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Abstract—The conversion of analog signals into digital signals
and vice versa, performed by sampling and interpolation, respec-
tively, is an essential operation in signal processing. When digital
computers are used to compute the analog signals, it is important
to effectively control the approximation error. In this paper we
analyze the computability, i.e., the effective approximation of
bandlimited signals in the Bernstein spaces Bpπ , 1 ≤ p <∞, and
of the corresponding discrete-time signals that are obtained by
sampling. We show that for 1 < p < ∞, computability of the
discrete-time signal implies computability of the continuous-time
signal. For p = 1 this correspondence no longer holds. Further,
we give a necessary and sufficient condition for computability
and show that the Shannon sampling series provides a canonical
approximation algorithm for p > 1. We discuss BIBO stable
LTI systems and the time-domain concentration behavior of
bandlimited signals as applications.

Index Terms—Sampling, discrete-time signal, continuous-time
signal, effective approximation, approximation error

I. INTRODUCTION

ACCORDING to Shannon’s sampling theorem, a band-
limited signal with finite energy is uniquely determined

by its samples taken at the Nyquist rate, and the continuous-
time signal can be recovered from the samples by means of
the Shannon sampling series. This fact allows us to connect
the continuous-time and discrete-time worlds by sampling
and interpolation. Interestingly, when applying sampling or
interpolation, many properties and characteristics of the signal
carry over from one domain into the other. For example, the
energy of a signal can be determined from the continuous-
time signal or the discrete-time signal and is the same in both
domains.

The sampling theorem has a long history and many famous
names, such as Whittaker [2], Ogura [3], Kotel’nikov [4],
Raabe [5], and Shannon [6] are linked with its discovery.
For an historical treatment of the sampling theorem, see [7]–
[9]. Shannon originally employed the sampling theorem to
bridge the analog and digital worlds, which enabled him to
study the communication capacity of continuous channels [6].
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Today, the sampling theorem is of fundamental importance
in communications [10], [11]. For example, it is used in
communication systems to convert the digital baseband signal
into the actual analog waveform that is transmitted over the
wireless channel. Shannon introduced the sampling theorem
for bandlimited signals with finite energy. By now, many
authors have extended this result in different directions, e.g., to
sampling theorems for more general signal spaces [12], [13],
non-bandlimited signals [14], and stochastic processes [15].
Other extensions deal with non-equidistant sampling [16],
missing samples [17], multiband sampling [18], multidimen-
sional sampling [19], and sampling in the context of lattice
functions [20].

In this paper we consider the Bernstein spaces Bpπ , i.e.,
bandlimited signals with finite Lp-norm as characteristic time-
domain behavior. In general, such signals cannot be repre-
sented in closed form, e.g., in optimization tasks or filter
design problems. Hence the approximation of such signals
and the control of the approximation error is important. The
approximation and the error control, can both be done in either
the continuous-time or the discrete-time domain. The question
is how the control of the approximation error in one domain
translates into a control of the error in the other domain. We
will show that for 1 < p < ∞ we have a coupling of the
approximation errors, whereas for p = 1 such a coupling
does not exist. This failure for p = 1 is noteworthy because
the space B1

π is practically relevant, e.g., for modeling the
impulse responses of bounded-input bounded-output (BIBO)
stable linear time-invariant (LTI) systems.

Nowadays, signal processing is often done on digital hard-
ware, such as microprocessors, field programmable gate arrays
(FPGAs), or digital signal processors (DSPs), and hence ques-
tions of computability arise. In order to study the question of
computability, we employ the concept of Turing computability.

A Turing machine is an abstract device that manipulates
symbols on a strip of tape according to certain rules [21]–
[24]. Although the concept is very simple, a Turing machine
is capable of simulating any given algorithm. Turing machines
have no limitations in terms of memory or computing time,
and hence provide a theoretical model that describes the fun-
damental limits of any practically realizable digital computer.
Computability is a mature topic in computer science [21]–[26].
In the signal processing literature, however, this aspect has not
received much attention so far.

Computability is important for the control of the approxi-
mation error if digital hardware is used to compute the signals.
One of the key concepts of computability is the effective, i.e.,
algorithmic control of the approximation error. If a signal is
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Fig. 1. For a computable signal we can always determine an error bar and
can then be sure that the true value lies within the specified error range.

computable, then for every prescribed error tolerance ε we
can compute an approximation that is ε-close to the desired
signal. This is illustrated in Fig. 1. In contrast to classical
approximation theory, where the mere mathematical existence
of an approximation is sufficient, the essential point for
computability is that the approximation can be algorithmically
computed in a finite number of steps. The exact definitions of
effective convergence and a computability for signals will be
given in Section II.

To the best of our knowledge, the approximation of band-
limited signals—although being a classical topic in signal
processing [14], [27]–[32]—has never been studied from a
computational point of view. It is often assumed that in
principle, it is possible to approximate signals and systems
arbitrarily well, for example by increasing the sampling rate
and by using a finer quantization. That this not necessarily the
case has recently been demonstrated for the Fourier transform,
the bandlimited interpolation, and the Wiener filter [33]–[37].
In [33], [34] the Fourier transform has been studied with
respect to computability, in [35] the Fourier series, and in [37],
[38], the spectral factorization.

As we will see in this paper, the transition from the
discrete-time domain into the continuous-time domain can
be problematic. A typical signal processing problem is as
follows: We have a discrete-time signal, which represents
the samples of a bandlimited continuous-time signal, and we
want to reconstruct or approximate this continuous-time signal
from the samples. In our previously mentioned communication
scenario, the discrete-time signal is the digital baseband signal
that has to be converted into an analog waveform which can
be transmitted. We will show in Section V that even if the
discrete-time signal is a well-behaved computable sequence,
the corresponding bandlimited continuous-time signal is not
necessarily computable. In this case, the error that is made
in the approximation of the continuous-time signal cannot be
algorithmically controlled.

This result has further implications, for example for the ap-
proximation of BIBO stable LTI systems, and the algorithmic
characterization of the time-domain concentration behavior
of bandlimited signals. In Section VII-A we will see that
there exist BIBO stable LTI systems with bandlimited and
absolutely integrable impulse responses for which the discrete-

time BIBO norm is computable, but where the continuous-time
BIBO-norm cannot be algorithmically determined on a digital
computer. As a further example, we discuss in Section VII-B
problems related to the algorithmic characterization of the
time-domain concentration behavior of bandlimited signals. In
both examples we will see the importance of an algorithmic
control of the approximation error, which can only be guaran-
teed if the involved signals are computable.

We present the basic definitions next. By c0 we denote the
set of all sequences that vanish at infinity, and by `p(Z),
1 ≤ p < ∞, we denote the usual spaces of pth-power
summable sequences x = {x(k)}k∈Z with the norm ‖x‖`p =
(
∑∞
k=−∞|x(k)|p)1/p. For Ω ⊂ R, let Lp(Ω), 1 ≤ p < ∞,

be the space of all measurable, pth-power Lebesgue integrable
functions on Ω, with the usual norm ‖f‖p =

(∫
Ω
|f(t)|p dt

)1/p
and L∞(Ω) the space of all measurable functions for which the
essential supremum norm ‖f‖∞ = ess supt∈Ω|f(t)| is finite.
By f̂ we denote the Fourier transform of a function f , and
by f |Z the sequence {f(k)}k∈Z, which is the restriction of f
to the set Z. The Bernstein space Bpσ , σ > 0, 1 ≤ p ≤ ∞,
consists of all entire functions of exponential type at most σ,
whose restriction to the real line is in Lp(R) [32, p. 49]. The
norm for Bpσ is given by the Lp-norm on the real line, i.e.,
‖f‖Bpσ = ‖f‖p. A function in Bpσ is called bandlimited to
σ. B2

σ is the frequently used space of bandlimited functions
with bandwidth σ and finite energy, and B∞σ the space of all
bandlimited functions that are bounded on the real axis. B∞σ,0
denotes the space of all functions in B∞σ that vanish on the
real axis at infinity.

In addition to B2
σ , i.e., the space of all bandlimited functions

with finite energy, the spaces B1
σ and B∞σ,0 are of particular

importance in practical applications. For example, functions
in B1

σ are used to describe the impulse response of BIBO
stable LTI systems operating on bandlimited signals, whereas
the input and output signals are signals in B∞σ,0. We will
discuss this in more detail in Section VII-A. The space B∞σ,0
is also used to model the peak-to-average power ratio (PAPR)
problem in communication systems that employ orthogonal
frequency division multiplexing (OFDM) to [39].

The structure of the manuscript is as follows. In Section II
we introduce the concepts of computability. Then, in Sec-
tion III we further discuss the relevance of the problem and
give a necessary and sufficient condition for the computability
of the continuous-time signal. The Shannon sampling series as
a canonical approximation algorithm is studied in Section IV.
In Section V we provide a refined analysis and highlight the
differences between Bpπ , 1 < p < ∞, and B1

π . The com-
putability of functions in B2

π is treated in Section VI. Before
concluding the manuscript with Section VIII, in Section VII
we discuss as applications BIBO stable LTI systems and the
time-domain concentration behavior of signals.

II. COMPUTABILITY

The theory of computability is a well-established field
in computer sciences [21]–[26]. Alan Turing introduced the
concept of a computable real number in [21], [22]. A sequence
of rational numbers {rn}n∈N is called computable sequence
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if there exist recursive functions a, b, s from N to N such
that b(n) 6= 0 for all n ∈ N and rn = (−1)s(n)a(n)/b(n),
n ∈ N. A recursive function is a function mapping natural
numbers into natural numbers that is computable by a Turing
machine. For a precise definition of a recursive function, see
[40]. For the purposes in this paper, the exact definition is
not of importance, it only matters that recursive functions
are exactly those functions that are computable by a Turing
machine.

