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1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany,
{marek.broll,federico.canale,gregor.leander}@rub.de

2 Inria, France, {antonio.florez-gutierrez,maria.naya plasencia}@inria.fr

Abstract. We propose a general technique to improve the key-guessing
step of several attacks on block ciphers. This is achieved by defining and
studying some new properties of the associated S-boxes and by represent-
ing them as a special type of decision trees that are crucial for finding
fine-grained guessing strategies for various attack vectors. We have pro-
posed and implemented the algorithm that efficiently finds such trees,
and use it for providing several applications of this approach, which in-
clude the best known attacks on Noekeon, GIFT, and RECTANGLE.
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1 Introduction

Literally all sensitive data needs to be encrypted, and it is vital to have trustwor-
thy symmetric primitives. The only way to build confidence in these primitives
is through a continuous effort to evaluate their security and constantly update
their security margin: this is the role of cryptanalysis.

Several different attack families against symmetric ciphers exist. The most
important are differential and linear cryptanalysis ([3], [15, 16]) and their vari-
ants. While the boundary is often blurry (see e.g. [10]), many attacks can usually
be separated into two parts: a distinguisher and a key-recovery part.

A distinguisher highlights some non-random behaviour in a part of a cipher,
like linear correlation between several states or an output difference occurring
unusually often when a specific input difference is introduced.

The key-recovery part usually involves the rounds before and after the dis-
tinguisher, and makes use of this non-random behaviour to (partially) recover
the secret key. Fundamentally, the attacker guesses some key information from
this outer part, and checks if the non-random behaviour occurs with the dis-
tinguisher. If the data behaves as expected, the key guess is likely correct. Our
work focuses on the key-recovery step.

Various commonly-used ideas to improve the efficiency of this part have been
proposed, such as reducing the data complexity by using plaintext structures (see
e.g. [14] for applications to ARX), improved statistical tools (e.g. [4]), and the
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use of the Fast Fourier Transform (FFT) in linear cryptanalysis ([8] and the
improved [12]).

For SPN ciphers, the key-guessing is often done in a word-oriented fashion
in which key-words are guessed in alignment with the S-box layer. The S-box is
treated like a black box, and a full key-word is guessed when the attacker needs
some information about its output. There are examples of partial improvements
to the key-guessing in some specific attacks, albeit never in a generic manner.
Some decompose the S-box to either filter wrong pairs (e.g. [11]), avoid unnec-
essary key guesses ([6]), or improve filtering in meet-in-the-middle attacks ([7]).

A comprehensive and focused study of S-box properties with respect to op-
timal key-guessing strategies is nevertheless missing.

Our Contribution

In this paper we provide this overdue analysis by introducing a unified and
generic framework to optimize the key-recovery part of various attacks. Inspired
particularly by the techniques used in [6], we aim to reduce the number of key
bits guessing to the strict minimum for which the output information is still
determined, avoiding unnecessary guesses of full-key words. To this end, we
first transform an S-box (or one of its component functions) into a binary de-
cision tree. We then show that all the important optimizations naturally arise
as properties of this tree. We find that one of the most important properties is
the number of leaves. Consequently, finding tree representations with a minimal
number of leaves directly optimizes the attacks.

While their application to cryptanalysis is new, (parity) decision trees for
boolean functions themselves are not. For an overview of the theory see [17].
The (asymptotic) size (which we call numLeaves) and approximation of parity
decision trees (i.e. decision trees with arbitrary instead of unit vector labels) is
subject to research (e.g. [19]). Here, a link to linear structures in the case of
vectorial boolean functions is examined.

We first describe this tree representation and discuss some basic properties in
Section 2. In particular, we show that optimizing the number of leaves automat-
ically considers linear structures, a simple and well-known property. Moreover,
we show that equivalence conditions for functions to lead to isomorphic trees,
which allows us to classify functions with respect to their optimal trees. In addi-
tion, this provides new criteria for choosing good S-boxes with better resistance
against attacks which exploit our representation explicitly or implicitly. We also
provide a simple yet efficient algorithm which computes an optimal tree for rea-
sonable S-box sizes (n < 8), which has been necessary for the applications. An
implementation is provided as supplementary material online 3.

Before giving several specific application examples, we explain how using
trees can improve various generic attack families in a broader sense in Section 3.

Concrete applications are detailed in the following sections. In Section 4 we
explain how to optimize linear attacks by giving the current best attack on

3 https://github.com/rub-hgi/ConditionsLib
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Noekeon [9]. We then focus on differential attacks. We improve the best attack
on GIFT that was known at the time of writing ([13], see Section 5), a related-
key rectangle attack, and decrease its time complexity by a factor of more than
220 and its data complexity by a factor of 2. However, we are confident that
an improvement to the new best attack on GIFT [20] is also possible thanks
to our techniques. We also attack the cipher RECTANGLE (see Section 6) and
improve the time complexity of the best attack by a factor larger than 214.
Finally, we explain how meet-in-the-middle or more precisely sieve-in-the-middle
attacks can also benefit from our improvements on the example of PRESENT
[5] in Supplementary Material C. Our attack provides just a small improvement
factor, but shows how our technique can be applied. Our on PRESENT concrete
findings are summarized in Table 1.

We expect that follow-up work will use our results for building even better
attacks, including attacks on more rounds. Our main aim was to provide applica-
tions that underline the usefulness of the framework. For covering more rounds,
one should design a whole new attack using our ideas. In particular, we expect
that a 19 round attack on RECTANGLE is within reach, due to the fact that the
already large margin for the key-guessing complexity can be further improved if
one aims at optimization (and not simplicity, as we do in the present work). Fur-
thermore, note that there is nothing fundamental that prevents the framework
from being applied to larger S-boxes.

Cipher (Block,Key) Rnds Type (Time, Data)-Previous This paper Best

Noekeon-128-128 12 linear (2124, 2124) [9] (2122.14, 2119) yes
GIFT-64-128 25 RK rectangle (2120.92, 263.78) [13] (299.18, 262.73) no

RECTANGLE -64-80 18 differential (278.88, 264)[21] (264, 264) yes

PRESENT-64-80 8
sieve-in-

the-middle
(273.42, 26) [7] (272.91, 26) no

Table 1. Overview of the Applications. The improvements on Noekeon and RECT-
ANGLE provide the new best known attacks on these ciphers. [13] was the best attack
on GIFT at the time of writing. An attack on 26-round GIFT was presented in [20].

2 Representing Functions as Affine Decision Trees and
Applications in Cryptanalysis

In this section, we develop our new, condition-centered representation of S-boxes
that is motivated by trying to compute (parts of) the output given only partial
information on the inputs.

We denote by F2 the field with two elements, i.e. a bit, and by Fn2 the n-
dimensional vector space over it. For x, y in Fn2 we denote the canonical inner
product

∑
i xiyi by 〈x, y〉.
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An S-box, or more generally, a part of a cipher, is a function

S : Fn2 → Fm2 .

Such functions are either represented by a simple look-up table or its algebraic
normal form.

However, for our purpose of improving the key-recovery part of several at-
tacks, the representation as a look-up table or as a polynomial is not very suit-
able, as they hide possible short-cuts and finding an optimal solution with them
often requires exhaustively trying all the possible restrictions. The basic prop-
erty we are going to use in all the attacks is that we can deduce information
about (parts of) the output even when only partial information on the input is
available.

As a first example we consider the Noekeon S-box S

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 7 a 2 c 4 8 f 0 5 9 1 e 3 d b 6

In particular, consider the function f(x) that outputs the most significant bit of
S(x), which is given as the following look-up table.

x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

f(x) 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0

A closer look at the table above reveals that the output of f actually does not
depend on x3 at all. This corresponds to the well-known property of a linear
structure of a Boolean function and in this example is given by the fact that

f(x) + f(x+ (0, 0, 0, 1)) = 0 ∀x.

This is a first, trivial but very helpful example of the property we are looking
for. However, more can be said. To cite another example, in the case of x1 = 0
and x0 = 0 we get f(x) = 0 independent of the value of x2. If x1 = 0 and x0 = 1
we get f(x) = 1. In case x1 = 1 knowing a single bit in addition will not be
sufficient, however one additional bit of information actually is. Namely if x1 = 1
and x0 + x2 = 0 we get f(x) = 0. Finally, if x1 = 1 and x0 + x2 = 1, we get
f(x) = 1.

Now, instead of collecting these conditions in terms of equations, a better way
is to present them in terms of graphs which we will define formally below. The
example given here translates into the graph shown in Figure 1. Starting with the
root, each node is labeled with a vector corresponding to a linear combination of
the inputs. Depending on the value of this linear combination of the inputs, the
left or right edge is taken until one ends up in a leaf. Leaves are labeled with the
value the function takes on all the inputs fulfilling the conditions corresponding
to the path leading there.
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x1 = 〈α, x〉
α = (0, 1, 0, 0),

x0 = 〈α, x〉
α = (1, 0, 0, 0)

x0 + x2 = 〈α, x〉
α = (1, 0, 1, 0)

f(x) = 0 f(x) = 1 f(x) = 0 f(x) = 1

x1 = 0 x1 = 1

x0 = 0 x0 = 1 x0 + x2 = 0 x0 + x2 = 1

Fig. 1. Graph representation of the conditions for f

Thus, the graph is a representation of the function f that actually captures
exactly the conditions we wanted. It can also be thought of as a way of imple-
menting the function. Clearly given a function, the representation of the graph
is not unique. Indeed, the graph in Figure 2 is a graph for the same function, but
intuitively (and also formally as we will see later) less helpful. Indeed, except x3,
which we know is not relevant, in order to compute the output, every input bit
has to be known in this representation.

Considering x + k as input to f , in order to evaluate the function for some
fixed x, we have to obtain (usually by guessing all the possible values) enough
bits of k to calculate 〈α, x+k〉 for inner nodes on the path which is taken during
the evaluation of f(x+ k).

In the end, for each fixed x, we find that we must consider a different guess
of k for each possible evaluation path through the graph, or that is, one guess
for each leaf of the tree. Since the number of leaves is at most equal to 2n (which
is the “näıve” number of guesses), we can often reduce the time complexity of
the attack, as we will explain below when optimizing the tree towards a minimal
number of leaves.

In the remaining part of this section, we explain how to find good graphs auto-
matically, how those related to the linear structures, and how equivalent func-
tions lead to equivalent graphs.

All the guessing strategies we consider can be thought of as guessing one bit
at a time and depending on the result of the guess continue on the left branch
(in case we guess zero) or in the right branch (in case we guess one).

We assume that, along one path from the source to a leaf, all node labels
(the α-values) are independent. Then, at each stage, the linear combination of
inputs splits the space into equal parts, a subspace and its complement. Both
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x0 = 〈α, x〉
α = (1, 0, 0, 0),

x1 = 〈α, x〉
α = (0, 1, 0, 0)

x1 = 〈α, x〉
α = (0, 1, 0, 0)

x2 = 〈α, x〉
α = (0, 0, 1, 0)

x2 = 〈α, x〉
α = (0, 0, 1, 0)

x0 = 0 x0 = 1

x1 = 1x1 = 0 x1 = 1x1 = 0

f(x) = 0 f(x) = 1

f(x) = 0

f(x) = 0 f(x) = 0

x2 = 0 x2 = 1 x2 = 0 x2 = 1

f(x) = 1

Fig. 2. Alternative Graph representation of the conditions for f

can be identified with a space again, and this is the space in the next level. The
advantage is that this view is very simple, general and recursive.

2.1 Formalization

Instead of starting with a function and building a tree in the above manner,
it is more convenient to directly start with a tree and discuss the function it
corresponds to afterwards. The trees we consider are binary trees, where each
node either has two or no children. More formally, we consider trees defined as
follows.

Definition 1 (Affine Decision Tree). An (n,m)-affine decision tree is a
regular and binary tree where each node v has a label v.label . A node without
children is called a leaf and has labels in Fm2 . A node v which is not a leaf is
called an inner node and has labels in Fn2 . Its children are denoted by v.left and
v.right.

We identify a tree and its root whenever it simplifies the formulation. For a
tree r, we also write v ∈ r when v is a node of r.

In Figure 1 the labels for the inner nodes are denoted with α and the nodes
for the leafs correspond to the value the function takes on the corresponding
inputs.

These trees correspond to maps (generalizing the example above) as follows.
We will take the liberty to use the same notation for both the tree and the
corresponding map.
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Definition 2. Given an (n,m)-affine decision tree r we can construct an asso-
ciated map r : Fn2 → Fm2 . For x ∈ Fn2 we define r(x), the value calculated by an
affine decision tree r, recursively:

1. If r is a leaf, r(x) = r.label .
2. If r is an inner node and 〈r.label , x〉 = 0, r(x) = r.left(x).
3. If r is an inner node and 〈r.label , x〉 = 1, r(x) = r.right(x).

Given f : Fn2 → Fm2 , if r(x) = f(x) for all x, we say that r is a tree for f .

