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Abstract. The effort in reducing the area of AES implementations has largely been
focused on application-specific integrated circuits (ASICs) in which a tower field con-
struction leads to a small design of the AES S-box. In contrast, a naive implementation
of the AES S-box has been the status-quo on field-programmable gate arrays (FPGAs).
A similar discrepancy holds for masking schemes—awell-known side-channel analysis
countermeasure—which are commonly optimized to achieve minimal area in ASICs. In
this paper, we demonstrate a representation of the AES S-box exploiting rotational sym-
metry which leads to a 50% reduction in the area footprint on FPGA devices.We present
new AES implementations which improve on the state-of-the-art and explore various
trade-offs between area and latency. For instance, at the cost of increasing 4.5 times the
latency, one of our design variants requires 25% less look-up tables (LUTs) than the
smallest known AES on Xilinx FPGAs by Sasdrich and Güneysu at ASAP 2016. We
further explore the protection of such implementations against side-channel attacks. We
introduce a generic methodology for masking any n-bit Boolean functions of degree t
with protection order d. The methodology is exact for first-order and heuristic for higher
orders. Its application to our new construction of the AES S-box allows us to improve
previous results and introduce the smallest first-order masked AES implementation on
Xilinx FPGAs, to date.
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1. Introduction

Ever since the introduction of differential power analysis (DPA) by Kocher et al. [34],
protecting cryptographic devices against side-channel analysis (SCA) has been a chal-
lenging and active area of research. A notable category of countermeasures is masking,
in which a secret value is distributed among shares, which do not reveal any information
about the secret separately. We speak of a d th-order DPA attack when the adversary
exploits the statistical moments of the SCA leakages (e.g. power consumption) up to
order d. Such estimated statistical moments are expected to be independent of the secret,
when sensitive variables are shared into d + 1 shares.

Masking In 2003, Ishai et al. [32] introduced the d-probing model, in which a very pow-
erful attacker has the ability to probe the exact values of up to d intermediate variables.
Security in this model has been related to more realistic adversary scenarios such as the
noisy leakage [20] and the bounded moment leakage model [2]. However, in 2005 it
was noted by Mangard et al. [41] that the Boolean masking schemes which are secure
in sequential platforms [32,59] still exhibit side-channel leakage when implemented in
hardware. This is due to unintended transitions (or glitches) on wires before they sta-
bilize. For hardware implementations, the probing model was therefore redefined using
glitch-extended probes [51]. The first masking scheme to achieve provable first-order
security in the presence of glitches is threshold implementation (TI) [46,47], a partic-
ular realization of Boolean masking. As a result, the most challenging task in securing
implementations is to mask the nonlinear components of a cipher.
Masking schemes are typically introducedbymeansof a single descriptionof amasked

multiplier. Such constructions are easily extended to obtain a construction for amonomial
of degree t , but it is not trivial to obtain a non-complete sharing of just any Boolean
function.Uenoet al. [60] describe agenericmethod for constructingd+1-sharemaskings
of any function of n variables. However, thismethod is not efficient for functions ofmany
variables, since the number of output shares is expected to be O ((d + 1)n). Bozilov et
al. [8] introduce a more efficient method for d+1-share maskings of functions of degree
t , but only for functions with exactly t + 1 variables.

AES S-Box TheAES S-box is an algebraically generated vectorial Boolean function with
8-bit input and 8-bit output. It consists of an inversion in GF(28) followed by an affine
transformation over GF(2)8. Having a small implementation of this S-box is important
to achieve compact AES hardware, especially in the context of masked implementations.
The tower field decomposition has proved to be a valuable approach to implement the
field inversion, resulting in small AES S-boxes by Satoh et al. [58], Mentens et al. [35]
and finally Canright [13]. More recently, an even smaller S-box was created by Boyar
et al. [9] using a new logic optimization technique. This S-box implementation is the
smallest to date. These S-box designs have all been successfully used to create the state-
of-the-art smallest maskedAES implementations [5,21,31,61]. However, when it comes
to look-up table (LUT)-based FPGA implementations, these optimized constructions do
not perform better than the 8 slices that are required for any 8-bit to 8-bit mapping such
as the AES S-box.
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Another line of work in this area [63,64,69] exploits a property of inversion-based
S-boxes that any inversion in GF(2n) can be implemented by a linear feedback shift
register (LFSR). The ASIC-based smallest such construction [63] needs on average 127
clock cycles, i.e. its latency depends on the given S-box input, hence is vulnerable to
timing attacks. The idea has been further developed in [64] leading to 7 clock cycles
latency (on average) for one S-box evaluation, which for sure needs more area compared
to the original design. The authors also presented a constant-time variant of their design
with a latency of 16 clock cycles. The underlying optimizations are not FPGA-specific,
and achieving SCA protection by means of masking on such a construction does not
seem easily possible.1

FPGA versus ASIC An FPGA design is indeed very different to its ASIC counterpart,
most notably in the use of LUTs, which makes the number of inputs to a Boolean
function a more defining factor for implementation cost than its algebraic complexity.
Since the standardization of Rijndael as the AES, several successful efforts [12,15,19]
have been made to reduce its size on FPGAs. In 2016, Sasdrich et al. [55] introduced an
unprotected AES implementation on Xilinx Spartan-6 FPGAs which occupies 21 slices
and remains the smallest FPGA implementation of AES known to date. Notably in such
a design, the S-box is naively implemented as an 8-to-8 look-up table. The authors
furthermore introduced a variant with 24 slices that additionally realizes shuffling as a
SCA-hardening technique. Note that we exclude the designs like [3,4,6,19,44] from our
comparisons as their constructions relay on the Block RAM (BRAM) modules.
While research onmaskingmostly targets ASIC designs, some efforts have beenmade

to utilize the specific architecture of an FPGA. Moradi and Mischke [36] investigated a
glitch-free implementation of masking on FPGAs by avoiding the occurrence of glitches
with a special enable-logic, which has been further re-developed in [43] by Moradi
and Wild. Sasdrich et al. [57] used the field-programmability to randomize the FPGA
configuration during runtime. Recently, Vliegen et al. [62] investigated the maximal
throughput of masked AES-GCM on FPGAs. However, their masked S-box is taken
from [40] without further FPGA-specific improvements. We would like to emphasize
that several AES-masked FPGA designs have been reported in the literature which
consider neither the glitches nor the non-completeness property defined in TI [47]. For
example, the masked S-box design used in [53] is not different to Canright and Batina’s
design [14] which has been shown to have first-order exploitable leakage [37,41].

