
Noname manuscript No.
(will be inserted by the editor)

A Survey of Algorithmic Methods in IC Reverse Engineering

Leonid Azriel · Julian Speith · Nils Albartus · Ran Ginosar · Avi

Mendelson · Christof Paar

Accepted: 13 July 2021

Abstract The discipline of reverse engineering inte-

grated circuits (ICs) is as old as the technology itself.

It grew out of the need to analyze competitor’s products

and detect possible IP infringements. In recent years,

the growing hardware Trojan threat motivated a fresh

research interest in the topic. The process of IC reverse

engineering comprises two steps: netlist extraction and

specification discovery. While the process of netlist ex-

traction is rather well understood and established tech-

niques exist throughout the industry, specification dis-

covery still presents researchers with a plurality of open

questions. It therefore remains of particular interest to

the scientific community. In this paper, we present a

Leonid Azriel
Technion - Israel Institute of Technology, Haifa, Israel
E-mail: leonida@tx.technion.ac.il

Julian Speith
Max Planck Institute for Security and Privacy, Bochum, Ger-
many
Ruhr University Bochum, Bochum, Germany
E-mail: julian.speith@rub.de

Nils Albartus
Max Planck Institute for Security and Privacy, Bochum, Ger-
many
Ruhr University Bochum, Bochum, Germany
E-mail: nils.albartus@rub.de

Ran Ginosar
Technion - Israel Institute of Technology, Haifa, Israel
E-mail: ran@ee.technion.ac.il

Avi Mendelson
Technion - Israel Institute of Technology, Haifa, Israel
E-mail: avi.mendelson@tce.technion.ac.il

Christof Paar
Max Planck Institute for Security and Privacy, Bochum, Ger-
many
Ruhr University Bochum, Bochum, Germany
E-mail: christof.paar@csp.mpg.de

survey of the state of the art in IC reverse engineering

while focusing on the specification discovery phase. Fur-

thermore, we list noteworthy existing works on methods

and algorithms in the area and discuss open challenges

as well as unanswered questions. Thereby, we observe

that the state of research on algorithmic methods for

specification discovery suffers from the lack of a uniform

evaluation approach. We point out the urgent need to

develop common research infrastructure, benchmarks,

and evaluation metrics.

1 Introduction

Reverse engineering of integrated circuits serves a mul-

titude of purposes [32]. For example, understanding the

details of a competitor’s IC helps to conduct a competi-

tive analysis. Furthermore, patent infringements can be

detected by locating the stolen IP in a competitor’s IC.

In addition, a particularly growing topic in recent years

is the detection of hardware Trojans — a process that

requires comprehensive retrieval of functionality. Ad-

ditional applications of IC reverse engineering include

the detection of counterfeit devices, failure analysis, and

monitoring of semiconductor suppliers.

The very concept of reverse engineering may be per-

ceived as an indignant peeking. Therefore, it is natu-

ral to question the ethics of reverse engineering in gen-

eral as well as its compliance with the law. In the US,

the legitimacy of reverse engineering was established by

the US Semiconductor Chip Protection Act of 1984, to

which most industrialized countries subscribe by now.

Specifically, it allows reverse engineering of commercial

semiconductor products for educational purposes. An-

other issue in that regard is the usage of the obtained

information, which is clearly limited by law [30].

2 Leonid Azriel et al.

Physical
Device

Design
Database

Invasive layout
recovery

Insider access

Scan based
extraction

Combinational
Function Level

Netlist

Gate Level
Netlist

Topological
Analysis

Functional
Analysis

Machine
Learning

Matching library
functions

Subgraph
isomorphism

SAT solvers

Word structures
recovery

FSM recovery

Clustering

Sp
ec

ifi
ca

tio
n

D
et

ai
ls

Phase 1
Netlist Extraction

Phase 2
Specification Discovery

Schematic
Representation

Starting
Point

Fig. 1 Flow diagram of the hardware reverse engineering process comprising two major phases: (1) netlist extraction and
(2) specification discovery. The second phase includes a variety of methods and algorithms that are not necessarily mutually
exclusive.

On the technical side, reverse engineering of Inte-

grated Circuits (ICs) is a complex process that involves

multiple disciplines and skills. The process usually takes

a physical device as input and outputs a human-read-

able specification. Note that in this work the term spec-

ification is used in a broader context, generally refer-

ring to the objective of the reverse engineering process.

Along the way, this process comprises various steps,

which can be divided into two distinct phases (cf. Fig-

ure 1). During the first phase, netlist extraction, the

IC is analyzed to generate a gate-level netlist descrip-

tion. Traditionally, netlist extraction involves a series

of invasive techniques, such as package removal and de-

layering [76,31,50]. Though this method prevails, there

are alternative ways to extract the netlist. For exam-

ple, scan chains used for production testing in virtually

any modern digital IC provide an easy access to the cir-

cuit internals and enable learning the functions of the

logic cones that reside between the flip-flops [4,5,59,63].

Social engineering is another approach, i.e., an insider

may provide instant access to the netlist. In any case,

the goals, metrics, and processes of the first phase of

hardware reverse engineering are well-defined and have

vast coverage in literature. Our work mainly focuses on

the second phase, specification discovery, which takes

the gate-level netlist as an input and results in a par-

tial or full understanding of the IC’s functionality.

The reverse engineering problem lacks a formal defi-

nition and varies with each researcher’s objective. Ulti-

mately, the process shall deliver a full understanding of

the entire chip or just a desired part at the architectural

specification level. How to define such ’full understand-

ing’ is not exactly an engineering question. Fyrbiak et

al. [23] discuss the human factors involved in the reverse

engineering process and lay out the problem of quanti-

fying the results. After several decades of research and

practical work, this question remains unanswered.

To address that problem, we first need to answer the

question of how to represent the result of the reverse

engineering process. Unlike the well-structured repre-

sentation at gate-level, the specification of a complex

IC rather resembles a story. To enable automatic spec-

ification discovery and to allow for a quantification of

success, a uniform specification format is desired. For

example, raising the level of abstraction from a gate-

level netlist to a high-level Register Transfer Language

(RTL) style, such as Verilog or VHDL, may yield a com-

prehensible representation [26]. However, an unstruc-

tured RTL code lacking comments and hierarchy might

still be insufficient to retrieve the specification data. No-

A Survey of Algorithmic Methods in IC Reverse Engineering 3

tably, automatic translation to higher abstraction level

remains a hard task, hence most of the recent work

relies on a library of components that serves as a ref-

erence for matching subcircuits within the investigated

device [15,16,17,36,62].

In fact, this matching problem is a generalized tech-

nology mapping task. This is one of the fundamental

steps in IC design synthesis and verification [39], albeit

with library components on a different scale. Logic syn-

thesis maps generic components to standard cells spec-

ified by a technology library, which comprises cells with

a few input and one or two output pins. Modern CAD

tools use Binary Decision Diagrams (BDD) and SAT

solvers for technology mapping [6,12]. However, reverse

engineering deals with large-scale circuits having tens or

hundreds of pins. Testing the equivalence of two single-

output functions represented as reduced, ordered BDDs

can be achieved in constant time [19]. However, the size

of a BDD may grow exponentially with the number

of inputs. Moreover, equivalence checking requires vari-

able correspondence between the two functions. Other-

wise, all permutations must be checked, which is by it-

self an exponential task. In general, a Boolean matching

algorithm is expected to find matches given the nega-

tion of inputs and outputs as well as input and out-

put permutations, namely an npnp-invariant [14,33,44]

matching. Thus, npnp-invariant tests are essential for

hardware reverse engineering.

A modern digital IC includes millions of logic gates

which are grouped into functional blocks during design.

Therefore, for netlist exploration a two-phase process

prevails. The first goal is to partition the netlist aim-

ing to reconstruct the original design hierarchy. Graph-

based algorithms are commonly used for circuit par-

titioning. The netlist can be presented as a directed

graph, with logic gates being converted to vertices and

nets to edges. Alternatively, both cells and nets can

be represented as vertices, by that creating a bipartite

graph [53]. During the first phase, this netlist graph is

split into smaller subgraphs, e.g., using graph density

as a splitting criterion.

Next, a comprehensive library of netlist components

can be used to match the resulting subcircuits. For ex-

ample, syntactic matching checks for structural identity

between subcircuits and library components, hence it is

looking for isomorphisms. Syntactic analysis may inter-

changeably be referred to as structural or topological

analysis. A disadvantage of the syntactic approach is

its lack of flexibility. For example, the same logic func-

tion may have different implementations on the gate

level [50]. In addition, structural matching will fail on

even a slight deviation in the subcircuit design. Alter-

natively, semantic or functional analysis tests for func-

tional identity [13]. Semantic matching is powered by

formal verification methods, such as model checking us-

ing temporal logic, Boolean function property match-

ing, or even dynamic simulation. Often, reverse engi-

neering algorithms use a combination of different ap-

proaches. In our work we divide the existing methods

into categories based on their dominant component.

Most of the available work focuses on datapath-

like regular structures that operate on words [26,35,

70]. These subcircuits are easy to find thanks to their

repeating patterns and can only implement a relatively

limited set of functions, e.g., arithmetic units, register

files, funnels, and distributors. Moreover, in many cir-

cuits such structures may constitute to a majority of

the overall gate count. Hence, if the success criteria is

based on the sheer number of gates identified correctly,

the detection of regular structures alone will generate

good results. However, such criteria may be deceiving.

In practice, the control circuits built of seemingly ran-

dom logic are likely to contain more information despite

their insignificant contribution to the gate count. How

to measure the amount of information retrieved by re-

verse engineering is an open research question related

to information theory, which, to the best of our knowl-

edge, has not been addressed sufficiently to this date.