It is clear that for any given function, there can be many possible trees,
again see Figures 1 and 2. However, for the applications considered later, we are
interested in trees which lead to a small overhead on attack complexity. In our
applications this is mostly achieved for trees with a low number of leaves, which
we denote by

numLeaves(r) = Number of leaves of r

for a tree r.
To give an example, Figure 1 corresponds to a tree r1 with numLeaves(r1) =

4, while Figure 2, implementing the same function, corresponds to a tree r2 with
numLeaves(r2) = 6.

Especially for linear cryptanalysis, besides the number of leaves, the union of
all inner labels r.label that have to be evaluated as 〈r.label, x〉 when evaluating
the function r on all possible inputs is of interest. This is what we call the actual
linear domain and is formally defined in the next definition.

Definition 3 (domsize, Actual Linear Domain). The actual linear domain
of r is the space spanned by all inner node labels:

Dom(r) = span{n.label . n is an inner node of r}.

We call its dimension domsize(r).

In the graph r1 from Figure 1 the actual linear domain is given by

Dom(r1) = span {(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 1, 0)} ,

which corresponds to all vectors x of the form x = (∗, ∗, ∗, 0). The actual linear
domain of the graph r2 in Figure 2 is exactly the same, even though the concrete
labels are different. In both cases we get

domsize(r1) = domsize(r2) = 3.

For a fixed function, we are interested in the optimal tree with respect to
the number of leaves and with respect to the actual linear domain. For a given
function f : Fn2 → Fm2 we denote the minimal number of leaves of all trees for f
by minLeaves(f). That is

minLeaves(f) = min
r:∀x.r(x)=f(x)

numLeaves(r).
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A tree r for f taking on this minimum is called numLeaves-minimal.
Similarly, we call the minimal actual linear domain of all trees for f the

optimal actual linear domain size of f , denoted by domopt(f). More formally,

domopt(f) = min
r:∀x.r(x)=f(x)

domsize(r).

Again, a tree r for f taking on this minimum is called domsize-minimal.
We are interested in finding trees which optimise either parameter depending

on the application. Luckily, any tree that is optimal with respect to the number
of leaves is also optimal with respect to the actual linear domain, as we show
now.

Connection between Linear Structures and Dom(r) In order to see this,
it is helpful to have a closer look at all the values x ∈ Fn2 that end up at the same
leaf N in the tree in the evaluation of r(x). As the evaluation of r for a given
input x consists of computing a sequence of inner products 〈r.label, x〉 along the
path from the root to a leaf, the exact values x that end up in the same leaf are
characterised by the values of those inner products.

For a node N of a tree r, let us denote by D(N) the set of all labels on the
path from the root to that node, excluding N itself.

D(N) := span{v.label : v is on the path leading from r to N, v 6= N}

Furthermore, again for a given node N we denote by N.space the set of all inputs
x ∈ Fn2 such that the evaluation path of r(x) contains N .

If N is a node, then D(N) corresponds to the set of inner products which
have been evaluated to reach it, while N.space corresponds to the set of inputs
which end up in that leaf during the evaluation of r(x). So N.space is an affine
subspace of the form

N.space = V (N) + a(N),

where V (N) ⊆ Fn2 is a vector subspace and a(N) ∈ Fn2 is a translation. In fact,
V (N) consists of all vectors v such that 〈r.label, v〉 = 0, for r.label ∈ D(N).
Thus, V (N) is the dual space of the span of D(N):

V (N) = D(N)⊥.

For example, the left-most leaf N of the tree in Figure 1 is reached for all
elements of N.space = D(N)⊥ + a(N) = span {(0, 1, 0, 0), (1, 0, 0, 0)}⊥ + 0 =
span {(0, 0, 1, 0), (0, 0, 0, 1)}. The underlying subspace V (N) of the two leaves of
the right subtree is span{(1, 0, 1, 0), (0, 0, 0, 1)}.

From these considerations we arrive at another interpretation of the actual
linear domain:

Lemma 1.
Dom(r)⊥ =

⋂
N∈r

V (N) =
⋂
N∈r

N is a leaf

V (N)



Generic Framework for Key-Guessing Improvements 9

Proof. We rewrite Dom(r) in term of the grouped labels D(N):

Dom(r) = span

(⋃
N∈r

D(N)

)
=
∑
N∈r

span(D(N)),

and considering the dual spaces we get

Dom(r)⊥ =
⋂
N∈r

span(D(N))
⊥

=
⋂
N∈r

D(N)
⊥

=
⋂
N∈r

V (N).

Since D(N2) ⊆ D(N1) whenever N2 is a descendant of N1, we deduce that
V (L) ⊆ V (N) if L is a leaf and N is one of its ancestors. This means that we
can restrict the intersection to just the leaves of the tree. ut

The domain of the tree in Figure 1 has already been given, its orthogonal
complement is span{(0, 0, 0, 1)}. The intersection of the two V (N) occurring in
this tree is the same, span {(0, 0, 1, 0), (0, 0, 0, 1)} ∩ span{(1, 0, 1, 0), (0, 0, 0, 1)}.

Since Dom(r) consists of all the inner products which may need to be eval-
uated, inner products v that are not contained in Dom(r) are never used when
computing r(x), and the value of 〈v, x〉 does not influence the image r(x) for
any x. This is a property which resembles the notion of linear structures. Lin-
ear structures, see e.g. [11]4, can be thought of as truncated differentials with
probability one. More formally, they are defined as follows:

Definition 4 (Linear Structures). The set of 0-linear structures of a func-
tion f : Fn2 → Fm2 is defined as

LS0 = {α : ∀x ∈ Fn2 , f(x) + f(x+ α) = 0}.

It can be easily shown that LS0 is in fact a vector subspace of Fn2 .
To understand the connection with Dom(r), consider α ∈ Dom(r)⊥ and two

inputs x, y ∈ Fn2 which differ by α, that is, x + y = α. Taking Lemma 1 into
account, this implies that x+ y ∈

⋂
N∈r V (N) and thus x and y follow the same

evaluation path and map to the same image, r(x) = r(x+α). Thus α is a 0-linear
structure of r, and we conclude that

Lemma 2. For any affine decision tree r we have

Dom(r)⊥ ⊆ LS0

We note that given a funtion f , the space LS0 is independent of the tree r
we choose, and it can be computed directly from f . This allows to efficiently
bound the optimal actual linear domain size domopt(f) of any function simply
by computing the dimension of its 0-linear structures.

4 We use a slightly different definition of linear structures for vectorial Boolean func-
tions which suits our purpose better than the original.
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Theorem 1. Let f : Fn2 → Fm2 be a given map and r be an (n,m)−affine
decision tree for f which is optimal with respect to numLeaves. It holds that

LS0(f) = Dom(r)⊥

and consequently

domopt(f) = n− dim(LS0(f)) = domsize(r).

For our purposes, this has two important consequences: (i) any tree that is
optimal with respect to the number of leaves is actually optimal with respect to
the actual domain size, too, and (ii) computing the 0-linear structures of a target
function first allows to compute the optimal tree on the function modulo its 0-
linear structures, which provides a computationally less costly reduced input
space.

The intuition for proving Theorem 1 is that for any tree evaluations of inner
products 〈α, x〉 can be removed when they correspond to 0-linear structures. We
give a formal proof of Theorem 1 in Supplementary Material A.

Invariance under Transformations of the Input and Output The most
important cryptographic criteria, e.g. the algebraic degree, the maximal prob-
ability for differential transitions, or the maximal absolute linear correlations,
are invariant under affine equivalence. That is to say that, given a function
f : Fn2 → Fm2 and two affine permutations A : Fn2 → Fn2 and B : Fm2 → Fm2 the
function B ◦ f ◦ A has the same values for these criteria. This is of importance
as it in particular (i) allows to classify S-boxes with respect to these criteria and
(ii) gives larger freedom to the designer of a new primitive.

We next argue that the optimal number of leaves and the optimal actual
linear domain size are invariant under an even larger notion of equivalence.

For this, let f : Fn2 → Fm2 be a function and let r be a tree for f . Consider
an arbitrary, not necessarily affine, permutation π : Fm2 → Fm2 . Replacing the
labels of the leafs of r by their images under π, we automatically get a tree
for π ◦ f directly. Moreover, the structure of the tree, and thus the number of
leaves, is not affected by this modification. This implies that numLeaves(B◦f) =
numLeaves(f) for any function f and any permutation B.

Next, consider an affine permutation A : Fn2 → Fn2 . In order to change r, the
tree for f , into a tree for f ◦A two changes are necessary. First, the constant part
of A will (potentially) swap the children of a node. Second, the linear part will
be taken care of by changing the labels of all inner nodes of the tree (replacing
a label α by Atα in case A is linear). These observations, which are made more
precise in Supplementary Material A, are summarized in the following.

Theorem 2. Let r be a tree for a function f : Fn2 → Fm2 . Let A : Fn2 → Fn2 be
an affine permutation, and π : Fm2 → Fm2 be a permutation. It holds that

minLeaves(f) = minLeaves(π ◦ f ◦A)

and
domopt(f) = domopt(π ◦ f ◦A)
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We give a formal proof in Supplementary Material A.

Remark 1. Note that besides domopt and minLeaves any other criteria com-
puted from the trees that is invariant under graph-isomorphism, behaves as
described in Theorem 2. Examples that might be of interest include but are not
limited to the number of bits used averaged over all inputs, maximal depth of
the tree, and the number of leaves of a certain depth.

2.2 Computing Trees

In this part, we discuss the algorithmic aspects of computing (optimal) trees
for a given function f : Fn2 → Fm2 . Conceptually, it is easy to compute all pos-
sible trees recursively by choosing a root label r.label = α and then applying
the algorithm recursively to f |〈α,x〉=0 and f |〈α,x〉=1 until these functions become
constant. As we are mainly interested in optimal trees, and in order to (signifi-
cantly) decrease the run time of the algorithm, several improvements are helpful.
Those improvements basically avoid to search for, in a sense, “equivalent” trees
and use early abort strategies when searching for a tree with a minimal number
of leaves.

Algorithm 1 ListTrees(f, V,W )

Require: f : Fn
2 → Fm

2

1: Affine subpaces V,W ⊂ Fn
2 , V = U + c ⊆ W = Z + c, where U,Z are subspaces

and c is a translation in Fn
2

2: For the initial call we set V = W = Fn
2

Ensure: A list of trees for f |V .
3: Initialize an empty list L of all trees (generated) for f |V .
4: if f is constant on V then
5: Add leaf r with label f(c) to L.
6: return L.
7: end if
8: Calculate P such that P ⊕ U⊥ = Z.
9: for all α ∈ P \ {0} do

10: U0 := {x ∈ U : 〈α, x〉 = 0}.
11: Choose c′ ∈ U such that 〈c′, α〉 = 1. . Exists due to the choice of P .
12: b = 〈c, α〉. . Translating U0 into V can change the value of 〈α, ·〉.
13: Vb := U0 + c, V1−b := U0 + c′ + c.
14: Initialize a tree with root r and r.label = α.
15: for all (r.left , r.right) ∈ ListTrees(f, V0, V )× ListTrees(f, V1, V ) do
16: Add a copy of r to L.
17: end for
18: end for
19: return L
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Improvements We already stated that, when building a subtree we can omit
root labels which are linear combinations of the labels on the path leading to
this subtree. That is, in all trees we consider, the labels along a path are linearly
independent. Moreover, each label can be chosen up to the space spanned by the
labels aready used, i.e. a label for a node N can basically be chosen in Fn2/D(N).
Algorithmically, this is done by running through a fixed complement space of
D(N). A pseudocode for the algorithm including this optimization is given in
Algorithm 1.

A numLeaves-minimal tree can have at most 2n−d leaves in a subtree of depth
d as otherwise it would involve redundant bits of information on a path. This
can be used to cut some recursive calls and reduce the run time of the algorithm.

For functions with linear structures in the sense of Definition 4 we can also
ignore choices of sister nodes which only differ by a linear structure due to
Theorem 1. This is equivalent to finding trees for the function g : Fn2/LS0 → Fm2
with g(x + LS0) = f(x). This can be done not only for the initial function but
also for each sub-tree recursively.

Using these kinds of optimizations we could analyze individual functions up
to dimension 7 in a reasonable amount of time. For our experiments we used
a standard PC with a 2.3-GHz CPU. For dimension 4 it is usually possible to
enumerate all trees using Algorithm 1 without optimizing the costs and filter
afterwards. For k-bit Boolean functions chosen uniformly at random computing
the optimal tree on a single core takes on average roughly 4 milliseconds for
k = 4, 190 milliseconds for k = 5 and 21 seconds for k = 6. For k = 7 we could
not test enough to get a reliable run-time estimate, but the program usually
takes somewhere around 1.7 hours. For k = 8 we estimate an average running
time of less than three weeks on the above machine.

Analyzing Balanced Boolean Functions in Dimension up to 5 When
considering single components of S-boxes, only balanced Boolean functions are
of interest. Using Theorem 2 together with Algorithm 1 allows us to classify all
possible values for the optimal number of leaves at least for all balanced Boolean
functions in small dimensions.

3 Application to generic attack families

The purpose of this section is to illustrate the time complexity improvements
which can be obtained by applying the tree descriptions of boolean functions to
some of the most widely-used attack families on SPN block ciphers.