Our Contribution This is an extended work of [23], in which we exclusively focus
on FPGA devices and in particular those of Xilinx. All our case studies target a Xilinx
Spartan-6 FPGA.We exploit a rotational symmetry property of Galois field power maps,
e.g. the field inversion, to construct a novel structure realizing the AES S-box. This leads
to an FPGA footprint of only four slices which is – to the best of our knowledge – smaller
than any reported FPGA-based design of the AES S-box in the literature. Such an area
reduction comes at the cost of a latency of 8 clock cycles for one S-box evaluation. We
present several new AES implementations for Xilinx FPGAs. We adapt the currently

1It is based on the fact that every x ∈ GF(28) is presented by αn and its inverse by
(
α−1

)n
. So, two

LFSRs constantly multiply by α and α−1. When one of them reaches x , the other one is x−1. The concept
does not work when x is shared by Boolean masking.
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smallest known FPGA-based AES design of [55] to use our S-box construction and
achieve a new design that occupies only 17 slices–a 19% reduction over the previous
record. We also restructure the smallest known ASIC-based AES design of [33] to
efficiently use the FPGA resources and combine it with our S-box design, leading to
another very small footprint of only 63 LUTs for the entire encryption function. Our
designs use only FPGALUTs and other slice-internal components such as slice registers
and internal MUXes, but no block RAM (BRAM) which has been used in [3,4,6,44] as
a principle feature.
In the second part of this work, we implement our construction with resistance against

SCA. To this end, we apply Boolean masking with a minimum number of two shares
on a decomposition of the AES S-box, which again exploits the rotational symmetry.
We detail a methodology for finding a d th order non-complete masking of n-variable
Boolean functions of degree t by splitting them into the minimal number of components
necessary to achieve non-completeness. With our new method, the number of output
shares is expected to be O (

(d + 1)t
)
, which is far better than that of [60] when n � t .

Targeting an optimized implementation with respect to LUT utilization, we introduce
a new masked AES design which far outperforms that of [23] with a reduction of at
least 20% in all resources (LUTs, flip-flops and slices) and the randomness consumption
reduced to one third. This is–to the best of our knowledge–the smallest masked AES
design on Xilinx FPGAs. We deploy our design on a Spartan-6 and evaluate its SCA
resistance by practical experiments.

2. Preliminaries

In the following, we give an introduction to FPGA technology, Boolean algebra and
masking schemes to counteract SCA attacks. Further, we define the notation for the rest
of the paper.

2.1. FPGAs

FPGAs are reconfigurable hardware devices consisting of configurable logic blocks
(CLB). In modern Xilinx FPGAs, each CLB is further subdivided into two slices that
each contain four look-up tables (LUTs), eight registers and additional carry logic. In the
following, we give a bottom-up description of the structure of Xilinx Spartan-6 FPGAs,
but this is similar for series 7 devices and FPGAs of other manufacturers.

2.1.1. LUTs

AnFPGA’s LUT is a combination of amultiplexer tree andRAMconfigured in read-only
mode. The Xilinx 6 and 7 series contain one type of LUT block, which can be used to
create functions with either six-input bits and one output bit (O6) or five input bits and
two output bits (O6,O5). This is illustrated in Fig. 1a.

Because of this structure, the algebraic complexity of Boolean functions does not
matter in FPGAs as long as the number of inputs is six or fewer. When realizing a
vectorial Boolean function on FPGAs, two coordinates that jointly depend on five or
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Fig. 1. The illustrations are taken from [70].

fewer inputs can be mapped into one LUT. This puts FPGA design in stark contrast with
ASIC design as they clearly demand very different optimization strategies to achieve a
low-cost implementation.
There are alternative uses to the circuitry of a LUT. A single LUT2 can also be

configured as a 32-bit shift register with a 5-bit read address port in addition to serial
shiftin and shiftout ports (see Fig. 1b). It is also possible for a LUT to be used as 32
addressable RAM cells of two bits each or 64 RAM cells of one bit each.

2.1.2. Slices

When mapping a hardware design to an FPGA, we count the number of occupied slices
as a metric for size. As each slice contains not only four LUTs but also further logic gates
and registers, this opens up more optimization potential compared to a naive mapping
to LUTs exclusively.

More Inputs Since each slice consist of four LUTs, it can trivially realize four 6-to-1-bit
functions. Further, due to internal multiplexers between the four LUTs, each slice can
also implement two 7-to-1-bit functions or one 8-to-1-bit function. As a result, the 8-bit
AES S-box can be easily implemented in 8 slices; one for each Boolean coordinate
function. In fact, this is the smallest known FPGA implementation of the AES S-box,
used in [12,55].

MemoryA slice also contains eight flip-flops, connected to the O5 and O6 output of each
LUT (see Fig. 1a). Note that every slice is limited in its functionality bymany constraints.
For example, while the inputs to four of the eight registers are directly accessible from
the slice-external wires, a connection to the other four can only be made via the LUTs.

Types In Spartan-6 devices we distinguish three different types of slices: The SliceX
contains only four LUTs and eight flip-flops, while the SliceL contains additional carry
logic and finally the most complex one, SliceM, can be used as a RAM unit with 256
bits of memory in different chunks of addressability or a 128-bit shift register.