A real number x is said to be computable if there exists a
computable sequence of rational numbers {rn}n∈N and a re-
cursive function ξ : N→ N, such that for all M ∈ N, we have
|x− rn| ≤ 2−M for all n ≥ ξ(M). This form of convergence
with a computable control of the approximation error is called
effective convergence. Note that if a computable sequence of
real numbers {xn}n∈N converges effectively to a limit x, then
x is a computable real number [25, p. 20, Corollary 2a]. A
non-computable real number was, for example, constructed in
[41]. By Rc we denote the set of computable real numbers and
by Cc = Rc + iRc the set of computable complex numbers.

A set A ⊂ N is called recursively enumerable if A = ∅ or
A is the range of a recursive function. A set A ⊂ N is called
recursive if both A and N \A are recursively enumerable. We
say that a set A ⊂ N is a recursively enumerable non-recursive
set if A is recursively enumerable but not recursive, i.e., if A is
recursively enumerable but N\A is not recursively enumerable.
Such recursively enumerable non-recursive sets exist [40,
4.4 Proposition, p. 19] and will be of great importance for the
results in this paper. For every recursively enumerable non-
recursive set A ⊂ N there exists a recursive enumeration of
A, i.e., a recursive function φA : N→ A that is surjective and
injective. In this paper, the series

∞∑
n=1

1

2φA(n)
,

where A ⊂ N is a recursively enumerable non-recursive set,
will play an important role. We will discuss the relevant
properties next. First, we note that

sM =
M∑
n=1

1

2φA(n)
≤

M∑
n=1

1

2n
(1)

for all M ∈ N, because in general the numbers {φA(n) : n =
1, . . . ,M} differ from the numbers {1, . . . ,M}, which maxi-
mize the sum on the right-hand side of (1). Therefore, we see
that ∞∑

n=1

1

2φA(n)
≤
∞∑
n=1

1

2n
= 1. (2)

Hence {sM}M∈M is a monotonically increasing and bounded
sequence of real numbers. According to the monotone conver-
gence theorem, this sequence has a well-defined limit

s∗ = lim
M→∞

sM =
∞∑
n=1

1

2φA(n)
,

where s∗ ∈ R. However it can be shown that s∗ 6∈ Rc, i.e., s∗

is not computable [25, Corollary 2b, p. 20]. This fact will be
important for us.

A sequence {x(k)}k∈Z in `p, p ∈ [1,∞) ∩ Rc is called
computable in `p if every number x(k), k ∈ Z, is computable
and there exist a computable sequence {yn}n∈N ⊂ `p, where
each yn has only finitely many non-zero elements and a
recursive function ξ : N → N, such that for all M ∈ N we
have ‖x−yn‖`p ≤ 2−M for all n ≥ ξ(M). By C`p we denote
the set of all sequences that are computable in `p. Similarly,
we define the set of all sequences that are computable in c0
and denote this set by Cc0.

There are several—not equivalent—definitions of com-
putable functions, most notably, computable continuous func-
tions, Turing computable functions, Markov computable func-
tions, and Banach–Mazur computable functions [26]. A func-
tion that is computable with respect to any of the above
definitions has the property that it maps computable numbers
into computable numbers.

We now give a definition of a computable continuous
function. Let I ⊂ R be an interval where the endpoints are
computable real numbers. A function f : I → R is called a
computable continuous function if

1) f maps every computable sequence {tn}n∈N ⊂ I into a
computable sequence {f(tn)}n∈N of real numbers,

2) there exists a recursive function d : N→ N, such that for
all t1, t2 ∈ I and all M ∈ N we have: |t1−t2| ≤ 1/d(M)
implies |f(t1)− f(t2)| ≤ 2−M .

We extend this definition to functions defined on R. A function
f : R→ R is called computable continuous function if

1) f maps every computable sequence {tn}n∈N ⊂ R into a
computable sequence {f(tn)}n∈N of real numbers.

2) there exists a recursive function d : N×N→ N such that
for all L,M ∈ N we have: |t1−t2| ≤ 1/d(L,M) implies
|f(t1)− f(t2)| ≤ 2−M for all t1, t2 ∈ [−L,L].

In addition to the definition of computability for continuous
functions as given above, we introduce a definition for com-
putable functions in Banach spaces, which is based on effective
convergence. We call a function f elementary computable if
there exists a natural number L and a sequence of computable
numbers {αk}Lk=−L such that

f(t) =
L∑

k=−L

αk
sin(π(t− k))

π(t− k)
. (3)

Note that every elementary computable function f is a fi-
nite sum of computable continuous functions and hence a
computable continuous function. As a consequence, for every
t ∈ Rc the number f(t) is computable. Further, the sum
of finitely many elementary computable functions is an el-
ementary computable function, as well as the product of an
elementary computable function with a computable number.

A function in f ∈ Bpπ is called computable in Bpπ ,
p ∈ [1,∞) ∩ Rc, if there exist a computable sequence of
elementary computable functions {fN}N∈N and a recursive
function ξ : N → N, such that for all M ∈ N we have ‖f −
fN‖Bpπ ≤ 2−M for all N ≥ ξ(M). By CBpπ , p ∈ [1,∞) ∩Rc,
we denote the set of all functions in Bpπ that are computable in
Bpπ . The set CB∞π,0 of computable functions in B∞π,0 is defined
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analogously. Note that the sets CBpπ , p ∈ [1,∞) ∩ Rc, and
CB∞π,0 are non-empty. Consider, for example, the function

f(t) =
sin(πt)

πt
− sin(π(t+ 2k))

π(t+ 2k)
=

2k sin(πt)

πt(t+ 2k)
.

Clearly f is an elementary computable function. Further, since
f ∈ Bpπ for all p ∈ [1,∞) and f ∈ B∞π,0, it follows that
f ∈ CBpπ , p ∈ [1,∞) ∩ Rc, and f ∈ CB∞π,0.

In order that the above definition of a computable function
in B1

π makes sense, it is necessary that each f ∈ B1
π can be

approximated in a classical sense by a linear combination of
shifted sinc-functions. This is assured by the next fact, the
proof of which will be given in Appendix B.

Fact 1. Let f ∈ B1
π . For every ε > 0 there exist an N ∈ N

and numbers {αk}Nk=−N such that1∥∥∥∥∥f −
N∑

k=−N

αk
sin(π( · − k))

π( · − k)

∥∥∥∥∥
B1
π

< ε.

Remark 1. If f ∈ CBpπ for p ∈ [1,∞) ∩ Rc or f ∈ CB∞π,0 for
p =∞, then the norm ‖f‖Bpπ is computable. This follows from
the fact that the norm ‖fN‖Bpπ of an elementary computable
function fN is computable, together with the inequality∣∣‖f‖Bpπ − ‖fN‖Bpπ ∣∣ ≤ ‖f − fN‖Bpπ ≤ 1

2M
,

which holds for all N ≥ ξ(M).
Remark 2. For p ∈ [1,∞) and signals f ∈ Bpπ , it follows from
Nikol’skiı̆’s inequality [32, p. 49] that ‖f‖∞ ≤ (1+π)‖f‖Bpπ .
Hence for f ∈ CBpπ , p ∈ [1,∞)∩Rc, and all M ∈ N we have

‖f − fN‖∞ ≤ (1 + π)‖f − fN‖Bpπ ≤
1 + π

2M

for all N ≥ ξ(M). This shows that we can approximate any
function f ∈ CBpπ by an elementary computable function
where we have an “effective” and uniform control of the
approximation error, as illustrated in Fig. 1.
Remark 3. If f ∈ CBpπ , p ∈ [1,∞) ∩ Rc, then f is also a
computable continuous function, because we have

|f(t1)− f(t2)| ≤ ‖f ′‖∞|t1 − t2|
≤ π‖f‖∞|t1 − t2|
≤ π(1 + π)‖f‖Bpπ |t1 − t2|,

and ‖f‖Bpπ is computable.
Remark 4. For our definition of a computable function in
Bpπ , we employ finite Shannon sampling series, as given by
(3), as basic building blocks. This corresponds to equidistant
sampling at the Nyquist rate. It is possible to extend the
questions in this paper to non-equidistant sampling.

In the theory of non-equidistant sampling, the generating
function φ plays a central role. If the sampling point sequences
{tk}k∈Z ⊂ R is ordered strictly increasingly, then the product

φ(z) = z lim
N→∞

∏
|k|≤N
k 6=0

(
1− z

tk

)
(4)

1The “ · ” in the function argument is a placeholder for the anonymous
variable with respect to which the norm is taken.

converges uniformly on |z| ≤ R for all R < ∞, and φ is
an entire function of exponential type π [42]. Without loss of
generality, we assumed that t0 = 0. It can be seen from (4)
that φ has the zeros {tk}k∈Z. Based on φ, we can define the
interpolation functions

φk(t) =
φ(t)

φ′(tk)(t− tk)
, k ∈ Z,

which are the unique functions in B2
π that solve the interpo-

lation problem φk(tl) = 1 if k = l and φk(tl) = 0 if k 6= l.
Under certain conditions on the sequence of sampling points
{tk}k∈Z and the signal f , we can use the sampling series

∞∑
k=−∞

f(tk)φk(t)

to reconstruct f . However, when studying non-equidistant
sampling, new problems emerge. Even if the sampling points
{tk}k∈Z are computable numbers, it is unclear whether the
generating function φ is a computable entire function. To the
best of our knowledge, it seems to be completely unknown
how to infer the computability of φ from properties of the
computable sequence {tk}k∈Z.

Furthermore, it would be interesting to analyze the effective
approximation of bandlimited signals by sampling series for
the case where oversampling is employed. As before, no
results seem to exist for this question.

III. A NECESSARY AND SUFFICIENT CONDITION

We start with a simple but important observation about the
computability of the discrete-time signal: The computability
of the continuous-time bandlimited signal always implies the
computability of the corresponding discrete-time signal that is
obtained by sampling at the Nyquist rate.

Observation 1. Let p ∈ [1,∞) ∩ Rc or p = ∞, and let
f ∈ CBpπ if p ∈ [1,∞) ∩ Rc and f ∈ CB∞π,0 if p = ∞. Then
f |Z = {f(k)}k∈N is a computable sequence of computable
numbers. Further, we have f |Z ∈ C`p if p ∈ [1,∞)∩Rc, and
f |Z ∈ Cc0 if p =∞.