The most natural case directly depends on minLeaves(S) which will become
the cost of performing the guess, compared to 2n. This natural case directly
applies to linear attacks with no FFT acceleration and to differential attacks
with more than one round covered by the key-guessing part, when some values
coming from non-active S-boxes are needed after the first round in order to
compute the differential transitions of the next rounds, automatically reducing
the key-guessing complexity of the latter.
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3.1 The case of linear cryptanalysis with FFT acceleration

Although our generalised approach can often reduce the time complexity of most
key-recovery attack families, sometimes other accelerations may provide better
results, and a method must be picked. This is the case of linear cryptanalysis
when combined with the fairly common FFT acceleration of [8].

Consider a linear attack using a single approximation. The “näıve” implemen-
tation consists of counting for how many of the N plaintexts the approximation
is zero for each of the 2k guesses of the key (where k is the number of bits) by
processing each combination individually. The time complexity is O

(
N2k

)
.

We now construct a tree for the S-box layer with minLeaves ≤ 2k (this
automatically considers things like inactive S-boxes). From each plaintext, we
can extract all the information from minLeaves key guesses. However, each leaf is
associated to different key guesses depending on the value of the same bits in the
plaintext. We thus have to keep a separate set of minLeaves key guess counters
for each of these plaintext groupings. When all the data has been processed, we
can filter promising partial key guesses (those which exhibit high correlation for
part of the plaintexts) and separate them into full guesses until the complete
guess with the highest counter can be located. This means we can reduce the
time complexity of this kind of attack to O (N ·minLeaves).

When the data complexity is large, we first distill the data into a table
according to the bits which interact with the key (time complexity O(N)) and
then guess all possible values of the key for each entry (time complexity O

(
22k
)
),

as was first shown in [15]. If we apply guessing trees on the S-boxes, we find that
for each of the minLeaves guesses of the key, we still have to look up 2k entries
of the table. The distillation table must work for every key guess, so its size can
only be reduced to 2domopt. The best time complexity reduction we can achieve
on this attack algorithm is thus O(N) +O

(
minLeaves ·2domopt

)
.

Another common improvement to linear cryptanalysis makes use of the Fast
Fourier Transform, and was introduced in [8]. By using the FFT in order to pro-
cess the distilled data more quickly, the time complexity of the analysis phase can
be reduced to O

(
k2k
)
. Since the size of the distilled table cannot be reduced by

using decision trees, we can only reduce this complexity to O
(
domopt2domopt

)
.

The best approach here is to compute minLeaves and domopt for each S-box
and find an optimal trade-off between these approaches (as we can use different
techniques in each S-box), as we show with an example in the Supplementary
Material B.

3.2 Applications to differential cryptanalysis.

Intuitively, differential cryptanalysis improvements seem naturally more complex
than linear ones, as in addition to possibly determining some values we need to
determine some differences, and depending on the cases, several trees should be
studied. This also implies that the gain can be quite significant.
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Fig. 3. Finding good pairs over one round of an iterated cipher.

Besides the case presented earlier covered by the natural case, there are other
(usually coexistent) cases that often appear 5: 1) given one plaintext x, determine
another one x′ that generates a certain difference ∆ after the S-box φ along with
an associated partial guessed key; 2) given pairs of plaintexts (x, x′), determine
the ones that might generate a wanted difference ∆ after φ; 3) given pairs of
plaintexts (x, x′), determine the optimal partial key guess that ensures ∆ after
φ; 4) when at least two consecutive rounds are considered in the keyguessing, in
any of the above cases we might need to know, in addition, the value of certain
bits to verify the differential transition of further rounds; 5) when at least two
consecutive rounds are considered, a key guess of a later round can be absorbed
by a needed output defined by a linear equation.

We will next show how to use the S-box properties defined in the previous
section to propose improvements in each of the 5 cases, while considering the
example from Figure 3 for the three first cases.

Case 1: Input difference not determined. We are interested in determining
x′ such that x′ = φ−1(φ(x + k) + ∆) + k. If we let y = x + k, the attacker can
try to find inexpensive trees for

f∆(y) = φ−1(φ(y) +∆) = x′ + k. (1)

These trees allow the attacker to cheaply deduce bits of x′ + k by guessing
a small amount of bits of x + k. Since the value of x is considered known,
this is equivalent to guessing bits of k (the tree is the same for all values of x
but different paths are taken for each value). Using this approach we only get
information about x′ + k and about some bits of x′, which correspond to the
bits of k which were guessed.

An important limitation of using f∆ is that some “evidently useful” relations
might be missed, like for example if there is a differential δ → ∆ through φ with
probability 1, then f∆(y) = y + δ: by simply looking at the relations of f∆, it
would seem that we need to guess all the bits of the key, but no key-guessing is
necessary here since x′ = x+δ. In other words, decisions based on expressions of
the form 〈γ, (x′ + k) + (x+ k)〉 are “key-free” and this can be incorporated into
the search. A way to get trees with cost 0 is to apply the tree search algorithm
to F∆(y) = f∆(y) + y = x′+x. The resulting trees provide “direct” information

5 For the sake of simplicity, we will consider in this section that key-guessing rounds
are done in the beginning, but everything can be applied similarly in the last rounds.
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about x′ (as x is known) and only require guessing the bits of key directly
involved in the decision trees, as well as detecting completely free key guesses
like the one described above.

Furthermore, when the key addition is shorter than the S-box size (like for
GIFT), decisions on the same path involving only the same bits of the key
but also some bits of the unaltered plaintext have no additional cost in the
application, as the involved key bits cancel out. To deal with particular cases we
simply use our algorithm to generate a list of optimal trees filtered in accordance
to the individual requirements of the attack at hand, sometimes considering
restricted functions. An application is described in Section 5 and an example
can be found in Supplementary Material F.

Case 2: Preliminary sieving. Filtering wrong pairs is important as it often
allows to reduce the time-complexity (and the noise) in attacks. We know that
(x, x′) is a wrong pair if x+ x′ is not in the image of F∆(x) = f∆(x) + x. Note
that the image of F∆ is the same as the image of y 7→ φ−1(y) + φ−1(y+∆) and
thus exactly corresponds to the possible input differences for the given output
difference ∆. This idea has already been used in differential cryptanalysis already
in the beginning [3] and also more recently like for instance [18], but many recent
attacks do not use this despite the ample margin of improvement, as we show
for instance in our GIFT applications in Section 5, where using this for filtering
in the output already allows to reduce the complexity of the best known attacks.

Case 3: Fixed input difference. Suppose that we know the value of x (which
is the case for external rounds of keyguessing) and that x′ = x⊕ δ for a fixed δ
(this is often the case in applications, since the difference of the pair is not key
dependent).

Clearly, the possible input differences δ are given by the image of (F∆)−1.
However, we can say more: a pair (x⊕ k, x⊕ k ⊕ δ) satisfies

S(x⊕ k)⊕ S(x⊕ δ ⊕ k) = ∆ (2)

with x = x′ ⊕ δ if and only if x ⊕ k ∈ (F∆)−1(δ). Notice that |(F∆)−1(δ)| is in
fact the DDT with input difference δ and output difference ∆.

Let us define the function gδ∆ : Fn2 → F2 such that gδ∆(x) = 0 if and only if
x ∈ (F∆)−1(δ). Our problem has now become equivalent to computing the value
of gδ∆(x ⊕ k) with as little information on k as possible: indeed, the best key-
guessing strategy to determine whether a pair is a good pair is the one given by
the optimal tree for gδ∆(x⊕ k) and the cost of this guess is given by the number
of its leaves (minLeaves).

If we use this guessing strategy for each δ, we can drastically decrease the
average guessing cost for determining whether a pair is a good pair. As an
example, if we wanted to find what are the good pairs for the RECTANGLE
S-box and ∆ = 2, this technique will allow to do so with an average guessing cost
of 3 for each pair, instead of the 16 when using the näıve strategy, where for each
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possible value of k, one would compute Equation (2). A detailed example for the
slightly more general transition ???? → 00?0 can be found in Supplementary
Material F.

Case 4: Determining values in addition to good pairs. If we are mounting
an attack with two or more consecutive rounds of key-guessing, then in the first
round we do not only want to sieve the good pairs, but we also want to determine
the values of one or more output bits of the plaintexts that form those pairs.
To retrieve these bits in addition to the difference value we might need less bits
than a whole key word.

This can be easily done by looking at the optimal tree of the output bits that
we are interested in, where we fixed the first nodes based on what key bits have
already been guessed to determine the output difference.

Case 5: Absorbing next round guessing. We can clearly apply the same
method to determine the good pairs seen in Case 3 for later rounds in a chained
manner. However, we have anticipated that it is actually not always necessary
to determine this value for middle rounds, contrary to the previous cases, thanks
to the following approach, that we call key absorption.

More concretely, consider the case of a two consecutive rounds of key-guessing,
where we indicate as k the round key of the first round and κ the round key of
the second one. Let (x ⊕ k, x′ ⊕ k) be the pair before going through the S-box
layer S (which is a parallel application of S to each nibble) of the first round,
and (z + κ, z′ + κ) be the pair before going through the second S-box layer, i.e.
that we want to determine whether it is good or not for this second S-box layer.

(x, x′) +k S L +κ S (t, t′)

(x+ k, x′ + k)(y, y′) (z, z′)(z + κ, z′ + κ)

Suppose for simplicity that, in order to determine the output difference of S(z+
κ) + S(z + κ), following the strategies explained in Cases 1 and 3, we need to
determine the first bit

z0 + κ0 = L0(y) + κ0 = 〈α, y〉+ κ0,

of z + κ only, where α corresponds to the first row of L. Doing a step-by-step
guess would require to guess the key-bit κ0 and compute 〈α, y〉. Using the trees
as explained above, we can make use of the case where 〈α, y〉 depends linearly on
a linear combination 〈γ, k〉 of key-bits of k. Instead of guessing all those key-bits
we actually have to guess only their linear combination 〈γ, k〉 + κ0, i.e. only a
single bit.

A detailed example can be found in Supplementary Material F.
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3.3 Further extensions

When several rounds are taken into account in the key-guessing parts, the best
interactions between the different trees need to be considered and carefully stud-
ied, which complicates the optimization of the application a bit. The automat-
ically generated trees with the algorithm are particularly useful in these cases,
which can become quite intricate. Some example of such applications can be
found in Sections 5 and 6. In addition, the previous properties and techniques
can be extended to other types of attacks, like for instance:

Differential-linear attacks. All the improvements of both differential and lin-
ear key-guessing parts will be applicable also to these type of attacks. See for
example [6].

Rectangle and boomerang attacks. Using the properties of the S-box and of
F∆ for finding good pairs we can reduce the number of key guesses and total
complexity. An example can be found in Section 5.

Meet-in-the-middle - sieve-in-the-middle. Though the framework is not the
same as the attacks based on distinguishers we presented in the beginning, us-
ing the S-box properties that we enounced can allow to determine more known
bits in the middle and therefore have a higher sieving probability, improving the
complexity. To illustrate the principle of this improvement we provide a small
improved attacks on 8-round PRESENT. The time complexity of the 8-round
sieve-in-the-middle attack on PRESENT from [7] can be reduced from about
273.42 to about 272.91 full encryptions. We elaborated the details in Supplemen-
tary Material C. In short, you can use the trees to derive more bits around the
middle round after guessing the key and this decreases the sieving-probability.

4 Application to Noekeon

In this section we describe the best known linear attacks on 12-round Noekeon.
Noekeon is a 16-round block cipher which was presented by Daemen et al. ([9])
to the Nessie competition and has a block and key length of 128 bits. A short
description of Noekeon can be found in Suplementary Material D. We denote
the linear transformation (including shifts) by θ̂. We can consider that the key is
added to the state either before or after this linear transformation by considering
an equivalent key.

Iterative linear trails of Noekeon. Our attacks are based on iterative two-round
linear trails with correlation 2−14. Since all the transformations in a Noekeon
round except for the constant and key additions are invariant under rotation,
we can obtain new trails from known ones by rotation and round swapping. We
have identified four families of trails, shown in figure 4.
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Fig. 4. Four two-round iterative linear trails of Noekeon.

4.1 Attacks on reduced-round Noekeon (without relations)

A 12-round linear attack on Noekeon is sketched by its designers in [9]. An
iterative trail is extended to nine rounds with correlation 2−62. The trail is used
as a distinguisher between rounds 1 and 9 to mount a 12-round linear attack
with the following key recovery structure:

Round 0︷ ︸︸ ︷ Round 1︷ ︸︸ ︷ Round 9︷ ︸︸ ︷ Round 10︷ ︸︸ ︷ Round 11︷ ︸︸ ︷
θ π1 γ︸ ︷︷ ︸
Key rec.

π2 θ π1 γ π2 . . . θ π1 γ π2 θ π1︸ ︷︷ ︸
Linear approximation

γ π2 θ︸ ︷︷ ︸
Key rec.

π1 γ π2︸ ︷︷ ︸
Peelback

We guess 24 bits of the transformed keys after θ̂ in round 0 and before θ̂ in round
11, or 48 in total. The data complexity is around 262·2 = 2124 known plaintexts.
If a distillation table is used as in [15], the time complexity is 2124 +248·2 = 2124.