Despite the all-digital world, analog ICs remain an

important member of the IC family. Moreover, analog

ICs are a primary target for cloning and IP infringe-

ment [74]. However, cloning analog circuits is an auto-

matic process consisting of copying the transistor-level

schematics including the device sizes and electrical pa-

rameters. The commonly small footprint of analog cir-

cuits also allows for manual exploration [56].

The structure of our work broadly follows Figure 1.

Section 2 briefly surveys the current state of the art

in netlist extraction for ASICs and FPGAs. Section 3

gives an overview of fundamental algorithms for spec-

ification discovery from academia. Next, Section 4 de-

scribes techniques to recover the functionality from a

netlist for different applications using a combination

of structural and functional methods. An overview of

state-of-the-art tools for hardware reverse engineering

brought forward by academia and the industry is given

in Section 5. Finally, Section 6 concludes our work with

a discussion of open challenges and questions, as well

as pointing out worthwhile future research directions.

2 Netlist Extraction

Netlist extraction aims to retrieve a human-readable

netlist from an examined chip. An overview of this pro-

cess is given in Figure 2. The techniques utilized for

netlist extraction depend on the type of the target chip.

4 Leonid Azriel et al.

They fundamentally differ between fixed Application

Specific Integrated Circuits (ASICs) and more flexible

Field Programmable Gate Arrays (FPGAs). For both

types, state-of-the-art approaches to retrieve the gate-

level netlist are described in this section.

2.1 ASIC Reverse Engineering

2.1.1 Invasive Layout Recovery

The invasive reversing of an ASIC is considerably the

most complex approach and gets increasingly harder

due to shrinking technology sizes. The invasive netlist

extraction process comprises several steps [23,31,38,58,

76], which are described in the following.

Decapsulation: the package material must be re-

moved either by using wet or dry chemicals or by apply-

ing mechanical means. Chemicals are usually preferred

since they keep the silicon die unaffected [38,58].

Delayering and Imaging: the layers of the chip

are removed in interleaving with an image acquisition

step to retrieve images of every layer. Since this step

strongly depends on the employed manufacturing tech-

nology, a wide range of delayering techniques exists [38,

57,58]. Furthermore, one needs to differentiate between

backside and frontside approaches.

Historically, frontside approaches starting at the top

metal layer of the ASIC prevailed [38,58]. Here, the top

passivation layer is usually removed using dry aniso-

tropic etching due to modern feature sizes. The metal

layers can then be removed by plasma etching or ion

milling. This poses the challenges of over-etching, espe-

cially at the edges of the die, as well as warpages. Images

of the layers may be taken using a Scanning Electron

Microscope (SEM) or a Focused Ion Beam (FIB). To

remove the remaining metal layers and the oxide layer,

diamond suspension and dry chemistry are commonly

employed. The active regions of the chip can be revealed

using fluoric acid.

In recent years, however, advanced backside delay-

ering approaches have been put forward such as auto-

mated backside thinning and plasma FIB backside de-

layering [57]. The latter technique even allows for the

delayering and imaging steps to be performed within

the same device and provides access to sub-layer infor-

mation that was previously unavailable.

Processing: the images of each layer are stitched

together using image processing software while ensuring

precise alignment to avoid faulty transitions of adjacent

images. Then, a special software is used to extract the

gate-level netlist by identifying standard cells and their

interconnections in the metal layers [58]. Overall, the

invasive netlist extraction can only be performed by

specialised labs and takes substantial time.

2.1.2 Scan-based Netlist Extraction

In contrast to the invasive extraction, a scan-based ap-

proach requires considerably less resources, albeit may

be limited in accuracy. Scan insertion is a well-known

Design-For-Test (DFT) technique that allows for the

automatic generation of test vectors for production test-

ing of an ASIC. Thanks to its efficiency and ability to

achieve high coverage, it has become the de facto stan-

dard for testing digital circuits. The scan insertion algo-

rithm runs at the design stage and adds to the circuit a

special shift mode, which arranges all the internal reg-

isters as shift registers, so called scan chains. Next, it

connects both sides of the chain to the chip interface.

During manufacturing, the production tester uses the

scan chains both to place the chip in the desired state

(ShiftIn) and to sample its current state after operation

(ShiftOut). These steps can be combined using a single

functional (Capture) cycle to learn (Probe) the output

of the combinational function F for a given input. F

aggregates all the combinational logic of the chip. It re-

ceives the circuit’s primary inputs and register outputs

as an input vector and returns the primary outputs and

register inputs as an output vector.

Scan chains provide convenient access to the IC’s

internal logic and can be exploited for reverse engineer-

ing. With scan-based access, heuristic algorithms can

be used to find a good approximation of F , from which

the learner can conjecture the circuit functionality [5].

2.2 FPGA Reverse Engineering

In contrast to ASICs, FPGAs are programmable de-

vices that can change their functionality even after man-

ufacturing. The FPGA’s functionality is programmed

using a dedicated file, the bitstream. For SRAM-based

FPGAs, the bitstream is stored externally to the FPGA

and loaded on every boot-up. The bitstream encodes

the configuration of its basic logic elements as well as

the interconnections between them. Hence, a bitstream

is a different, usually proprietary, representation of the

gate-level netlist implemented on the device.

The process of retrieving the netlist from an FPGA

can be split into the steps of extracting the bitstream

from memory, understanding the bitstream file format,

and converting the bitstream into a gate-level netlist.

To extract the bitstream, an attacker can wiretap the

configuration lines on the PCB or simply read out the

flash memory. The use of bitstream encryption, though

not frequently used in practice, can hinder an attack.

A Survey of Algorithmic Methods in IC Reverse Engineering 5

...01010...

Decapsulation Delayering Imaging Processing

FPGA
Bitstream Extraction Bitstream Conversion

Gate-Level Netlist

101
010

101
010

Boolean Function LearningApply Scan Vectors

ASIC

non-invasive

ASIC

invasive

Fig. 2 Overview of the netlist extraction process for ASICs and FPGAs.

However, recent studies have shown that an attacker

can overcome this obstacle using side-channel attacks

[45,46,47,48,68,72] or protocol weaknesses [20].

The process of understanding the bitstream file for-

mat has recently been documented in several papers [7,

28,51,55,73,79]. All these works utilize methods based

on correlation, where an attacker starts with a reduced

design containing only the logic element under inves-

tigation, e.g., a LUT, flip-flop, or routing element. He

then proceeds to vary the configuration of the element

and compares the bitstreams of both designs. Since dif-

ferences in the bitstream directly relate to the changes
introduced in the altered design, the attacker can de-

duce a database that maps individual bits of the bit-

stream to the corresponding elements in the netlist, as

well as their configuration. This database can subse-

quently be used by an attacker to convert the bitstream

into the desired gate-level netlist.

3 Specification Discovery - Fundamental

Algorithms

Netlist extraction is directly followed by the specifica-

tion discovery stage. Modern techniques combine fun-

damental algorithms from different areas, e.g., struc-

tural and functional approaches, to achieve the best

results (cf. Section 4). This section gives some back-

ground on the historic evolution of specification discov-

ery and hereinafter surveys the fundamental algorithms

presented for this task.

3.1 Early Work

One of the first comprehensive studies describing a sys-

tematic approach for reverse engineering has been pub-

lished in 1999 by Hansen et al. [29]. They analyze the

ISCAS-85 [8] benchmark circuits available as gate-level

netlists only and reveal their high-level structure.

Their analysis involves several different approaches.

The library modules technique detects standard com-

pound components available in the manufacturers data-

books. This technique applies to circuits build in 1985,

but can not be transferred to modern circuits built from

high-level languages using automatic synthesis tools.

Repeated modules searches for more instances of al-

ready identified subcircuits and thus detects regular

logic. The control functions and bus structures

techniques deduce additional structure and function-

ality by using already detected components to trace

shared bus and control signals. Common names takes ad-

vantage of the fact that the ISCAS-85 benchmark pro-

vides the analyst with the original names of the nets.

Overall, the paper presents a set of rather intuitive

semi- or fully-manual techniques that suffice for the rel-

atively small and custom-built ISCAS-85 circuits. How-

ever, modern devices consist of millions of gates. They

are being designed with the help of automated tools,

which map a high level description of the design to a

netlist using a library of standard cells. As a result, the

netlist lacks any form of regular structure. Therefore,

significantly more powerful automated tools are needed

for efficient reverse engineering.

6 Leonid Azriel et al.

Algorithms used for Layout-versus-Schematic (LVS)

verification need to combine transistors into gates to

generate a gate-level netlist that can be further used for

comparison with the original neltist. Application-wise,

these algorithms rather belong to the netlist extraction

phase. However, their underlying methods vastly resem-

ble the ones of the specification discovery approaches

presented throughout the remainder of this work. Thus,

they lay the foundation for the modern approaches in

reverse engineering, which is why we list them as part

of the specification discovery phase. One such algo-

rithm, SubGemini [53], identifies logic gates within a

transistor-level netlist by solving a subgraph isomor-

phism problem. Accordingly, the circuit is first con-

verted into a bipartite graph with both devices and nets

being represented as vertices. The device vertices are

labeled by their type and the net vertices by the num-

ber of connections. The algorithm then uses a label-

based partitioning algorithm to solve the isomorphism

between two circuits. Although the graph isomorphism

problem is NP-complete, logical circuits have sufficient

structure to allow for efficient solutions. SubGemini uses

Breadth-first Search (BFS) with the application of hash

functions. Later, Chisholm et al. [13] adopt SubGemini

in their work to identify circuits on a higher abstraction

level.

Doom et al. [19] propose a simulation-based method

of matching subcircuits. A set of one-hot vectors are

applied to the subcircuits to generate a signature from

their outputs. If the subcircuits are complex enough,

the presence of two subcircuits with an identical signa-

ture indicates a match with high probability. The us-

age of one-hot vectors makes the method permutation-

invariant. This elegant heuristic is efficient, but requires

a pre-processed netlist, where the subcircuits precisely

matching the components are isolated in a separate

cluster. However, the authors do not address the pre-

processing itself.