For the proof of Observation 1 we need the Plancherel–
Pólya inequality as a lemma. This inequality connects the
Lp-norm of a continuous-time bandlimited signal with the
`p-norm of the sequence of its samples [42, p. 152]. In
Appendix A we will show how it can be used to prove the
convergence of the Shannon sampling series.

Lemma 1 (Plancherel–Pólya). Let 1 < p < ∞. There exist
two positive constants Ap and Bp such that for all f ∈ Bpπ
we have

Ap

[ ∞∑
k=−∞

|f(k)|p
] 1
p

≤

[∫ ∞
−∞
|f(t)|pdt

] 1
p

≤ Bp

[ ∞∑
k=−∞

|f(k)|p
] 1
p

.

This inequality and the fact that the constants Ap and Bp
are computable if p ∈ Rc will be essential for our proofs.
The value of Bp was derived in [34], and for Ap we can
choose Ap = 1/(1 + π), according to Nikol’skiı̆’s inequality
[32, p. 49].
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Proof of Observation 1. Let p ∈ [1,∞)∩Rc and f ∈ CBpπ be
arbitrary but fixed. Since f is computable in Bpπ , there exists
a computable sequence of elementary computable functions
{fN}N∈N that converges effectively to f . That is for all M ∈
N, we have

‖f − fN‖Bpπ ≤
1

2M

for all N ≥ ξ(M). It follows from Lemma 1 that

‖f |Z − fN |Z‖`p ≤
1

Ap
‖f − fN‖Bpπ <

1

Ap2M

for all N ≥ ξ(M), which shows that f |Z ∈ C`p. The case p =
∞ and f ∈ B∞π,0 is treated analogously, using that ‖f |Z‖`∞ ≤
‖f‖B∞

π,0
for all f ∈ B∞π,0.

In Observation 1 we have seen that the computability of
the continuous-time signal f directly carries over to the com-
putability of the discrete-time signal f |Z, which is obtained
by sampling f . Clearly, the other direction is relevant as
well. If we have a computable discrete-time signal, is the
corresponding continuous-time signal computable? Such a
question also arises in many modern applications, where we do
not start with an analog signal but instead with a digital signal,
such as a synthetically created digital image, audio sample,
or baseband signal, that is later converted into an analog
continuous-time signal. Then we need to approximate the
continuous-time signal by using the discrete-time signal while
controlling the approximation error. Such a control of the
approximation error is possible only if the desired continuous-
time signal is computable.

A second problem is related to the actual computation of the
continuous-time signal. Even if we know that the continuous-
time signal is computable, we do not necessarily have a simple
algorithm to compute it. Having such an algorithm is clearly
essential for applications.

Hence, two questions are important. Question 1: Is there
a simple necessary and sufficient condition for characterizing
the computability of f? And, Question 2: Is there a simple
canonical algorithm to actually compute f from the samples
f |Z? We will analyze both questions and prove that for p ∈
(1,∞) ∩ Rc and signals f ∈ Bpπ , they can be answered with
“yes”. For p = 1 and p =∞ this is not possible.

We start with Question 1. Theorem 1 shows that for
p ∈ (1,∞)∩Rc, the computability of the discrete-time signal
implies the computability of the continuous-time signal. This
answers Question 1 for p ∈ (1,∞) ∩ Rc, because f |Z, i.e.,
the samples of f provide a simple discrete-time representation
of the signal f , where computability in one domain implies
computability in the other domain.

Theorem 1. Let p ∈ (1,∞) ∩Rc and f ∈ Bpπ . Then we have
f ∈ CBpπ if and only if f |Z ∈ C`p.

Proof. “⇒”: This follows directly from Observation 1.
“⇐”: Let p ∈ (1,∞) ∩ Rc and f ∈ Bpπ be arbitrary but

fixed. Further, let f |Z ∈ C`p. Then there exist a computable
sequence {α(N)}N∈N of sequences with only finitely many
non-zero elements

α(N) = {. . . , 0, α−K(N)(N), . . . , αK(N)(N), 0, . . . }

and a recursive function ξ, such that for all M ∈ N, we have

‖f |Z − α(N)‖`p ≤
1

2M

for all N ≥ ξ(M). Let

fN (t) =

L(N)∑
k=−L(N)

αk(N)
sin(π(t− k))

π(t− k)
.

Then {fN}n∈N is a computable sequence of elementary com-
putable functions in Bpπ , and using Lemma 1 we obtain, for
all M ∈ N, that

‖f − fN‖Bpπ ≤ Bp‖f |Z − α(N)‖`p ≤ Bp
1

2M

for all N ≥ ξ(M). Hence we can compute an integer M which
can depend on p, such that Bp ≤ 2M . Let ξ(M) = ξ(M+M).
Then for all M ∈ N, we have

‖f − fN‖Bpπ ≤
1

2M

for all N ≥ ξ(M). This shows that f ∈ CBpπ .

According to Theorem 1, we have a correspondence be-
tween the computable discrete-time signals in C`p and the
computable continuous-time signals in CBpπ for p ∈ (1,∞) ∩
Rc. This correspondence is no longer true for p = 1 as the
next observation shows.

Observation 2. Let f(t) = sin(πt)/(πt), t ∈ R. Then f is
an entire function of exponential type at most π, and we have
f |Z ∈ C`1. However, f 6∈ CB1

π , because f 6∈ B1
π .

IV. THE SHANNON SAMPLING SERIES AS A
CANONICAL ALGORITHM

In this section we will answer Question 2 by showing that
the Shannon sampling series provides a canonical algorithm
for the effective approximation of f ∈ CBpπ if p ∈ (1,∞)∩Rc.
This gives us a remarkably simple algorithm to construct a
computable sequence of elementary computable functions in
CBpπ that converges effectively to f . For N ∈ N, let

(SNf)(t) =
N∑

k=−N

f(k)
sin(π(t− k))

π(t− k)
, t ∈ R.

Theorem 2. Let p ∈ (1,∞) ∩ Rc and f ∈ Bpπ . Then we
have f ∈ CBpπ if and only if f |Z is a computable sequence of
computable numbers and {SNf}N∈N converges effectively to
f in the Lp-norm.

For the proof of Theorem 2 we need the following lemma
[25, p. 20, Corollary 2a].

Lemma 2. Let {xN}N∈N be a computable sequence of
computable numbers satisfying xN ≤ xN+1, N ∈ N, and
x∗ = limN→∞ xN with x∗ ∈ Rc. Then there exists a recursive
function ξ such that for all M ∈ N we have |x∗−xN | ≤ 1/2M

for all N ≥ ξ(M).

Proof of Theorem 2. “⇐”: This direction is obvious.
{SNf}N∈N is a computable sequence of elementary
computable functions that converges effectively to f in the
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Lp-norm. The computability of f follows immediately from
the definition of CBpπ .

“⇒”: Let p ∈ (1,∞) ∩ Rc and f ∈ Bpπ be arbitrary but
fixed. For N ∈ N, let α(N) = {αk(N)}k∈Z, where

αk(N) =

{
f(k), |k| ≤ N
0, |k| > N.

Then we have

lim
N→∞

‖f |Z − α(N)‖`p = 0

as well as
lim
N→∞

‖α(N)‖`p = ‖f |Z‖`p .

Since f ∈ CBpπ , we already know from Observation 1 that
f |Z ∈ C`p. Further, since

‖α(N)‖p`p =
N∑

k=−N

|f(k)|p

is monotonically increasing in N , it follows from Lemma 2
that there exists a recursive function ξ, such that for all M ∈ N,
we have

|‖f |Z‖p`p − ‖α(N)‖p`p | ≤
1

2M

for all N ≥ ξ(M). Consequently, we have

‖f |Z − α(N)‖p`p =

∣∣∣∣∣ ∑
|k|>N

|f(k)|p
∣∣∣∣∣

=

∣∣∣∣∣
∞∑

k=−∞

|f(k)|p −
N∑

k=−N

|αk(N)|p
∣∣∣∣∣

= |‖f |Z‖p`p − ‖α(N)‖p`p | ≤
1

2M

for all N ≥ ξ(M). Hence the sequence {α(N)}N∈N converges
effectively to f |Z in the `p-norm. We set ξ(M) = ξ((M +

M)p), where M is such that Bp < 2M , and p is the smallest
integer satisfying p > p. Then we have

‖f − SNf‖Bpπ ≤ Bp‖f |Z − α(N)‖`p <
1

2M

for all N ≥ ξ(M).

The next two theorems show that Theorem 2 cannot be true
for p = 1 and p = ∞, respectively. In particular, they show
that in general, the Shannon sampling series does not provide
an effective approximation process for B1

π and B∞π,0.

Theorem 3. There exists a signal f1 ∈ CB1
π for which S1f1 6∈

CB1
π because S1f1 6∈ B1

π .

Proof. We choose

f1(t) =
sin(πt)

πt
+

1

2

(
sin(π(t+ 3))

π(t+ 3)
+

sin(π(t− 3))

π(t− 3)

)
=

1

2π

∫ π

−π
(1 + cos(3ω)) eiωt dω.

Then the Fourier transform of f1 is given by

f̂1(ω) =

{
1 + cos(3ω), |ω| ≤ π,
0, |ω| > π,

and its derivative by

f̂ ′1(ω) =

{
−3 sin(3ω), |ω| ≤ π,
0, |ω| > π.

Since f̂ ′1 is bounded on [−π, π] and zero otherwise, it follows
that f̂ ′1 ∈ L2(R), which in turn implies that f1 ∈ CB1

π . Further,
we have (S1f1)(t) = sin(πt)/(πt), and therefore S1f1 6∈ B1

π .

Theorem 4. There exists a signal f2 ∈ CB∞π,0 such that
{SNf2}N∈N does not converge effectively to f2 in the L∞-
norm.

Proof. Let

wN (k) =


1, |k| ≤ N,
1− |k|−NN , N < |k| ≤ 2N,

0, |k| > 2N,

and

gN (t) =
2N∑

k=−2N

(−1)kwN (k)
sin(π(t− k))

π(t− k)

=
1

2π

∫ π

−π

(
2N∑

k=−2N

(−1)kwN (k) e−iωk

)
eiωt dω.