4.2 Attacks on reduced-round Noekeon (with relations)

We propose a 12-round attack which modifies the nine-round distinguisher (using
the first iterative linear trail) which will reduce the data complexity to 2119. This
improvement in correlation is achieved by modifying the linear trail in two ways:

– In the first round, we remove S-box 15 from the approximation (so that the
input mask is “staggered”), increasing the correlation by a factor of 22.

– In the last round we substitute the S-box 15 approximation from 2 → 2 to
2→ b, the correlation changes from 2−2 to 2−1.

– We also modify the other transitions in the first and last rounds in order to
reduce the number of active S-boxes in the key recovery.
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Fig. 5. Attack on 12-round Noekeon with 2119 data and 2124.5 time complexity.

The correlation of the linear trail increases from 2−62 to 2−59. However, in
a key recovery attack, we would need to guess 92 key bits in the first round, 4
in the second, and 48 in the last. Even with the FFT techniques of [8] and [12],
the time complexity surpasses 2144. We look at the properties of the S-box:

– S-box 15 in the second round: if we only know x0, x1 and x3, y1 can still
be computed with probability 1/2. We can thus ignore input bit x2, which
doubles the data complexity (we’ll reject plaintexts for which x2 would be
used) but reduces the active bits and S-boxes in the first round.

– In the first and last rounds, whenever we need y2 or y3 at the output of an
S-box, which happens for 8 S-boxes in the first round and 7 in the last, we
can reduce the key guess by one bit because domopt = 3.

The key guess is now 124 bits. If we apply the FFT algorithm directly, the key
recovery cost would be 121 ·2124 ' 2130.9 additions. It can be decreased by using
Walsh transform pruning as described in [12]. There are three key bits repeated
in the first and second rounds, as well as six last round key bits which can be
deduced from the first round. The time complexity can thus be reduced to

23 ·
(
2121 + (121− 9)2121−9

)
' 2124.29 additions.

The details of the key recovery are specified in figure 5. Blue bits represent the
masks of the linear approximation, while the active bits for the key recovery are
black. The S-boxes where domopt = 3 are in green, while the red bits on the
last round can be deduced from the first round key guess.
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We must also compare the costs of additions and a 12-round Noekeon en-
cryptions. A conservative estimate6 is at least 3840 bit operations for an encryp-
tion. An addition of 3·128-bit integers takes around 768 bit operations. Therefore
its cost is at most one fifth of the cost of an encryption. The full time complexity
is thus 2119 + 0.2 · 2124.29 ' 2122.14 encryptions.

Overall, the new attack has a data complexity of 2119 and a time complexity
of 2122.14, which is as far as we know the best on 12-round Noekeon. The best
attacks without relations have 2124 data and time complexity.

5 Application to GIFT

In this section we describe an improved version of the attack presented in [13].
This related-key rectangle attack is the known attack which reaches the most
rounds of GIFT-64 (25). We apply our improved key-guessing techniques in order
to improve its complexity. The section is structured as follows: We provide a brief
description of GIFT, next we present the original attack, and we propose two
ways of improving its complexity in the two last subsections.

5.1 Description of GIFT-64

GIFT-64 is a block cipher first introduced in [2] of block size 64 and key length
128. The 64-bit state consists of 16 4-bit nibbles which will be denoted by
b63 . . . b0 = x15‖ . . . ‖x0. Each round consists of three steps: the application of a
4-bit S-box, a bit permutation, and the addition of a 32-bit subkey.

The GIFT S-box. The GIFT S-Box is given as a lookup table.

xxx 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x)S(x)S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Bit permutation and key addition. As a linear layer, GIFT uses the permutation

P64(i) = 4

⌊
i

16

⌋
+ 16

((
3

⌊
i mod16

4

⌋
+ (i mod4)

)
mod4

)
+ (i mod4) .

GIFT-64 uses 32-bit round subkeys which are XORed to the bit positions of
the state of the form b4i, b4i+1, i = 0, . . . , 15 (that is, the two rightmost bits of
each S-box before the non-linear layer). We won’t detail the keyschedule as it
won’t be used in the attack.

5.2 The best previous attack on GIFT-64 ([13])

We now describe the attack on 25-round GIFT-64 from [13], which is a related-
key rectangle attack. The 20-round boomerang distinguisher can be found in
[13]. We just need to know that its probability is 2−np̂2q̂2 = 2−64 · 2−58.557.
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Table 2. ([13], Table 5) The related key rectangle attack on 25-round GIFT-64.

Plaintext ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? #0

R1 After S ??0? 1??0 01?? ?0?? 1?0? ?1?0 0??? ?0?? ??0? ???0 0??? ?0?? ??0? ???0 0??? ?0?? #1
After P,K ???? ???? ???? ???? 0000 0000 0000 0000 11?? ???? ???? ???? ???? 11?? ???? ???? #2

R2 After S 0?01 00?0 000? ?000 0000 0000 0000 0000 0100 00?0 000? ?000 ?000 0100 00?0 000? #3
After P,K ???? 0000 ?1?? 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ?1?? #4

R3 After S 1000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 #5
After P 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 1010 0000 0000 0000 #6

20-round rectangle distinguisher

R24 Before S 0000 0100 0000 0000 0000 0000 0000 0000 0000 0001 0010 0000 0001 0000 0000 0000 #7
Before P,K 0000 ???1 0000 0000 0000 0000 0000 0000 0000 ???? ???? 0000 ???? 0000 0000 0000 #8

R25 Before S 00?0 0000 00?? 0?00 0001 0000 ?00? 00?0 ?000 0000 ??00 000? 0?00 0000 0??0 ?000 #9
Before P,K ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? #10
Ciphertext ??0? ??0? ??0? ??0? ???0 ???0 ???0 ???0 0??? 0??? 0??? 0??? ?0?? ?0?? ?0?? ?0?? #11

The key recovery extends the distinguisher by three rounds at the top and two
rounds at the bottom and can be found in Table 2.

The authors build a key-recovery attack by applying the model from [22] to
the external rounds. We start with the initial difference right before the first key
addition, numbered #2 in Table 2. We have rb = 44 (? bits in #2), and mb = 30
(active key bits in the differential transitions of the initial rounds), rf = 48 (?
bits in #11), mf = 32 (involved key bits in the differential transitions of the
final rounds). Let s = 2 be the expected number of good quartets per structure.
The attack proceeds as follows:

1. Build y =
√
s 2

n/2−rb

p̂q̂ = 217.79 structures of 2rb = 244 plaintexts. Encrypt
each plaintext four times, using the four keys K1 = K, K2 = K ⊕ ∆,
K3 = K ⊕ ∇ and K4 = K ⊕ ∆ ⊕ ∇. For each structure j, we obtain four
lists Lj1, L

j
2, L

j
3 and Lj4, which we sort by the rb active bits in #2.

2. We guess the mb bits of the first two round subkeys as Kb. For each guess:
(a) For each structure, we partially encrypt all the plaintexts of Lj1 until

#6 using Kb, we add the difference α from the rectangle path, and
partially decrypt back to #0 with Kb ⊕∆. We find the plaintext in Lj2
which matches it. After doing this for all the structures, we obtain a
list S1 which contains y · 2rb pairs with the right input difference at the
distinguisher. We repeat this with lists Lj3 and Lj4 to obtain S2. We sort
S1 and S2 according to the non-active bits of the ciphertexts.

(b) We go through S1 and S2 to find all collisions in the non-active bits of
the ciphertexts. We obtain a list S3 of y2 ·22rb+2rf−2n candidate quartets.

(c) For each guess of the mf bits of key Kf , we examine each candidate in
S3 to see how many satisfy the rectangle distinguisher. As we can guess
and filter S-box by S-box (detailed in [22]), the cost is negligible.

(d) Keep the h = 22 values of Kf with the most conforming quartets, and
find the correct one with an exhaustive search over the rest of the key.

6 128 operations per S-box layer or key addition, 64 operations per linear layer.
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The data complexity of the attack is D = 4 ·y ·2rb = 263.78 chosen plaintexts.
The time complexity is

T = 4 · y · 2rb + 2mb

(
3 · y · 2rb + y2 · 22rb+2rf−2n · 4

25

)
+ 2k−h ' 2120.92

encryptions with a success probability of 74%.

5.3 S-box properties in the first rounds for better sieving

We now explain how to gain 6 bits in time complexity and slightly improve the
data complexity. The improvement is quite technical, but it can be summarized
as modifying the way we build the structures using the S-box properties. The
aim of organising the plaintexts in structures is for each one to produce enough
rectangle quartets so that we obtain enough in total. By taking all the possible
values for the active bits of the plaintext and partially encrypting forwards and
backwards, each possible guess of Kb will map one entry of Lj1 to an entry of Lj2.
Each structure thus produces exactly 2rb pairs which verify the input difference
α. As can be seen in the formula of y, this is discounted from the total number
of structures. By exploiting the properties of the S-boxes we can reduce the size
of the structures as well as the number of key bits mb, which will allow us to
reduce the time complexity, and potentially the data. For computing the new
needed number of structures, y′, we won’t use the same formula as before, as the
elements in the lists will have some particularities now, but instead will deduce
the new value of y′ from the wanted expected number of good quartets, S, and
from carefully computing how many potentially good pairs and quartets we keep
in each list with the new type of structures.

Finding S-box properties. We applied the tree search algorithm on F∆ = f∆ + x
for all output differences and filtered them according to two criteria. First, we
wanted only one of the two key bits to be involved. We also forced at least one
subtree on level 2 not to be of full depth to reduce the search space.

Property of f(0010)2 + x. The most interesting tree we obtained was in the case
of f(0010)2 + x, where the following relation appeared:

x0 = x3 = 0 =⇒ F2(x) = 2.

It is useful with transitions of the form ????→ 00?0, which appear in S-boxes 1,
6 and 14 at round 2. In particular, it implies that guessing the key bit added to
x1 is not a priori necessary. The aim is to build smaller structures where these
properties are verified, and to guess less key bits, which will in turn reduce the
time complexity (the number of quartets to try stays the same, but the number
of guesses decreases). From now on, we consider that all the data has bit x3
of the input to S-boxes 1, 6 and 14 at R2 fixed to zero. Intuitively, though the
number of structures available is tight, guessing less key bits implies a relaxation
of the conditions, and this in turn implies proportionally more kept pairs and
quartets.
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Reducing the bits in round 3. We can also show that it is unnecessary to guess
the bit k1 in the three active S-boxes of round 3. In essence, not all the pairs
in Si will necessarily have this bit determined, which will allow us to keep more
quartets while guessing less bits.

The output differences of the three S-boxes can take two values, which in
turn affect the input differences of the active S-boxes in the third round (0, 13
and 15). We need to carefully compute how many pairs will verify the input
difference α when guessing six less key bits than before. The transitions of S-
boxes 0 and 13 in round 3 are ?1X?→ 0010, where X depends on the transitions
from round 2 where the key guess was reduced, and can thus be active or not.
In S-box 15, the transition is ??X? → 1000.

Let us examine how we build the differential pairs from the lists Lji . After
guessing the key bits associated to all the active S-boxes of round 2 but 1,6 and
14, we can compute, for each plaintext, the three bits x0, x2, x3 at the input to
S-boxes 0, 13 and 15. Choosing the value of ∆x1 for each S-box determines the
other plaintext so that the pair generates α. A priori this should produce 23

different plaintexts, but we should note:

– When the input bit x0 (which is known) of the three round 2 S-boxes 1,6,14
is 0, F(0010) is independent of x1.

– In order to exploit the property efficiently, we will only consider pairs of
plaintexts for which x0 = 0 for S-boxes 1, 6 and 14. The property therefore
always holds (as we also have x3 = 0) and we can focus on the active S-boxes
in the third round.

– Each element of the list Lji will have a different number of associated plain-
texts in the other list, and each pair will have determined one additional key
bit value per treated transition (so three in total). When looking at just one
S-box, for the sake of simplicity, this bit will not be the same for each pair:
some will exclusively determine the associated bit from round 3, which are
the ones involving a difference value in round 2 or a non difference value but
a 0 in the round 2 position 0 S-box, and some will determine the xor of the
not-guessed key bit of round 3 with the not-guessed bit from round 2 of the
related S-box: when the bit at position 0 of the S-box at round 2 takes a
value one, both values 1 or 0 are possible in the output at position 1, while
only one value is possible when x0 = 0.

Taking this into account, we can now say that the transitions of round 3 of
S-box 0 (or 13 that will behave the same way), for all the possible 23 values of
the 3 known input bits, 3 cases will imply that no difference exists at position 1
(no matter the value of bit at position 1), 3 cases imply that there is always a
difference and two cases imply that depending on the value of the bit at position
1 there will or there will not be a difference.

So for one S-box, for each input pair, we have a number of possible pairs
from L2 to be associated to L1 that is:

1/8(3(1/2 · 2 + 1/2 · 2) + 3(1/2 · 2) + 2(1/2 · 2 + 1/2 · 1)) = 1.5.



