, 25].
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Existing centralized and hybrid solutions achieve
good performance but expose user inputs to the ser-
vice provider, enabling potentially sensitive inferences.
Local approaches do not expose client data, but suf-
fer from poor performance. In constrast, LiM’s perfor-
mace is comparable to that of centralized and hybrid
solutions, while its privacy protection is as in local ap-
proaches, obtaining the best of both worlds.

3 Threat model
LiM’s functionality is to classify malware in a privacy-
preserving manner, using base learners trained with
data that never leaves the client device and yet con-
tributes to improving the accuracy of classification for
all clients. In our threat model, we distinguish two types
of adversaries depending on their attack goals:
1. The goal of Adversary 1 is to compromise in-

tegrity: poison the federated learning with mali-
ciously crafted inputs in order to trigger specific
apps to be misclassified, as presented in [6].

2. The goal of Adversary 2 is to compromise privacy:
infer private information about the training data of
clients (list of installed apps), as presented in [18].

Adversary 1 targets the core functionality of the mal-
ware classifier, i.e. bypass the malware detection mech-
anism. To achieve that, the adversary modifies the clas-
sification model so that it misclassifies a specific mali-
cious application. In a federated setting, the adversary
may control a subset of users (at most 50%) who sub-
mit maliciously crafted model parameters to the feder-
ation. Further, we assume that the adversary controls
the malicious application, which can be tweaked so that
its features resemble clean apps and confuse the model
into misclassification. In terms of trust model, we as-
sume that non-malicious users compute and submit cor-
rectly computed parameters, and that the cloud server
correctly follows the learning process.

Adversary 2 aims to compromise user privacy by
inferring information about the apps that users have in-
stalled on their devices, e.g. the app names, categories,
usage patterns, etc. In a federated setting, we are inter-
ested in a passive global adversary, as described in [22],
that has access to the cloud server’s data including all
client model parameters uploaded to the cloud. The ad-
versary examines these individual client models to try to
infer information about which apps users have installed.
Note that LiM relies on information that is statically ex-

tracted from app manifests and is thus only concerned
with app installs, while inferences on app usage after
installation is out of scope.

Both adversaries have white-box access to the cloud
model (including architecture, feature set and hyper-
parameters) in each federation round. Adversary 2 also
has white-box access to the models of all clients in each
round, while Adversary 1 does not know the hyper-
parameters of the models of honest users.

4 Safe semi-supervised federated
learning

Traditionally, FL employs a decentralized approach to
train a neural model. Instead of uploading data for
centralized training, clients process their data locally
and share the resulting model updates with the service
provider. Such distributed approach has been shown to
work with unbalanced datasets and data that is not in-
dependent or identically distributed across clients.

FL’s success is, however, dependent on properly la-
beled data that can be used to train supervised learning
models. Considering the scenario of malware classifica-
tion, we cannot rely on users assigning correct labels
to their data, as it cannot be guaranteed that they can
correctly identify malicious apps.

LiM proposes a novel approach to address this chal-
lenge: a semi-supervised method that allows FL to train
local models without supervision. We assume that la-
beled data is only available to the cloud, while clients
use their unlabeled samples to update the parameters
of their local semi-supervised model.

Furthermore, we leverage the practical benefits of
safe semi-supervised learning (SSL), as described in sec-
tion 2.1, to ensure that models trained by the clients are
useful, i.e. that they provide a minimum baseline perfor-
mance and do not introduce noise (via incorrect labels)
in the federated model.

In LiM, the federation happens across the weights
of the base learners, which clients estimate using their
unlabeled testing datasets. The cloud server collects all
client weights and aggregates them in a similar fashion
as it would do with the weights of e.g. a deep neural
network (DNN). It is important to note that the num-
ber of base learners is much lower than the number of
neurons in a DNN – LiM further compresses client data
by taking advantage of the training process that the
cloud performs on the base learners. We see this feature
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Fig. 1. LiM architecture – the cloud and the clients all train their own SAFEW model, and weights are aggregated twice to distribute
the information of the testing datasets of the users.

as a defense mechanism against privacy attacks (cf. sec-
tion 3), as client updates will not be sparse anymore.

Note that in the case of LiM, the service provider
plays a greater role than in the classical, supervised FL
to compensate for the lack of ground truth in the clients.
The provider also selects the architecture and the fea-
ture sets of the different base learners, as well the one
to be used as baseline classifier. LiM provides protection
against integrity attacks (cf. section 3) by comparing the
weights contributed by clients with those generated by
the provider through its own unlabeled dataset.

5 LiM architecture
We assume that the service provider (cloud server) has
access to a ground truth (labeled) dataset of malware
and clean apps, and a testing (unlabeled) dataset. At
the client-side, users locally scan their installed apps

to identify malware. LiM can be incorporated in the
package installer of an Android OS and executed as a
privileged background service. LiM uses the SAFEW
classifier described in section 2.1 to implement the
scheme explained in section 4.

Round 0 of FL: The process is depicted in figure 1.
First, the server uses (step 1) the labeled dataset to
train a baseline classifier and a set of base learners, and
the unlabeled dataset to estimate weights for the base
learners. Clients receive (step 2) the baseline classifier
and trained learners in order to estimate (step 3) their
local SAFEW weights using their own testing dataset
(i.e. their installed apps). Clients then compute average
weights (step 4) and use them to classify their installed
apps (step 5). Users then complete the federation round
by sending their locally computed weights to the cloud
(step 6). The cloud averages all the client weights (step
7) and then further averages that value (step 8) with
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the weights of its own SAFEW, computed in step 1. Fi-
nally, the cloud sends the updated federated weights to
the clients to initiate a new round of federated learning
(step 9).

Round 1 of FL (and beyond): Once Round 0 is com-
pleted, steps 1-2 are optional: the service provider can
re-apply them at any point in the subsequent federation
rounds. In our evaluation, we did not conduct experi-
ments that consider such updates. Steps 3-9 are applied
as described in Round 0, even if some users do not in-
stall new apps. We account for this possibility in our
evaluation.

Note that in LiM, the service provider does not send
its own weights in the initial round (i.e. Round 0) to pre-
vent an adversary from using this information to craft
an integrity attack (cf.section 3), and to give clients’ in-
puts greater influence in the federated weights. In later
rounds, new federated weights are computed by using
both client and cloud weights. The provider computes
the mean of all clients’ weights and averages that with
its own locally computed weights. The design behind
this construction is purposefully conservative to counter
integrity attacks where malicious inputs degrade overall
classification accuracy – guaranteeing the key function-
ality of a decentralized malware classifier.

LiM uses SAFEW as the local classifier that clients
train in order to predict if their installed apps are mali-
cious. To take advantage of the optimizations explained
in section 2.1, the individual SAFEWs use the hinge
loss function to estimate their weights from unlabeled
data. Regarding the choice of SAFEW base learners, it
is possible to choose any base classifier as the optimiza-
tion algorithm of SAFEW only uses the predictions of
base learners to compute their weights. There are two
main criteria to keep in mind when selecting alternative
learners:
– They must provide a reasonable performance on

their own, e.g. over 90% F1 score.
– Their predictions must complement each other, i.e.

the learners must be heterogeneous. If there is one
clearly strong learner, SAFEW will just always copy
its predictions (i.e. its weight will be 1).