Further, let

WN (ω) =
2N∑

k=−2N

wN (k) e−iωk .

It can be shown that 1/(2π)
∫ π
−π|WN (ω)| dω < 3, see for

example [43]. Since

WN (ω + π) =
2N∑

k=−2N

wN (k) e−iωk e−iπk

=
2N∑

k=−2N

(−1)kwN (k) e−iωk,

it follows that

|gN (t)| ≤ 1

2π

∫ π

−π
|WN (ω + π)| dω

=
1

2π

∫ π

−π
|WN (ω)| dω < 3, (5)

where we used the fact that WN is 2π-periodic. We further
have

(SNgN )(t) =
N∑

k=−N

(−1)kwN (k)
sin(π(t− k))

π(t− k)

=
sin(πt)

π

N∑
k=−N

1

t− k
.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSP.2020.3035913

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 7

For t = N + 1/2 it follows that

|(SNgN )(N + 1
2 )| = 1

π

N∑
k=−N

1

N + 1
2 − k

=
1

π

2N∑
k=0

1

k + 1
2

>
1

π

2N∑
k=0

∫ k+1

k

1

τ + 1
2

dτ

=
1

π

∫ 2N+1

0

1

τ + 1
2

dτ =
1

π
log(4N + 3). (6)

Let CN = |(SNgN )(N + 1
2 )|. Note that CN is monotonically

increasing in N , and that, for each N ∈ N, CN is a computable
number.

Next we construct the function f2. Let A ⊂ N be a
recursively enumerable non-recursive set and φA : N → A a
recursive enumeration of A. We set

q1(t) =
g1(t)

2φA(1)C1
.

Let N1 = 2, k1 = 0, N (1)
1 = −1, and N

(2)
1 = 1. We set

N2 = N1+4·2, k2 = N1+2·2, N (1)
2 = k2−2, N (2)

2 = k2+2,
and

q2(t) = q1(t) +
g2(t− k2)

2φA(2)C2
.

Assume that for some r ∈ N, we have already constructed Nr,
kr, N

(1)
r , N (2)

r , and qr. Then we set Nr+1 = Nr + 4(r+ 1),
kr+1 = Nr + 2(r + 1), N (1)

r+1 = kr+1 − (r + 1), N (2)
r+1 =

kr+1 + (r + 1) and

qr+1(t) = qr(t) +
gr+1(t− kr+1)

2φA(r+1)Cr+1
.

For r ∈ N we have qr ∈ B∞π,0, as well as qr ∈ CB∞π,0, because
qr is an elementary computable function. It can be shown that
{qr}r∈N forms a Cauchy sequence in B∞π,0. Thus, the limit

f2(t) = lim
r→∞

qr(t) =
∞∑
r=1

gr(t− kr)
2φA(r)Cr

, t ∈ R,

exists, and f2 is a function in B∞π,0. Further, we have∥∥∥∥∥f2 −
N∑
r=1

gr( · − kr)
2φA(r)Cr

∥∥∥∥∥
B∞
π,0

=

∥∥∥∥∥
∞∑

r=N+1

gr( · − kr)
2φA(r)Cr

∥∥∥∥∥
B∞
π,0

≤
∞∑

r=N+1

‖gr( · − kr)‖B∞
π,0

2φA(r)Cr
<

3

CN+1

∞∑
r=N+1

1

2φA(r)

<
3

CN+1
<

3π

log(4N + 3)
,

where we used (5) and the monotonicity of CN in the second
inequality, (2) in the third inequality, and (6) in the last
inequality. This shows that f2 is computable in B∞π,0, i.e., that
f2 ∈ CB∞π,0.

The rest of the proof is done indirectly. We assume that
there exists a recursive function ξ2, such that for all M ∈ N,
we have

‖f2 − SNf2‖B∞
π,0
≤ 1

2M

for all N ≥ ξ2(M), and prove that this assumption leads to
a contradiction. Let M ∈ N be arbitrary but fixed. According
to the assumption we have

‖SN1f2 − SN2f2‖B∞
π,0

= ‖SN1f2 − f2 + f2 − SN2f2‖B∞
π,0

≤ ‖f2 − SN1f2‖B∞
π,0

+ ‖f2 − SN2f2‖B∞
π,0
≤ 2

2M

for all N1, N2 ≥ ξ2(M). Let r0 be the smallest natural number
such that Nr0 > ξ2(M), and let r > r0. We have

‖S
N

(2)
r
f2 − SN(1)

r −1
f2‖B∞

π,0

= max
t∈R

∣∣∣∣∣∣
N(2)
r∑

k=N
(1)
r

f2(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
=

1

2φA(r)Cr
max
t∈R

∣∣∣∣∣∣
N(2)
r∑

k=N
(1)
r

gr(k − kr)
sin(π(t− k))

π(t− k)

∣∣∣∣∣∣
=

1

2φA(r)Cr
max
t∈R

∣∣∣∣∣
r∑

k=−r

gr(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣
≥ 1

2φA(r)Cr

∣∣∣∣∣
r∑

k=−r

gr(k)
sin(π(r + 1

2 − k))

π(r + 1
2 − k)

∣∣∣∣∣
=

1

2φA(r)
.

Since N
(1)
r > Nr0 and N

(2)
r > Nr0 , it follows that

1/2φA(r) < 2/2M for all r > r0, and consequently that
M − 1 < φA(r). The last inequality is valid for all M ∈ N
and all r ∈ N, satisfying r > r0 and Nr0 > ξ2(M).

Let s ∈ N be arbitrary but fixed. We will give an algorithm
that can decide for every natural number in the interval [1, s] if
it belongs to A or to A{. To this end, we determine ξ2(s+ 1).
Let r0 be the smallest natural number such that Nr0 > ξ2(s+
1). Then for all r ∈ N with r > r0 we have s = (s+1)−1 <
φA(r). Hence the sequence {φA(r)}∞r=r0+1 will not hit the
interval [1, s]. Let As = {φA(r)}r0r=1. Then we have As ⊂ A.
Let As = As ∩ [1, s]. We have [1, s] \ As ⊂ A{, because for
k ∈ [1, s] \ As, we have k 6∈ As, and for r > ξ2(s + 1),
k is not hit by φA(r), i.e., we have k ∈ A{. Since s ∈ N
was arbitrary, we have an algorithm that, for all k ∈ N, can
decide whether k ∈ A or k ∈ A{. This shows that A is
recursive, which is a contradiction. Thus, our assumption that
{SNf2}N∈N converges effectively to f2 in the L∞-norm has
to be wrong.

V. BEHAVIOR IN DISCRETE AND CONTINUOUS TIME

A. Case 1 < p <∞
We already know that bandlimited signals in Bpπ are not

necessarily in CBpπ . For a given signal f ∈ Bpπ to be
computable, it is necessary to find an algorithm that effectively
approximates f using a computable sequence of elementary
computable functions, i.e. a computable sequence of finite
sampling series. It would be desirable to have a test that can
decide whether such an approximation exists, and ideally, if
the answer is positive, can derive this effective approximation
algorithm from the signal f itself.
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Especially useful would be a test that can decide the
membership of f to CBpπ based on the samples of f . As we
will show next in Theorem 5, for p ∈ (1,∞) ∩ Rc, such a
test is possible. We have a simple necessary and sufficient
condition for the computability of the continuous-time signal
that is based solely on properties of the sequence of samples
f |Z. Compared to Theorem 1, the condition is even simpler,
as we do not require the computability of f |Z in `p, but only
the computability of the number ‖f |Z‖`p .

Theorem 5. Let p ∈ (1,∞) ∩ Rc and f ∈ Bpπ . We have
f ∈ CBpπ if and only if

1) f |Z is a computable sequence of computable numbers,
2) ‖f |Z‖`p ∈ Rc.

Remark 5. Note that in the theorem we only require that
‖f |Z‖`p be a computable number. We do not require that the
number ‖f |Z‖`p be computed from f or f |Z.

Proof of Theorem 5. “⇒”: Item 1) follows directly from Ob-
servation 1. Further, item 2) of the theorem follows from
Lemma 1.

“⇐”: This direction is proved using the same arguments that
were used in the proof of Theorem 2. If ‖f |Z‖`p ∈ Rc, then the
sequence that has been constructed in the proof of Theorem 2
converges effectively to f |Z in the `p-norm. This implies that
the Shannon sampling series SNf converges effectively to f
in the Lp-norm, which in turn implies the computability of f
in Bpπ , according to Theorem 2.

The necessary and sufficient condition for computability
which was given in Theorem 5 is true for all p ∈ (1,∞)∩Rc.
However, it cannot be extended to hold for p = 1, as we will
see in the next section.

B. Case p = 1

In the last section we have seen that for p ∈ (1,∞) ∩
Rc, the effective approximation of a discrete-time signal in
`p is directly coupled to the effective approximation of the
corresponding continuous-time signal in Bpπ . In this section
we will show that this result cannot be extended to hold for
p = 1.

We will construct a discrete-time signal that we can ef-
fectively approximate in the `1-norm, and for which the
corresponding bandlimited continuous-time signal is in B1

π

but the B1
π-norm is not computable. This implies, according

to Remark 1, that the bandlimited continuous-time signal
cannot be effectively approximated by elementary bandlimited
functions in B1

π .
We will also use this result in Section VII-A to study the

BIBO stability norm of discrete-time and continuous-time LTI
systems.

Theorem 6. There exists a function f3 ∈ B1
π such that

1) f3|Z ∈ C`1,
2) ‖f3‖B1

π
6∈ Rc.

We postpone the proof of Theorem 6.

Remark 6. Note that f3|Z ∈ C`1 implies that f3|Z is a
computable sequence of computable numbers and that the `1-
norm of f3|Z is computable.