24 Authors Suppressed Due to Excessive Length

S1S1S1

2
4
1
·1
.5

3
=

2
4
2
.7
5

2
3
· 2
3
· 2
3

K3
0,1,K

3
13,1,K

3
15,1

2
3
· 2
3
· 1
3

2 bits, 1 XOR

2
3
· 1
3
· 1
3

1 bit, 2 XORs

1
3
· 1
3
· 1
3

K3
0,1 ⊕K2

1,1,K
3
13,1 ⊕K2

6,1,K
3
15,1 ⊕K2

14,1

S2S2S2

2
4
1
·
1
.5

3
=

2
4
2
.7
5

2
3
· 2
3
· 2
3

K3
0,1,K

3
13,1,K

3
15,1

2
3
· 2
3
· 1
3

2 bits, 1 XOR

2
3
· 1
3
· 1
3

1 bit, 2 XORs

1
3
· 1
3
· 1
3

Fig. 6. Representation of the lists S1 and S2 of size 242.75 and the distribution of
their elements. In each chunk we can see: 1) the proportion of their size (the first for

instance has a size of 23

33
242.75 as well as 2) the bits that are determined for these pairs

from rounds 2 and 3. When two bits are xored, this can be seen as the bits of values
K3

0,1,K
3
13,1 and K2

14,1 are three absorbed bits: κ1, κ2, and κ3. In order to build list S3,
we consider the subset of the crossproduct of all the elements of each list that verify the
output conditions and additionally that has the same value when some identical key
bits of information have been determined, as otherwise it would imply and impossible
quartet.

The previous amount includes pairs generated when the bit x0 of the input of
the associated S-box of round 2 is 0 or 1. As we saw in the previous facts, that will
change the key bits that become implicitely determined from the formed pairs
(bit from round 3, or xor of this with the bits from round 2). Let us separate the
previous amount regarding this: 1.5 = 1/8(3 + 2 + 3) + 1/8(3 + 1) = 8/8 + 4/8,
which implies that in 2/3’s of the cases the bit from round 3 will be determined,
and 1/3 it will be the xor of bit, which have no incompatibilities between them.

Regarding the transitions of round 3 of S-box 15 we have a different distribu-
tion of the cases, but it is easy to check that we arrive at the same configuration
of 2/3 and 1/3.

The lists S1 and S2 that we obtain this way are represented in figure 6. The
structures we build in this new attack will have size of 244−3 = 241, as the bit
at position 3 of the 3 considered S-boxes are fixed to 0. The size of S1 and S2

is given by 241 · 1.5 · 1.5 · 1.5 = 242.75. We now just have to compute the exact
number of compatible pairs that we can obtain from merging both lists before
taking into account the output conditions. This number that we will call P will
have to verify later (where 2y

′
will be the new number of structures that we need

to compute now):

y′ = y2rb/
√
P = 217.78+44/

√
P .
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By looking at the properties of the different chunks in Figure 6 and all their
possible crossproducts, that will determine how many common key bit conditions
that will filter they have, we can compute P as:

P = 242.75[23/33 ·242.75(23/33 ·2−3 + 3 ·22/33 ·2−2 + 3 ·2/33 ·2−1 + 1/33) +3 ·
22/33 ·242.75(23/33 ·2−2 +22/33 ·2−3 = 2 ·22/33 ·2−1 +2/33 +22/33 ·2−2 +1/33 ·
2−1) + 3 · 2/33 · 242.75(23/33 · 2−1 + 22/33 + 2 · 22/33 · 2−2 + 2/33 · 2−3 + 2 · 2/33 ·
2−1 + 1/33 ·2−2) + 1/33 ·242.75(23/33 + 3 ·22/33 ·2−1 + 3 ·2/33 ·2−2 + 1/33 ·2−3)]

⇒ P = 285.5 · 2−9.509 · 28.09 = 284.09

And therefore we can compute the needed y′:

y′ = 217.78+44−(84.09/2) = 219.73.

We have now an improved data complexity of D = 4 · 219.73 · 241 = 262.73,
instead of 263.78 previously. Please note that the data limit here is 4 · 264, we are
encrypting each plaintext with 4 different keys, and that the limit of y is 220.

The time complexity will become:

T = 4y′ · 241 + 2mb−6(3y′241 + 22∗19.73284.092−2(n−rf ))22/25 = 2114.92

instead of 2120.92 with the same success probability.

5.4 Using S-box properties in the final rounds for better sieving

We use our improved key-guessing techniques to improve the complexity of the
previous attack. This idea will improve the overall complexity by reducing the
size of rf , which in turn reduces the size of S3 and therefore of the quartets to
try.

If we now have a look at the final rounds, we can see that the rightmost
S-box need to verify a transition of ???? to ?000 through S−1. That means that
this input difference can be 0 or 8 at the end of round 24. If the difference
is 0, we have 4 additional conditions when building up the quartets and we
will sieve more of them, if the difference is 8, then, by looking at the image of
F8(X3, X2, X1, X0) = S(S−1(X3, X2, X1, X0) ⊕ (1000)) ⊕ (X3, X2, X1, X0), we
see it can only take four values : (3, 7, F,B). In total, with the zero difference is a
total of 5, that leaves an additional factor of (4 + 1)/16 = 2−1.67. We can do the
same with the transitions ???? to 0?00 and ???? to 00?0 (that appear each two
times) and add a sieving factor of (5 + 1)/16 = 2−1.41 and of (6 + 1)/16 = 2−1.19

respectively per transition. Transition ???? to ?010 has a factor of (6+6−4)/16 =
2−1

Step 2(c), that before kept 291.56 quartets to try, was the bottleneck when
multiplied by the 230 complexity of guessing mb. We will see now how this
amount of quartets can be reduced:

291.56(2−1.67)2(2−1.41)4(2−1.19)4(2−1)2 = 291.56−15.74 = 275.82,
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where the first factor corresponds to the F8 relations, and it is squared as
it has to be verified by both of the pairs that form a quartet, the second factor
correspond to the relations of F4, that appears twice and should also be squared,
which gives a power of 4, and the same goes for the third factor from F2. The
fourth one that comes from the relation from transition ???? to ?010 where the
non-zero difference is not an option, and needs to be squared because of the two
pairs.

This 275.82 will be the new cost of this step (multiplied by 230 gives 2105.82

instead of 2121.56), as we can directly check the values from S2 that have a
difference that belongs to the image of their corresponding Fi, which means that
we have reduced the complexity by a factor 215.74. Thanks to the trees of Fi
step 2(d) could become slightly smaller than 22, but as the gain would be very
small we won’t detail it here (but we point out to consider this in other scenarios
where it could help).

When taking into account the factor of the computations for the attack com-
pared to an encryption we obtain a final complexity of 2105.18 instead of 2120.92.

5.5 Combining both.

As both improvements consider independent parts of the attack, they can both be
taken into account, generating a new improved time complexity of 2114.92−15.74 =
299.18 and data complexity of 262.73, improving time by a factor bigger than 221,
and data by a factor of 2.

6 Application to RECTANGLE-80

In the present section, we want to improve the best attack on the updated version
of the SPN cipher RECTANGLE-80 [21] which, to the best of our knowledge, is
the differential attack presented by the authors of the cipher themselves in the
same paper.7

A description of the cipher can be found in Supplementary Material E.1.
In this section (following the same framework used in [18]), we will indicate

the round key i as Ki, the input of the S-box layer at round i as Ii and the
output of the S-box layer of round i as Oi. This means that the output of
the ShiftRow operation at round i is Ii+1. Similarly, we will call ∆Ii, ∆Oi the
respective differences of the state of a given a pair. We will sometimes indicate
a vector of F4

2 as an hexadecimal number.

7 A differential attack that requires less data is claimed by the authors of [1] thanks
to a distinguisher that covers the same number of rounds with better probability.
However, no description or time complexity of the attack was given and we could
not verify it due to the large time complexity of the key-guessing phase. We believe
that, with the techniques presented in this paper, it could be possible to make the
attack work, but the time and memory complexity would still be much worse than
the attack we present here.
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Table 3. The differential attack on 18 rounds of RECTANGLE-80 with the distin-
guisher from [21]. The ∅ indicates an active bit with difference 0. The ? indicates an
unknown difference value.

∆P = ∆I0 ???? 0000 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 0000 0000 0000 ∅∅∅∅

∆O0 ?000 0000 0000 000? 01?0 ?000 0000 0000 000? 0010 0000 0000 0000 0000 0000 0∅00

∆I1 0000 0000 0000 ?∅?? 0000 0000 0000 0000 ?11? 0000 0000 0000 0000 0000 0000 0000

∆O1 0000 0000 0000 0110 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000

∆I2 0000 0000 0010 0000 0000 0000 0000 0110 0000 0000 0000 0000 0000 0000 0000 0000

14-round differential distinguisher

∆I16 0000 0000 0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000

∆O16 0000 0000 0000 ??11 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000

∆I17 0000 ?000 0?10 0001 0000 0000 ?000 0?00 0000 0000 0000 0000 0000 0?00 000? 0000

∆O17 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 0000 0000 0000 ???? ???? 0000

6.1 Description of the attack

As already mentioned, we want to improve the best attack on the new variant
of RECTANGLE-80, which is a differential attack presented by the authors
themselves with time complexity of 278.67 18-round encryptions, data complexity
of 264 and memory complexity of 272 key counters [21]. The bottleneck in this
attack is given by the large amount of key-guessing needed in the two rounds
before and after the distinguisher.

We will show here how to cover these rounds of key-guessing using the frame-
work presented in [18] and how to reduce the complexity of the key-guessing
phase by a factor of about 228, thanks to the techniques introduced in Sec-
tion 3.2.

During the key-guessing phase, we gradually guess the necessary bits of the
round key Ki nibble by nibble. We will actually simplify the guessing done to
determine good pairs with respect to Case 3 of Section 3.2, since this is anyway
going to make the key-guessing phase complexity negligible with respect to that
of the data collection phase. In particular, any time we have to guess whether a
pair (x⊕ k, x⊕ δ⊕ k) determines an output difference ∆ through S, we will not
do a gradual guess depending on the value of x using the tree of gδ∆, as would
be preferable. Instead, we will simply guess, whatever the value of x, the bits of
k given by the inner nodes of gδ∆ (or, equivalently, by Dom). The guessing cost,
then, will be 2domopt and not numLeaves. An example of this simpler guessing
strategy is given in Supplementary Material F (Remark 2).

In order for the attack to work, we need to prepare enough pairs of plaintext
that can satisfy the desired input difference ∆I2, so that at least 262.83 = p−1

such pairs are available to the distinguisher starting at round 2 (see [3] for the
heuristic).

To this end, we prepare a number of 2y of data structures, each containing
all possible plaintexts with a fixed value in the non-active bits in ∆I0. Since
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the linear layer of RECTANGLE-80 is a permutation of the bits, it is easy to
see from Table 3 that the amount of active bits in the first round is 24, i.e. the
number of ?. Thanks to the properties of S, we can see that the real number of
active bits is actually 23: in fact, for S-box 6 of I0 we only need to determine the
active output bit y1 of O0, in addition to the good pairs, and from the trees of
y1 and F2 we see that their actual domain is generated by the vectors 1, 2 and
8, implying that the bit at position 4 from S-box 6 of a plaintext won’t affect at
all the key-guessing, i.e. it is not active.

Therefore, from each data structures we can generate 223 plaintexts, by let-
ting the active bits vary through all the possible values (while keeping fixed the
non-active ones) and build a maximum of 245 ordered pairs. In order to deter-
mine the necessary number of structures, we see that for a fixed key guess, we
expect 2y+22 pairs to lead to the desired input difference ∆I2: this means that
we want y + 22− 62.83 ≥ 0, i.e. y = 41.

However, by looking at the possible values that the states ∆P and ∆O17 can
take, we can sieve the pairs to use in the key-guessing phase and keep, on average,
25.71 pairs for each structure (see Supplementary Material E.2 for details).

Step 1 (guess of K0 to determine the good pairs of round 0 and retrieve linear
relations for the active bits of O0) We gradually guess nibble by nibble the
necessary amount of key material to determine whether each plaintext pair is
a good pair and retrieve linear relations that describe the active bits of O0 in
terms of K0 (the latter are necessary for key absorption). Just as an example,
in order to guess the relevant key-material for S-box 7, we can compute both
the good pairs and the linear relations for the active output bit y0 (necessary
for the key absorption in Step 2) with an average number of key-guesses of
2× 1/8 + 7× 7/8 = 22.73. In fact, in case the input difference is δ = 0 (which we
expect to happen for 1/8 of the pairs) we only need to guess one key-bit of K0

to find a linear relation of y0 (as suggested by the optimal tree for 〈S(x), 1〉);
if δ 6= 0 (which we expect to happen for 7/8 of the pairs), we need to make 7
guesses to determine which pairs are good (thanks to the tree for gδ1); indeed,
these guesses are always enough to also determine a linear relation on y0 and we
need to guess no further. After that, we can sieve all the pairs such that

S(x⊕K0)⊕ S(x⊕∆+K0) 6= {1, 0},

which happens with a probability of 2/8 = 2−2. Notice that the verification of
this condition costs 2× 1/18× 1/16 18-round encryptions for each pair. Overall,
this process is applied to each nibble, for a total time complexity of this step is
2y+4.90 18-round encryptions.