Additionally, domain knowledge can guide the afore-
mentioned selection process, and it is possible to further
constrain the set of possible weights αi (cf. section 2.1)
to reflect, e.g. the confidence that the designer has on
each learner relative to others. It is, however, important
to note that LiM does not need a lot of expert knowledge

for its setup. Weights can be learnt from data without
any prior domain knowledge, and there are no assump-
tions on the distribution of the testing dataset, i.e. no
prior knowledge on the proportion of samples per class.

In section 6, we compare the performance of stan-
dard learners to find which combination is the most ef-
fective for malware detection.

6 Evaluation of the system
We empirically evaluate LiM as a federated malware
classifier in a setup with a server and 200 clients iter-
ating over 50 federation rounds. In our evaluation, the
clients run as a parallelized (across clients) Python pro-
gram on a 4 Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz
cores using 7.5 GiB of RAM. The goal of the evaluation
is to show how LiM performs using different configura-
tions for the individual SAFEWs, as well as its evolu-
tion across rounds with respect to the different baseline
learners and local (i.e. non-federated) SAFEWs.

Specifically, we set up LiM to use the following
learners: k Nearest Neighbours with number of neigh-
bors n = 3(kNNn3), Logistic Regression with regular-
ization parameter c = 1(LRc1), Random Forests with
number of decision trees n = 50(RFn50), 100(RFn100)
and 200(RFn200), and Linear SVM with regularization
parameter c = 1(SVMc1). All base learners are used
in each experiment, rotating the baseline classifier role
across them. Clients only use configurations that the
cloud has vetted as safe, i.e. where the cloud SAFEW
outperformed or matched the performance of the base-
line classifier.

We perform 4 experiments per configuration using
the Top 100, 200, and 500 features (i.e. 12 experiments
per configuration). Half of the experiments are done
with 50% of adversarial clients to evaluate resilience
against integrity attacks.

The rest of this section describes the datasets used
and the results of the performance and security evalua-
tion of LiM.

6.1 Datasets

We use the AndroZoo dataset [3] to obtain 25K clean
apps, which were selected from the top 3 most pop-
ular stores (Anzhi, Appchina and Google Play Store)
as of October 2018. As for the malware samples,
we collected 25K samples from the Android Malware
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Table 1. Number of features per feature types. In the Top 500,
there are 55 features that belong to two categories: 54 of them
can be declared as permissions or hardware components, the 55th
(com_facebook_facebookcontentprovider) can be either an activ-
ity or a content provider.

Types of features Number of features
Top 100 Top 200 Top 500

declared permissions 65 73 97
activities 19 80 232
services 3 13 71
intent filters 0 0 0
content providers 1 3 10
broadcast receivers 6 25 85
hardware components 24 24 24

Genome project [33] and the Android Malware Dataset
project [17, 28]. We pick the latest version of apps, re-
moving duplicates within the same store. It is possible
that the same app is published in two different stores as
different versions, but we consider they are effectively
different apps as developers may include different func-
tionality for particular stores.

For each app, we extract the features from the Mani-
fest file, thus following the recommendation proposed by
the authors of Drebin in [4] – a key related work in An-
droid malware detection and feature extraction. While
dynamic analysis can provide greater performance, it
is both more resource intensive and easily obfuscated
than static analysis. We then transform the statically
extracted features into a vector of numerical binary val-
ues indicating the presence of a feature (e.g. a specific
permission) in the Manifest file of an app. Finally, out
of 370K features we select the top 100, 200, and 500
features ranked according to their chi-squared scores
with respect to the ground-truth class. Table 1 depicts
the number of features and their corresponding feature
types. To maintain consistency, we use the same cate-
gories as presented in [4].

Out of the 50K apps, we randomly sample a train-
ing set of 10K apps for training the baseline and base
learners. The cloud SAFEW testing set has 32K apps,
and the overall client testing set has 8K apps. In or-
der to facilitate the learning process between cloud and
clients, both testing data sets have an overlap of ~1K
apps.

We simulate several rounds of federation as de-
scribed in section 5. In the first round, clients have a set
of 96 preinstalled apps, which have been extracted from
an Android Pie emulator and whose manifests have at
least one permission. In later rounds, the clients install

up to 5 apps drawn randomly from the client testing
dataset, using a binomial distribution with bias 0.6 to
randomize the number of apps. Each app will be a mal-
ware sample with probability 0.1. Moreover, to model
the fact that users install popular apps much more fre-
quently than others, we create two sets of 50 apps based
on the presence of popular features in the malware and
clean datasets, and make clients draw apps from these
sets with probability 0.8.

6.2 Performance evaluation

6.2.1 Performance metrics

To evaluate LiM in a realistic setting where users en-
counter many more clean apps than malicious ones
(i.e. where classes are highly imbalanced) we use
the F1 score, computed as F1 = 2 ∗ (precision ∗
recall)/(precision + recall). Precision measures how
many positive predictions (true positives + false pos-
itives) were actual positives (true positives), while re-
call measures how many actual positives (true positives
+ false negatives) were classified as positive (true pos-
itives). Since users typically install many more clean
apps than malicious apps, it is easy for LiM to achieve
high recall by predicting many positives at the expense
of precision, which is not accounted for in other popular
metrics like accuracy.

In order to better understand this balance between
precision and recall across SAFEW configurations, we
also report the raw number of false positives. We ar-
gue that, irrespective of whether the F1 score of two
versions of LiM using different configurations of base
learners is very similar, end users are rather sensitive to
small differences in the number of false positives. More
concretely, if a malware classifier repeatedly flags clean
apps as malicious, then this will significantly affect user
experience.

6.2.2 Performance results

In the cloud, we observe that LiM matches the F1 score
of the centralized SAFEW most of the time, and that
the number of false positives is the second lowest us-
ing RFn50 with 500 features (cf. table 5 from the ap-
pendix). Regardless of the configuration used, the F1
score remains around between 94% and 96%.

In figure 2, we can see how this performance gain
comes from the reduction of false positives. The evolu-
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tion shows that learning from the federation allows LiM
to drop the number of false positives from 5 (same as
SAFEW) to 3, whereas baseline KNN misclassify more
clean apps as we advance through the FL rounds.

Fig. 2. False positives of 200 clients with 500 features, using
kNN (n=3) as baseline classifier. LiM reduces the number of false
positives to 3, while both SAFEW (i.e. no FL) and baseline have
5 and 7, respectively.

Table 2 shows the F1 score and the number of false
positives (FP) of clients using different baseline classi-
fiers and sets of base learners, and averaged across ex-
periments. The best performance, i.e. F1 score of 73.7%
is achieved using RFn50 as baseline classifier and 200
features, thanks to the low number of false positives.
Using kNN as baseline classifier gives us a high F1 score
of 73.2% using 200 features.

Figure 3 shows the evolution of LiM using KNN
as baseline and 500 features. Round 24 of the federa-
tion brings a significant improvement in performance
for LiM, and then the F1 score slowly grows similarly
to how SAFEW (i.e. no FL) and baseline do. By round
50, LiM reaches close to an F1 score of 70%.