If we have a signal f3 ∈ B1
π that satisfies f3|Z ∈ C`1, such

as the signal f3 in Theorem 6, then we also have f3|Z ∈ C`p
for all p ∈ (1,∞), as we will show next. First, we note that
f3|Z ∈ `1 implies that f3|Z ∈ `p for all p ∈ (1,∞). Further,
we have

(‖f3|Z‖`p)p

(‖f3|Z‖`1)p
−
∑
|k|≤N |f3(k)|p

(‖f3|Z‖`1)p
≤
∑
|k|>N

∣∣∣∣ f3(k)

‖f3|Z‖`1

∣∣∣∣p
≤
∑
|k|>N

|f3(k)|
‖f3|Z‖`1

,

where we used in the second inequality that∣∣∣∣ f3(k)

‖f3|Z‖`1

∣∣∣∣p ≤ ∣∣∣∣ f3(k)

‖f3|Z‖`1

∣∣∣∣
for all k ∈ Z, which holds because

|f3(k)|
‖f3|Z‖`1

≤ 1.

Since ‖f3|Z‖`1 is a computable number, and
{
∑
|k|≤N |f3(k)|}N∈N is monotonically increasing and

converges to ‖f3|Z‖`1 , it follows from Lemma 2 that
{
∑
|k|>N |f3(k)|}N∈N converges effectively to zero. This

shows that for p ∈ (1,∞) ∩ Rc, the computable sequence of
computable numbers {(

∑
|k|≤N |f3(k)|p)1/p}N∈N converges

effectively to ‖f3|Z‖`p . Hence we have ‖f3|Z‖`p ∈ Rc and
consequently, f3 ∈ CBpπ for all p ∈ (1,∞) ∩ Rc because of
Theorem 5. This also implies that

max
t∈R

∣∣∣∣∣f3(t)−
N∑

k=−N

f3(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣
converges effectively to zero as N tends to infinity, and further,
that f3(t) ∈ Cc for all t ∈ Rc. Note that this is not sufficient
for f3 being in CB1

π , as the next corollary shows.

Corollary 1. There exists a function f3 ∈ B1
π such that

1) f3|Z ∈ C`1,
2) f3 6∈ CB1

π , i.e., f3 cannot be effectively approximated by
elementary computable functions in CB1

π .

Proof. Corollary 1 is a direct consequence of Theorem 6,
because ‖f3‖B1

π
6∈ Rc implies that f3 6∈ CB1

π according to
Remark 1.

Remark 7. In Corollary 1 we have a function f3 such that the
restriction f3|Z is a computable discrete-time signal where we
can effectively control the approximation error. However, the
signal f3 can never be effectively approximated by elementary
computable functions in CB1

π .

Now we give the proof of Theorem 6. The main idea of
the proof is to employ the fact that even if for a signal in B1

π

we can effectively control the `1-norm, i.e., the discrete-time
behavior, it is generally not possible to effectively control the
continuous-time behavior.
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Proof of Theorem 6. For k ∈ N, k ≥ 1, let

gk(t) =
sin(πt)

πt
− sin(π(t+ 2k))

π(t+ 2k)

=
sin(πt)

πt
− sin(πt)

π(t+ 2k)

=
2k sin(πt)

πt(t+ 2k)
, t ∈ R.

Thus, we have gk ∈ CB1
π and

∫∞
−∞|gk(t)| dt ∈ Rc for all

k ∈ N. For N ∈ N, we consider

qN (t) =
1

N

N∑
k=1

gk(t), t ∈ R.

We have qN ∈ B1
π for all N ∈ N. Moreover, since

qN (t) =
sin(πt)

πt
− 1

N

N∑
k=1

sin(π(t+ 2k))

π(t+ 2k)
,

we see that qN is an elementary computable function, and as
a consequence, we have qN ∈ CB1

π as well as ‖qN‖B1
π
∈ Rc

for all N ∈ N. Hence {qN}N∈N is a computable sequence of
functions in CB1

π . Further, we have qN (0) = 1, qN (k) = 0 for
all |k| > 2N , qN (2l) = −1/N for all l = −1,−2, . . . ,−N ,
as well as qN (l) = 0 for all remaining arguments l. It follows
that

∞∑
l=−∞

|qN (l)| = 1 +
−1∑

l=−N

1

N
= 2. (7)

We consider the computable function

a(t) =


0, t < 0,

t sin(πt), 0 ≤ t < 1,

sin(πt), t ≥ 1,

t ∈ R,

and set
C

(1)
N =

∫ ∞
0

qN (t)a(t) dt.

For M ∈ N, we have∣∣∣∣∣C(1)
N −

∫ M

0

qN (t)a(t) dt

∣∣∣∣∣ =

∣∣∣∣∫ ∞
M

qN (t)a(t) dt

∣∣∣∣
≤
∫ ∞
M

1

N

N∑
k=1

|gk(t)| dt =
1

N

N∑
k=1

∫ ∞
M

|gk(t)| dt.

Since gk ∈ CB∞π , it follows that there exists a recursive
function ξk such that for all R ∈ N we have∫ ∞

Mk

|gk(t)| dt < 1

2R

for all Mk ≥ ξk(R). For N ∈ N and R ∈ N, we set

M(N,R) = max
k=1,...,N

ξk(R).

Note that M is a recursive function. It follows that∣∣∣∣∣C(1)
N −

∫ M

0

qN (t)a(t) dt

∣∣∣∣∣ ≤ 1

N

N∑
k=1

∫ ∞
ξk(R)

|gk(t)| dt

<
1

2R

for all M ≥ M(N,R). Thus, the sequence
{
∫M

0
qN (t)a(t) dt}M∈N of computable numbers converges

to C
(1)
N effectively in N and M . Hence {C(1)

N }N∈N is a
computable sequence of computable numbers.

Let A ⊂ N be a recursively enumerable non-recursive set
and φA : N → A a recursive enumeration of A. We consider
the function

f3(t) =
∞∑
N=3

qN (t)

2φA(N)C
(1)
N

, t ∈ R.

Next, we derive a lower bound for C(1)
N . We have

C
(1)
N =

∫ 1

0

qN (t)a(t) dt+

∫ ∞
1

qN (t)a(t) dt. (8)

For the second integral we have∫ ∞
1

qN (t)a(t) dt

=

∫ ∞
1

(
sin(πt)

πt
− 1

N

N∑
k=1

sin(π(t+ 2k))

π(t+ 2k)

)
sin(πt) dt

=

∫ ∞
1

(sin(πt))2

Nπt

N∑
k=1

2k

t+ 2k
dt

>

∫ N

1

(sin(πt))2

Nπt

N∑
k=1

2k

t+ 2k
dt.

For t ∈ [1, N ] and 1 ≤ k ≤ N , we have

2k

t+ 2k
≥ 2k

N + 2k
≥ 2k

N + 2N
=

2k

3N
,

and consequently

1

N

N∑
k=1

2k

t+ 2k
≥ 2

3N2

N∑
k=1

k =
2N(N + 1)

6N2
>

N2

3N2
=

1

3
.

Hence we obtain∫ ∞
1

qN (t)a(t) dt >
1

3π

∫ N

1

(sin(πt))2

t
dt.

We further have∫ N

1

(sin(πt))2

t
dt =

N−1∑
k=1

∫ k+1

k

(sin(πt))2

t
dt

>

N−1∑
k=1

1

k + 1

∫ k+1

k

(sin(πt))2 dt =
1

2

N−1∑
k=1

1

k + 1

>
1

2

∫ N

1

1

τ + 1
dτ >

1

2
log

(
N

2

)
,

where we used that
∫ k+1

k
(sin(πt))2 dt = 1/2. Hence we

obtain that ∫ ∞
1

qN (t)a(t) dt >
1

6π
log

(
N

2

)
. (9)
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Further, for the first integral in (8) we have∣∣∣∣∫ 1

0

qN (t)a(t) dt

∣∣∣∣ =

∣∣∣∣∫ 1

0

1

N

N∑
k=1

gk(t)a(t) dt

∣∣∣∣
=

∫ 1

0

1

N

N∑
k=1

2k(sin(πt))2

π(t+ 2k)
dt ≤

∫ 1

0

1

N

N∑
k=1

2k

π2k
dt

=
1

π
. (10)

Combining (8), (9), and (10), we see that

C
(1)
N ≥

∫ ∞
1

qN (t)a(t) dt−
∣∣∣∣∫ 1

0

qN (t)a(t) dt

∣∣∣∣
>

1

6π
log

(
N

2

)
− 1

π
. (11)

Note that we have constructed a sequence {qN}N∈N of
elementary computable functions such that for all N ∈ N we
have

1

6π
log

(
N

2

)
− 1

π
<

∫ ∞
0

qN (t)a(t) dt = C
(1)
N <∞,

and |qN (k)| ≤ 1 for all k ∈ Z, as well as qN (k) 6= 0 for only
finitely many k ∈ Z.

Next, we derive an upper bound for ‖qN‖B1
π

. We have∫ ∞
0

|qN (t)| dt

=

∫ ∞
0

1

N

∣∣∣∣∣
N∑
k=1

(
sin(πt)

πt
− sin(π(t+ 2k))

π(t+ 2k)

)∣∣∣∣∣ dt

=

∫ 1

0

sin(πt)

N

N∑
k=1

(
1

πt
− 1

π(t+ 2k)

)
dt

+

∫ ∞
1

|sin(πt)|
N

N∑
k=1

(
1

πt
− 1

π(t+ 2k)

)
dt. (12)

For the first integral in (12) we have∫ 1

0

sin(πt)

N

N∑
k=1

(
1

πt
− 1

π(t+ 2k)

)
dt

=

∫ 1

0

sin(πt)

Nπ

N∑
k=1

(
2k

t(t+ 2k)

)
dt

<

∫ 1

0

sin(πt)

πt
dt < 1. (13)

For M ≥ 1, we have∫ M

1

|sin(πt)|
N

N∑
k=1

(
1

πt
− 1

π(t+ 2k)

)
dt

<

∫ M

1

1

N

N∑
k=1

(
1

πt
− 1

π(t+ 2k)

)
dt

=
1

N

N∑
k=1

1

π

(∫ M

1

1

t
dt−

∫ M

1

1

t+ 2k
dt

)

=
1

Nπ

N∑
k=1

log

(
M(1 + 2k)

M + 2k

)
,

and, as a consequence, for the second integral in (12),

∫ ∞
1

|sin(πt)|
N

N∑
k=1

(
1

πt
− 1

π(t+ 2k)

)
dt

≤ lim
M→∞

1

Nπ

N∑
k=1

log

(
M(1 + 2k)

M + 2k

)

=
1

Nπ

N∑
k=1

log(1 + 2k) <
1

π
log(2N + 1). (14)

Combining (12), (13), and (14), we see that∫ ∞
0

|qN (t)| dt < 1 +
1

π
log(2N + 1). (15)

Next, we treat the integral covering the negative reals. We have

∫ −2N−1

−∞
|qN (t)| dt

=

∫ −2N−1

−∞
|sin(πt)| 1

N

∣∣∣∣∣
N∑
k=1

(
1

πt
− 1

π(t+ 2k)

)∣∣∣∣∣ dt

=

∫ ∞
2N+1

|sin(πt)| 1

N

N∑
k=1

(
1

π(t− 2k)
− 1

πt

)
dt.