Step 2 (guesses of K1,K0 to determine the pairs that satisfy ∆O1) In this step,
we guess the remaining key bits to ensure the right difference after the first two
rounds. First, we notice that we can discard any pair which has not an input
difference that could lead to ∆O1, by looking at F∆ for S-box 7 and 12, and find
out that we can keep only 3/4 of the remaining pairs so far. Thanks to the key
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absorption technique of Section 3.2, we can jointly guess an average of 2 bits of
(K0,K1). Notice that deciding whether a pair satisfies the transition of S-box
7 is independent of the third input bit (and therefore of the second output bit
of nibble 13 in round 17, as was anticipated), thanks to the fact that F2 has
domopt = 3 (i.e. independent of bit 4). This also implies that output bit y2 of
S-box 11 of round 0 does not need to be guessed. The total complexity of this
step is then 2y+4.52 18-round encryptions.

Step 3 (guess of K18 to determine the pairs that satisfy ∆I17 and retrieve linear
relations for the active input bits of I17) As was done in Step 1, we want to filter
the good pairs by gradually guessing the necessary key material for each S-box
and retrieve linear relations for the active input bits of I17. In the hypothesis
that the values of the active bits of O18 are uniformly distributed, we expect an
average complexity of this step of 2y+8.98 18-round encryptions.

Step 4 (guess of K17,K18 to determine the pairs that satisfy ∆I16) As done in
Step 2, we first sieve all the pairs whose output difference cannot lead to a good
pair, using as before F∆, and then do a combined guess of K17 and K18 with
key absorption. As before, we notice that determining good pairs through S-box
12 is independent of the second input bit (and therefore of the second output
bit of nibble 13 in round 17) by looking at F2. The total complexity of this step
of 2y+7.42 18-round encryptions.

Final complexity The time complexity for the key-guessing is about 2y+9.50 =
250.50 18-round encryptions, which means that the bottleneck is no longer the
key-guessing, as was in the attack of [21]. Together with the data collection
phase, the time complexity of the attack is then 264 18-round encryptions.

7 Conclusion

Using our description of S-boxes as decision trees allows us to improve the best
known attacks against Noekeon, GIFT, and RECTANGLE . These attacks
belong to different families, yet our general framework to optimized the key-
guessing part has been applied to all of them.

As future work, it might be of interest to attempt to handle larger functions,
that is, with more input bits. For now, all the applications shown above require
some degree of manual analysis of the trees (e.g. when combining several rounds
in the GIFT or RECTANGLE application). A more heuristic search for the
trees might produce trees for significantly larger functions, thus analyzing more
than one S-box or even more than one round. This would have the potential to
automatically include many of the manual improvements.

In addition, understanding the general behaviour of the minimal number of
leaves is an interesting problem on its own. A non-trivial upper bound on the
minimal number of leaves for an arbitrary (balanced) Boolean function of n bits
would be of great interest.
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We expect that many other attack scenarios will benefit from our framework
for gradually performing the key-guessing using binary trees, improving other
attacks complexities, as it is quite generic.
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A Proof of Theorem 1

To prove Theorem 1 we have to show that for a avgcost−optimal tree, we have

LS0 ⊆ Dom(r)⊥ =
⋂

N : N∈r
V (N).

We first prove a technical lemma and after that this inclusion.

Lemma 3. If n.left .space = V +a, n.right .space = V + b and a+ b ∈ LS0, then
we can swap n for m = arg mint∈{n.right,n.left} avgcost(t) and update the labels
to obtain a better tree for f .

Proof. We first note, that given the spaces N.space corresponding to the nodes
of a valid tree, we can easily calculate the adequate labels.

W.l.o.g., we assume avgcost(n.left) ≤ avgcost(n.right). Since a+ b ∈ LS0, we
have f(x) = f(x + a + b) for x ∈ V + a. We can swap n.right for a tree with
the same affine spaces translated by a + b and the same structure as n.left (an
application of Theorem 2). This does not change the function r because the path
taken by x in the left tree and the path taken by x+ a+ b in the right tree lead
to leaves with the same labels.

We can now construct m as a copy of n.left while changing the spaces W + c
of n.left to 〈W,a + b〉 + c in m at the same time. If x ∈ V + a, the path taken
in the m is congruent to the one taken in n.left because W + c ⊆ 〈W,a+ b〉+ c
for all W . Similarly for x ∈ V + b the path taken in m is congruent to the one
taken in n.right . Replace n by m to conclude the proof. ut

Lemma 4. For every node N of an optimal tree r we have LS0 ⊆V(N).

Proof. Due to Lemma 3, we have a tree where no sister nodes are translations by
any element of LS0. On each path the underlying linear subspaces of deeper nodes
are subspaces of higher nodes. Therefore it suffices to show that the statement
holds for the leaves.

Let u ∈ LS0. Because the tree is 2-regular, we know that each leaf n,
n.space = V + a, has a sister node m. Let p be their parent.

V +a+u cannot be in another branch of the tree (so only m.space or n.space
can be V + a + u), because if it were so, there would be a pair of sister nodes
higher up in the tree representing spaces W + o and W + q such that w.l.o.g.
we can assume that W + o contains V + a and W + q contains V + a+ u. Then
W + a = W + o and W + a+ u = W + q. This contradicts Lemma 3.

We assume u /∈ V to derive a contradiction. This means that m = V +a+u.
Also, since for all x ∈ V + a we have f(x) = f(x + u), the function is constant
on (V + a) ∪ (V + a + u). This means we can get a better tree by replacing p
with a leaf corresponding to the affine space 〈V, a〉+ u.

This contradicts optimality, and therefore u ∈ V . Since n was chosen to be
an arbitrary leaf, this proves our statement. ut
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A.1 Proof of Theorem 2

In this section we want to formally prove the following.

Theorem 3. Let r be an affine decision tree for a function f : Fn2 → Fm2 , let
π : Fm2 → Fm2 be a permutation and B : Fn2 → Fn2 an affine permutation.

1. From r we can calculate a tree s for π◦f ◦B with the same numLeaves (resp.
domsize).

2. minLeaves(f) (resp. domopt(f)) is invariant under affine equivalence.

Proof. For 1 we split the proof into a Definition 5 (a description of how to
calculate s) and Lemmas 5 to 7. It is clear from the construction that the costs
do not change.

For 2, we can derive a contradiction. Let r be the best tree for f . If g = π◦f◦B
for some π and B as in the theorem, but has a strictly better best tree s, then
we can apply 1 to get a tree for f strictly better than r, which is impossible. ut

Definition 5 (Transformation of a Tree). For an (n,m)-affine decision
tree r we define a tree π ◦ r ◦ A for a permutation π : Fm2 → Fm2 and an affine
permutation A : Fn2 → Fn2 , Ax = B(x+ c) for a linear mapping B recursively:

1. If r is a leaf, then (π ◦ r ◦A).label := π(r.label).
2. If r is an inner node, then

(a) (π ◦ r ◦A).label := Bt(r.label)
(b) If 〈Bt(r.label), c〉 = 0,

(π ◦ r ◦A).left := π ◦ r.left ◦A
(π ◦ r ◦A).right := π ◦ r.right ◦A

,
(c) If 〈Bt(r.label), c〉 = 1,

(π ◦ r ◦A).left := π ◦ r.right ◦A
(π ◦ r ◦A).right := π ◦ r.left ◦A

Here is a more intuitive and less formal description of π ◦ r ◦A:

1. The outer permutation is applied to the labels of the leaves.
2. The inner node labels are multiplied by Bt.
3. For an inner node N , if 〈Bt(N.label), c〉 = 1, the subtrees are swapped.

We have defined a transformation of a tree r for a function f in such a way
that the function calculated by the new tree is the exact same transformation
applied to f , i.e. π ◦ f ◦A. We split the proof of this fact into two parts:

Lemma 5. Let r be an (n,m)-affine decision tree. For all x ∈ Fn2

(π ◦ r ◦B)(x) = π(r(B(x)))

for a permutation π : Fm2 → Fm2 and a linear permutation B : Fn2 → Fn2 .
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Proof. We proceed by induction over the structure of r. For the base case assume
r is a leaf. Then r(B(x)) = r.label is a constant and by definition

π(r(B(x))) = π(r.label) = (π ◦ r ◦B)(x).

For the inductive case assume r is an inner node. r has by definition exactly two
children. Then

〈Bt(r.label), x〉 = 〈r.label , B(x)〉 (3)

We assume that this is equal to 0. The other case can be treated analogously.

(π ◦ r ◦B)(x) = (π ◦ r ◦B).left(x) Equation (3)

= π(r.left(B(x))) Induction Hypothesis

= π(r(B(x))) Equation (3).

ut

Lemma 6. Let r be an (n,m)-affine decision tree. For all x ∈ Fn2 . Let π : Fm2 →
Fm2 be the identity function, and let A(x) = x+ c for some c ∈ Fn2 . Then for all
x ∈ Fn2

(π ◦ r ◦A)(x) = r(x+ c).

Proof. We omit π for readability because it is the identity here.

Again we proceed by induction. If r is a leaf, then r(x + c) = r.label =
(r ◦A)(x) because (r ◦A) is a leaf as well.

Let r be an inner node and

(b, b′) = (〈r.label, c〉, 〈r.label, x〉).

We only treat the case (b, b′) = (1, 0), the three remaining cases can be shown
analogously.

b′ = 0 means we go into the left subtree of (r ◦A) when evaluating (r ◦A)(x)
and b′⊕ b = 1 means we go into the right subtree of r when evaluating r(x+ c).
Then,

(r ◦A).left(x) = (r.right ◦A)(x) By Definition

= r(x+ c) Induction Hypothesis

ut

Formally, we need Lemma 7 for Theorem 2. However, it is a simple structural
induction again. We therefore omit the proof.

Lemma 7. Let A(x) = B(x+ c) for some c ∈ Fn2 and let σ, π : Fm2 → Fm2 , where
σ is the identity. π ◦ r ◦A = σ ◦ (π ◦ r ◦B) ◦ (·+ c).
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Fig. 7. The toy cipher used in the example linear attack.

B Linear Cryptanalysis on a Toy example

We consider an 8-bit block cipher with a similar construction to PRESENT
which uses the 4-bit NOEKEON S-box, and a key-recovery linear attack on
the first and last rounds (see Figure 7). We consider the linear approximation
ain0 ⊕ ain7 ⊕ aout1 using N data. There are two active S-boxes in the first round
and one in the last round, so we have to guess 12 bits of key. Without using
trees, the attack can be performed in three different ways:

– With the “classic” algorithm with time complexity N · 212 ≤ 220.
– With a distillation table, with complexity N + 224.
– Finally, by using the FFT, the time complexity can be reduced to N+12·212.

We now consider that we want to apply S-box properties to these attacks.

– S-box 1 in first round: output bit y0, minLeaves = 6 , domopt = 4.
– S-box 2 in first round: output bit y3, minLeaves = 4, domopt = 3.
– S-box 1 in last round: output bit y1, minLeaves = 6, domopt = 4.

This gives us several improved attacks:

– In the “classic” attack, we can reduce the number of key guesses from 212

to 62 · 4 = 27.17, reducing the time complexity to N · 27.17 ≤ 215.17.
– In the second attack, we can reduce the key guesses to 27.17 and the distilla-

tion table size to 24+3+4 = 211, which makes the time complexity N +218.17.
– In the FFT version, the time complexity is reduced to N + 11 · 211 ' 214.46.
– A combined approach obtains the best complexity. We repeat the FFT attack

on the first round for each of the 6 key guesses in the last round. The time
complexity is 6 · (N + 7 · 27) = 6N + 6 · 7 · 27 ' 212.75.

C Application to PRESENT

In the following we showcase how multiple conditions can be used to improve the
Sieve-In-The-Middle attacks using the attack against the block cipher PRESENT
from [7] as an example.

Previous attack. Figure 8 shows the schematics of the SITM-attack on 8-round
PRESENT 8 from [7], where the light-blue and violet bits were added by us

8 The extension of the 7-round attack shown in Figure 8 by one round using bicliques
is not displayed, but works identically in the new attack.
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Fig. 8. [7, Fig. 6] extended by our improvement.

and will only be needed later. The colored bits represent bits known (after a key
guess) and the white bits (and for now light-blue and violet) are not presumed
to be known.

The master-key of length k is divided into multiple parts, for us those are
K1 and K2 (of size k1 and k2 respectively). One S-box-layer of the whole cipher
E is designated as the middle layer, everything that comes before is denoted by
F and everything after is denoted by B−1. Parts of the states inside F can be
calculated after guessing K1 and similarly we can use K2 to derive information
about the states inside B.

We obtain some information after the S-box layer from B and some before
it from F and the keys (K1,K2) leading to states consistent with the middle
layer can be kept. We denote by π the probability of getting a consistent state
(a match) for a random key.

π can be calculated from the known bits around the S-boxes used in the
attack (those are marked pink). For present, when the number of input bits m
is 3 and the number of output bits p is 1 at a specific S-box, the probability to
get a match is π1 = 0.875. When m = 3 and p = 1 the probability is π2 = 0.5.
In this attack, we thus have π = π3

1π
6
2 ≈ 2−6.58.