6.2.3 Run-time performance

The cloud and the clients compute their LiM predictions
in the following three steps:
1. Build a local SAFEW. New weights are computed

using testing data.
2. Average local and federated weights
3. Compute new predictions using the new weights

Fig. 3. F1 score of 200 clients with 500 features, using kNN
(n=3) as baseline classifier. SAFEW (i.e. no FL) improves on
baseline, and LiM improves on SAFEW.

For step 1, the cloud takes 13 seconds and an individual
client, at the beginning of the federation, spends 0.1
seconds, due to the varying size of testing datasets. The
cost of Step 2 is negligible. Step 3 however, takes almost
the same time as step 1, i.e. step 1 spends only 1/10 of
the time computing new weights, which in step 3 is not
necessary. Thus, clients spent 0.2 seconds computing the
LiM final predictions, while the cloud spent 26 seconds.

It is worth noting that we did not apply any opti-
mization to the current implementation of LiM, as our
goal for this paper was to show that it is possible to
build an FL-based malware detection while maintain-
ing users’ privacy. For additional performance gain – at
the very minimum, the predictions for base leaners from
step 1 can be reused in step 3, making the total time
closer to the time of step 1.

Regarding the training of the base learners, on av-
erage each model takes 12.7 seconds and the first cloud
SAFEW prediction takes 13 seconds to complete.

6.3 Security analysis

In section 3 we introduced two adversaries: one that
aims to poison the federation process in order to make
a specific malware app be misclassified as clean (Sec-
tion 6.3.1), and another that wants to learn which apps
users have installed (Section 6.3.2).
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Table 2. Comparison of client average performance across LiM, SAFEW, and different baselines. Experiments are carried out for 50
rounds of federation using the Top 100, 200 and 500 features which were selected based on the chi2 test.

Baseline #Features FP (raw values) F1 (%)
Baseline SAFEW LiM Baseline SAFEW LiM

KNN n3 100 8.9 5.6 2.4 36.4 46.5 66.5
200 7.6 4.1 1.6 39.8 53.8 73.2
500 6.7 3.6 3.0 37.9 55.2 58.5

LR c1 100 5.1 5.4 4.0 47.5 48.5 54.3
200 3.6 3.6 3.6 55.2 55.4 55.0
500 4.2 4.2 4.2 52.7 53.1 53.1

RF n100 100 2.8 5.5 2.9 64.3 50.2 63.5
200 1.6 3.6 3.0 68.2 55.6 58.9
500 1.6 2.2 2.2 72.2 66.7 66.2

RF n200 100 1.6 2.9 2.6 71.3 59.6 60.6
200 2.8 2.3 2.3 65.4 69.1 69.1
500 2.6 2.6 3.1 64.6 64.4 60.7

RF n50 100 2.7 5.2 3.2 64.0 44.7 57.2
200 2.7 2.8 1.3 59.5 62.4 73.7
500 2.1 4.2 2.6 63.8 48.3 60.2

SVM c1 100 5.8 5.4 5.4 44.6 46.2 46.2
200 4.2 4.1 4.2 49.1 49.3 49.0
500 3.7 3.7 3.7 50.0 50.0 50.0

6.3.1 Integrity attacks

The considered adversary participates in the federa-
tion by controlling 50% of clients, and attempts to bias
the overall federation model by submitting maliciously
crafted client models and malware apps. The end goal
of the adversary is to trick LiM into misclassifying a
malware app as clean.

To make the malware app undetectable to LiM (i.e.
a false negative), the adversary modifies the weights
submitted by malicious clients so that his allied base
learners have an honest majority in the different layers
of the federation. A base learner is an ally of the adver-
sary if it classifies the malware app as clean. We assume
there is at least one ally in the LiM configuration for
each round in the FL process.

We formalize the problem in equations 3 through 7.
Let w be the honest weights of a malicious client,

and w′ the poisoned weights. The adversary’s goal is to
make the two types of weights as similar as they can
be in order for the attack to be stealthy. Equation 3
expresses this goal.

minimize
w′

∥∥w − w′∥∥ (3)

To maximize the chances of successfully poisoning
the federation, the weights need to take into account
multiple constraints. First, they must add up to one.
Let b be the number of base learners; then the first

constraint to the optimization problem is expressed in
equation 4.

b∑
i=1

w′i = 1 (4)

Second, for the compromised client to misclassify
the targeted app, the weights of the classifiers that err
in favour of the adversary must account for an honest
majority. Let M be the indices of those allied classifiers
in the SAFEW ensemble; then equation 5 expresses the
local constraint:

b∑
i=1

w′i > 0.5, {i | i ∈M} (5)

Third, the cloud will average the weights of all the
clients. Thus, the averaged weights of the allied classi-
fiers must also hold an honest majority. Since the adver-
sary does not have access to the weights of the honest
clients, we can approximate it by averaging the honest
weights of the malicious clients. Let wc be the weights
of the client c; then equation 6 expresses the clients
constraint.

1
N + 1

N∑
c=1

b∑
i=1

(wci + w′i) > 0.5, {i | i ∈M > 0.5} (6)

Finally, the cloud will compute the federated
weights by averaging its own weights with the average
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of the clients. Assuming the weights of the cloud are
known, we can make the same honest majority across al-
lied classifiers hold by approximating it with the guessed
average in equation 6. Let w∗ be these averaged weights
and wcloud, the weights of the cloud; then equation 7
expresses the cloud constraint.

1
2

b∑
i=1

(wcloudi + w∗i ) > 0.5, {i | i ∈M > 0.5}, (7)

Each round, the adversary has to try to solve this
problem and submit the poisoned weights. If no solu-
tion is found, the problem is relaxed by first dropping
the cloud constraint and then the client constraint. The
adversary will always find a way to meet the local con-
straint.

All the malicious clients install the same app tar-
geted by the adversary. We assume the adversary can
partially modify the features of the app, which is crafted
so that there is at least one allied base learner whose
added weight(s) lie between 0.3 and 0.4. This range
makes it possible for the adversary to succeed by redis-
tributing up to 20% of the honest weights, a relatively
small percentage.

We evaluate the effectiveness of this attack on LiM
for different configurations of learners both at the cloud
and at the clients, with special focus on the latter as
that is the final target of the adversary. Our results show
that the poisoning attack has virtually no effect in the
LiM cloud, with the F1 score plateauing at around 94%–
96%, regardless of the configuration (cf. table 6 from the
appendix).

Table 3 compares the average client performance
for honest LiM clients with baseline, SAFEW and ad-
versarial (i.e. poisoned) clients. Overall, we see that the
performance of LiM clients mostly outperforms base-
line and SAFEW, and it is significantly higher than for
adversarial clients. To better understand these results,
we look at two specific configurations and analyze the
effects of the attack over multiple federation rounds.