2Only in particular slice type SliceM.
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2.1.3. Block RAM

Every Spartan-6 FPGA also contains a number of block RAMs (BRAMs), which can
each store up to 18k bits of data and each have two independent read/write ports which
can be simultaneously used. The ports can be configured to have various widths, ranging
from 1 up to 18 bits, based on which the width of the address port is also derived. Each
port has its own clock port, and any read/write operation is done in one clock cycle. The
output ports can also be configured to have an extra register, with which the clock-to-
output time of the read operation is prolonged. The number of BRAMs depends on the
type of Spartan-6 device. The smallest device has only 12 BRAMs. Further, multiple
BRAM instances can be cascaded to build larger ones. Due to their large storage space,
the BRAMs are usually used for high-performance applications. As an example, we
refer to fast pipeline implementations (e.g. of DES) reported in [29] which make use of
BRAMs to accelerate the exhaustive search.

2.2. Mathematical Foundations

Boolean Algebra We define (GF(2), +, ·) as the field with two elements Zero and
One. We denote the n-dimensional vector space defined over this field by GF(2)n . Its
elements can be represented by n-bit numbers and added by bit-wise XOR. In contrast,
the Galois Field GF(2n) contains an additional field multiplication operation. It is well
known that GF(2)n and GF(2n) are isomorphic.
A Boolean function F is defined as F : GF(2)n → GF(2), while we call G :

GF(2)n → GF(2)n a vectorial Boolean function. A (vectorial) Boolean function can
be represented as a look-up table, which is a list of all output values for each of the 2n

input combinations. Alternatively, each Boolean function can be described by a unique
representation–so called normal form. Most notably the algebraic normal form (ANF) is
the unique representation of a Boolean function as a sum of monomials. In this work, we
designate by m ∈ GF(2n) the monomial xm0

0 xm1
1 . . . xmn−1

n−1 where (m0,m1, . . . ,mn−1)

is the bitvector of m. The monomial’s algebraic degree is simply its hamming weight:
deg(m) = hw(m). We can then write the ANF of any Boolean function F as

F(x) =
⊕

m∈GF(2n)

amx
m0
0 xm1

1 . . . xmn−1
n−1

The algebraic degree of F is the largest number of inputs occurring in a monomial with
a non-zero coefficient:

deg(F) = max
m∈GF(2n),am �=0

hw(m)

Finite Field Bases We denote the isomorphism between the finite field GF(2n) and the
vector space GF(2)n by φ : GF(2n) → GF(2)n . This mapping depends on the basis
chosen for GF(2n). The vector φ(x) = (a0, . . . , an−1) ∈ GF(2)n holds the coordinates
of x with respect to that basis, and we denote by φ(x)i the i th coordinate of this vector.
A polynomial basis has the form
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(1, α, α2, . . . , αn−1)

with α ∈ GF(2n) the root of a primitive polynomial of degree n. We denote φα the
isomorphism mapping to a polynomial basis with α. Consider for example α = 2. In
that case, we have φ2(2i ) = ei with ei the i th unit vector, so the representation of
x ∈ GF(2n) in polynomial basis simply corresponds to its binary expansion. In contrast,
a normal basis has the form

(β20 , β21 , . . . , β2n−1
)

with 2n−1 possible choices for β ∈ GF(2n). In a normal basis over any finite field, the
zero (resp. unit) element is represented by a coordinate vector of all zeros (resp. all ones).
An element β ∈ GF(2n) can thus form a normal basis if

⊕n−1
i=0 β2i = 1. We denote by

φ
β
n (x) the isomorphic mapping from x ∈ GF(2n) to its GF(2)n representation in normal

basis with β, although we sometimes omit β for ease of notation.
The conversion between any polynomial and normal basis is merely a linear transfor-

mation which can be represented by a matrix multiplication over GF(2)n . The matrix
can be determined column-wise by mapping each basis element of the original basis to
the target basis. Let Q ∈ GF(2)n×n be the matrix mapping from a normal basis with β

to a polynomial basis with α, i.e. Q × φ
β
n (x) = φα(x). Then, the i th column of Q is

simply φα(β2i ). The inverse mapping uses the inverse matrix: Q−1 × φα(x) = φ
β
n (x).

2.3. Boolean Masking in Hardware

We denote the si -sharing of a secret variable x as x = (x0, . . . , xsi−1) and similarly
an so-sharing of a Boolean function F(x) as F = (F0, . . . , Fso−1). Each component
function Fi computes one share yi of the output y = F(x). A correctness property
should hold for any Boolean masking:

x =
⊕

0≤ j<si

x j ⇔ F(x) =
⊕

0≤ j<so

Fj (x)

WedefineS(x) as the set of all correct sharings of the value x . Creating a securemasking
of cryptographic algorithms in hardware is especially challengingdue to glitches.Despite
thismajor challenge,Nikova et al. [46] introduced a provably secure scheme against first-
order SCA attacks in the presence of glitches, named threshold implementation (TI). A
key concept of TI is the non-completeness property which we recall here.

Definition 1. (Non-completeness)A sharing F is non-complete if any component func-
tion Fi is independent of at least one input share.

Apart from non-completeness, the security proof of TI depends on a uniform distribution
of the input sharing fed to a shared function F. For example, when considering round-
based block ciphers, the output of one round serves as the input of the next. Hence, a
shared implementation of F needs to maintain this property of uniformity.
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Definition 2. (Uniformity) A sharing x of x is uniform, if it is drawn from a uniform
probability distribution over S(x).
We call F a uniform sharing of F(x), if it maps a uniform input sharing x to a uniform

output sharing y:

∃c : ∀x ∈ GF(2)n,∀x ∈ S(x),∀ y ∈ S(F(x)) : Pr(F(x) = y) = c.