Due to the advances in manufacturing technology

that raise the scale of integrated circuits by orders of

magnitude, more powerful algorithms are required.

3.2 Circuit Partitioning

Understanding circuits of millions of gates first requires

partitioning into smaller subcircuits to allow for ef-

ficient understanding of high-level functionality. This

step usually attempts to detect module boundaries that

have been lost during synthesis. Those modules can

then subsequently be investigated by the use of struc-

tural analysis as describes in Section 3.3 and functional

analysis as in Section 3.4. In general, there are two ap-

proaches to tackle circuit partitioning: top-down and

bottom-up.

Top-down partitioning divides a circuit into blocks

using mainly graph algorithms that implement unsu-

pervised learning. One such example are algorithms like

min-cut that find a partition of a graph into subgraphs

such that the number of edges between them is min-

imal. In [16], a pure graph-based algorithm that does

not use any functional information splits the circuit into

densely connected subgraphs. It employs the NCut al-

gorithm, which is a variant of min-cut. For two sub-

graphs A and B, NCut is defined as the sum of weights

of all the edges connecting A and B, divided by the sum

of weights within each subgraph. The algorithm then

finds a graph partitioning that minimizes the NCut

value. Since the min-cut problem is NP-complete, a

heuristic approach is used.

Graph-based top-down clustering methods are usu-

ally well-performing and require little pre-processing to

deploy. However, they require good correlation between

functional grouping of logic and graph density to gener-

ate accurate results. This correlation is yet to be proven.

The bottom-up algorithms identify smaller subcircuits,

while possibly increasing the size of the initial subcir-

cuit by adding surrounding elements. Azriel et al. [4]

use the Shared Nearest Neighbors (SNN) clustering al-

gorithm to isolate stages of a cryptographic hash imple-

mentation. It operates on a flip-flop dependency graph,

represented as a bipartite graph comprising flip-flop in-

put and output groups.

Li et al. [35] find word-level structures in a netlist

by first identifying candidates for grouping based on

structural or functional similarity of wires. Next, they

verify the hypothesis by forward and backward propa-

gation, which is followed by checking whether the re-

sulting grouping candidates still observe an identical

structure.

Furthermore, Meade et al. [41] verify the transitive

fan-in tree of cells for similarities. Cells found to be

similar are then further grouped into functional blocks.

Werner et al. [78] apply the Louvain method for

graph partitioning to iteratively optimize the quality

of the partition of the network, which is also called

modularity. Initially, each vertex is treated as its own

cluster. Next, the method tries to merge these clusters

with their neighbours based on which merging opera-

tions result in the highest modularity. Then all clusters

are re-evaluated with regard to their weight. This pro-

cess is repeated in an iterative manner. The authors

propose to base the weight of the edges on the signal

type (clock, reset, enable, select, and other), the signal

distance, and its betweenness. The latter correlates to

the number of shortest paths going through an edge.

A Survey of Algorithmic Methods in IC Reverse Engineering 7

Additionally, their method provides a tuning parame-

ter γ to control the size and number of clusters, which

is adapted for each case study.

3.3 Structural Analysis

Structural analysis is used to identify the high-level de-

scription of a previously extracted subcircuit by, e.g.,

matching against a library of known subcircuits. It is

confined to solely topological properties and usually

pays little attention to the circuit’s functionality.

Common approaches evolve around graph-based al-

gorithms. For example, Rubanov [61] formulates the

subcircuit matching problem as an optimization prob-

lem. His work is inspired by pattern recognition al-

gorithms from the graphics domain. The investigated

circuit is presented as a bipartite graph similar to the

SubGemini approach described in Section 3.1. At the

first stage, discriminative labeling, the vertices in both

the objective function (the investigated circuit) and

the model (library components) are labeled using a re-

cursive labeling algorithm that considers each vertex’s

surroundings. Labels in the objective function consider

only the vertices contained in the corresponding subcir-

cuit. Since the boundary of the subcircuit is not known

in advance, a set of labels for different radii is calcu-

lated. The second stage, graduated assignment, executes

a non-linear optimization algorithm on the the match

matrix M . This matrix contains elements for every pair

of nodes in the objective graph and the model graph. If

there is a match, the element value is ’1’, otherwise it

is set to ’0’. The goal is to find assignments for M that

will minimize the error function. This error function re-

flects the matching error while taking into account the

graph structure and labels. The third and final stage

is the construction of subcircuit instances. The con-

struction starts at the most probable match based on

the results from the preceding stage and proceeds us-

ing BFS. Similar to SubGemini, this algorithm works

for the detection of standard cells in a transistor-level

netlist. It is not clear whether it is scalable enough to

support larger subcircuits, because the BFS algorithm

and surrounding-based labeling are prone to explode

with he size of the problem.

Since netlists extracted from an IC may be incom-

plete and erroneous, looking for strict isomorphisms

when matching with a library of subcircuits does not

yield good results in practise. Instead, Fyrbiak et al. [25]

analyze the applicability of graph similarity algorithms.

Their approach uses two phases: First, they detect reg-

ister stages by leveraging control signals of sequential

logic elements. Next, combinational logic groups are

constructed by using a reverse BFS starting at the reg-

ister stages. The resulting subgraphs can then be an-

alyzed for their similarity with components from a li-

brary. The second phase operates on the results of the

first one and provides a more fine-grained investigation.

Here, each subgraph is split into bitslices, which consist

of Boolean functions with multiple inputs and a single

output. For FPGA netlists, LUTs are decomposed into

AND-OR-INV logic. Again, the bitslices are analyzed

for their similarity with the candidates from the first

phase. For the similarity analysis, three classifiers are

investigated in detail: graph edit distance approxima-

tion, neighbour matching, and multiresolutional spec-

tral analysis. Fyrbiak et al. provide a case study in the

reverse engineering context, which shows promising re-

sults for circuits of a few thousand gates. However, their

approach merely serves as a guideline for the human an-

alyst in that it produces candidates that require further

manual investigation.

3.4 Functional Analysis

An alternative to the structural approach is the behav-

ioral analysis that examines the underlying logic func-

tions. Again, it usually requires the netlist to be par-

titioned such that the investigation can be undertaken

on the extracted subcircuits.

Functional analysis is heavily utilized for logic equiv-

alence verification, which is assisted by anchors inside

the circuit such as hierarchical boundaries or named

sequential elements. Hence, the problem of determin-

ing equivalence is reduced to combinational matching,

which can still be a hard problem requiring heuristics.

For example, Agrawal et al. [2] propose comparing real-

valued characteristic polynomials of Boolean functions.

Their work shows that if the polynomials of two func-

tions yield equal results for some group of values, the

corresponding Boolean functions are equal with high

probability. Computing the derivation of characteris-

tic polynomials requires conversion of the function to

a sum-of-products form, which may be a hard problem

by itself. Also, in [1], Agrawal makes an interesting ob-

servation that comparing two circuits using a test-set

that covers all possible faults in one of the circuits, pro-

duces correct answer with high probability. These and

other combinational matching algorithms enable com-

mercial logic equivalence verification tools working at

large scale. The complexity of reverse engineering, how-

ever, is many orders of magnitude higher, since there

are no anchors, like e.g. registers, to grab onto.

Li et al. [34,36] tackle the reverse engineering prob-

lem by identifying interesting behavioral patterns in the

observed logic. Their method employs temporal logic

8 Leonid Azriel et al.

to formulate the behavioral pattern. In particular, four

patterns are used: Alternating, Next, Until, and Even-

tual. These patterns are further used as constraints in

the High-Level Definition (HLD) of the circuit. The

reverse engineering task then turns into a problem of

matching functional blocks in the analyzed netlist with

a library of pre-built HLDs. Partitioning of the design

into functional blocks, a challenging problem by itself,

is left out of the discussion in this paper.

One of the challenges in matching subcircuits with

library components is mapping signals of the design’s

functional blocks to the signals in the library modules.

The matching process proposed by the paper creates

pattern graphs from simulations and matches the blocks

by computing a maximum common subgraph, which is

an NP-hard problem that is reformulated into a heuris-

tic maximum clique problem. Afterwards follows the

verification, which uses model checking [15] to verify

that a candidate block satisfies the specification.

The main disadvantage of matching circuits against

a library of components is the limited size of the li-

brary. Clearly, if the number of possible circuits was

small enough to fit in a library, there would not be such

a rich diversity of integrated circuits. Alternatively, a

good way to comprehend the functionality of a circuit

is back-annotating the circuit into some sort of a high-

level description, e.g., Verilog or VHDL. Ideally, this

would be a free high-level translation. However, this

task can not yet be solved by a machine. As an in-

terim step, language templates can be used for map-

ping. Gascon et al. [26] come up with a template-based

approach, where a library of templates replaces the li-

brary of components. Each template presents a generic
module description that fits a broad family of mod-

ules. The core function of the family may, for example,

be a counter. In this case, the template strives to in-

clude a variety of circuits that comprise a counter with

some control logic. The input circuit is assumed to have

passed pre-processing [70] that already partitioned it

into functional blocks and identified word structures.

Hence the challenge is, given a circuit with inputs com-

prising of words and other (control) signals, to find as-

signments of the control signals such that the word-level

functionality of the circuit will match one of the tem-

plates. The objective is to synthesize the given circuit

to a higher abstraction level that contains word-level

manipulation and arithmetic operators. The matching

task is represented as a Satisfiability Modulo Theory

(SMT) problem and fed to the Yices SMT solver. Ad-

ditional constraints help the solver to converge faster.

For that purpose, the researchers use signatures based

on the transitive fan-ins of the circuit outputs and tran-

sitive fan-outs of its inputs.