We first consider kNN with n = 3 and 200 features
as baseline classifier. Figure 4 shows that LiM clients
perform better than baseline and SAFEW. We can also
see that client performance improves over time, with the
most significant gains taking place in the first federation
rounds. The figure also shows how the F1 score of the
adversarial clients approximates that of SAFEW, sug-
gesting that the adversary is indeed submitting poisoned
weights that are not too different from honest weights.
The actual number of false positives for this configura-
tion is shown in figure 5. As can be seen in the figure,

Fig. 4. F1 score of 100 honest + 100 malicious clients, using 200
features with baseline classifier kNN (n=3). LiM outperforms
SAFEW (i.e. no FL), which performs better than baseline.

Fig. 5. False positives of 200 clients with 200 features, using kNN
(n=3) as baseline classifier.

LiM clients have a small number of false positives com-
pared to baseline, SAFEW and poisoned clients. Note
that the adversary’s goal is to trigger a false negative,
and thus the number of false positives in adversarial
clients can be minimized to behave as close to an honest
client as possible. Due to the small number of malware
apps installed by clients, a small increase in the number
of false positives has a big impact on the F1 score.

For the second case, we consider as baseline classifier
an RF with 200 decision trees and 200 features. In the
results shown in figure 6, we can see that clients are
affected by the attack every second round. The F1 score
jumps between 0.4 and 0.6 due to slight variations of the
weights that make the false positives per client jump
from 2 to 2.5, as shown in figure 7.
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Table 3. Comparison of client average performance across LiM, SAFEW and different baselines when 50% of the clients are adversar-
ial. Experiments are carried out for 50 rounds of federation using the Top 100, 200 and 500 features which were selected based on the
chi2 test.

Baseline #Features FP (raw values) F1 (%)
Baseline SAFEW LiM Adv. client Baseline SAFEW LiM Adv. client

KNN n3 100 10.3 5.7 2.3 2.9 25.3 36.7 59.8 54.0
200 5.9 2.4 1.7 2.7 39.2 61.0 47.0 27.5
500 6.9 3.2 2.4 3.9 45.8 66.5 68.9 43.8

LR c1 100 5.6 8.7 8.1 8.9 55.6 50.4 51.8 36.8
200 3.1 1.6 1.6 1.1 52.7 81.4 81.4 26.7
500 2.5 2.5 2.5 2.5 61.1 61.1 61.1 42.7

RF n100 100 2.6 4.7 4.1 4.6 61.9 51.2 53.0 37.9
200 1.1 1.6 1.0 1.6 70.0 75.1 78.9 50.5
500 2.2 2.2 2.2 2.1 64.1 64.1 64.2 53.8

RF n200 100 2.5 3.0 3.0 3.0 55.0 50.0 50.0 16.3
200 1.5 2.6 2.1 3.0 66.5 64.5 65.7 39.9
500 2.2 2.5 2.2 4.6 56.8 54.8 56.8 18.1

RF n50 100 1.8 2.8 2.5 3.3 72.5 64.2 65.3 54.7
200 2.1 4.2 1.8 2.2 67.6 61.6 73.2 43.9
500 3.1 2.5 2.5 2.6 58.3 62.3 62.3 36.9

SVM c1 100 5.1 5.1 5.1 4.0 41.5 41.5 41.5 20.5
200 4.0 3.5 3.5 0.5 49.1 52.7 52.7 55.5
500 3.7 3.7 3.7 2.6 42.7 42.7 42.7 12.1

Fig. 6. F1 score of 200 clients with 200 features, using RFn200 as
baseline classifier and with poisoning.

These results indicate that LiM is resistant against
poisoning attacks. This is thanks to the strong influ-
ence of the cloud in the federated weights and the use
of trusted data (cf. [26] - L2 and L3 from section 7-A)
to compute the cloud weights. Moreover, the power of
the attacker is limited by the small number of SAFEW
weights, which makes it difficult to distribute noise
across multiple dimensions (cf. [26] - L1 from section 7-
A) This allows LiM to use malicious and honest weights
together and still resist poisoning attacks.

Fig. 7. False positives of 200 clients with 200 features, using
RFn200 as baseline classifier and with poisoning.

6.3.2 Privacy attacks

Federated learning provides a defense mechanism
against privacy attacks: hiding the raw features of the
installed apps to make it more difficult for the cloud
server to infer information. However, the submitted
client models may still leak information that can be used
to infer, e.g. if a specific app has been part of their train-
ing set. Membership inference [18] relies on the fact that
updates to the client models may change only a few pa-
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rameters, and those parameters can reveal information
about specific apps used locally in a federation round.

In LiM, updates to client models only change the
SAFEW weights of the base learners. It is safe to as-
sume that the number of base learners of SAFEW is
significantly smaller than the number of parameters of
an individual base learner, e.g. a deep neural network.
This data compression greatly reduces the information
available to the adversary to perform the membership
inference, lowering the probability of success of this at-
tack.

We evaluate if the attack by Melis et al. [18]
can infer whether clients installed a target app, us-
ing the weights shared by the clients as the gradi-
ents. We denote by r the federation round, i is the
i−th client, and c the cloud. The cloud first computes
the weights associated with a specific app, wrapp =
SAFEW (baseline_model, base_models, app), and the
weights of the client with no federation for round r, un-
doing step 5 as described in section 5: wr,nofederatedc =
(2 ∗ wri )− wr−1

c

Clients compute the weights wc using the data from
all the apps they have installed. We assume the cloud
does not have access to the list of preinstalled apps of
each client, but aims to identify the apps users install
in each round. To achieve that goal, the cloud isolates
the contribution of a single round by subtracting the
weights of the last and the previous rounds, i.e. round
r and r − 1. This is reflected in equation 8. The attack
succeeds if equation 8 holds and the identified app was
indeed installed by the client in the previous round (i.e.
there is a true positive).

wrapp − (wr,nofederatedc − wr−1,nofederated
c ) = 0 (8)

On the contrary, if there is no app that makes equa-
tion 8 hold, then the attack does not succeed. If equa-
tion 8 is satisfied by 2 or more apps that leads to false
positives. In that case, the best the adversary can do is
to guess among the candidate apps, so the more apps
that produce the same weights, the more resistant is
LiM to privacy attacks.

We implemented this attack and ran experiments
with the same SAFEW configurations (sets of baseline
and base learners). In order to increase the likelihood
of success, we let the cloud have access to the complete
dataset of apps: this way, clients cannot install apps that
the cloud cannot infer membership of. For each round,
the cloud counts the number of apps in its dataset that
makes equation 8 hold. We then check if those apps were
indeed installed by the corresponding client.

The results show that the cloud is unable to find
any app that makes equation 8 hold, i.e. there are 0
true positives and 0 false positives. We observe that the
weights resulting from testing a SAFEW model with a
single specific app are very different from the difference
between the weights sent in the last two rounds. Specif-
ically, we realize that there is not enough information in
a single app for SAFEW to associate different weights to
each base learner, while in successive federation rounds,
clients slightly increase some weights in detriment of
others.

6.4 Evaluation using MaMaDroid dataset

In order to further verify the performance of LiM, we
also evaluated LiM using the MaMaDroid dataset [23]
under the setup described at the beginning of this sec-
tion. Due to errors in the download and the feature ex-
traction, we used 7K malware and 7K clean apps. We
ran 2 experiments per configuration without adversar-
ial clients, and 2 experiments where half of the clients
perform the poisoning attack described in section 6.3.1.