Finding a uniform sharing without using fresh randomness is often tedious [1,10] and
may be impossible. Hence, many masking schemes restore the uniformity by remasking
with fresh randomness. When targeting first-order security, one can remask s output
shares with s − 1 shares of randomness as such:

(F0 ⊕ r0, F1 ⊕ r1, . . . , Fs−2 ⊕ rs−2, Fs−1 ⊕
⊕

0≤ j≤s−2

r j )

Threshold implementation was initially defined to need si ≥ td + 1 shares with d the
security order and t the algebraic degree of the Boolean function F to be masked. The
non-completeness definition was extended to the level of individual variables in [51],
which allowed the authors to reduce the number of input shares to si = d+1, regardless
of the algebraic degree. As a result, the number of output shares so increases to (d +1)t .
For example, two shared secrets a = (a0, a1) and b = (b0, b1) can be multiplied into a
4-share c = (c0, c1, c2, c3) by just computing the cross-products.

c0 = a0b0 c1 = a0b1
c2 = a1b0 c3 = a1b1

The number of output shares can be compressed back to d + 1 after a refreshing and
a register stage. This method was first applied to the AES S-box in [21] and lead to a
reduction in area, but an increase in the randomness cost. A similar method for sharing 2-
input AND gates with d+1 shares is demonstrated by Gross et al. [30,31]. In particular,
they propose to refresh only the cross-domain products aib j for i �= j , resulting in a
fresh randomness cost of

(d+1
2

)
units. Ueno et al. [60] demonstrate a general method to

find a d+1-sharing of a non-quadratic functionwith d+1 input shares in a non-complete
way by suggesting a probabilistic heuristic that produces (d + 1)n output shares in the
worst case, where n stands for the number of variables.

2.4. Rotational Symmetry of the AES S-Box

Rotational Symmetry of Power Maps Rijmen et al. [49] noted a rotational property
of power maps in finite fields. More specifically, they showed that every power map-
based S-box (or vectorial Boolean function) over GF(2n) is a rotation-symmetric S-
box in a normal basis. For completeness, we repeat the most interesting results and
proofs here. We denote by rot(v, i) the i-times rotation of v ∈ GF(2)n to the right, i.e.
rot(v, 1) = (an−1, a0, . . . , an−2) when v = (a0, a1, . . . , an−1). When i is omitted, it is
equal to 1.
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Definition 3. (Rotation symmetry) An n-bit S-box S : GF(2)n → GF(2)n is rotation-
symmetric if and only if rot(S(v)) = S(rot(v)) for all v ∈ GF(2)n .

We consider a normal basis with β:

(β0, β1, β2, . . . , βn−1) = (β, β2, β22 , . . . , β2n−1
)

This basis allows for an effective realization of squaring.As the order of themultiplicative
group is 2n − 1, we derive that ∀x ∈ GF(2n) : x2n−1 = 1 by Lagrange’s theorem. As
a result, we have that x2

n = x for any element in GF(2n). This leads to the following
lemma.

Lemma 1. ([49]) In a normal basis over GF(2n), the squaring operation corresponds
to a rotation of the coordinates vector: φn(x2) = rot(φn(x))

Proof. We make use of the fact that x = x2
n
holds for any element in GF(2n).

x2 = a0β
2
0 + a1β

2
1 . . . + an−2β

2
n−2 + an−1β

2
n−1

= a0β
2 + a1β

22 . . . + an−2β
2n−1 + an−1β

2n

= an−1β + a0β
2 + a1β

22 . . . + an−2β
2n−1

= an−1β0 + a0β1 + a1β2 . . . + an−2βn−1

Hence, the below equation holds.

φn(x
2) = (an−1, a0, . . . , an−2) = rot(φn(x), 1)

�

Successive application of the above property yields the relation

φn(x
2i ) = rot(φn(x), i).

Now consider a power map F(x) = xk over GF(2n). Clearly, for any power map we
have that F(x)l = F(xl). Let S(φn(x)) = φn(F(x)) be the normal basis S-box over
GF(2)n for which F(x) is an algebraic description. We denote the component Boolean
functions by Si : GF(2)n → GF(2). By Theorem 9 in [49], S is thus rotation-symmetric,
i.e. rot(S(v)) = S(rot(v)) for all v ∈ GF(2)n or equivalently, for each i ∈ {0, . . . , n−1}:
Si (v) = S0(rot(v, i)). All n output bits of the S-box can be calculated using the same
Boolean function S0. From now on, we denote the Boolean function that calculates the
least significant bit of the S-box output as S∗(v) = S0(v). It is related to the power
map function as follows: S∗ (φn (x)) = φn (F (x))0. We demonstrate the rotational
symmetry and show how to calculate the i th coordinate of the power map’s normal basis
representation:
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Si (φn(x)) = φn (F (x))i = rot
(
φn

(
F(x)2

i
)

,−i
)
i

= rot
(
φn

(
F (x)2

i
)

, 0
)
0

= φn

(
F (x)2

i
)
0

= φn

(
F

(
x2

i
))

0

= S∗ (
φn

(
x2

i
))

= S∗ (rot (φn (x) , i))
Note that φn and by extension S∗ depend on the choice of β, which generates the normal
basis, but we omit β here for readability.
As a result, instead of n Boolean functions S0, S1, . . . , Sn−1 operating in parallel, the

power map-based S-box S can be evaluated entirely with a single n-to-1-bit function S∗
by rotating the input vector bit-wise.