In [69], simulation vectors are used to deal with the

sub-graph isomorphism problem. These simulation vec-

tors are made up of one-hot and two-hot vectors that

are applied to the inputs of a combinational circuit.

This makes the solution permutation-invariant of the

input. Using these vectors, simulation graphs are con-

structed. Next, sub-graph isomorphism solvers are used

to locate arithmetic circuits within the combinational

one. The application of this method seems to be limited

to small combinational circuits only.

Observing the internals of an IC during operation

by monitoring optical emissions provides additional in-

formation compared to the purely passive circuit explo-

ration [49]. Moreover, it allows a black box analysis in

case that visual access is limited due to circuit com-

plexity or obfuscation techniques. The black-box anal-

ysis also allows to look for points of interest within the

chip layout by correlating active areas with specific op-

erations. This can greatly reduce the extend of required

detailed circuit exploration.

4 Specification Discovery - Putting It All

Together

A single method is not likely to suffice when dealing

with real-life large-scale heterogeneous circuits. Differ-

ent tools may fit different problems. Hence, for the ma-

jority of applications, a combination of algorithms from

different categories are used. This section surveys the

published work that combines various techniques for

different purposes in IC reverse engineering.

4.1 Extracting Finite State Machines (FSMs)

Generally speaking, hardware designs can be split into

datapath and control logic. The datapath is character-

ized by structured word-wide constructs, while the con-

trol logic lacks any obvious structure. Large parts of the

IC’s control logic are designed as an FSM. Hence, FSMs

form an appealing target for a reverse engineer. The

extraction of FSMs is a widely discussed topic in lit-

erature. It combines functional and structural methods

to identify and extract the FSM circuitry and subse-

quently reconstruct the state graph.

4.1.1 Identification of State Registers

The first and most difficult step in the process is the

correct identification of the state registers. Shi et al. [67]

and McElvain [40] note that FSMs feature a combina-

tional feedback path (cf. Figure 3). Due to their unique

A Survey of Algorithmic Methods in IC Reverse Engineering 9

State Transition
Logic

Output Logic
State
MemoryInput

Fig. 3 Block diagram of a hardware FSM (dashed line in the
case of a Mealy machine). Taken from [24].

structure, FSMs form a Strongly Connected Compo-

nent (SCC) that can be identified using graph algo-

rithms. However, this approach also marks many non-

FSM circuits that form a combinational feedback path

as well, e.g., counters, as state machines.

Shi et al. [67] incorporate and extend this basic

method by first selecting only registers that control

datapath elements in their transitive fan-out and by

ignoring the remaining ones. Identifying control signals

is a challenging task on its own and is not addressed

in their work. Next, registers that have the same en-

able signal are grouped into an individual FSM. Finally,

registers that have shared gates in their combinational

feedback path are grouped together. For evaluation, the

authors employ the Synopsys DW8051 microcontroller

and identify 36 potential state machines.

Fyrbiak et al. [24] improve the recognition by intro-

ducing an influence/dependence metric. Furthermore,

they analyze the control behaviour of an FSM circuit

candidate by determining how many gates are influ-

enced by the FSM. Since FSMs control the data flow

of the design, this metric can provide additional infor-

mation to a human analyst. The decision on whether

the current candidate actually represents an FSM then

rests upon the reverse engineer. However, the method’s

performance on real-world designs remains unknown.

The RELIC tool [41] performs a topological anal-

ysis on the netlist to find similar fan-in cones of cells

and is aiming to identify state registers. As a first step,

the netlist is pre-processed and converted into AND-

OR-INVERT logic. Next, pairs of nodes are checked

for similarity by a recursive algorithm, where the graph

topology serves as a similarity criterion. At each stage,

the criterion is checked based on the transitive fan-in

of this stage. Two nodes of the graphs are marked as

similar if the value of the metric exceeds a predeter-

mined threshold. If the gate type of the nodes differs,

the traversal stops. The tool is evaluated on a number

of small benchmark circuits and shows 80% to 100%

accuracy in the detection of control registers. Overall,

RELIC’s power lays within its simplicity and it appears

to be suitable for other use cases as well. However, due

to its performance it seems to be applicable to small

circuits only.

Brunner et al. [9] introduce fastRELIC improving

the speed and accuracy of RELIC. It uses a group-

ing algorithm to reduce the number of required simi-

larity score calculations. Their novel approach provides

a speed-up of up to 100× over RELIC, which makes

it more applicable to larger designs. An extensive eval-

uation with real-world designs ranging from 4 000 to

50 000 gates shows - with an accuracy of 23.53% to

100% - that (fast)RELIC is indeed applicable to small

real-world designs.

Both RELIC as well as fastRELIC heavily rely on

user-defined parameters. Thus, it is hard to tell how

applicable the methods are to unknown netlists. The

success rate highly varies if the parameters are not cho-

sen correctly.

All described methods are still unreliable in the suc-

cessful separation of datapath and control logic. This

lies either in the nature of the methods itself or their

applicability to completely unknown designs. Thus a

sound identification of state registers still remains an

unresolved problem.

4.1.2 Extraction of State Transitions

In contrast to the previous step, state graph extrac-

tion mostly applies functional analysis [24,40,43,42]. It

starts by identifying the initial state, in which the FSM

wakes up after reset. Typically, it can be deduced from

either gate configuration values like, i.e., initial register

values (FPGAs) or the reset behaviour (ASICs).

Transitions between the states are identified by eval-

uating the combinational logic feeding the state regis-

ters. More precisely, each state register’s data input is

represented by a Boolean function, whose inputs con-

sist of the current state, i.e., the state register data

output, and the external inputs to the FSM. To reveal

all states that can be reached from the current state,

all input combinations are applied to analyze the tran-

sition behaviour. This brute-force approach has a time

complexity of O(|S| × 2i) with i being the number of

external inputs to the FSM [24].

Furthermore, Fyrbiak et al. [24] show that most

state-of-the-art FSM obfuscation schemes fail to pro-

vide the claimed level of security. The authors demon-

strate how several well-established obfuscation schemes

can be circumvented solely by applying the described

FSM reverse engineering techniques.

4.2 Combining Structural Analysis and SAT

The formulation of the matching decision problem as a

satisfiability (SAT) problem allows for the use of respec-

tive solvers, such as SAT, SMT, or CHC. These solvers

10 Leonid Azriel et al.

manage to solve equations as large as of thousands of

variables by applying heuristics. However, these heuris-

tics only work under certain conditions, since modern

solvers rely on successfully locating the internal equiv-

alence points of the compared logic. In lack of these an-

chors, the solver may fail even for a small problem. The

SAT solver particularly fails with different implemen-

tations of the same function, e.g., different multiplier

implementations.

Diao et al. [18] tackle the limitations of SAT solvers

by converting the circuit under test to a canonical im-

plementation before feeding it to the solver. For exam-

ple, any multiplier detected in the circuit will be con-

verted to the non-Booth realization type. The conver-

sion is done using structural methods. First, basic com-

ponents like half adders, full adders, and single-bit mul-

tipliers are identified. Next, their operands are identi-

fied from the resulting operator trees. The operands are

then mapped using signature heuristics and the mapped

structure is transformed into the canonical form, con-

verted into a CNF, and fed to the SAT solver.

Although the scope of this paper is limited to spe-

cific arithmetic circuits, the combination of structural

analysis and formal verification methods is appealing

and should be further explored.

4.3 Machine Learning

Nowadays, machine learning methods of various types,

especially from the area of deep learning, are penetrat-

ing many application domains. For the hardware re-

verse engineering problem, easily formulated as a learn-

ing problem, machine learning seems to be a natural

fit. Surprisingly, very few attempts have been made by

the research community to examine the usage of such

algorithms. Although unsupervised learning techniques

such as clustering have been used [4,16] in the past,

they still fail to utilize the power of modern, advanced

deep learning technologies. One possible explanation for

this may simply be the lack of training data. To take

advantage of deep learning, the reverse engineer has to

provide huge amounts of data to train the algorithm

on. This is something that appears to be impractical

to achieve within the netlist domain. For example, to

train a CNN to recognize an ALU in a sea of gates, it

needs to be fed it with a large variety of circuits con-

taining an ALU. However, the number of such circuits

that are publicly available for analysis is insufficient for

this purpose.

In one of the few initial attempts, Dai et al. [17]

employ a CNN on the investigated circuit. The circuit

is first mapped to a library built of 4-input lookup ta-

bles (4-LUTs). To make the process input permutation

as well as input and output negation (npn) invariant,

each 4-LUT is assigned to one out of 222 possible iso-

morphism classes. Every element is associated with an

existence vector, which contains the classes of all the el-

ements connected to it. The pooling layer then groups

the vectors into a constant number of groups. That way,

at the layer’s output all the circuits have the same num-

ber of features, when k most representative vectors are

taken from each group to serve as features. The result-

ing matrix is fed into a CNN. The network successfully

solves the simple classification problem of distinguish-

ing between multiplier and divider circuits. Further-

more, it is able to detect the presence of a multiplier

or a divider in larger circuits that contain additional

arithmetic units. The authors generated synthetic cir-

cuits to be used as a training set. Using a set size of 250

circuits, they achieve an accuracy of 97 to 99% for a sin-

gle class, i.e., deciding whether a multiplier is present in

the circuit. However, the accuracy drops rapidly when

increasing the number of classes. For example, using 9

classes, the accuracy drops to a range of 75 to 80%.

An improvement to the authors’ method is proposed

in [22], mainly by compressing the existence vectors.

Chakraborty et al. [11] apply machine learning to

attack logic locking. Such a scheme hinders reverse en-

gineering by introducing additional logic to the design

that prevents it from functioning correctly unless a se-

cret key is supplied. The gates that mix the original

logic with the key, for example XOR gates, are further

obfuscated by applying an additional synthesis step.