First, we will describe the results of the experiments
without adversarial clients. Then, we will focus on the
results obtained with 50% of clients submitting poisoned
weights. For each of the scenarios, we analyze the cloud
and the client results.

6.4.1 Without poisoning

We observed no performance difference between LiM,
SAFEW, Centralized SAFEW, and baseline in the
cloud, as they all obtain an F1 score of around 90%.
On the other hand, there was a noticeable difference in
the performance of the clients. Similarly to the results
presented in previous sections, LiM is able to outper-
form baseline and SAFEW most of the times, including
in configurations that use RF (n=50,200) as baseline.

Overall, the F1 scores were lower with this new
dataset due to the higher number of false positives in
the baseline learners. This is not surprising, since the
dataset itself has fewer distinguishable manifest fea-
tures and even important dynamic analysis features are
present in both clean and malicious apps, resulting in
poor distinguishers (cf. section 4.4 from [23]).
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6.4.2 With poisoning

More interesting were the results of experiments where
50% of the clients poisoned their weights to trigger a
false negative, i.e. so that a specific malicious app is
misclassified as clean. Table 4 shows that LiM still out-
performs baseline and SAFEW in most of the cases. The
highest performance gain with respect to the baseline
and SAFEW is using kNN with 100 features as base-
line.

An example of such configuration is shown in fig-
ure 8. We can see that LiM outperforms both SAFEW
and baseline, stabilizing at 0.4 even as the poisoned
clients worsen their performance. This shows that LiM,
under a targeted integrity attack, can still learn from
the federation.

Fig. 8. F1 score of 200 clients and the MaMaDroid dataset with
500 features, using kNN (n=3) as baseline classifier

Finally, we found the membership inference attack
unsuccessful, as the cloud is unable to find any single
app that makes equation 8 hold in any of these experi-
ments (0 true positives, 0 false positives), further indi-
cating that LiM is resistant to membership inference.

7 Discussion and future work
Our evaluation shows that LiM enables federated clients
to learn from each other even when they do not have lo-
cal access to ground truth. Our experiments show the
importance of the learner selection in the individual
SAFEWs, which must maximize variance across their
predictions as well as their individual performance. We

observe that random forests provide a high F1 score
by themselves, but LiM can outperform them by fine-
tuning the weights of weaker but complementary learn-
ers. The best results were achieved when all learners
influenced the final predictions, rather than defaulting
to the predictions of the strongest learner. In this pa-
per we have used standard learners, but we expect LiM
to greatly benefit from a more careful selection of base
learners. Future work is needed to verify this hypothesis.

Further measures to protect users from privacy at-
tacks could include differential privacy. Previous work
has shown that adding noise to the client parame-
ters can prevent information leakage from client mod-
els [29]. LiM takes instead a data aggregation ap-
proach, compressing client parameters to a smaller set of
bounded hyper-parameters to significantly decrease the
amount of information available to the adversary (cf.
section 6.3). This approach does not compromise on the
quality of the models shared by the users, and it does not
introduce limitations regarding the minimum number of
users in the federation [29]. Nevertheless, LiM’s protec-
tion does not hide whether or not users have installed
new applications, as users’ models remain unchanged
while no new applications are installed; differential pri-
vacy can stop the leakage of such information.

Regarding performance results, we highlight that
1) LiM does not sacrifice performance for privacy, as
it matches and sometimes even outperforms a privacy-
invasive Centralized SAFEW, and 2) the number of false
positives in clients decreases across federation rounds.
We observe a drastic improvement in the first round of
federation, when client weights contribute to updating
the initial model created by the cloud. This leads us
to believe that increasing the number of clients may re-
produce this effect along further rounds, as there will be
more information coming from additional client weights.
Simulating LiM at scale can help clarify the relationship
between the number of clients and LiM performance.

Interestingly, LiM can avoid virtually any privacy
loss with respect to a centralized SAFEW as the federa-
tion of the clients provides enough information to arrive
to the same weights of the privacy-invasive model. Even
though the differences between the weights of the cloud
without federation and the weights of the centralized
SAFEW can be relatively high (e.g. to 0.1 in a single
weight, 0.37 vs 0.47), clients provide enough information
to equalize them.

We envision LiM as a system that can be practically
deployed in real-world smartphones. While market in-
terests may dissuade powerful organizations like Google
to deploy LiM in stock Android, we believe third-party
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Table 4. Comparison of client average performance using the MaMaDroid dataset across LiM, SAFEW and different baselines when
50% of the clients are adversarial. Experiments are carried out for 50 rounds of federation using the Top 100, 200 and 500 features
which were selected based on the chi2 test.

Baseline #Features FP (raw values) F1 (%)
Baseline SAFEW LiM Adv. client Baseline SAFEW LiM Adv. client

KNN n3 100 8.5 8.5 5.7 5.4 25.1 23.8 32.5 24.3
200 7.3 5.9 5.2 5.2 32.5 41.3 39.5 21.7
500 6.1 5 4.6 4.5 34.4 38.7 40.6 30.7

LR c1 100 7.8 7.5 7.1 7.1 26.4 27.2 28.8 11.1
200 8.4 8.6 8.6 7.5 20.4 15.2 17.5 0
500 5.3 5.0 4.1 3.6 17.8 33.0 37.5 39.8

RF n100 100 6.7 8.9 6.8 6.8 26.4 26.9 32.9 15.9
200 8.3 10.8 9.5 9.3 44.2 38.4 40.2 29.8
500 5.4 5.4 5.3 4.3 36.7 36.7 36.6 22.0

RF n200 100 7.3 10.1 7.8 6.9 42.0 34.2 39.8 39.7
200 5.1 5.1 5.1 5 28.5 28.5 28.5 0.9
500 4.3 4.1 3.2 3.8 38.5 39.1 46.5 25.8

RF n50 100 6.4 9.9 7.0 5.9 29.1 19.8 22.5 0.3
200 5.2 6.5 5.2 4.9 40.1 35.4 41.0 49.1
500 5.9 6.5 5.4 5.0 42.6 41.0 44.6 43.8

SVM c1 100 7.2 7.7 7.3 7.2 23.2 24.0 23.3 10.7
200 10.2 7.6 6.2 5.2 20.2 25.9 28.5 25.6
500 2 4 4 5.2 60.9 41.8 41.8 35.1

Android distributions differentiating themselves by be-
ing more privacy conscious can develop the client app
as a privileged service executed upon the installation
of (one or more) apps. This practical implementation
would perform static analysis over the manifest files of
the newly installed apps, without the need to trust the
LiM service provider with sensitive client models.

Limitations & Future work: We expect future
work to address the following limitations of the current
formulation of LiM, namely:
– Malware family-wise classification is out of the

scope in this paper. Our figures do not take into
account the specific characteristics of the malware
apps installed by clients.

– Real world experiments at scale. In this paper,
we perform experiments with standard learners, 50
rounds of federation, a static set of users, and pre-
defined parameters to simulate probabilities of in-
stalling malware, clean and popular apps. Increasing
the number of rounds and performing a thorough
selection of the SAFEW learners would provide a
more thorough understanding of the performance
of LiM in different practical scenarios.