3. Unprotected AES on FPGA

It is generally known that an optimal FPGA implementation of the AES S-box requires
32LUTs in eight slices, as each of its eight coordinate functions is an 8-to-1mapping (see
Sect. 2.1.2). There is no obvious way to reduce this number, as every linear combination
of coordinate functions maintains the maximal algebraic degree of seven and depends
on all eight inputs. Hence, every coordinate function occupies an entire slice.
Note that Canright’s tower field construction [13] does not provide an alternative as

it is ill-suited for Spartan-6 devices due to the underutilization of six-input LUTs by the
operations in GF(24) and even GF(22). More precisely, realizing the basis conversion,
square-scaling, inversion and multiplications can occupy as much as 53 LUTs on an
FPGA.

3.1. Optimizing the S-Box for FPGA

S-Box Structure We demonstrate that it is indeed possible to realize the AES S-box in
fewer LUTs by trading off latency for area. Recall that the AES S-box consists of an
inversion in GF(28), followed by an affine transform over GF(2)8. For the inversion
part, we exploit the rotational symmetry of the power map x254 in GF(28) as explained
in Sect. 2.4. The structure is illustrated in Fig. 2a. Since the AES inversion is defined
in a polynomial basis with α = 2, we first convert the input byte x to a normal basis
using a linear transform (“p2n”). Then, in a bit-wise fashion, we calculate the output of
the rotation-symmetric S-box by rotating the first register R1. The single-bit output of
S∗ is shifted into a second register R2. When all eight bits have been calculated, we use
another linear transform to convert the result back into the polynomial basis (“n2p”).
This transform is combined with the affine transform of the AES S-box.
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p2n

∗

n2p

8

8

8

71

8

8

1

R1

R2

(a) byte-parallel loading

p2n ∗

n2p

1

7

8

8

1
7

8

8

1

8

R1

R2

(b) bit-serial loading

Fig. 2. Illustration of the bit-serial AES S-box based on rotational symmetry.

S-Box Implementation Cost We examine various normal bases and target a minimal
number of LUTs needed to implement the 8-to-8-bit functions p2n and n2p. Note that
it is not required to optimize S∗ since it is an 8-to-1-bit Boolean function of algebraic
degree 7 and requires 4 LUTs (an entire slice) in any normal basis. We exhaustively
enumerate all choices of β and pick the one that gives the most optimal implementation
of p2n and n2p in terms of LUT count. Since p2n and n2p each have 8 output bits and each
LUT can compute at most 2 bits, the minimum number of LUTs required to implement
them is 4. We obtain this for β = 145.3 By optimizing our implementation for intensive
usage of 5-to-2 LUTs, we can implement the affine transformations p2n and n2p and
the rotating register R1 in one slice each. More specifically, the affine transforms each
consume 4 LUTs. The 8-bit register R1 uses all 8 registers in a slice. The choice between
parallel loading and rotational shifting is achieved using the four LUTs of that slice. As
mentioned previously, S∗ itself also occupies 1 slice. Finally, the 7 slice flip-flops for
R2 are found in the already used slices for n2p, p2n and S∗. In total, the S-box design
occupies 16 LUTs and 15 registers, all fitting into only 4 slices. This means a 50%
reduction over the status-quo [12,55].
We pay for the reduction in area with latency. While the 32-LUT S-box computes the

output within one clock cycle, our bit-serialized approach (Fig. 2a in 16 LUTs) increases
the latency to 8 clock cycles. The linear function p2n is applied immediately to the S-box
input x . In cycles 1 to 8, register R1 rotates while S∗ serially computes each output bit.
The outputs are shifted into R2 bit by bit. In the last cycle, the last output bit is combined
with the 7-bit content of R2 as input to the affine transform n2p, which computes the
S-box output y. The register bypassing of n2p allows the S-box latency to be 8 cycles
and the R2 register to be only 7 bits wide.

3.2. Fully Byte-Serial AES

AGrain in the SiliconWe start from the smallest unprotected state-of-the-art AES design
for FPGA [55] illustrated in Fig. 3. The entire implementation requires only 21 slices,

3The algebraic normal forms for S∗, p2n and n2p are given in “Appendix A”.
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Fig. 3. Illustration of the byte-wise AES design by [55]. All wires are 8-bit wide. Especially notable is the
8-bit aggregation register in the MixColumns block. The RAM blocks are further divided into two parts of
128 bits which are used in alteration.

of which 15 slices construct the round function and key schedule, including 8 slices for
the AES S-box and 2 slices configured as 256-bit memory for the state and key arrays.
The round constants are also stored in this memory. The remaining 6 slices make up
a heavily optimized control unit with a finite state machine (FSM) of 32 states. Each
round in this design requires 147 clock cycles. In the first 50 cycles, the key schedule is
performed to compute the entire 128-bit key state of the current round. In the next 97
cycles the round function is computed, using the freshly calculated round key. Most of
these clock cycles are spent on the MixColumns operation because it performs 4 S-box
evaluations on the fly for each byte of the MixColumns output. The S-box outputs are
not stored but discarded and recomputed when needed. Therefore, 64 S-box invocations
(instead of 16) are performed. In the last round, MixColumns is omitted and the round
function takes only 33 clock cycles. With 65 cycles spent on loading a new plaintext and
key, an entire encryption has a latency of (65+ (50+ 97)× 9+ 50+ 33) = 1 471 clock
cycles. For more details on this design, we refer to the original work [55].

Latency Optimization We note that the above design can be optimized with respect to
latency without sacrificing its minimal area requirement. Instead of performing the key
schedule and round function separately in each round, we can interleave them, i.e. we
compute one key byte and immediately use it to update the corresponding state byte.
To do this, we only have to adapt the control logic. We create a new FSM of 16 states
and derive the LUT mappings for the control signals and addresses. We decrease the
number of LUTs from 24 to 21 and the number of flip-flops from 16 to 13. The resulting
design has a latency of 113 clock cycles per round, except 49 in the last round. Load-
ing of plaintext and key bytes is done in 32 cycles. In total, one encryption requires
(32 + 113 × 9 + 49) = 1 098 clock cycles. Note that this design retains the original
8-LUT S-box. It is summarized in row 2 of Table 1.