This makes the detection of the obfuscating gates by

observation of the circuit practically infeasible. The au-

thors employ machine learning to reverse the synthesis

step. Notably, the model is trained with the same ob-

fuscated circuit by applying additional random obfus-

cation rounds and recording changed gates and their

locality.

Clearly, the current state of machine learning appli-

cations to netlist reverse engineering is not satisfactory

and there is an abundant space for further exploration.

4.4 Word-Level Identification

The work by Subramanyan et al. [70] demonstrates how

several reverse engineering algorithms from different ar-

eas can be combined to accomplish for improved per-

formance. The paper studies the analysis of an unstruc-

tured netlist with the objective of inferring a high-level

netlist with components such as register files, adders,

and counters. The authors limit the scope to datapath

components only, and leave the random control logic

out of their consideration. They assume no access to

A Survey of Algorithmic Methods in IC Reverse Engineering 11

either the RTL source code or any other microarchi-

tectural information. Instead, only some datasheet-level

information is available.

The authors combine structural and functional anal-

yses into a reverse engineering process comprising two

phases. First, potential module boundaries are identi-

fied using topological analysis. Finally, functional anal-

ysis is used to find potential modules and understand

their behavior. They start off with a set of algorithms

that identify combinational logic.

Stage 1 - bitslice identification: This stage is

composed of three sub-stages: (1) All 6-feasible cuts

are enumerated. A k-feasible cut for a node N is a

set of at most k nodes such that an arbitrary assign-

ment of values to the nodes in the set completely de-

termines the value of N [12]. The number 6 is chosen

since for k > 6 the number of cuts increases rapidly. (2)

The cuts are then grouped into equivalence classes us-

ing permutation-independent Boolean matching. The

matching uses Boolean property-based signatures as-

signed to the input variables [44]. (3) Finally, the bit-

slices are aggregated into multi-bit components using

two approaches. (a) Grouping based on common sig-

nals. This algorithm detects multiplexers and decoders,

but also outputs candidates that can be inspected by

an analyst. (b) Grouping based on a serial connection,

such as in a carry propagation logic. Figure 4 illustrates

the two approaches.

Bit slice 0

Select Bit slice 1

Bit slice n

Bit slice 0

Bit slice 1

Bit slice n

(a) (b)
Fig. 4 Two examples of bitslice aggregation. (a) parallel
connection of a select signal to bus multiplexer bit cells; (b)
serial connection of a carry propagation logic.

Stage 2 - word identification: First, words are

identified by grouping inputs and outputs of the aggre-

gated slices from stage 1. Next, additional words are

identified by looking at their fan-out and finding as-

signments to control signals that propagate a word to

another candidate word.

Stage 3 - library matching: This stage identifies

datapath-type modules by looking at what happens be-

tween previously identified words. Therefore, combina-

tional blocks that have word inputs and outputs as well

as side inputs are matched with reference library mod-

ules. The goal to find an assignment on the side inputs

such that the function of the design block matches the

function of the reference module. The equivalence prob-

lem is mapped to a 2QBF satisfiability question and a

QBF solver is applied.

Stage 4 - common support: Here, nodes that

have a common support are grouped together. These

modules can then be verified for certain properties using

BDD-based formulation. For example, to detect a pure

decoder, a one-hot output property can be checked.

Stage 5 - module fusion: Related inferred mod-

ules can be fused together generate larger modules. A

module fusion graph is constructed for this purpose

with nodes representing modules. An edge exists only

if the output of one module are inputs to the other one.

In addition to the combinational analysis, the pa-

per also deals with sequential circuits. The analysis

of sequential circuits uses a Latch Connection Graph

(LCG) that is identical to the dependency graph in [4].

For example, counters have a very distinctive depen-

dency pattern, where every consecutive node depends

on all the preceding nodes. Thus, at the first stage, sub-

graphs that follow this rule are identified using topolog-

ical analysis. Next, the candidate subgraphs are verified

against the functional properties of a counter using a

SAT solver. Similarly, shift registers can be detected.

RAMs and register files are identified by finding

tree-type subgraphs with every node having a single

fan-out. This suggest a RAM read path. BDDs are then

used to verify RAM properties, e.g., that each select in-

put propagates exactly one latch to the output. Conse-

quently, multi-bit registers are identified using the bit

slice aggregation algorithm by combining a set of reg-

isters that have a common write control.

The identification of modules within the netlist may

result in overlaps, which are removed at the next stage.

The overlap problem is formulated as a constrained op-

timization problem solved using Binary Integer Linear

Programming (BILP). It eventually allows for rebuild-

ing the modules that overlap with others to remove the

overlapping gates.

The algorithms presented in the paper are evaluated

using eight designs mainly taken from OpenCores1 as

1 https://opencores.org

https://opencores.org

12 Leonid Azriel et al.

well as with a large SoC design, yielding coverage of

45 to 94%. Here, coverage describes percentage of gates

that became part of one of the inferred modules. Fi-

nally, the paper additionally presents a case-study on

the detection of hardware Trojans using the presented

reverse engineering methods.

4.5 High-Level Register Reconstruction and Dataflow

Analysis

Albartus et al. recently published DANA [3], a completely

automated method to recover high-level register from

completely flattened and unstructured netlists. With

the help of DANA, dataflow graphs can be created

to visualize the flow of data between registers. Under

its hood, DANA combines various independent met-

rics based on structural and control information utiliz-

ing a powerful automated architecture. Notably, DANA

works without any magic values.

DANA provides two modes — a normal and a steered

one. In both of them the process is fully automated with

the only difference being that in the steered mode a

priori knowledge is applied. Hence, the reverse engineer

can advise DANA what register sizes to expect during

analysis. This information can, e.g., be obtained from

data-sheets or marketing materials.

Preprocessing phase: an abstracted version of the

netlist is created and all combinational elements are

removed. All that is left is a flip-flop (FF) dependency

graph, since only the connections in between FFs are

analysed during processing.

Processing phase: each of the metrics applied in

this phase has to follow a fixed set of rules before a

register can be created: (1) FFs need to share common

clock and control signals and (2) be in the same register

stage. In total, DANA combines nine metrics that process

structural and control information while abiding to said

rules. These metrics are combined with each other to

find sets of registers candidates.

Evaluation phase: a specialized majority voting

decides upon the final registers. Normal majority voting

would count the number of occurrences of each regis-

ter and output the register with the most votes. Mean-

while, all register candidates containing any FF of the

output register is removed from the set of candidates.

This has two disadvantages: (1) a priori knowledge can-

not be considered and (2) small registers having lots of

votes might result in a fragmentation of large registers.

The authors argue that data usually flows through large

registers, which are thus to be preferred. The special-

ized majority voting takes this into account by giving

priority to registers that match a priori knowledge. Fur-

thermore, a scan technique is implemented that anal-

yses consequences that the selection of a register has

on the others. The scan technique prefers registers that

prevent fragmentation.

DANA comes with its own benchmark suite of nine

modern hardware designs for both FPGAs and ASICs.

It is evaluated using the Normalized Mutual Informa-

tion (NMI) score — a statistical measure used in the

evaluation of clusters. By comparing the output to the

ground truth created from the synthesis report they

show an almost perfect recovery of registers.

5 Reverse Engineering Tools and Frameworks

In recent years, a number of tools from academia and

commercial industries have been developed to aid in the

reverse engineering process. The most promising ones

are presented in this section.

5.1 Academic Tools

The Hardware Analyzer (HAL) [10,24,77] is a com-

prehensive reverse engineering and manipulation frame-

work for gate-level netlist. It represents the first com-

prehensive tool from the academic sector. HAL is de-

signed to aid in the extraction of high-level information

from gate-level netlists. The user is assumed to have no

a-priori knowledge about the design hierarchy, compo-

nents or synthesis tools.

HAL is not a tool by itself, but a framework to create

tools. When presented with a gate-level netlist, the in-
cluded HDL parsers for VHDL and Verilog convert the

netlist into a directed multi-graph representation. HAL

additionally allows for modularization within both, the

netlist and the graph representation. The underlying

gate library is read from a corresponding Liberty file

by a dedicated parser. This gives HAL access to the

Boolean functions implemented by each of the gates, as

well as additional functionalities. For C++ and Python

plugin support, HAL comes with a powerful API con-

nected with its core library functions. A series of high-

level graph algorithms is provided through an iGraph

interface. However, additional algorithms may be im-

plemented by utilizing the provided plugin system and

the API. Additional features include a dedicated GUI

to visually represent and interact with parts of a netlist,

a Python shell, and an advanced logging system.

In [24], two offensive case studies employing HAL

are presented. The first case study locates comparators

used for AES self-tests by checking specific gate prop-

erties and combining the connected gates. The second

A Survey of Algorithmic Methods in IC Reverse Engineering 13

case study inserts a hardware Trojan after the detection

of S-boxes using the method presented in [71].

An additional tool has been brought forward by the

Degate project [65]. It is an open IC reverse engineer-

ing framework that was developed as part of a diploma

thesis. The tool receives images of the layers of an IC

as well as a standard cell library and subsequently out-

puts a gate-level netlist. Degate offers a GUI and an

API and allows for the manual grouping of standard

cells into modules. Beyond that, Degate does not offer

any support for automatic netlist exploration.

5.2 Commercial Tools

ChipWorks, which was recently incorporated by the

Canadian company TechInsights, is one of the lead-

ing hardware reverse engineering service providers. Al-

though they do only provide limited access to their tool

CircuitVisionTM and its predecessor ICWorks, one

can draw conclusions about their capabilities from the

technical reports and papers they publish. For exam-

ple, [76] shows a comprehensive analysis of the state

of the reverse engineering domain back in 2009. Major

parts of the paper describe the process of invasive re-

versing methods including process analysis and circuit

extraction. They furthermore present their skill-set for

package removal, delayering, imaging, and annotation.