The attack proceeds as follows: We are given one plaintext-ciphertext pair
(P,C) for the whole cipher and the right key. First the common bits K1 ∩ K2

of the key are guessed (κ = |K1 ∩K2|) and for each guess two lists LA and LB
are created. We guess the remaining bits of K1 and let LA contain all elements
FK1

(P ). Similarly we create LB containing BK2
(C). From the keys inside LA ×

LB we only keep the ones consistent with the middle layer (by merging the lists
using the technique introduced in [7]).
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This yields the following formula for the time complexity:

2κ
(
2k1−κCF + 2k2−κCB + Cmerge

)
+ π2k︸︷︷︸

Expected matches.

CE , (4)

where in the original attack against PRESENT k1 = 71, k2 = 74, κ = 65,
π ≈ 2−6.58 and Cmerge ≈ 212.

Application of our Technique. Under certain conditions, the properties of the
S-boxes allow us to derive bit 36 (violet, the value of which we call a) and bit 44
(light-blue, b) right after the middle layer without any additional key guesses.
The merging procedure and the strategy for guessing the key stay essentially the
same at the same costs, but the filtering probability π improves as the sieving
probability of up to two middle S-boxes decreases and therefore the expected
number of matches decreases, which was the previous bottleneck.

Looking at the inverse S-box leading to 5′ (marked orange) gives us the
conditions under which a and b are known. Let’s denote the output bits of the
S-box (i.e. the input bits of the inverse S-box) by x and the input bits by y (so y1
fully determines a and y3 fully determines b). x2 is not presumed to be known.
Then:

1. If x0 = x1 and x3 = 0, then y1 = 0.
2. If x0 = 1 and x1 = x3 ⊕ 1, then y3 = x3 ⊕ 1.
3. This means that both bits are known when (x0, x1, x3) = (1, 1, 0).

When only y1 or y3 is known but not both, we have a filtering probability
of πv = π2

1π
7
2 ≈ 2−7.3852. This happens for a proportion qv = 4

8 = 0.5 of
the elements considered for LB . When both are known, which happens for a
proportion of qb = 0.125 of elements, the filtering probability is πb = π1

1π
8
2 ≈

2−8.1926. Finally, the probability in all other cases, q = 0.375 stays π ≈ 2−6.5779.
Therefore we now expect a proportion of

π′ = qvπv + qbπb + qπ ≈ 2−7.0893

key candidates to remain after merging.
For the SITM-attack against PRESENT, the total complexity is dominated

by the term π2kCE , which in the old attack was approximately 273.42CE and
now drops to about 272.91CE .

D Description of Noekeon

Noekeon is a block cipher which was presented by Daemen et al. ([9]) to the
Nessie competition. It has a block and key length of 128 bits, and its designers
suggest using 16 iterated rounds to achieve a reasonable security-cost balance.

The state a consists of four 32-bit words, a[0] to a[3]. The round subkey is the
same for all the rounds. Each round consists of the following transformations:
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1. A constant is XORed to a[0].
2. A keyed linear transformation θ is applied to the state.

θ(a)[0] = a[0]⊕ a[1]⊕ a[3]⊕ a[1] ≪ 8⊕ a[3] ≪ 8⊕ a[1] ≫ 8⊕ a[3] ≫ 8

⊕ k[0]⊕ k[1]⊕ k[3]⊕ k[1] ≪ 8⊕ k[3] ≪ 8⊕ k[1] ≫ 8⊕ k[3] ≫ 8

θ(a)[1] = a[1]⊕ a[0]⊕ a[2]⊕ a[0] ≪ 8⊕ a[2] ≪ 8⊕ a[0] ≫ 8⊕ a[2] ≫ 8

⊕ k[1]

θ(a)[2] = a[2]⊕ a[1]⊕ a[3]⊕ a[1] ≪ 8⊕ a[3] ≪ 8⊕ a[1] ≫ 8⊕ a[3] ≫ 8

⊕ k[2]⊕ k[1]⊕ k[3]⊕ k[1] ≪ 8⊕ k[3] ≪ 8⊕ k[1] ≫ 8⊕ k[3] ≫ 8

θ(a)[3] = a[3]⊕ a[0]⊕ a[2]⊕ a[0] ≪ 8⊕ a[2] ≪ 8⊕ a[0] ≫ 8⊕ a[2] ≫ 8

⊕ k[3]

If no key is added, the transformation θ is involutive. We can consider the
key is added before or after θ by transforming it into an equivalent one.

3. A shift operation π1 is applied to the state:

π1(a)[0] = a[0] π1(a)[1] = a[1] ≪ 1

π1(a)[2] = a[2] ≪ 5 π1(a)[3] = a[3] ≪ 2

4. A non-linear map γ consisting of the parallel application the four-bit S-box:

xxx 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x)S(x)S(x) 7 a 2 c 4 8 f 0 5 9 1 e 3 d b 6

This map is also involutive.
5. Another shift operation π2, which is the inverse of π1, is applied to the state.

We will denote θ̂ = π1 ◦ θ ◦ π2, which is also involutive.

E RECTANGLE-80

E.1 Description of RECTANGLE-80

RECTANGLE-80 is an SPN cipher with a block length of 64 bits and key length
of 80 bits. The 64-bit state of RECTANGLE-80 can be described as a 4 ×16
matrix, where each column is a nibble and the first line is the most significant
bit of each nibble. Similarly, the master and round key can be seen as matrices
of dimension 5 × 16. Each round function is composed of a bitwise round key
addition, followed by a non-linear layer where the same 4-bit S-box S is applied to
each column, and finally a permutation that shifts to the left the four rows of the
matrix respectively by 0, 1, 12, 13 bits. In the attack, we will not consider how the
round keys are generated, since we will suppose their reciprocal independence.

The S-box S used in the current description of RECTANGLE-80 is the fol-
lowing

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 6 5 C A 1 E 7 9 B 0 3 D 8 F 4 2
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The distinguisher used in the attack The related-key differential distin-
guisher covers rounds 2 through 15 with probability p = 2−62.83 and has input
difference

∆I2 =

0000000000000000
0010000100000000
0000000100000000
0000000000000000

and output difference

∆O15 =

00000000000000000000
00000000000000000010
00010000000000000000
00000000000000000000

E.2 Detailed description of the key-guessing

Preparing the necessary number of pairs for the key-guessing For each data-
structure, we only want to build the pairs that have an input difference in ∆P
that can satisfy the output difference of ∆O0: for example, we know that the
input difference of S-box 6 can be any of those contained in the image of F2, that
is {6, 7, B, F}, i.e. the input difference of S-box 6 of a potentially good pair of
plaintexts can only take 4 values. Doing the same with all other possible S-boxes,
we find out that the possible input differences are 150528 = 217.2. This means
that it makes sense to only build 223+17.2−1 = 239.2 pairs for each structure.

However, after encrypting all the plaintexts and building the 2y+39.2 en-
crypted pairs, we can further sieve them by doing the same thing with ∆O17:
in fact, we can discard all the pairs that have a difference that cannot lead to
∆I17 by looking at the necessary F∆ for S−1. Therefore, we can enumerate all the
220.51 possible values that∆O17, given by the range of the various F∆ for S−1 and
thus filter out about 233.49 pairs. After that, we expect 2y+39.2−33.49 = 2y+5.71

pairs to remain, which will be used in the key-guessing phase. Table 4 summa-
rizes all relevant details, S-box by S-box.

Detailed description of Step 1 (guess of K0 to determine the good pairs of round
0 and retrieve linear relations for the active bits of O0) We gradually guess
nibble by nibble the necessary amount of key material to determine whether
each plaintext pair is a good pair and the linear relations that describe the
active bits of O0, using the technique introduced in Section 3, similarly to the
examples in Appendix F.2, F.3 and F.4. We will detail how to guess the first
three active S-boxes, in order to give a clear idea on how this step of key-guessing
works. We start with nibble 0 and guess a linear relation on K0 for the output
bit y1 with a cost of numLeaves = 4 for each plaintext: this will allow us, in the
next step, to determine the necessary values of I1 by guessing jointly parts of K0

and K1 by key-absorption. Since every pair takes the same value in this nibble,
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Table 4. Differential attack on 18 rounds of RECTANGLE-80.
The ∅ indicates an active bit with difference 0. The ? indicates an unknown difference
value.
The guessing complexity is the number of key-guesses necessary to retrieve the needed
information about the nibble of the corresponding state.

S-box # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

# of possible input
differences (∆P )

7 8 12 7 8 4 1

∆P = ∆I0 ???? 0000 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 0000 0000 0000 ∅∅∅∅

∆O0 ?000 0000 0000 000? 01?0 ?000 0000 0000 000? 0010 0000 0000 0000 0000 0000 0∅00
Guessing complexity

for S (Step 1)
22.62 22.73 22.58 22.62 22.73 22 21

# of possible input
differences (∆I1)

6 4

∆I1 0000 0000 0000 ?∅?? 0000 0000 0000 0000 ?11? 0000 0000 0000 0000 0000 0000 0000

∆O1 0000 0000 0000 0110 0000 0000 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000
Guessing complexity

for S (Step 2)
22.58 22

∆I2 0000 0000 0010 0000 0000 0000 0000 0110 0000 0000 0000 0000 0000 0000 0000 0000

14-round differential distinguisher

Guessing complexity
for S−1 (Step 4)

22 22.58

∆I16 0000 0000 0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000

∆O16 0000 0000 0000 ??11 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???? 0000
# of possible output
differences (∆O16)

4 7

Guessing complexity
for S−1 (Step 3)

22.92 22.70 22.70 22.92 22 22.67 22.61

∆I17 0000 ?000 0?10 0001 0000 0000 ?000 0?00 0000 0000 0000 0000 0000 0?00 000? 0000

∆O17 0000 ???? ???? ???? 0000 0000 ???? ???? 0000 0000 0000 0000 0000 ???? ???? 0000
# of possible output
differences (∆O17)

9 11 6 9 5 8 7

S-box # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



42 Authors Suppressed Due to Excessive Length

this substep can be applied only to half of them, for a total of 2y+5.71 × 1
2 × 4

guesses. For the sake of simplicity, we suppose that each guess costs as much as
a 1-round encryption of the nibble, i.e. this substep costs on average

2y+5.71 × 2× 1/16× 1/18

18-round encryptions. We then proceed to guess S-box 6, for which, in order to
verify that a plaintext pair (x, x + δ) satisfies the transition ???? → 0010, we
follow Remark 2 and simply guess the inner nodes that appear in the optimal tree
of gδ2 (where δ is in the range of F2, i.e. {6, 7, E, F}), which have all domopt = 2.
This means that we always need to guess two key-bits. In fact, guessing these
bits turn out to be enough to guess a linear relation for the output bit y1 of
S-box 6 (i.e. bit 25 of the state O0), as can be verified for example by looking at
the optimal trees of the S-box, as is done in Appendix F.3. Now, we can sieve
all the pairs such that

S(x) + S(x+ δ +K0) 6= 2,

which happens with a probability of 1/4 = 2−2. Notice that the verification of
this condition costs 2 × 1/18 × 1/16 18-round encryptions for each pair. Then
this entire procedure will cost

2× 2y+5.71 × 22 × 1/18× 1/16

18-round encryptions. At this step, the total complexity is then

2× 2y+5.71 × (1 + 22)× 1/18× 1/16

18-round encryptions, and 2y+5.71−2 = 2y+3.71 remain. We can do similarly for
nibble 11, where we can independently consider the cases of output difference
4 and 6 since F4 and F6 have non-intersecting ranges (i.e. no input difference
can lead to both output differences). Furthermore, we have to check whether, for
each amount of key-guessing done according to the trees of gδ∆, it is necessary to
guess more key-material in order to retrieve linear relations for the output bit y1
of S-box 11 (we will see that output bit y2 is actually not needed for the guessing
done in round 1); after that, checking which pairs yield the output difference,
we expect to sieve, on average, 2−2.58 pairs.

We conclude by applying the same procedure to nibbles 10, 15 (both with
guessing time 22.62, sieving with probability 2−1.81) and 7, 12 (both with guessing
time 22.73, and sieving with probability 2−2).The total time complexity of this
step is therefore:

2× 2y+5.71 × (1 + 22 + 2−2+4.58 + 2−4.58+7.20 + 2−6.39+9.82

+ 2−8.20+12.55 + 2−10.20+15.28)× 1

18
× 1

16
=

2× (2y+5.71+6.36)× 1

18
× 1

16
= 2y+4.90

after which 2y−6.49 pairs remain, having guessed an average of 16.90 bits of K0.
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Detailed description of Step 2 (guesses from K1 and from K1 +K0 to determine
the pairs that satisfy ∆O1) We guess the remaining key bits of both K0 and
K1 to ensure the difference after the two first round. We notice that we can
discard any pairs that have not the desired input difference before entering the
S-box layer of round 1. Looking at S-box 12 we can keep 3/4 on average. This
means that 2y−6.49−0.42 = 2y−6.91 are left. On these pairs, 215.28 guesses were
made in Step 1. Let us now explain how to do the key-guessing on S-box 7, using
the key-absorption technique; S-box 12 will be analogous. Let z = (z0, z1, z2, z3)
the input value to the S-box (after the addition of K1). Suppose that δin = 7,
then, according to the optimal tree of g72 , we have to guess whether z0 = 0 and
z1 + z3 = 1. To determine these two bits, we need to determine y70 of the S-box
7 of O0, y61 of the S-box 6 and y103 of S-box 10 of O0 (notice that, as anticipated,
we do not care about y112 of S-box 11). However, we can do better: let us now
indicate with κ0, κ1, κ2, κ3 the key bits of K1 that are xored with S-box 7, round
1. The key-guess done on K0 so far allows us to write, for some bi ∈ F2 and
αi ∈ F64

2 (where we have of course embedded K0 in F64
2 )

y70 = b0 + 〈α0,K0〉
y61 = b1 + 〈α1,K0〉
y103 = b3 + 〈α3,K0〉

which means that

z0 = b0 + 〈α0, x+K0〉+ κ0

z1 + z3 = b1 + b3 + 〈α1 + α3, x+K0〉+ κ1 + κ3.