Bit-Serializing the S-Box We now start from the latency-optimized design and replace
the 8-slice byte-parallel S-box with our bit-serialized S-box. Since the AES architecture
is byte-serial, we use the S-box from Fig. 2a, which can load entire bytes in parallel.
We accordingly change the control unit to make use of such an S-box design by means
of an extra 3-bit counter to account for the S-box latency. It still contains an FSM of 16
states. This results once again in a control unit of 24 LUTs and 16 flip-flops. Each cipher
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Table 1. Overview of unprotected AES implementations for FPGA.

Design # LUTs # FFs # Slices # CCs∗ fmax
†

Sasdrich et al. [55] 84 24 21 1471 108MHz
Latency optimized 81 21 21 1098 113MHz
With bit-serial S-box 68 39 17 5538 109MHz
Fully bit-serialized 63 38 19 4852 155MHz

∗ Number of clock cycles
† From the post-PAR static timing report
Best value of respective property indicated in bold

round now has a latency of 589 clock cycles and the last round 205 cycles. Hence, one
encryption is completed in (32+ 589× 9+ 205) = 5 538 clock cycles. An overview of
the post-map area and latency of this designs is shown in row 3 of Table 1. We can fit
the entire AES encryption into only 17 slices, a 19% reduction over the state-of-the-art.

3.3. Fully Bit-Serial AES

We now combine our bit-serialized AES S-box with the bit-serialized AES implementa-
tion of [33]. We first adopt the S-box for bit-serial loading and then we adopt their AES
design for FPGAs, since it originally targets ASIC platforms.

S-Box The structure of the bit-serialized S-boxwith bit-serial loading is shown in Fig. 2b.
The conversions to and from the normal basis (p2n and n2p modules) are now realized
in 12 LUTs, i.e. 3 slices (including the S-box affine). This is more than before because
these LUTs also implement the choice between the parallel and shift-serial input to R1
and R2. This new constraint requires a different normal basis than before to achieve the
stated size. Again, by exhaustive search, we obtain β = 133.4 As a result, shift registers
R1 and R2 only require 16 more flip-flops, for which we can use the same slices. The
8-to-1-bit Boolean function S∗ still occupies exactly 4 LUTs of a slice. Therefore, the
entire S-box circuit, ı.e. all elements and components shown in Fig. 2b, requires only 16
LUTs and 16 flip-flops fitting into 4 slices (again 50% less area compared to [55]).
The S-box now has a latency of 16 cycles. In cycles 1 to 7, input bits are shifted into

the first register. In cycle 8, the linear conversion p2n is applied to the 7-bit content of the
register and the newest incoming bit at input xi . The 8-bit result is written to that same
register in parallel in the same cycle. In the 8 subsequent cycles (9 to 16), this register is
rotated, which allows S∗ to evaluate the 8-bit output. The first 7 bits are shifted serially
into R2. In cycle 16, the affine conversion n2p is applied to the 7 bits stored in R2 and
the last output of S∗. The result is written in parallel to R2. The AES S-box output y is
then ready to be shifted out serially over 8 cycles. Note that this can be done in parallel
with the feeding of the next S-box input into R1.

ArchitectureOur design is shown inFig. 4.We refer to [33, Fig. 3,4] for the corresponding
original architecture. To accommodate for bit-sliding, we instantiate four LUTs as 32-
bit shift registers (SRLC32E, see Fig. 1b) for both the state and key arrays. Each LUT

4The algebraic normal forms for S∗, p2n and n2p are given in “Appendix B”.
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Fig. 4. Bit-serial architecture for AES-128. Left: state array and round function, right: key schedule.

represents one row of the array and has its own shift enable signal (not drawn). This
means that ShiftRows can be implemented without additional area cost by letting row
i ∈ {0, 1, 2, 3} shift 8i times. This requires 24 clock cycles in total. As shown in Fig. 1b,
the shift register LUT has both a serial output and a custom read port. In the state array,
this port reads the next-to-last bit, which is used in the computation of MixColumns.
In the key array, this port reads the 7th bit of each row. The MixColumns is performed
in 32 clock cycles as in [33]. The implementation uses 6 LUTs and 4 flip-flops (for the
four most significant bits). We plug in the 16-LUT S-box as described in Sect. 3.1. With
a bit-serial loading of the input, the S-box has a latency of 16 clock cycles. The same
S-box is shared between the round function and key schedule. The multiplexers in the
state array can be implemented using 4 LUTs. The same goes for the operations at the
input of each row of the key state. We also have one LUT for the AddRoundKey which
also includes two multiplexers to select the serial input to R1. It chooses xi between
the S-box input from the round function and from the key schedule. It also chooses the
feedback from R1 when R1 should be rotating, ı.e. the multiplexer shown in Fig. 2b.

Finally, we make a controller to supply the control signals, read addresses and round
constant to the round function, key schedule andS-box. The controller consists of anFSM
with 8 states, which are encoded in a way that minimizes the number of LUTs needed to
compute the control signals and addresses. In total, the control unit takes up 24 LUTs and
18 flip-flops. This brings the total LUT cost of the AES implementation on a new record
of 63 LUTs (see Table 1, row 4). The bit-serial loading of plaintext and key requires 128
clock cycles. Each encryption round is done in 476 cycles, except the last round, which
is done in 440 cycles. In total, one encryption takes (128 + 476 × 9 + 440) = 4 852
clock cycles. It might be surprising that this bit-serialized design is faster than the byte-
serialized AES from Sect. 3.2. This is due to the high latency of the S-box and the
fact that the architecture of [55] has a “wasteful” MixColumns implementations that
evaluates the S-box multiple times.