We believe LiM is equipped to act as a self-evolving sys-
tem that can update itself using the ever-enlarging set
of apps users install on their devices. This low mainte-

nance overhead of the service provider, which does not
need to label all data to make use of it, together with the
geographic distribution of malware, can help LiM detect
malicious apps faster [10] and thus prevent malware to
disseminate in large numbers. Other applications where
self-updating models are of interest could explore LiM
as a solution where no burden is placed to the user nor
the service provider.

8 Related work

8.1 Machine learning for Android malware
classification

ML techniques to detect mobile malware have been
extensively investigated, leveraging a few character-
istics of the mobile applications (for example, call
graphs [20], permissions [14], or both API calls and per-
missions [12]), and the results obtained were promis-
ing. Classification approaches have also been proposed
to model and approximate the behaviors of Android ap-
plications and discern malicious apps from benign ones.
The detection accuracy of a classification method de-
pends on the quality of the features (for example, how
specific the features are [21]).
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In [19], Milosevic et al. implemented an app that de-
tects malware locally through a pre-trained SVM clas-
sifier. They explicitly created a permission based model
to detect malware. There is no information to recreate
the model, although the model itself is available as part
of the OWASP Seraphimdroid project [24]. The dataset
they used has 200 benign and 200 malicious apps; how-
ever, since 2015, their dataset is no longer publicly avail-
able. For more recent state of the art related work in this
area, we refer the reader to [23].

8.2 Semi-supervised federated learning

Semi-supervised FL has already been proposed by [2]
to take advantage of the abundant unlabeled data in
the smart city context. Contrary to LiM, they assume
a subset of clients have labeled samples, and use them
to train a classifier that will provide the missing labels
to retrain another local model. They report an improve-
ment of 8% accuracy compared to the fully supervised
FL, but do not consider privacy and integrity attacks
nor provide a lower bound for the performance of the
clients and the server.

9 Conclusion
We have presented LiM, the first FL-based malware de-
tection framework that works successfully without user
access to ground truth by making use of safe semi-
supervised learning techniques. We demonstrate its util-
ity as a hybrid system where users keep their apps secret
from the service provider while successfully detecting
most of the malicious apps they install without raising
many false alarms. LiM is resistant against a strate-
gic adversary that compromises 50% of the clients and
crafts a malicious app in order to bypass the detection
mechanism. Our proposed tool can also withstand mem-
bership inference attacks that exploit client updates to
try to determine if a specific app was installed by a
client. While we have evaluated LiM in the malware de-
tection domain, we note that it can be applied to other
problems where users cannot provide ground truth la-
bels to their clients’ models, but still benefit from FL –
both in terms of performance improvements and privacy
properties.
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A List of features

A.1 Top 100 features
– android_hardware_camera
– android_hardware_camera_autofocus
– android_hardware_microphone
– android_hardware_screen_landscape
– android_hardware_screen_portrait
– android_hardware_touchscreen_multitouch
– android_hardware_touchscreen_multitouch_distinct
– android_hardware_wifi
– android_permission_access_assisted_gps
– android_permission_access_coarse_location
– android_permission_access_coarse_updates
– android_permission_access_fine_location
– android_permission_access_gps

https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
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– android_permission_access_location
– android_permission_access_location_extra_commands
– android_permission_access_wifi_state
– android_permission_call_phone
– android_permission_change_wifi_state
– android_permission_get_tasks
– android_permission_install_packages
– android_permission_kill_background_processes
– android_permission_mount_unmount_filesystems
– android_permission_process_outgoing_calls
– android_permission_read_call_log
– android_permission_read_contacts
– android_permission_read_logs
– android_permission_read_phone_state
– android_permission_read_profile
– android_permission_read_settings
– android_permission_read_sms
– android_permission_receive_boot_completed
– android_permission_receive_sms
– android_permission_restart_packages
– android_permission_send_sms
– android_permission_system_alert_window
– android_permission_use_credentials
– android_permission_write_apn_settings
– android_permission_write_contacts
– android_permission_write_external_storage
– android_permission_write_settings
– android_permission_write_sms
– android_support_v4_content_fileprovider
– cn_domob_android_ads_domobactivity
– com_adfeiwo_ad_coverscreen_sa
– com_adfeiwo_ad_coverscreen_sr
– com_adfeiwo_ad_coverscreen_wa
– com_adwo_adsdk_adwoadbrowseractivity
– com_airpush_android_deliveryreceiver
– com_airpush_android_messagereceiver
– com_airpush_android_pushads
– com_airpush_android_pushservice
– com_airpush_android_userdetailsreceiver
– com_android_browser_permission_read_history_bookmarks
– com_android_browser_permission_write_history_bookmarks
– com_android_launcher_permission_install_shortcut
– com_android_launcher_permission_uninstall_shortcut
– com_android_vending_billing
– com_bving_img_ag
– com_bving_img_rv
– com_bving_img_se
– com_facebook_ads_interstitialadactivity
– com_facebook_facebookactivity
– com_facebook_loginactivity
– com_google_android_c2dm_permission_receive
– com_google_android_gms_ads_adactivity
– com_google_android_gms_ads_purchase_inapppurchaseactivity
– com_google_android_gms_analytics_analyticsreceiver
– com_google_android_gms_analytics_analyticsservice
– com_google_android_gms_analytics_campaigntrackingreceiver
– com_google_android_gms_analytics_campaigntrackingservice
– com_google_android_gms_appinvite_previewactivity
– com_google_android_gms_auth_api_signin_internal_signinhubactivity
– com_google_android_gms_auth_api_signin_revocationboundservice
– com_google_android_gms_common_api_googleapiactivity
– com_google_android_gms_gcm_gcmreceiver
– com_google_android_gms_measurement_appmeasurementcontentprovider
– com_google_android_gms_measurement_appmeasurementinstallreferrerreceiver
– com_google_android_gms_measurement_appmeasurementreceiver
– com_google_android_gms_measurement_appmeasurementservice
– com_google_android_providers_gsf_permission_read_gservices
– com_google_firebase_iid_firebaseinstanceidinternalreceiver
– com_google_firebase_iid_firebaseinstanceidreceiver
– com_google_firebase_iid_firebaseinstanceidservice
– com_google_firebase_messaging_firebasemessagingservice
– com_google_firebase_provider_firebaseinitprovider
– com_google_update_dialog
– com_google_update_receiver
– com_google_update_updateservice
– com_kuguo_ad_boutiqueactivity
– com_kuguo_ad_mainactivity
– com_kuguo_ad_mainreceiver
– com_kuguo_ad_mainservice
– com_mobclix_android_sdk_mobclixbrowseractivity
– com_soft_android_appinstaller__finishactivity
– com_soft_android_appinstaller__firstactivity
– com_soft_android_appinstaller__rulesactivity
– com_soft_android_appinstaller_memberactivity
– com_soft_android_appinstaller_questionactivity
– com_startapp_android_publish_appwallactivity
– net_youmi_android_adactivity