Therefore, in total, we need only guess the two bits 〈α0,K0〉 + κ0 and 〈α1 +
α3,K0〉 + κ1 + κ3 in order to determine the desired bits of z. We do the same
combined guess of K0 and K1 for all other possible input differences of S-box 7,
having to guess an average of 2 bits for a time complexity of 22. This will allow
us to sieve with probability 22 and proceed with the guess of S-box 12 of round
1, which, doing the same reasoning as before, needs an average time of 22.58,
with a sieving probability of 2−2.58. The total complexity of this step is then

2× 2y−6.91+15.28 × (22 + 2−2+4.58)× 1

18
× 1

16
=

2× 2y+8.37+3.32 × 1

18
× 1

16
= 2y+8.37−3.85 = 2y+4.52

at the end of which we have 2y−6.91−4.58 = 2y−11.49 pairs left, after having
guessed an average of of 21.40 key-bits.

Detailed description of Step 3 (guess of K18 to determine the pairs that satisfy
∆I17 and retrieve linear relations for the active input bits of I17) From the
previous step, we have 2y−11.49 pairs left. As was done in Step 1, we want to
filter the good pairs by gradually guessing the necessary key material for each
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S-box and retrieve linear relations for the active input bits of I17, allowing to
determine the active bits of O16 by guessing only one bit. Therefore, we guess,
orderly, S-box 8 (guess for an average time of 22, sieve with probability 2−1.32),
1 (guessing time 22.61, sieve with probability 2−1.81), 2 (guess time 22.67, sieve
with probability 2−2), 12 (guess time 22.70, sieve with probability 2−2.58), 13
(guess time 22.80, sieve with probability 2−2.46; notice that we do not need to
determine a linear relationship for the output bit y1 because, as we will see in
the next step, this bit is not necessary for round 1), 9 and 14 (guess time 22.91,
sieve with probability 2−2.17):

2× 2y−11.49+19.86(22 + 2−1.32+4.61 + 2−3.13+7.28 + 2−5.13+9.98

+ 2−7.59+12.78 + 2−10.17+15.69 + 2−12.34+18.60)× 1

18
× 1

16
=

2× 2y+8.37+7.78 × 1

18
× 1

16
= 2y+8.37+0.61 = 2y+8.98.

At the end of which 2y−11.49−15.51 = 2y−27.00 pairs remain, and on average 39.19
key-bits have been guessed so far.

Detailed description of Step 4 (guess of K17,K18 to determine the good pairs
through round 16) As done in Step 2, we first sieve all the pairs whose output
difference is different from the one that belong to F∆ for S−1. Indeed, we can
sieve 7/16 differences from S-box 1, while none from S-box 1. Therefore, at the
beginning of this step we have 2y−27.00−1.19 = 2y−28.19 pairs and we have guessed
thus far an average of ? key-bits. Exactly as we did in Step 2, we do a combined
guess of K17 and K18 that allows us, with an average guess of 22, to determine
which pairs satisfy S-box 12 and therefore sieve 2−2 of them. Notice that deciding
whether a pair satisfies this transition or not is independent of the second input
bit (th, and therefore of the second output bit of nibble 13 in round 17, as
was anticipated: this is possible to see by looking at the necessary conditions to
determine whether a pair passes the transition ??11 → 0100 for S−1. Finally,
with an average guessing time of 22.58, we determine the ones passing S-box 12
(sieving with probability 2−2.81).

2× 2y−27.19+38.46 · (2y+2 + 2y−2+4.58)× 1

18
× 1

16
=

2× (2y+11.27+3.32)× 1

18
× 1

16
= 2y+11.27−3.85 = 2y+7.42

for a total key-guess, on average, of 43.94 key bits.
The total complexity of the key-guessing is then dominated by Step 3, for a

total of about 2y+9 = 250 18-round encryptions.

F Examples for Section 3

In this section we provide detailed examples of simple applications of the im-
provements proposed in Section 3. We will let S be the RECTANGLE S-box
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described in Supplementary Material E (n = 4). Furthermore, we will often
indicate a vector of F4

2 as an hexadecimal number.

F.1 An example for Case 1: find good pairs when input difference
is not fixed

Suppose we want to determine whether a pair (x+ k, x′ + k) is a good pair for
∆ = 2, without knowing the exact input difference δ. Then we can come up with
a key-guessing strategy that does not require the full key guess on k and that is
given by the tree of x′+ k = F∆(x⊕ k). Let us say that ∆ = 4 and consider the
following optimal tree of F4:

4

| 8

| | 1

| | | Constant = f

| | | Constant = 7

| | Constant = 3

| 9

| | 8

| | | Constant = 7

| | | Constant = f

| | Constant = b

Here is how to read this representation of a tree. The plain numbers (here 4, 8,
1, 9) are the masks (r.label, Definition 1). The root is the label most to the left.
The left child is the upper subtree of the next column (x passes through it, when
〈r.label, x〉 = 0), and the right child is the lower one (x passes through it, when
〈r.label, x〉 = 1, see also Definition 2). The leaves are (redundantly) marked with
”Constant = ”, indicating that the function calculated by it is constant for all x
arriving in that leaf. This value is to the right side of the equality sign. Finally
Dom is the space generated by 4, 8, 1, 9, so that domopt = 3.

The above tree tells us that we need an average guessing time of numLeaves =
6, instead of 16, to determine which pairs (x + k, x′ + k) determine an output
difference 4: for example, if x2 + k2 = 0 and x3 + k3 = 1, then we can say that
x′ + k = 3. Furthermore, we remark that guessing k1 is irrelevant to determine
x′ + k, as it is clear from the fact that domopt of F∆ does not contain 2.

F.2 An example of Case 3: find good pairs when input difference is
fixed

Suppose we want to find what are the good pairs for the transition ????→S 00?0
(where we the ? stand for a difference bit that is unkown and can be either 1 or
0), i.e. the pairs that have the possible output differences ∆ are 2 and 0, and
the possible input difference δ are {0, 6, 7, B, C}. We also that we know the value
of x (which is the case for external rounds of keyguessing) is known and that
x′ = x+ δ for a fixed δ.
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If ∆ = 0, then we can filter out any pair (x+ k, x+ k + δ) such that δ 6= 0,
without needing any key guess or computation of S.

On the other hand, when ∆ = 2, we know that δ ∈ {6, 7, B, C}. It is not hard
to see that (x+ k, x+ k + δ) satisfies the problem

S(x+ k) + S(x+ k + δ) = 2 (5)

if and only if x+ k ∈ (F2)
−1(6). If we then define the function gδ∆ : F4

2 → F2

such that gδ∆(x) = 0 if and only if x ∈ (F∆)−1(δ), the problem becomes to
determine the value of gδ∆(x + k) with as little information on k as possible:
indeed, the best key-guessing strategy is the one given by the optimal tree for
gδ∆(x + k) and the cost of this guess is given by the number of its leaves. For
example, if δ = 6 and ∆ = 2 as before, an optimal tree is the following

1

| Constant = 1

| 8

| | Constant = 1

| | Constant = 0

In fact, this tree tells us that whenever x0 + k0 = 0, we know that S(x + k) +
S(x + k + 6) 6= 2; in this case there is no need to do any other guess on k. On
the other hand, if x0 + k0 = 1 then we cannot yet say whether Equation (5) is
verified by x with δ = 6 or not; however, guessing k3 is then enough because we
can say that x3 + k3 = 1 if and only if Equation (5) is verified by x with δ = 6.
This means that we only need to do, on average, numLeaves = 3 guesses on k
to determine whether a pair (x+ k, x+ k + δ) with δ 6= 0 is indeed a good pair.

We then notice that an optimal tree for gδ2 for all the other possible values
of δ has the same number of leaves, i.e. the other input differences also need on
average of 3 guesses on k. This means that if we want to solve the problem of
determining which, out of a large amount of pairs, is a good pair for a transition
of the form ???? → 00?0 (as it is the case with differential attakcs), using this
strategy we can expect an overall average number of guesses of 1/5·0+4/5·3 = 2.4
for each pair, to compare to the usually naive number of 16 key-guesses, resulting
in a gain factor of about 22.84.

A final remark is that the union of all Dom of gδ2 for each δ has still dimension
3 and does not contain 4, which means that in this case a pair is good or not
independently of the third input bit of the S-box, making this bit effectively
non-active.

Remark 2. A simpler, still effective way to do the decrease the key-guessing
necessary for determining good pairs is to, instead of doing the (optimal) gradual
guess based on the value of x given by the tree of gδ∆, to just guess, not matter
the value of x, all the bits relative to the inner nodes that appear in the tree for
gδ∆, which is equivalent to guess the bits that generate the Dom of gδ∆. In the
above example, this means that for any pair (x+ k, x+ k + 6), we guess k0 and
k3 and keep only those for which x0 +k0 = x3 +k3 = 1: this means that, for any
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pair with input difference δ = 6, the guessing cost is 4: this is worse than 3, but
still much better than 16. This simpler guess will be the one used in the entire
attack of RECTANGLE-80 in Section 6 and turns out to be powerful enough to
improve drastically the complexity of the attack.

F.3 Determining good pairs and linear relations for some output
bits

If we are mounting an attack with two or more consecutive rounds of key-
guessing, then in the first round we do not only want to sieve the good pairs, but
we also want to determine the values of one or more output bits of the plaintexts
that form those pairs. However, thanks to key absorption, it is not necessary to
determine the value of these bits, but it can be enough to retrieve linear relations
for them. Let us explain how to efficiently do this in practice using optimal trees.

Let y1 = 〈S(x), 2〉 be the active bit in the above transition ????→ 00?0 (we
consider that x is known). We want to find b, α such that y1 = b+〈α, k〉. Suppose
that in order to determine that a pair (x + k, x′ + k) is indeed a good pair we
have already guessed the bits 〈k, β〉 and 〈k, γ〉. We want to check whether these
guesses on k are enough to determine whether such α, b exist for y1 (if not, any
independent guess of key-bit would yield a linear relation for y1 on the bit of
k that will remain to be guessed). To do so, we observe that y1 = b + 〈α, x〉 if
and only if determining y1 requires the knowledge of 〈α, x〉, i.e. requires one bit
of information on the input (or zero if α = 0). For example, we know that an
optimal tree for y1 when α = 1, β = 8 is given by

1

| 8

| | 6

| | | Constant = 1

| | | Constant = 0

| | 4

| | | Constant = 1

| | | Constant = 0

| 8

| | 6

| | | Constant = 0

| | | Constant = 1

| | 4

| | | Constant = 0

| | | Constant = 1

which means that the information gained so far on k is enough to write y1 as a
linear relation on the input given by the tree. For example, if x0+k0 = x3+k3 =
0, we have that y1 = 〈6, x+ k〉 = x2 + x1 + k2 + k1. Therefore, in this case, no
further guess other than the one that was necessary to determine that the pair
was indeed a good pair.

Clearly, the same can be done with y′ = S(x′).
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F.4 An example of Case 5: key absorption

We use the same notation of Figure 3 Contrary to the previous case where we
considered x to be known, we don’t always know the value of z, which depends
on some output bits of round 0. More precisely, we need to determine the values
of zi + κi. We considered x (and therefore z) fixed; x is of course also known.
Suppose we that we know z0 = y1, where y1 is the second output bit of y.
Suppose also that, given the key-guessing done in the previous round on k as
seen in the previous subsection, we can write y = b+ 〈α, k〉 (α possibly 0), then

z0 = b+ 〈α, k〉+ κ0.

Therefore, to determine z0 we can absorb the bits of k that would be necessary
to determine y0, y1, and guess it together with the necessary bit of κ, allowing
us to guess 1 bit (〈α, k〉+ κ0) instead of 2.

With respect to the näıve guessing strategy, if y1 comes from an S-box where
the transition was the same as we examined in the example of Case 3 (i.e.
????→ 0010), then this allows to combinely guess with a complexity of 4 · 2 = 8
(where 2 is the guess of 〈α, k〉+κ0), instead of 25 = 32. Even better, if we needed
to guess that involves more than one output bit (like guessing z0 + z1 + z2) the
gain respect to the naive apporach is even is greater (we don’t have to guess all
the key bits necessary to determine all the yj involved in determining the z0, z1
and z2).