This is followed by the analysis of an extracted netlist,

which is at least partly automated by ICWorks.

Additionally, the paper presents a case study ana-

lyzing a digital ASIC containing 12 000 gates and an

EEPROM. In this study, they were able to identify reg-

ister groups, main buses, and the scan path circuitry.

The paper does not provide details on the methods used

to identify the logic inside the chip and whether auto-

mated algorithms have been used for identification.

Similarly to ChipWorks, Texplained is a commer-

cial company located in France that is selling their

reverse engineering services across the industry. They

develop an automatic reverse engineering tool called

ChipJuice. This tool processes layer images of ICs,

identifies wires and devices, assembles them to stan-

dard cells, and finally generates the corresponding gate-

level netlist [75]. In contrast to ChipWorks, Texplained

makes their tool available for use by the customer. The

tool, however, does not yet provide means for the pro-

cess of specification recovery.

To summarize, there is a limited tool support in

throughout the industry and in academia for IC re-

verse engineering. Moreover, the few tools that exist

are mainly dealing with the first phase of the reversing

process, netlist extraction.

6 Summary, Challenges, Open Questions, and

Future Directions

Hardware security in general and hardware reverse engi-

neering in particular are in a transition stage these days.

New advanced process technologies enable manufactur-

ers to pack many more gates on a die than ever before.

This additionally results in less energy being needed in

order to perform arithmetic operations. Many of the

traditional black-box side channel attack and fault in-

jection techniques are not efficient enough anymore.

Thus, the key to perform such attacks successfully is

to use internal information that can be obtained by

extracting the inner structure of the chip using hard-

ware reverse engineering. The traditional approach of

invasive netlist extraction is becoming more and more

challenging due to the rapid advances in technology.

Alternative non-invasive methods such as scan-based

netlist extraction may offer a feasible alternative. As for

the specification discovery stage, both the state of re-

search and the infrastructure are still at an elementary

level. We can assume that, due to the special interests

of the defense sector, some developments are being un-

dertaken behind the scenes. Hence, we can only base

our judgement on openly available research.

Table 1 summarizes notable research concerning the

step of specification discovery from a gate-level netlist.

As one can see, comparing netlist reverse engineering

methods appears to be a difficult if not infeasible task.

This mainly is for two reasons. The first is the lack of

contemporary benchmark suites that are available

for evaluation. The ISCAS-85 benchmark set consists of

only combinational circuits, with the largest circuit con-

taining no more than around 3, 500 gates. Nevertheless,

these 35 year-old benchmarks keep their title as being

the most popular choice in hardware reverse engineering

research. Results that are based on these benchmarks

cannot be reliably extrapolated to the modern billion-

gate SoCs. Some papers evaluate their techniques on

more realistic netlists, but often fail to provide these

netlists (or even just the high-level description) to the

public. If someone would try to improve upon their

techniques, they would not be able to compare the re-

sults in a meaningful way. Recently, Albartus et al. ad-

dressed this shortcoming with the benchmarks2 pub-

lished alongside DANA [3].

The other reason is the lack of uniform evalua-

tion techniques. In 2018, Meade et al. [42] brought

to attention that most gate-level netlist reverse engi-

neering techniques lack proper evaluation. They point

out the weaknesses of the gate coverage metrics used

by some papers. In some cases, the chosen metric sim-

2 https://github.com/emsec/hal-benchmarks

https://github.com/emsec/hal-benchmarks

14 Leonid Azriel et al.

Table 1 Summary of specification discovery methods in IC reverse engineering. For each method, the table lists whether it
utilizes structural, functional, or both approaches and whether it identifies datapath or control logic. Additionally, the gate
count of the largest benchmark used for evaluation and the reported accuracy are given whenever available. Since each work
solves a different problem and uses a different metric to measure accuracy, these numbers should not be used for comparison.

Publication Year S
tr

u
ct

u
ra

l

F
u

n
ct

io
n

a
l

D
a
ta

C
o
n
tr

o
l

Size Accuracy Method

Hansen [29] 1999 x x x x 3 500 − extract high-level description using manual methods

Shi [67] 2010 x x 5 330 − extract FSMs by detecting combinational feedback

Li [36,34] 2012 x x x − − matching against library using behavioral patterns

Nedospasov [49] 2012 x x − − identify functional elements by correlating executed
code with optical emission images

Gascon [26] 2014 x x 3 500 − extract high-level description using template-based
subcircuit matching with SMT solver

Subramanyan [70] 2014 x x x 17 388 45 − 94% combination of structural and functional methods to
infer functional modules

Couch [16] 2016 x x x 14 972 − split into densely connected subgraphs using NCut

Diao [18] 2016 x x − 93% use SAT solver on a canonical implementation

Meade [41] 2016 x x x 12 576 80−100% detect state registers by analyzing fan-in

Soeken [69] 2016 x x 3 500 − matching library components using simulation
graph solving subgraph isomorphisms and SAT

Dai [17] 2017 x x − 99% use CNN to classify subcircuits

Werner [78] 2018 x x 461 511 84 − 97% graph partitioning using Louvain method

Fyrbiak [24] 2018 x x x − − extract FSMs by detecting SCCs, identifying feed-
back paths, and state transition analysis

Brunner [9] 2019 x x x 57 835 23−100% same as [41], but improved performance

Fyrbiak [25] 2019 x x 7 056 − subcircuit matching using graph similarity

Albartus [3] 2020 x x 144 303 80−100% recovery of high-level registers

ply reflects how many gates were assigned into groups
by an algorithm, while completely disregarding the cor-

rectness of the assignment itself.

Hence, one of the research questions that must be

addressed is quantifying the success criteria of the re-

versing process. This metric is essential to judge and

compare the proposed techniques. However, some of the

metrics that researchers use to demonstrate the per-

formance of their algorithms may be misleading. For

example, measuring the percentage of gates that have

been classified as part of a matched library component

may miss the target of assessing the amount of infor-

mation obtained during the process. However, informa-

tion is what the analyst is looking for during reverse

engineering. When the specification is considered, spec

units, such as lines of text, can serve as information

units. For example, a line that says ”the processor has

a 32-bit ALU ” is one unit of information. In contrast,

a complex communication protocol may need hundreds

of lines to describe. This can also be normalized by the

value of information.

Meade et al. suggest using the information-theoretic

Normalized Mutual Information (NMI) as a widely ac-

cepted measurement for evaluating netlist partitioning

methods. Simplified, the NMI is computed by compar-

ing the output to a golden model. The closer the NMI

is to 0, the worse is the coverage. An NMI of 1 indi-

cates a perfect match. Implying that this leads to more

unbiased results, they evaluate some of the proposed

techniques and come to the conclusion that ”truthfully,

the results show that there is a need for more accurate

methods” [42]. The NMI metric is a good candidate to

adopt for at least some reverse engineering methods,

such as netlist partitioning and separation of datapath

and control logic.

As of now, there are no common tools, methods or

standards in IC reverse engineering, which hinders the

research progress. Coming up with a uniform infrastruc-

ture that includes intermediate representations, tools

A Survey of Algorithmic Methods in IC Reverse Engineering 15

and metrics may potentially give rise to the research

area as a whole. The open-source tool HAL presents a

step in the right direction, although it only addresses

parts of the problem.

Most of the structural methods presented for reverse

engineering so far originate from the field of VLSI de-

sign and verification. This was the best fit for many

years based on the size of the problem and the state-

of-the-art of the algorithms. Continuous growth of the

size of integrated circuits compels to explore modern,

more powerful algorithms. In the recent years, graph

processing algorithms gained high attention due to the

growing demand in extracting information from huge

graph databases, such as social networks. Allowing an

approximate match, i.e., a match with noise, may im-

prove the success rate and increase efficiency [64].

In functional analysis, new heuristics should be ex-

plored to allow for faster recognition of high-level com-

ponents in the netlist. So far, only very few such heuris-

tics have been analyzed. Although the Boolean function

support, also called transitive fan-in, has been proposed

as a property for signatures, many more function prop-

erties can be evaluated. For example, Boolean function

analysis [52] is a powerful tool that supplies properties

based on influence or the Fourier analysis, such as the

Walsh spectrum. Even simple Boolean properties such

as symmetry, i.e., input permutation invariance, or lin-

earity can serve as good estimators. These heuristics

are particularly helpful in case only partial information

of the netlist is available to the analyst. In general, the

case where some information on the explored netlist or

the specification is available, presents a particular inter-

est for forensic applications, such as IP theft detection

and discovery of hardware Trojans.

Furthermore, the power of machine learning has a

great potential to increase the efficiency of the reverse

engineering process and take automation to a whole

new level. However, unlike classical problems that show

promising results using machine learning algorithms,

such as pattern recognition in images, the size of the

training dataset is strongly limited in the case of netlist

reverse engineering. In the coming years, researchers

should work towards overcoming this barrier. For ex-

ample, the size of dataset may be increased by syn-

thetically creating many different circuit samples using

a transfer learning model [54], Generative Adversarial

Networks (GANs) [27] or one-shot learning [37].

Reverse engineering does also pose a threat to IC de-

signers and manufacturers. Therefore, companies have

a legitimate desire to secure their product against re-

verse engineering attempts. The classification of exist-

ing work on algorithmic methods for IC reversing pre-

sented in this paper may serve as a framework for eval-

uation of countermeasures against different kinds of re-

verse engineering attacks. For example, picking differ-

ent implementations of the same logical function may

help to fight structural analysis attacks, since it hin-

ders the recognition of repeating structures. However,

it can not stand ground against functional algorithms

that do not care for the topology of an implementation

but rather for the purpose it serves. On the functional

side, IC camouflaging [66] can present an efficient pro-

tection, but fails when being confronted with structural

analysis. Logic locking, as first introduced in [60], is an-

other widely studied approach to obfuscate a gate-level

netlist. Engels et al. [21] summarize some of the existing

logic locking schemes and point out their shortcomings

in regard to the underlying attacker model. We see the

development of effective defensive measures as one of

the key challenges for future research.