A.2 Top 200 features
– android_hardware_camera
– android_hardware_camera_autofocus
– android_hardware_camera_front
– android_hardware_microphone
– android_hardware_screen_landscape
– android_hardware_screen_portrait
– android_hardware_touchscreen_multitouch
– android_hardware_touchscreen_multitouch_distinct
– android_hardware_wifi
– android_permission_access_assisted_gps
– android_permission_access_coarse_location
– android_permission_access_coarse_updates
– android_permission_access_fine_location
– android_permission_access_gps

– android_permission_access_location
– android_permission_access_location_extra_commands
– android_permission_access_wifi_state
– android_permission_call_phone
– android_permission_camera
– android_permission_change_configuration
– android_permission_change_network_state
– android_permission_change_wifi_state
– android_permission_clear_app_cache
– android_permission_get_tasks
– android_permission_install_packages
– android_permission_kill_background_processes
– android_permission_mount_unmount_filesystems
– android_permission_process_outgoing_calls
– android_permission_read_calendar
– android_permission_read_call_log
– android_permission_read_contacts
– android_permission_read_external_storage
– android_permission_read_logs
– android_permission_read_phone_state
– android_permission_read_profile
– android_permission_read_settings
– android_permission_read_sms
– android_permission_receive_boot_completed
– android_permission_receive_sms
– android_permission_receive_wap_push
– android_permission_record_audio
– android_permission_restart_packages
– android_permission_send_sms
– android_permission_system_alert_window
– android_permission_use_credentials
– android_permission_vibrate
– android_permission_write_apn_settings
– android_permission_write_calendar
– android_permission_write_contacts
– android_permission_write_external_storage
– android_permission_write_settings
– android_permission_write_sms
– android_support_v4_content_fileprovider
– biz_neoline_android_reader_bookmarksandtocactivity
– biz_neoline_android_reader_libraryactivity
– biz_neoline_android_reader_neobookreader
– biz_neoline_android_reader_textsearchactivity
– biz_neoline_app_core_core_application_shutdownreceiver
– biz_neoline_app_core_ui_android_dialogs_dialogactivity
– biz_neoline_app_core_ui_android_library_crashreportingactivity
– biz_neoline_test_donationactivity
– cn_domob_android_ads_domobactivity
– com_adfeiwo_ad_coverscreen_sa
– com_adfeiwo_ad_coverscreen_sr
– com_adfeiwo_ad_coverscreen_wa
– com_adwo_adsdk_adwoadbrowseractivity
– com_adwo_adsdk_adwosplashadactivity
– com_airpush_android_deliveryreceiver
– com_airpush_android_messagereceiver
– com_airpush_android_pushads
– com_airpush_android_pushservice
– com_airpush_android_smartwallactivity
– com_airpush_android_userdetailsreceiver
– com_amazon_device_messaging_permission_receive
– com_anddoes_launcher_permission_update_count
– com_android_browser_permission_read_history_bookmarks
– com_android_browser_permission_write_history_bookmarks
– com_android_launcher_permission_install_shortcut
– com_android_launcher_permission_uninstall_shortcut
– com_android_vending_billing
– com_biznessapps_layout_maincontroller
– com_biznessapps_player_playerservice
– com_biznessapps_pushnotifications_c2dmmessagesreceiver
– com_biznessapps_pushnotifications_c2dmregistrationreceiver
– com_bving_img_ag
– com_bving_img_rv
– com_bving_img_se
– com_chartboost_sdk_cbimpressionactivity
– com_elm_lma
– com_elm_lmr
– com_elm_lms
– com_elm_lmsk
– com_facebook_ads_audiencenetworkactivity
– com_facebook_ads_interstitialadactivity
– com_facebook_customtabactivity
– com_facebook_customtabmainactivity
– com_facebook_facebookactivity
– com_facebook_facebookcontentprovider
– com_facebook_loginactivity
– com_feiwothree_coverscreen_sa
– com_feiwothree_coverscreen_sr
– com_feiwothree_coverscreen_wa
– com_google_android_apps_analytics_analyticsreceiver
– com_google_android_c2dm_permission_receive
– com_google_android_gcm_gcmbroadcastreceiver
– com_google_android_gms_ads_adactivity
– com_google_android_gms_ads_purchase_inapppurchaseactivity
– com_google_android_gms_analytics_analyticsreceiver
– com_google_android_gms_analytics_analyticsservice
– com_google_android_gms_analytics_campaigntrackingreceiver
– com_google_android_gms_analytics_campaigntrackingservice
– com_google_android_gms_appinvite_previewactivity
– com_google_android_gms_auth_api_signin_internal_signinhubactivity
– com_google_android_gms_auth_api_signin_revocationboundservice
– com_google_android_gms_common_api_googleapiactivity
– com_google_android_gms_gcm_gcmreceiver
– com_google_android_gms_measurement_appmeasurementcontentprovider
– com_google_android_gms_measurement_appmeasurementinstallreferrerreceiver
– com_google_android_gms_measurement_appmeasurementjobservice
– com_google_android_gms_measurement_appmeasurementreceiver
– com_google_android_gms_measurement_appmeasurementservice
– com_google_android_providers_gsf_permission_read_gservices
– com_google_firebase_iid_firebaseinstanceidinternalreceiver
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– com_google_firebase_iid_firebaseinstanceidreceiver
– com_google_firebase_iid_firebaseinstanceidservice
– com_google_firebase_messaging_firebasemessagingservice
– com_google_firebase_provider_firebaseinitprovider
– com_google_update_dialog
– com_google_update_receiver
– com_google_update_updateservice
– com_htc_launcher_permission_update_shortcut
– com_klpcjg_wyxjvs102320_browseractivity
– com_klpcjg_wyxjvs102320_mainactivity
– com_klpcjg_wyxjvs102320_vdactivity
– com_kuguo_ad_boutiqueactivity
– com_kuguo_ad_mainactivity
– com_kuguo_ad_mainreceiver
– com_kuguo_ad_mainservice
– com_majeur_launcher_permission_update_badge
– com_mobclix_android_sdk_mobclixbrowseractivity
– com_nd_dianjin_activity_offerappactivity
– com_onesignal_gcmbroadcastreceiver
– com_onesignal_gcmintentservice
– com_onesignal_notificationopenedreceiver
– com_onesignal_permissionsactivity
– com_onesignal_syncservice
– com_parse_gcmbroadcastreceiver
– com_parse_parsebroadcastreceiver
– com_parse_pushservice
– com_paypal_android_sdk_payments_futurepaymentconsentactivity
– com_paypal_android_sdk_payments_futurepaymentinfoactivity
– com_paypal_android_sdk_payments_loginactivity
– com_paypal_android_sdk_payments_paymentactivity
– com_paypal_android_sdk_payments_paymentconfirmactivity
– com_paypal_android_sdk_payments_paymentmethodactivity
– com_paypal_android_sdk_payments_paypalfuturepaymentactivity
– com_paypal_android_sdk_payments_paypalservice
– com_sec_android_provider_badge_permission_read
– com_sec_android_provider_badge_permission_write
– com_soft_android_appinstaller__finishactivity
– com_soft_android_appinstaller__firstactivity
– com_soft_android_appinstaller__rulesactivity
– com_soft_android_appinstaller__services_smssenderservice
– com_soft_android_appinstaller__sms_binarysmsreceiver
– com_soft_android_appinstaller_memberactivity
– com_soft_android_appinstaller_questionactivity
– com_software_application__c2dmreceiver
– com_software_application__checker
– com_software_application__main
– com_software_application__notificator
– com_software_application__offertactivity
– com_software_application__showlink
– com_software_application__smsreceiver
– com_software_application_permission_c2d_message
– com_sonyericsson_home_permission_broadcast_badge
– com_sonymobile_home_permission_provider_insert_badge
– com_startapp_android_publish_appwallactivity
– com_startapp_android_publish_fullscreenactivity
– com_startapp_android_publish_overlayactivity
– com_tencent_mobwin_mobinwinbrowseractivity
– com_umeng_common_net_downloadingservice
– com_uniplugin_sender_areceiver
– com_unity3d_ads_android_view_unityadsfullscreenactivity
– com_unity3d_player_unityplayeractivity
– com_unity3d_player_unityplayernativeactivity
– com_urbanairship_corereceiver
– com_urbanairship_push_pushservice
– com_vpon_adon_android_webinapp
– com_waps_offerswebview
– io_card_payment_cardioactivity
– io_card_payment_dataentryactivity
– net_youmi_android_adactivity
– net_youmi_android_adbrowser
– net_youmi_android_adreceiver
– net_youmi_android_adservice
– net_youmi_android_appoffers_youmioffersactivity
– net_youmi_android_youmireceiver
– tk_jianmo_study__bootbroadcastreceiver
– tk_jianmo_study__killpoccessserve
– tk_jianmo_study__mainactivity
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B Additional results
Table 5 presents an overview for the performance of
the cloud participating in the federation of 200 clients.
In this table, we also report results of a Centralized
SAFEW in order to portray what happens when clients
submit the (raw) feature vectors of their apps directly
to the cloud, i.e. when user privacy is not guaranteed.
Table 6 presents the same overview under the presence
of an integrity attack, where 50% of the 200 clients sub-
mit poisoned weights.