For M > 2N + 1 we have

∫ M

2N+1

|sin(πt)| 1

N

N∑
k=1

(
1

π(t− 2k)
− 1

πt

)
dt

<

∫ M

2N+1

1

Nπ

N∑
k=1

(
1

t− 2k
− 1

t

)
dt

=
1

Nπ

N∑
k=1

(∫ M

2N+1

1

t− 2k
dt−

∫ M

2N+1

1

t
dt

)

=
1

Nπ

N∑
k=1

log

(
(M − 2k)(2N + 1)

(2N + 1− 2k)M

)
.

Hence we see that

∫ ∞
2N+1

|sin(πt)|
N

N∑
k=1

(
1

π(t− 2k)
− 1

πt

)
dt

≤ lim
M→∞

1

Nπ

N∑
k=1

log

(
(M − 2k)(2N + 1)

(2N + 1− 2k)M

)

=
1

Nπ

N∑
k=1

log

(
2N + 1

2N + 1− 2k

)
<

1

π
log(2N + 1),

which implies that

∫ −2N−1

−∞
|qN (t)| dt < 1

π
log(2N + 1). (16)
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Further, we have∫ 0

−2N−1

|qN (t)| dt

=

∫ 0

−2N−1

1

N

∣∣∣∣∣
N∑
k=1

(
sin(πt)

πt
− sin(π(t+ 2k))

π(t+ 2k)

)∣∣∣∣∣ dt

≤
∫ 0

−2N−1

1

N

N∑
k=1

(∣∣∣∣ sin(πt)

πt

∣∣∣∣+

∣∣∣∣ sin(π(t+ 2k))

π(t+ 2k)

∣∣∣∣) dt

=

∫ 2N+1

0

∣∣∣∣ sin(πt)

πt

∣∣∣∣ dt+
1

N

N∑
k=1

∫ 2N+1

0

∣∣∣∣ sin(π(t− 2k))

π(t− 2k)

∣∣∣∣ dt.

For the first integral we obtain∫ 2N+1

0

∣∣∣∣ sin(πt)

πt

∣∣∣∣ dt < 1 +

∫ 2N+1

1

∣∣∣∣ sin(πt)

πt

∣∣∣∣ dt

< 1 +
1

π

∫ 2N+1

1

1

t
dt = 1 +

1

π
log(2N + 1).

For the second term we obtain

1

N

N∑
k=1

∫ 2N+1

0

∣∣∣∣ sin(π(t− 2k))

π(t− 2k)

∣∣∣∣ dt

=
1

N

N∑
k=1

∫ 2N+1−2k

−2k

∣∣∣∣ sin(πt)

πt

∣∣∣∣ dt

<
1

N

N∑
k=1

∫ 2N+1

−2N−1

∣∣∣∣ sin(πt)

πt

∣∣∣∣ dt

< 2

(
1 +

1

π

∫ 2N+1

1

1

t
dt

)
= 2 +

2

π
log(2N + 1).

It follows that∫ 0

−2N−1

|qN (t)| dt < 3 +
3

π
log(2N + 1). (17)

Combining (15), (16), and (17), it follows that∫ ∞
−∞
|qN (t)| dt < 3 +

4

π
log(2N + 1) + 1 +

1

π
log(2N + 1)

= 4 +
5

π
log(2N + 1). (18)

For N ≥ 3, we have

‖qN‖B1
π

C
(1)
N

<
4

2
3π log

(
N
2

) +
5
π log(2N + 1)

2
3π log

(
N
2

)
=

6

π log
(
N
2

) +
15 log(2N + 1)

2 log
(
N
2

) . (19)

Since(
log(2x+ 1)

log
(
x
2

) )′
=

1
2x+1 log

(
x
2

)
− 2

x log(2x+ 1)(
log
(
x
2

))2 < 0

for x ≥ 3, we see that the right-hand side of (19) is
monotonically decreasing in N . Hence we have

‖qN‖B1
π

C
(1)
N

<
6

π log
(

3
2

) +
15 log(6 + 1)

2 log
(

3
2

) =: C1.

Thus, it follows that

‖f3‖B1
π
≤
∞∑
N=3

‖qN‖B1
π

2φA(N)C
(1)
N

< C1

∞∑
N=3

1

2φA(N)

≤ C1

∞∑
N=1

1

2N
= C1, (20)

where we used (2) in the third inequality. This shows that
f3 ∈ B1

π .
Next, we show that ‖f3‖B1

π
6∈ Rc. We do a proof by

contradiction. Assume that ‖f3‖B1
π
∈ Rc. Since the se-

quence {
∫
|t|<M |f3(t)| dt}M∈N is monotonically increasing

and converges to ‖f3‖B1
π

, it follows from Lemma 2 that
{
∫
|t|≥M |f3(t)| dt}M∈N converges effectively to zero. As a

consequence, {
∫∞
M
|f3(t)| dt}M∈N converges effectively to

zero. We have∫ ∞
0

f3(t)a(t) dt =
∞∑
N=3

1

2φA(N)C
(1)
N

∫ ∞
0

qN (t)a(t) dt

=
∞∑
N=3

1

2φA(N)
6∈ Rc,

where the exchange of integration and summation is justified
according to Fubibi’s theorem, because
∞∑
N=3

∫ ∞
0

∣∣∣∣∣ qN (t)

2φA(N)C
(1)
N

a(t)

∣∣∣∣∣ dt ≤
∞∑
N=3

‖qN‖B1
π

2φA(N)C
(1)
N

< C1,

using the same calculation as in (20).
We have f3 ∈ CB2

π because f3|Z ∈ C`1. Hence for all
M ∈ N the function f3(t)a(t), t ∈ [0,M ], is a computable
continuous function. According to [25, p. 37, Corollary 6a] we
have

∫M
0
f3(t)a(t) dt ∈ Rc. Hence {

∫M
0
f3(t)a(t) dt}M∈N is

a computable sequence of computable numbers. Since∣∣∣∣∣
∫ ∞

0

f3(t)a(t) dt−
∫ M

0

f3(t)a(t) dt

∣∣∣∣∣ ≤
∫ ∞
M

|f3(t)| dt,

and since {
∫∞
M
|f3(t)| dt}M∈N converges effectively to zero, it

follows that the computable sequence of computable numbers
{
∫M

0
f3(t)a(t) dt}M∈N converges effectively to∫ ∞

0

f3(t)a(t) dt. (21)

This implies that (21) is a computable number. This is a
contradiction. Therefore, we have ‖f3‖B1

π
6∈ Rc.

Next, we prove that f3|Z ∈ C`1, i.e., the first statement of
the theorem. We have∥∥∥∥∥f3|Z −

M∑
N=3

qN |Z
2φA(N)C

(1)
N

∥∥∥∥∥
`1

≤
∞∑

N=M+1

‖qN |Z‖`1
2φA(N)C

(1)
N

< 2

(
1

6π
log

(
N

2

)
− 1

π

)−1 ∞∑
N=M+1

1

2φA(N)

<

(
1

3π
log

(
N

2

)
− 2

π

)−1 ∞∑
N=1

1

2N

=

(
1

3π
log

(
N

2

)
− 2

π

)−1

,
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where we used (7) and (11) in the second inequality. Hence
we see that the computable sequence{

M∑
N=3

qN |Z
2φA(N)C

(1)
N

}∞
M=3

converges effectively to f3|Z in the `1-norm, implying that
f3|Z ∈ C`1.

VI. CONNECTIONS OF COMPUTABILITY FOR B2
π

In this section we will analyze the question whether the two
conditions: 1) f ∈ B2

π and 2) f is a computable continuous
function are sufficient for f ∈ CB2

π . The next theorem shows
that this question has to be answered in the negative.

Theorem 7. There exists a function f4 ∈ B2
π such that

1) f4(t) ∈ Rc for all t ∈ Rc,
2) there exists a recursive function ξ : N2 → N such that for

all T ∈ N and M ∈ N we have for all N ≥ ξ(T,N)

max
t∈[−T,T ]

∣∣∣∣∣f4(t)−
N∑

k=−N

f4(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣ < 1

2M
,

3) the sequence{
max
t∈R

∣∣∣∣∣f4(t)−
N∑

k=−N

f4(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣
}
N∈N

(22)

does not converge effectively to zero, and
4) ‖f4‖B2

π
6∈ Rc as well as f4 6∈ CB2

π .

Remark 8. Item 2) implies that f4 is a computable continuous
function on R.