A Note on BRAM Our construction inherits the architecture of the formerly smallest
design [55], where no BRAM is used. Since the only nonlinear function in our con-
struction is the 8-bit to 1-bit serialized S-box, dedicating an 18k-bit BRAM to such a
small function would be wasteful. As stated in Sect. 2.1.3, the smallest Spartan-6 device
has only 12 of such BRAM instances. Hence, our underlying idea is to realize the AES
module in such a way that its insertion to any application would lead to a negligible
resource utilization. To this end, we have not made use of any BRAMs in our design.
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4. Masking Methodology for Functions of Degree t

The rotational symmetry approach to implement the AES S-box reduces its nonlinear
proportion significantly. This is especially interesting when we consider the applica-
tion of masking schemes. It is well known that the nonlinear parts of a circuit grow
exponentially with the masking order, while linear operations can simply be duplicated
and performed on each share independently, i.e. a linear increase in the area. Instead of
sharing a complete 8-bit to 8-bit mapping, the rotational symmetry approach allows us
to mask only a single 8-to-1 Boolean function.
In this section, we introduce a generic methodology for masking any degree-t func-

tion. Our descriptions have our AES application in mind, but can be generalized to any
algebraic degree and any number of inputs. Moreover, the methodology is not platform-
specific and can be used both for ASIC and FPGA implementations.

Masking Cubic Boolean Functions with d + 1 shares. Each cubic monomial abc can
be trivially masked with d + 1 input shares and (d + 1)3 output shares (one for each
crossproduct). For example, a first-order sharing (i.e. d = 1) of z = abc is given in
Eq. (1).

z0 = a0b0c0, z1 = a0b0c1, z2 = a0b1c0, z3 = a0b1c1,

z4 = a1b0c0, z5 = a1b0c1, z6 = a1b1c0, z7 = a1b1c1 (1)

The result can be compressed back into d+1 shares after a refreshing and register stage.
Our refreshing strategy resembles that of Domain Oriented Masking [30] in such a way
that we apply the same bit of fresh randomness to cross-share terms and do not remask
inner-share terms:

z′0 = [z0]reg ⊕ [z1 ⊕ r0]reg ⊕ [z2 ⊕ r1]reg ⊕ [z3 ⊕ r2]reg
z′1 = [z4 ⊕ r2]reg ⊕ [z5 ⊕ r1]reg ⊕ [z6 ⊕ r0]reg ⊕ [z7]reg (2)

Note that every term after refreshing e.g. z0 or z1 ⊕ r0, is stored in a dedicated register
before going to the XOR chain which produces z′0 and z′1.
The most basic way to mask a more general t-degree function is thus to expand

each monomial into (d + 1)t shares. However, this is wildly inefficient for a Boolean
function which can have as many as 20 monomials (in our case). On the other hand, it is
impossible to keep certain monomials together without violating non-completeness. We
devise a sharing method that keeps as many monomials as possible together by splitting
the function into aminimum number of subfunctions. These sub-parts are functions such
as for example z = abc⊕abd, for which it is trivial to find a non-complete sharing. For
each subfunction we create independent sharings, each with (d + 1)t output shares, and
recombine them during the compression stage.

4.1. Sharing Matrices

We introduce a matrix notation in which each column represents a variable to be shared
and each row represents an output share domain. Output share j only receives share Mi j

of variable i . For example, the sharing matrix M of the sharing in Eq. (1) is
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M =

a b c⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0 0 z0
0 0 1 z1
0 1 0 z2
0 1 1 z3
1 0 0 z4
1 0 1 z5
1 1 0 z6
1 1 1 z7

(3)

From this matrix, it is clear that a correct and non-complete sharing for the cubic
function z = abc exists, since the 23 rows of the matrix are unique, i.e. each of the 23

possible rows occur in the matrix. Moreover, this sharing matrix implies a correct and
non-complete sharing for any function z = f (a, b, c). Note also that each column is
balanced, i.e. there are an equal number of 0’s and 1’s. It is also possible to add a fourth
column, such that any submatrix of three columns consists of unique rows:

M ′ =

a b c d⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0 0 0 z0
0 0 1 1 z1
0 1 0 1 z2
0 1 1 0 z3
1 0 0 1 z4
1 0 1 0 z5
1 1 0 0 z6
1 1 1 1 z7

(4)

Hence, the matrix M ′ demonstrates the possibility to find a correct and non-complete
sharing with eight output shares for any combination of cubic monomials defined over
four variables a, b, c, d. Note that the non-completeness follows from the fact that each
output share (row) only receives one share of each input (column) by construction. To
generalize this observation, we introduce the following concepts:

Definition 4. (Sharing vector) We call a vector v of length (d + 1)t with entries vi ∈
{0, . . . , d} a (t, d)-Sharing Vector, if and only if it is balanced, i.e. each entry occurs an
equal number of times:

∀τ ∈ {0, . . . , d} : #{i |vi = τ } = (d + 1)t−1

Definition 5. (Sharing matrix) We call a (d + 1)t × c matrix M with entries Mi j ∈
{0, . . . , d} a (t, d)-Sharing Matrix, if and only if every column Mj is a (t, d)-Sharing
Vector and if every (d + 1)t × t submatrix of M contains unique rows.

4.1.1. How to Construct Sharing Matrices

The main question in creating masked implementations is thus how to find such a (t, d)-
Sharing Matrix. Below, we present both provable theoretical and experimental results:
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Exact

Lemma 2. A (t, d)-SharingMatrix with t columns exists and is unique up to a reorder-
ing of rows.

Proof. A (t, d)-Sharing Matrix has exactly (d + 1)t rows. If the matrix has t columns,
then each row is a t-length word with base d +1. The existence of such a matrix follows
trivially from choosing as its rows all (d + 1)t elements from the set {0, . . . , d}t . The
uniqueness follows from the fact that the rowsmust be unique, hence each of the (d+1)t

elements can occur exactly once. Up to a permutation of the rows, this matrix is thus
unique. �

Lemma 2 is equivalent to the fact that it is trivial to mask t-variable functions of degree
t (e.g. z = abc) with (d + 1)t output shares but also functions such as z = abc + abd
(since c and d can use the same Sharing Vector).