Acknowledgements Part of this work was supported by
the European Research Council (ERC) under the European
Union’s Horizon 2020 Research and Innovation programme
(ERC Advanced Grant No. 695022 (EPoCH)), as well as the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA – 390781972.

References

1. Agrawal, V.D.: Choice of tests for logic verification and
equivalence checking and the use of fault simulation. In:
Proceedings of the IEEE International Conference on
VLSI Design, pp. 306–311. IEEE (2000)

2. Agrawal, V.D., Lee, D.: Characteristic polynomial
method for verification and test of combinational circuits.
In: Proceedings of the IEEE International Conference on
VLSI Design, pp. 341–342. IEEE (1996)

3. Albartus, N., Hoffmann, M., Temme, S., Azriel, L., Paar,
C.: DANA — Universal Dataflow Analysis for Gate-
Level Netlist Reverse Engineering. IACR Transactions
on Cryptographic Hardware and Embedded Systems
2020(4), 309–336 (2020)

4. Azriel, L., Ginosar, R., Gueron, S., Mendelson, A.: Using
Scan Side Channel to Detect IP Theft. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems
25(12), 3268–3280 (2017)

5. Azriel, L., Ginosar, R., Mendelson, A.: Revealing On-chip
Proprietary Security Functions with Scan Side Channel
Based Reverse Engineering. In: Proceedings of the 27th
Edition o f the Great Lakes Symposium on VLSI, vol.
Part F1277 (2017)

6. Benini, L., De Micheli, G.: A survey of Boolean matching
techniques for library binding. ACM Transactions on
Design Automation of Electronic Systems 2(3), 193–226
(1997)

7. Benz, F., Seffrin, A., Huss, S.A.: Bil: A tool-chain for bit-
stream reverse-engineering. In: 22nd International Con-
ference on Field Programmable Logic and Applications
(FPL), pp. 735–738. IEEE (2012)

8. Briglez, F., Fujiwara, H.: A neutral netlist of 10 combina-
torial benchmark circuits and a target translator in FOR-
TRAN. Int. Symposium on Circuits and Systems, Special

16 Leonid Azriel et al.

Session on ATPG and Fault Simulation, June 1985 pp.
663–698 (1985)

9. Brunner, M., Baehr, J., Sigl, G.: Improving on state regis-
ter identification in sequential hardware reverse engineer-
ing. Proceedings of the 2019 IEEE International Sympo-
sium on Hardware Oriented Security and Trust, HOST
2019 pp. 151–160 (2019)

10. Chair for Embedded Security: HAL - The Hardware An-
alyzer (2019). URL https://github.com/emsec/hal

11. Chakraborty, P., Cruz, J., Bhunia, S.: SAIL: Machine
learning guided structural analysis attack on hardware
obfuscation. In: Proceedings of the 2018 Asian Hardware
Oriented Security and Trust Symposium, AsianHOST
2018, pp. 56–61. Institute of Electrical and Electronics
Engineers Inc. (2019)

12. Chatterjee, S., Mishchenko, A., Brayton, R., Wang, X.,
Kam, T.: Reducing structural bias in technology map-
ping. In: ICCAD-2005. IEEE/ACM International Con-
ference on Computer-Aided Design, 2005., pp. 519–526.
IEEE

13. Chisholm, G., Eckmann, S., Lain, C., Veroff, R.: Under-
standing integrated circuits. IEEE Design & Test of Com-
puters 16(2), 26–37 (1999)

14. Clarke, E., Mcmillan, K., Zhao, X., Fujita, M., Yang, J.:
Spectral Transforms for Large Boolean Functions with
Applications to Technology Mapping. Formal Methods
in System Design 10(2/3), 137–148 (1997)

15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model check-
ing. MIT Press (1999)

16. Couch, J., Reilly, E., Schuyler, M., Barrett, B.: Func-
tional block identification in circuit design recovery. In:
2016 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST), pp. 75–78. IEEE
(2016)

17. Dai, Y.Y., Braytont, R.K.: Circuit recognition with deep
learning. In: 2017 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pp. 162–
162. IEEE (2017)

18. Diao, Y., Wei, X., Lam, T.K., Wu, Y.L.: Coupling reverse
engineering and SAT to tackle NP-complete arithmetic
circuitry verification in o(number of gates). In: Proceed-
ings of the Asia and South Pacific Design Automation
Conference, ASP-DAC, vol. 25-28-Janu, pp. 139–146. In-
stitute of Electrical and Electronics Engineers Inc. (2016)

19. Doom, T., White, J., Wojcik, A., Chisholm, G.: Identify-
ing high-level components in combinational circuits. Pro-
ceedings of the IEEE Great Lakes Symposium on VLSI
(November), 313–318 (1998)

20. Ender, M., Moradi, A., Paar, C.: The Unpatchable Sil-
icon: A Full Break of the Bitstream Encryption of Xil-
inx 7-Series FPGAs. 29th USENIX Security Symposium
(USENIX Security 20) (2020)

21. Engels, S., Hoffmann, M., Paar, C.: The End of Logic
Locking? A Critical View on the Security of Logic Lock-
ing. Cryptology ePrint Archive (Report 2019/796), 1–16
(2019)

22. Fayyazi, A., Shababi, S., Nuzzo, P., Nazarian, S., Pe-
dram, M.: Deep Learning-Based Circuit Recognition Us-
ing Sparse Mapping and Level-Dependent Decaying Sum
Circuit Representations. In: 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp.
638–641. IEEE (2019)

23. Fyrbiak, M., Strauss, S., Kison, C., Wallat, S., Elson,
M., Rummel, N., Paar, C.: Hardware reverse engineering:
Overview and open challenges. In: 2017 IEEE 2nd Inter-
national Verification and Security Workshop (IVSW), pp.
88–94. IEEE (2017)

24. Fyrbiak, M., Wallat, S., Déchelotte, J., Albartus, N.,
Böcker, S., Tessier, R., Paar, C.: On the Difficulty of
FSM-based Hardware Obfuscation. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2018, Issu, 293–330 (2018)

25. Fyrbiak, M., Wallat, S., Reinhard, S., Bissantz, N., Paar,
C.: Graph Similarity and its Applications to Hardware
Security. IEEE Transactions on Computers 69(4), 505–
519 (2019)

26. Gascon, A., Subramanyan, P., Dutertre, B., Tiwari, A.,
Jovanovic, D., Malik, S.: Template-based circuit under-
standing. In: 2014 Formal Methods in Computer-Aided
Design (FMCAD), pp. 83–90. IEEE (2014)

27. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.:
Generative adversarial nets. In: Advances in neural in-
formation processing systems, pp. 2672–2680 (2014)

28. Guccione, S., Levi, D., Sundararajan, P., Jose, S.:
JBits: A Java-based Interface for Reconfigurable Com-
puting. 2nd Annual Military and Aerospace Applications
of Programmable Devices and Technologies Conference
(MAPLD) 95124, 253–261 (1999)

29. Hansen, M., Yalcin, H., Hayes, J.: Unveiling the ISCAS-
85 benchmarks: a case study in reverse engineering. IEEE
Design & Test of Computers 16(3), 72–80 (1999)

30. Kasch, S.P.: The Semiconductor Chip Protection Act:
Past, Present, and Future. High Technology Law Journal
7, 71–105 (1992)

31. Kömmerling, O., Kuhn, M.G.: Design Principles for
Tamper-Resistant Smartcard Processors. Proceedings
of the USENIX Workshop on Smartcard Technology
(Smartcard ’99) pp. 9–20 (1999)

32. Kumagai, J.: Chip detectives [reverse engineering]. IEEE
Spectrum 37(11), 43–48 (2000)

33. Lai, Y.T., Sastry, S., Pedram, M.: Boolean matching us-
ing binary decision diagrams with applications to logic
synthesis and verification. In: Proceedings 1992 IEEE
International Conference on Computer Design: VLSI in
Computers & Processors, pp. 452–458. IEEE Comput.
Soc. Press (1992)

34. Li, W.: Formal Methods for Reverse Engineering Gate-
Level Netlists. Ph.D. thesis, University of California at
Berkeley (2013)

35. Li, W., Gascon, A., Subramanyan, P., Tan, W.Y., Tiwari,
A., Malik, S., Shankar, N., Seshia, S.A.: WordRev: Find-
ing word-level structures in a sea of bit-level gates. In:
Proceedings of the 2013 IEEE International Symposium
on Hardware-Oriented Security and Trust, HOST 2013,
pp. 67–74. IEEE (2013)

36. Li, W., Wasson, Z., Seshia, S.A.: Reverse engineering cir-
cuits using behavioral pattern mining. Proceedings of
the 2012 IEEE International Symposium on Hardware-
Oriented Security and Trust, HOST 2012 pp. 83–88
(2012)

37. Li Fei-Fei, Fergus, R., Perona, P.: One-shot learning of
object categories. IEEE Transactions on Pattern Analysis
and Machine Intelligence 28(4), 594–611 (2006)

38. Lippmann, B., Werner, M., Unverricht, N., Singla, A.,
Egger, P., Dübotzky, A., Rasche, M., Kellermann, O.,
Gieser, H., Graeb, H.: Integrated flow for reverse engi-
neering of nanoscale technologies. Proceedings of the Asia
and South Pacific Design Automation Conference, ASP-
DAC pp. 82–89 (2019)

39. Mailhot, Frederic: Technology Mapping for VLSI Circuits
Exploiting Boolean Properties and Operations. Ph.D.
thesis, Stanford (1994)