Proof. Let A ⊂ N be a recursively enumerable non-recursive
set and φA : N → A a recursive enumeration of A. We
consider the function

f4(t) =

∞∑
n=1

1

2φA(n)

sin(π(t− n))

π(t− n)
, t ∈ R. (23)

We have

‖f4‖B2
π

=

( ∞∑
n=1

1

22φA(n)

) 1
2

<∞,

i.e., f4 ∈ B2
π . Further, the series in (23) converges globally

uniformly. Let T ∈ N and t ∈ [−T, T ] be arbitrary. For N >
T , we have∣∣∣∣∣f4(t)−

N∑
n=1

1

2φA(n)

sin(π(t− n))

π(t− n)

∣∣∣∣∣
≤

∞∑
n=N+1

1

2φA(n)

∣∣∣∣ sin(π(t− n))

π(t− n)

∣∣∣∣ ≤ ∞∑
n=N+1

1

2φA(n)π|t− n|

≤ 1

N + 1− T

∞∑
n=N+1

1

2φA(n)
<

1

N + 1− T
, (24)

where we used (2) in the last inequality. For T ∈ N and
M ∈ N, we set ξ(T,M) = 2M+T−1. Clearly ξ is a recursive

function, and because of (24), we have for all N ≥ ξ(T,M)
that ∣∣∣∣∣f4(t)−

N∑
n=1

1

2φA(n)

sin(π(t− n))

π(t− n)

∣∣∣∣∣ < 1

2M
.

This proves item 2) of the theorem.
For t ∈ Rc, the sequence{

M∑
n=1

f4(n)
sin(π(t− n))

π(t− n)

}
M∈N

is a computable sequence of computable numbers that con-
verges effectively to f4(t), according to item 2) of the theorem.
Hence we have f4(t) ∈ Rc for all t ∈ Rc. This proves item 1)
of the theorem.

Next, we prove item 3) of the theorem. We do a proof by
contradiction and assume that (22) converges effectively to
zero. That is, we assume that there exists a recursive function
ξ4 : N→ N such that for all M ∈ N and N ≥ ξ4(M) we have

max
t∈R

∣∣∣∣∣f4(t)−
N∑
n=1

f4(n)
sin(π(t− n))

π(t− n)

∣∣∣∣∣ < 1

2M
.

Let η ∈ N and M > η be arbitrary. For all t ∈ R and all
N ≥ ξ4(M) we have∣∣∣∣∣

∞∑
n=N+1

f4(n)
sin(π(t− n))

π(t− n)

∣∣∣∣∣
=

∣∣∣∣∣f4(t)−
N∑
n=1

f4(n)
sin(π(t− n))

π(t− n)

∣∣∣∣∣ < 1

2M
.

Thus, for n ≥ N + 1 it follows that

1

2φA(n)
= f4(n) =

∣∣∣∣∣
∞∑

k=N+1

f4(k)
sin(π(n− k))

π(n− k)

∣∣∣∣∣ < 1

2M
,

which shows that φA(n) > M for all n ≥ N+1. We compute
the list of numbers {φA(1), φA(2), . . . , φA(N)} and check if
η is in this list. If η is in this list then we have η ∈ A. If
η is not in this list then we have η ∈ A{, because we know
that φA(n) > M > η for all n ≥ N + 1. This shows that
A is a recursive set, because the above procedure gives us an
algorithm that can decide for arbitrary η ∈ N whether η ∈ A or
η ∈ A{. This is a contradiction. Hence (22) does not converge
effectively to zero.

Finally, we prove item 4) of the theorem. We do a
proof by contradiction and assume that ‖f4‖B2

π
∈ Rc.

Since {
∑N
k=−N |f4(k)|2}N∈Z is a monotonically increasing

sequence of computable numbers that converges to ‖f4‖B2
π
∈

Rc, it follows from Lemma 2 that {
∑
|k|>N |f4(k)|2}N∈Z

convergences effectively to zero. Further, since

‖f4 − SNf4‖2B2
π

=
∑
|k|>N

|f4(k)|2,

we see that {SNf4}N∈N converges effectively to f4 in the B2
π-

norm. Since ‖f4‖∞ ≤ ‖f4‖B2
π

, this implies that (22) converges
effectively to zero. This is a contradiction. Hence it follows
that ‖f4‖B2

π
6∈ Rc. Further, ‖f4‖B2

π
6∈ Rc implies that f4 6∈

CB2
π , according to Remark 1.
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VII. APPLICATIONS

A. BIBO Stability
We set h = f3, where f3 ∈ B1

π is the function from
Theorem 6, and consider the discrete-time linear time-invariant
(LTI) system

(T d
1x)(k) =

∞∑
l=−∞

h(k − l)x(l) =
∞∑

l=−∞

h(l)x(k − l)

for input signals x ∈ `∞. This system is BIBO stable and the
BIBO-norm is given by

‖T d
1‖d

BIBO = sup
‖x‖`∞≤1

‖T d
1x‖`∞ =

∞∑
l=−∞

|h(k)|.

Note that we have
∞∑

l=−∞

|h(k)| ∈ Rc.

Hence the BIBO-norm ‖T d
1‖d

BIBO is a computable number, and
we can approximate this number with an effective control of
the approximation error.

Next, we consider the continuous-time system

(T c
1x)(k) =

∫ ∞
−∞

h(t− τ)f(τ) dτ =

∫ ∞
−∞

h(τ)f(t− τ) dτ

for input signals f ∈ L∞(R). Both integrals converge, because
h ∈ B1

π . Further, we have for the continuous-time BIBO-norm

‖T c
1‖c

BIBO = sup
‖f‖∞≤1

‖T c
1f‖∞ =

∫ ∞
−∞
|h(τ)| dτ.

Here we are in the situation that∫ ∞
−∞
|h(τ)| dτ 6∈ Rc.

That is, we cannot algorithmically determine the continuous-
time BIBO-norm ‖T c

1‖c
BIBO on a digital computer, even though

that is possible for the corresponding discrete-time system and
even though h is bandlimited with bandwidth π.

B. Concentration in the Time-Domain
Using the signal f3 from Theorem 6, we can gain some

insights into the time-domain concentration behavior of band-
limited signals and its algorithmic characterization.

Bandlimited signals posses a perfect concentration in the
frequency domain in the sense that their Fourier transforms
are non-zero only on some finite interval. Because of the
perfect concentration in the frequency domain, they cannot
simultaneously be—with the exception of the zero signal—
perfectly concentrated in the time-domain.

For a signal f ∈ B1
π , the expression∫ L

−L
|f(t)| dt (25)

can be considered as a measure of the “amount” of the signal
f that is located within the interval [−L,L]. Further, the
expression∫ ∞

−∞
|f(t)| dt−

∫ L

−L
|f(t)| dt =

∫
|t|>L

|f(t)| dt (26)

can be seen as a measure of the concentration of the
continuous-time signal f on the time interval [−L,L]. The
smaller the value, the more concentrated the signal is on the
interval. Hence the study of the time concentration behavior
is closely related to the question how fast the sequence of
functions {fL}L∈N, given by

fL(t) =

{
f(t), |t| ≤ L,
0, |t| > L,

converges to f in the L1(R)-norm. For a discrete-time signal,
the time concentration is described by the analogous expres-
sions, where the integrals are replaced with sums.

Note that even though f is bandlimited, the functions fL,
L ∈ N, are no longer bandlimited, except for the trivial case
where f ≡ 0. Hence the signals fL, L ∈ N, cannot be analyzed
using the same techniques that were employed to study the
computability of bandlimited signals. Nevertheless, the results
in this paper allow us to make a statement about the time
concentration.

For all signals f ∈ B1
π , the expression in (26) converges to

zero as L tends to infinity. The question now is whether, and
under what conditions on f , this convergence is effective, i.e.,
can be algorithmically described. If f ∈ CB1

π , then there exists
a computable sequence {fN}N∈N of elementary computable
functions such that

‖f − fN‖B1
π
≤ 1

2N
,

and it follows that∣∣‖f‖B1
π
− ‖fN‖B1

π

∣∣ ≤ 1

2N
,

which shows that ‖f‖B1
π
∈ Rc. Further, we have∣∣∣∣∣

∞∑
k=−∞

|f(k)| −
∞∑

k=−∞

|fN (k)|

∣∣∣∣∣ ≤
∞∑

k=−∞

|f(k)− fN (k)|

≤ 1

A1
‖f − fN‖B1

π
≤ 1

A12N
,

where we used Lemma 1 in the second inequality, which
implies that ‖f |Z‖`1 ∈ Rc. As a consequence of Lemma 2,
the monotonically increasing sequences {

∫ L
−L|f(t)| dt}L∈N

and {
∑L
k=−L|f(k)|}L∈N converge effectively to ‖f‖B1

π
and

‖f |Z‖`1 , respectively. Therefore, we have an algorithmic de-
scription of the time-domain concentration behavior.

In general, this result does not hold for B1
π . In Theorem 6 we

had the signal f3 ∈ B1
π with ‖f3|Z‖`1 ∈ Rc but ‖f3‖B1

π
6∈ Rc.

Hence the concentration of the discrete-time signal f3|Z can
be algorithmically described, whereas this is not possible for
the continuous-time signal f3, because ‖f3‖B1

π
6∈ Rc. Thus,

for f3 and the corresponding discrete-time signal f3|Z, we see
a strong difference regarding the feasibility of describing the
time-domain concentration algorithmically.
Remark 9. In the example above, i.e., for CB1

π , the time-
domain concentration behavior of fN also gives information
of the time-domain concentration behavior of f . It would be
interesting to have results for f ∈ CBpπ , 1 < p < ∞, that
connect the time concentration behavior, i.e., the effective con-
vergence of (

∫ L
−L|f(t)|p dt)1/p to ‖f‖Bpπ , with the effective
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approximation of f in the Lp-norm by finite Shannon sampling
series. For that purpose, however, new approaches have to
be developed, because the involved functions are no longer
bandlimited.

VIII. CONCLUSION

In this paper we treated bandlimited signals and charac-
terized the range of signal spaces for which the Shannon
sampling series provides an effective approximation process.
We also showed that there are computable discrete-time signals
in C`1 for which the corresponding analog signal cannot be
computed on a digital computer, because we cannot effectively
control the approximation error.

Recent studies have also shown for other signal processing
operations, such as downsampling and the Fourier transform
[34], [36], [44], that even though the required limit processes
occurring in those operations converge classically, they might
not converge effectively. As a consequence, those operations
cannot be implemented on a digital computer.