Table 5. Comparison of cloud average performance across LiM, SAFEW, and different baselines. Experiments are carried out for 50
rounds of federation using the Top 100, 200 and 500 features which were selected based on the chi2 test.

Baseline #Features FP (raw values) F1 (%)
Baseline SAFEW Centralized SAFEW LiM Baseline SAFEW Centralized SAFEW LiM

KNN n3 100 1011.0 1176.0 1182.8 718.6 94.7 95.0 95.0 95.7
200 1354.0 1021.0 1024.0 627.8 93.9 95.5 95.5 96.1
500 854.5 978.0 981.1 624.4 95.3 95.8 95.8 96.3

LR c1 100 1035.0 1441.0 1449.2 790.7 94.2 94.5 94.5 95.5
200 803.5 1321.0 1328.2 746.0 94.5 95.0 94.9 94.7
500 736.5 1196.0 1201.3 654.3 95.1 95.3 95.3 95.4

RF n100 100 638.5 765.5 775.2 667.7 95.9 95.7 95.7 95.8
200 596.5 839.0 843.4 691.1 96.1 95.8 95.8 96.0
500 596.0 875.5 878.9 620.3 96.3 96.0 96.0 96.1

RF n200 100 662.0 933.0 938.8 689.4 95.8 95.5 95.5 95.8
200 602.0 728.5 734.9 607.0 96.2 96.0 96.0 96.2
500 590.5 973.5 978.3 607.8 96.3 95.8 95.8 96.3

RF n50 100 663.5 942.5 946.9 671.4 95.8 95.5 95.4 95.8
200 607.5 880.5 884.3 672.6 96.1 95.7 95.7 96.1
500 531.0 815.0 817.8 560.2 96.3 96.0 96.0 96.3

SVM c1 100 945.5 1169.0 1177.5 1039.6 94.2 95.0 95.0 94.2
200 767.5 1029.0 1036.2 832.4 94.6 95.5 95.5 94.5
500 638.0 938.0 944.7 728.7 95.5 95.9 95.9 95.1
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Table 6. Comparison of cloud average performance across LiM, SAFEW, Centralized SAFEW and different baselines when 50% of the
clients are adversarial. Experiments are carried out for 50 rounds of federation using the Top 100, 200 and 500 features which were
selected based on the chi2 test.

Baseline #Features FP (raw values) F1 (%)
Baseline SAFEW Centralized SAFEW LiM Baseline SAFEW Centralized SAFEW LiM

KNN n3 100 1006.0 1159.0 1163.3 682.2 94.7 95.1 95.1 95.9
200 999.0 1093.5 1074.5 687.8 95.0 95.4 95.4 95.8
500 887.5 1008.0 1010.8 684.2 95.3 95.8 95.8 95.9

LR c1 100 1027.5 1431.0 1443.8 1093.7 94.3 94.5 94.5 94.9
200 813.0 1676.0 1683.5 653.5 94.4 94.0 94.0 95.7
500 748.0 1240.5 1242.5 603.9 94.9 95.2 95.2 95.8

RF n100 100 676.0 940.5 947.1 852.5 95.8 95.4 95.4 95.0
200 583.0 701.5 703.5 594.3 96.1 96.0 96.0 96.2
500 577.0 753.0 756.3 532.7 96.4 96.2 96.2 96.4

RF n200 100 671.5 793.5 795.5 681.5 95.8 95.7 95.7 95.8
200 614.5 697.0 698.8 637.7 96.1 96.0 96.0 96.1
500 623.0 854.5 857.9 635.0 96.4 95.9 95.9 96.2

RF n50 100 663.5 765.0 771.7 675.8 95.8 95.8 95.7 95.8
200 637.5 916.5 922.6 648.5 96.0 95.6 95.6 96.1
500 520.0 794.0 795.5 595.8 96.4 96.1 96.1 96.3

SVM c1 100 1016.5 1162.5 1165.9 1062.5 94.2 95.0 95.0 94.2
200 750.0 1041.0 1043.9 708.0 94.6 95.4 95.4 95.6
500 639.0 921.0 924.4 664.9 95.5 95.9 95.9 95.7


	Less is More: A privacy-respecting Android malware classifier using federated learning
	1 Introduction
	2 Background
	2.1 Safe semi-supervised learning
	2.2 Android
	2.2.1 Android manifest file
	2.2.2 Android malware classification


	3 Threat model
	4 Safe semi-supervised federated learning
	5 LiM architecture
	6 Evaluation of the system
	6.1 Datasets
	6.2 Performance evaluation
	6.2.1 Performance metrics
	6.2.2 Performance results
	6.2.3 Run-time performance

	6.3 Security analysis
	6.3.1 Integrity attacks
	6.3.2 Privacy attacks

	6.4 Evaluation using MaMaDroid dataset
	6.4.1 Without poisoning
	6.4.2 With poisoning


	7 Discussion and future work
	8 Related work
	8.1 Machine learning for Android malware classification
	8.2 Semi-supervised federated learning

	9 Conclusion
	A List of features
	A.1 Top 100 features
	A.2 Top 200 features

	B Additional results