40. McElvain, K.S.: Methods and apparatuses for automatic
extraction of finite state machines (2001)

https://github.com/emsec/hal

A Survey of Algorithmic Methods in IC Reverse Engineering 17

41. Meade, T., Jin, Y., Tehranipoor, M., Zhang, S.: Gate-
level netlist reverse engineering for hardware security:
Control logic register identification. In: 2016 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS),
pp. 1334–1337. IEEE (2016)

42. Meade, T., Shamsi, K., Le, T., Di, J., Zhang, S., Jin, Y.:
The Old Frontier of Reverse Engineering: Netlist Parti-
tioning. Journal of Hardware and Systems Security 2(3),
201–213 (2018)

43. Meade, T., Zhang, S., Jin, Y.: Netlist reverse engineering
for high-level functionality reconstruction. Proceedings
of the Asia and South Pacific Design Automation Con-
ference, ASP-DAC 25-28-Janu, 655–660 (2016)

44. Mohnke, J., Malik, S.: Permutation and phase indepen-
dent Boolean comparison. In: 1993 European Conference
on Design Automation with the European Event in ASIC
Design, pp. 86–92. IEEE Computer Society Press (1993)

45. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On
the vulnerability of FPGA bitstream encryption against
power analysis attacks: Extracting keys from Xilinx
Virtex-II FPGAs. Proceedings of the ACM Conference
on Computer and Communications Security pp. 111–123
(2011)

46. Moradi, A., Kasper, M., Paar, C.: Black-Box Side-
Channel Attacks Highlight the Importance of Counter-
measures pp. 1–18 (2012)

47. Moradi, A., Oswald, D., Paar, C., Swierczynski, P.: Side-
channel attacks on the bitstream encryption mechanism
of Altera Stratix II: Facilitating black-box analysis using
software reverse-engineering. ACM/SIGDA International
Symposium on Field Programmable Gate Arrays - FPGA
pp. 91–99 (2013)

48. Moradi, A., Schneider, T.: Improved side-channel anal-
ysis attacks on xilinx bitstream encryption of 5, 6, and
7 series. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) 9689, 71–87 (2016)

49. Nedospasov, D., Seifert, J.P., Schlosser, A., Orlic, S.:
Functional integrated circuit analysis. In: 2012 IEEE In-
ternational Symposium on Hardware-Oriented Security
and Trust, pp. 102–107. IEEE (2012)

50. Nohl, K., Evans, D., Starbug, S., Plötz, H.: Reverse-
Engineering a Cryptographic RFID Tag. In: Proceedings
of the 17th USENIX Security Symposium, pp. 185–194.
USENIX Association (2008)

51. Note, J.B., Rannaud, É.: From the bitstream to the
netlist. In: 16th International Symposium on Field Pro-
grammable Gate Arrays (FPGA), p. 264. ACM (2008)

52. O’Donnell, R.: Analysis of boolean functions. Cambridge
University Press (2014)

53. Ohlrich, M., Ebeling, C., Ginting, E., Sather, L.: Sub-
Gemini: identifying subcircuits using a fast subgraph iso-
morphism algorithm. In: Proceedings of the 30th inter-
national on Design automation conference - DAC ’93, pp.
31–37. ACM Press, New York, New York, USA (1993)

54. Pan, S.J., Yang, Q.: A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineering
22(10), 1345–1359 (2010)

55. Pham, K.D., Horta, E., Koch, D.: BITMAN: A tool and
API for FPGA bitstream manipulations. In: Design,
Automation & Test in Europe Conference & Exhibition
(DATE), pp. 894–897. IEEE (2017)

56. Polian, I.: Security aspects of analog and mixed-signal
circuits. In: 2016 IEEE 21st International Mixed-Signal
Testing Workshop, IMSTW 2016. Institute of Electrical
and Electronics Engineers Inc. (2016)

57. Principe, E.L., Asadizanjani, N., Forte, D., Tehranipoor,
M., Chivas, R., DiBattista, M., Silverman, S., Marsh, M.,
Piche, N., Mastovich, J.: Steps toward automated depro-
cessing of integrated circuits. In: ISTFA 2017: Proceed-
ings from the 43rd International Symposium for Testing
and Failure Analysis, pp. 285–298. ASM International
(2017)

58. Quadir, S.E., Chen, J., Forte, D., Asadizanjani, N., Shah-
bazmohamadi, S., Wang, L., Chandy, J., Tehranipoor,
M.: A survey on chip to system reverse engineering. ACM
Journal on Emerging Technologies in Computing Sys-
tems 13(1) (2016)

59. Rolt, J.D., Natale, G.D., Flottes, M.L., Rouzeyre, B.: A
novel differential scan attack on advanced DFT struc-
tures. ACM Transactions on Design Automation of Elec-
tronic Systems 18(4), 1–22 (2013)

60. Roy, J.A., Koushanfar, F., Markov, I.L.: EPIC: Ending
piracy of integrated circuits. In: Proceedings of the con-
ference on Design, automation and test in Europe, pp.
1069—-1074 (2008)

61. Rubanov, N.: SubIslands: the probabilistic match assign-
ment algorithm for subcircuit recognition. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits
and Systems 22(1), 26–38 (2003)

62. Rubanov, N.: A High-Performance Subcircuit Recogni-
tion Method Based on the Nonlinear Graph Optimiza-
tion. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 25(11), 2353–2363
(2006)

63. Saab, D.G., Nagubadi, V., Kocan, F., Abraham, J.: Ex-
traction based verification method for off the shelf inte-
grated circuits. In: 2009 1st Asia Symposium on Quality
Electronic Design, pp. 396–400. IEEE (2009)

64. Samanvi, K., Sivadasan, N.: Subgraph Similarity Search
in Large Graphs. arXiv (2015)

65. Schobert, M.: Interactive Functions of the Degate Soft-
ware Package (2012)

66. Shakya, B., Shen, H., Tehranipoor, M., Forte, D.: Covert
Gates: Protecting Integrated Circuits with Undetectable
Camouflaging. tCHES 2019 2019(3), 86–118 (2019)

67. Shi, Y., Ting, C.W., Gwee, B.H., Ren, Y.: A highly effi-
cient method for extracting FSMs from flattened gate-
level netlist. In: Proceedings of 2010 IEEE Interna-
tional Symposium on Circuits and Systems, pp. 2610–
2613. IEEE (2010)

68. Skorobogatov, S., Woods, C.: Breakthrough silicon scan-
ning discovers backdoor in military chip. In: E. Prouff,
P. Schaumont (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2012, Lecture Notes in Com-
puter Science, vol. 7428, pp. 23–40. Springer, Berlin, Hei-
delberg (2012)

69. Soeken, M., Sterin, B., Drechsler, R., Brayton, R.: Simu-
lation graphs for reverse engineering. Proceedings of the
15th Conference on Formal Methods in Computer-Aided
Design, FMCAD 2015 pp. 152–159 (2016)

70. Subramanyan, P., Tsiskaridze, N., Li, W., Gascón, A.,
Tan, W.Y., Tiwari, A., Shankar, N., Seshia, S.A., Malik,
S.: Reverse engineering digital circuits using structural
and functional analyses. IEEE Transactions on Emerging
Topics in Computing 2(1), 63–80 (2014)

71. Swierczynski, P., Fyrbiak, M., Koppe, P., Paar, C.:
FPGA Trojans Through Detecting and Weakening
of Cryptographic Primitives. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems 34(8), 1236–1249 (2015)

72. Swierczynski, P., Moradi, A., Oswald, D., Paar, C.: Phys-
ical security evaluation of the bitstream encryption mech-
anism of altera stratix II and stratix III FPGAs. ACM

18 Leonid Azriel et al.

Transactions on Reconfigurable Technology and Systems
7(4) (2014)

73. SymbiFlow: Project X-Ray (2018). URL https://

github.com/SymbiFlow/prjxray

74. Technology, S.S.: Top 5 counterfeited semiconductors:
Analog ICs top the list — Semiconductor Digest. URL
https://sst.semiconductor-digest.com/2012/04/

top-5-counterfeited-semiconductors-analog-ics-top-the-list/

75. Thomas, O., Sarl, T., Nedospasov, D.: On the Impact of
Automating the IC Analysis Process. Tech. rep. (2015)

76. Torrance, R., James, D.: The state-of-the-art in IC re-
verse engineering. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 5747 LNCS,
363–381 (2009)

77. Wallat, S., Albartus, N., Becker, S., Hoffmann, M.,
Ender, M., Fyrbiak, M., Drees, A., Maaen, S., Paar,
C.: Highway to HAL: Open-Sourcing the First Extend-
able Gate-Level Netlist Reverse Engineering Framework.
ACM International Conference on Computing Frontiers
2019, CF 2019 - Proceedings pp. 392–397 (2019)

78. Werner, M., Lippmann, B., Baehr, J., Grab, H.: Reverse
engineering of cryptographic cores by structural interpre-
tation through graph analysis. 2018 IEEE 3rd Interna-
tional Verification and Security Workshop, IVSW 2018
pp. 13–18 (2018)

79. Ziener, D., Aßmus, S., Teich, J.: Identifying FPGA IP-
cores based on lookup table content analysis. Proceedings
- 2006 International Conference on Field Programmable
Logic and Applications, FPL pp. 481–486 (2006)

https://github.com/SymbiFlow/prjxray
https://github.com/SymbiFlow/prjxray
https://sst.semiconductor-digest.com/2012/04/top-5-counterfeited-semiconductors-analog-ics-top-the-list/
https://sst.semiconductor-digest.com/2012/04/top-5-counterfeited-semiconductors-analog-ics-top-the-list/

	Introduction
	Netlist Extraction
	Specification Discovery - Fundamental Algorithms
	Specification Discovery - Putting It All Together
	Reverse Engineering Tools and Frameworks
	Summary, Challenges, Open Questions, and Future Directions