The results are also of fundamental importance for the
reemerging field of analog computing. One of the key ad-
vantages of digital computers compared to analog computers
is their robustness. However, the prevalent conception that an
ideal digital computer, represented by a Turing machine, can
in principle solve the same class of problems as an ideal
analog computer, is not correct. For example, the Fourier
transform is not always computable on a digital computer,
whereas the ideal analog machine, represented by a Fourier
optics setup, is capable of doing so [34]. Whether and how this
theoretical superiority of the analog machine can be translated
into practice is unclear and a topic for further research.

Further interesting questions and problems remain open and
need to be analyzed and solved in future research. It would
be interesting to conduct the analyses that were done in this
paper for other signal spaces, and to find suitable building
blocks similar to the elementary functions in the present paper
that can be used for the effective approximation. For example,
time-limited signals and causal signals, which are non-zero
only on the positive time axis, could be studied. But even for
bandlimited signals many questions are open: 1) What are the
results for the space B∞π,0, which has important applications,
e.g., in communication systems [39]? 2) What time-domain
concentration behavior do we have for other signal spaces than
B1
π? 3) What is the situation if oversampling or non-equidistant

sampling is used? 4) What is the influence of noise?

APPENDIX A
PLANCHEREL–PÓLYA INEQUALITY AND THE SHANNON

SAMPLING SERIES

The Plancherel–Pólya inequality can be used to prove the
convergence of the Shannon sampling series. Let p ∈ (1,∞)
and α = {αk}k∈Z ∈ `p. Then the series in

fα(t) =
∞∑

k=−∞

αk
sin(π(t− k))

π(t− k)
, t ∈ R, (27)

converges absolutely and globally uniformly, as well as in the
Lp-norm. This can be easily seen: For N1 > N2 we have(∫ ∞

−∞

∣∣∣∣∣
N1∑

k=−N1

αk
sin(π(t−k))

π(t−k)
−

N2∑
k=−N2

αk
sin(π(t−k))

π(t−k)

∣∣∣∣∣
p

dt

) 1
p

≤ Bp

( ∑
N2<|k|≤N1

|αk|p
) 1
p

,

where we used Lemma 1 in the last inequality. Since α ∈ `p,
it follows that {

N∑
k=−N

αk
sin(π( · − k))

π( · − k)

}
N∈N

is a Cauchy sequence in Lp(R). Hence the sequence in (27)
converges in the Lp-norm, and we have fα ∈ Bpπ . Further,
since ‖f‖∞ ≤ (1 + π)‖f‖Bpπ for all f ∈ Bpπ , we also see that
the sequence in (27) converges uniformly on the real axis.

APPENDIX B
APPROXIMATION IN B1

π USING A LINEAR COMBINATION
OF sinc-FUNCTIONS

Next, we will show that every function f ∈ B1
π can be

approximated arbitrarily well in the B1
π-norm by using a finite

linear combination of sinc-functions, as used in the Shannon
sampling series. However, as we have seen, this approximation
is not effective in general. It is clear that we cannot use the
Shannon sampling series directly, because for f ∈ B1

π , the
finite Shannon sampling series

(SNf)(t) =

N∑
k=−N

f(k)
sin(π(t− k))

π(t− k)

is not in B1
π in general, which is due to the fact that

sin(π · )/(π · ) 6∈ B1
π .

Let f ∈ B1
π and ε > 0 be arbitrary but fixed. For 0 < δ ≤

1/2 we set Fδ(t) = f((1− δ)t), t ∈ R. For 0 < δ ≤ 1/2 and
T > 0 we have∫

|t|≥T
|Fδ(t)| dt =

1

1− δ

∫
|t|≥(1−δ)T

|f(t)| dt

≤ 2

∫
|t|≥T/2

|f(t)| dt.

Since f ∈ B1
π , there exists a T1 ∈ R such that

2

∫
|t|≥T1/2

|f(t)| dt < ε

8
. (28)

Hence we have ∫
|t|≥T1

|Fδ(t)| dt <
ε

8
(29)

for all 0 < δ ≤ 1/2. We further have∫ ∞
−∞
|f(t)− Fδ(t)| dt =

∫
|t|<T1

|f(t)− Fδ(t)| dt

+

∫
|t|≥T1

|f(t)− Fδ(t)| dt.
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For the second integral we obtain∫
|t|≥T1

|f(t)− Fδ(t)| dt ≤
∫
|t|≥T1

|f(t)| dt+

∫
|t|≥T1

|Fδ(t)| dt

<
ε

8
+
ε

8
=
ε

4
,

where we used (28) and (29) in the second inequality. This
holds for all 0 < δ ≤ 1/2. Next, we choose 0 < δ0 ≤ 1/2
small enough, such that∫

|t|<T1

|f(t)− Fδ0(t)| dt < ε

4
.

Thus, we see that∫ ∞
−∞
|f(t)− Fδ0(t)| dt < ε

2
. (30)

We have Fδ0 ∈ B1
π and F̂δ0(ω) = 0 for |ω| > (1− δ0)π. Let

γ̂δ0(ω) =


1, |ω| ≤ (1− δ0)π,
π−|ω|
δ0π

, (1− δ0)π < |ω| < π,

0, |ω| ≥ π.

Then we have

Fδ0(t) =
∞∑

k=−∞

Fδ0(k)γδ0(t− k),

because γδ0 ∈ B1
π . Further, since Fδ0 |Z ∈ `1 according to

Nikol’skiı̆’s inequality [32, p. 49], we see that

lim
N→∞

∫ ∞
−∞

∣∣∣∣∣Fδ0(t)−
N∑

k=−N

Fδ0(k)γδ0(t− k)

∣∣∣∣∣ dt = 0.

Hence there exists a natural number N0 such that∫ ∞
−∞

∣∣∣∣∣Fδ0(t)−
N0∑

k=−N0

Fδ0(k)γδ0(t− k)

∣∣∣∣∣ dt <
ε

4
. (31)

Next, we will approximate γδ0 by a suitable sampling series.
The derivative

γ′δ0(ω) =
dγδ0
dω

(ω)

is a bounded piecewise linear function. For M ∈ N let

(ΓMγ
′
δ0)(ω) =

M∑
k=−M
k 6=0

ck(γ′δ0) eiωk, |ω| ≤ π,

denote the M -th partial sum of the Fourier series of γ′δ0 , where
ck(γ′δ0) are the usual Fourier coefficients. Note that c0(γ′δ0) =
0 and ck(γ′δ0) = −c−k(γ′δ0), k ∈ Z, because γ′δ0 is an odd
function. Further, let

P̂M (ω) =
M∑

k=−M
k 6=0

ck(γ′δ0)
−1

ik
eiωk, |ω| ≤ π.

We have P̂M (π) = P̂M (−π), since P̂M is an even function.
We set

P̂
(1)
M (ω) = P̂M (ω)− P̂M (π), |ω| ≤ π.

It follows that P̂ (1)
M (π) = P̂

(1)
M (−π) = 0. We further set

φ̂M (ω) =

{
P̂

(1)
M (ω), |ω| ≤ π,

0, |ω| > π.

φ̂M is a piecewise continuously differentiable function. We
have ∫ ∞

−∞
|tφM (t)|2 dt =

1

2π

∫ π

−π
|φ̂′M (ω)|2 dω.

For R > 1 it follows that∫
1≤|t|≤R

|φM (t)| dt =

∫
1≤|t|≤R

|φM (t)| |t|
t

dt

≤

(∫
1≤|t|≤R

|tφM (t)|2 dt

) 1
2
(∫

1≤|t|≤R

1

t2
dt

) 1
2

≤
(

1

2π

∫ π

−π
|φ̂′M (ω)|2 dω

) 1
2 √

2.

This shows that φM ∈ B1
π . Note that due to the construction

of φM , the Shannon sampling series of φM has only finitely
many summands.

Since∫ ∞
−∞

t2|γδ0(t)− φM (t)|2 dt =
1

2π

∫ π

−π
|γ̂′δ0(ω)− φ̂′M (ω)|2 dω

and

lim
M→∞

1

2π

∫ π

−π
|γ̂′δ0(ω)− φ̂′M (ω)|2 dt = 0,

it follows that

lim
M→∞

∫ ∞
−∞

t2|γδ0(t)− φM (t)|2 dt = 0.

Thus, we have

lim
M→∞

∫
|t|≥1

|γδ0(t)− φM (t)| dt

≤ lim
M→∞

√
2

∫
|t|≥1

t2|γδ0(t)− φM (t)|2 dt = 0.

We also have

lim
M→∞

max
|t|≤1
|γδ0(t)− φM (t)| = 0.

Hence there exists a natural number M0 such that∫ ∞
−∞
|γδ0(t)−φM0

(t)| dt < ε

4(2N0 + 1)

(
max
|k|≤N0

|Fδ0(k)|
)−1

.

(32)
Let

g(t) =

N0∑
k=−N0

Fδ0(k)φM0
(t− k).

Since g is the finite sum of functions having a finite Shannon
sampling series, it follows that g has a finite Shannon sampling
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series. Further, since φM0
∈ B1

π , we have g ∈ B1
π . Moreover,

we have∫ ∞
−∞

∣∣∣∣∣
N0∑

k=−N0

Fδ0(k)γδ0(t− k)−
N0∑

k=−N0

Fδ0(k)φM0
(t− k)

∣∣∣∣∣ dt

≤
N0∑

k=−N0

|Fδ0(k)|
∫ ∞
−∞
|γδ0(t− k)− φM0

(t− k)| dt

≤ (2N0 + 1) max
|k|≤N0

|Fδ0(k)|
∫ ∞
−∞
|γδ0(t)− φM0

(t)| dt

<
ε

4
, (33)

where we used (32) in the last inequality.
From (30), (31), (33), and the triangle inequality, it follows

that

‖f − g‖B1
π

=

∫ ∞
−∞

∣∣∣∣∣f(t)−
N0∑

k=−N0

Fδ0(k)φM0
(t− k)

∣∣∣∣∣ dt < ε.

Since ε > 0 was arbitrary, the proof is complete.
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