Lemma 3. A (t, 1)-Sharing Matrix has at most c = t + 1 columns.

Proof. We prove this Lemma by showing that the t + 1th column Mt exists and is
unique. Consider the Sharing Matrix M from Lemma 2 with t columns and 2t rows. We
reorder the rows as in a Gray Code. This means that every two subsequent rows have
only one coordinate (or bit) different. Equivalently, since there are t columns, any two
subsequent rows have exactly t − 1 coordinates in common. Consider for example row
i and i + 1. We have the following properties:

∃! j̄ s.t. Mi, j̄ �= Mi+1, j̄
∀ j ∈ {0, . . . , t − 1} \ { j̄} : Mi, j = Mi+1, j

(5)

Recall that by definition of Sharing Matrix M , any two rows may have at most t − 1
coordinates in common. For row i and i + 1, these coordinates already occur in the first
t columns [cf. Eq. (5)], hence for the last column we must have:

Mi,t �= Mi+1,t

Since this condition holds for ever pair of subsequent rows i and i+1, we can only obtain
the alternating sequence …010101…as the last column Mt . This column is therefore
unique up to an inversion of the bits. An example for t = 3 is shown below:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Gray Code−−−−−−→

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

→ Mt =

0
1
0
1
0
1
0
1

OR

1
0
1
0
1
0
1
0

(6)
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Table 2. Maximum number of columns in (t, d)-sharing matrices.

Degree t Order d = 1 Order d = 2 Order d = 3

2 3 4 5
3 4 4 6
4 5 5 5
5 6 6 6*
6 7 7 7*
7 8 8 8*

* Results of greedy search without backtracking

The example shows clearly that adding both columns to the matrix would violate
the Sharing Matrix definition, since a 3-column submatrix including both new columns
cannot have unique rows. Hence, the t + 1th column is unique and thus a (t, 1)-Sharing
Matrix has at most t + 1 columns. Note also that the labels 0/1 in the last column
correspond to a partitioning of the rows in the first t columns based on odd or even
hamming weight. �

An alternative proof using graph theory is shown in “Appendix C”.
While the relation between the degree t and the maximum number of columns in a

(t, d)-Sharing Matrix is easily described for masking order d = 1 (cf. Lemma 3), no
simple formula can describe the relationship for higher orders. More general (d+1)-ary
Gray Codes exist, but the proof of Lemma 3 does not result in uniqueness for d > 1.
We therefore construct an algorithmic procedure for finding Sharing Matrices for higher
orders. The results are shown in Table 2.

Search Procedure with Backtracking We start from the t-column (t, d)-Sharing Matrix
from Lemma 2. To extend this matrix with another column Mt , we keep for each column
element Mi,t a list Li,t of non-conflicting values ∈ {0, . . . , d}. For each new column,
these lists are initialized to all possible values. Without loss of generalization, we set
the first element of the column to zero: M0,t = 0. For every row i with t − 1 common
coordinates, this element then needs to be removed from its list Li,t .
If there is a row r with a list of length 1 (|Lr,t | = 1), then the unique value in that list

is chosen as the value Mr,t . Again, this value is subsequently removed from all lists Li,t

for which row i has t − 1 coordinates in common with row r . This process continues
until either the column Mt is complete, or until there are only lists of length > 1. In
the latter case, any element of the list Li,t can be chosen as the value Mi,t . The choice
is recorded so that it can later be revoked during backtracking. Whenever a value is
assigned to a column element, the remaining lists are updated as before. When a column
is fully determined, the next column is added in the same way. As soon as an empty
list is obtained for one of the column elements, the algorithm backtracks to the last
made choice. If for all possible choices empty lists occur, then the maximum number of
columns is obtained and the algorithm stops.
A simplified version of the procedure is shown in Algorithm 3 in “Appendix E”.

Note that optimizations are possible for the algorithm, but we leave this for future work
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since first-order security is the target in this work. According to the proof of Lemma 3,
backtracking is not necessary for d = 1.

Table 2 shows that themaximum number of columns does not follow a simple formula
for d > 1. The results in Table 2 without additional indication have been obtained by
exhausting all possible choices via backtracking which takes fractions of seconds for
d = 1 and up to several minutes for d = 2 and multiple hours for the parameters
t = 4, d = 3. As this strategy becomes infeasible with larger matrices, we indicate
results of greedy search without backtracking with an asterisk. This choice is made
based on the observation that (for smaller parameters), if a solution exists, backtracking
was never necessary to find it.

4.1.2. From Sharing Matrices to Sharings

Now consider a mapping ρ : {0, . . . , n − 1} → {0, . . . , c − 1} which assigns any input
variable xi to a single column of a SharingMatrix. That column holds the Sharing Vector
of that variable. For a monomial to be shareable according to those Sharing Vectors, each
variable of that monomial must be mapped to a different column.We therefore introduce
the concept of compatibility between monomials and a mapping ρ.

Definition 6. (Compatible mappings) A mapping ρ : {0, . . . , n−1} → {0, . . . , c−1}
is compatible with a monomial xm0

0 xm1
1 . . . xmn−1

n−1 of degree hw(m) = t if it maps each
variable in the monomial to a different Sharing Vector, i.e.

∀i �= j ∈ {0, . . . , n − 1} s.t. mi = m j = 1 : ρ(i) �= ρ( j)

Lemma 4. Consider a set of monomials of degree≤ t (of which at least one monomial
has degree t) defined over a set of n variables with ANF

⊕
m∈GF(2n)

amx
m0
0 xm1

1 . . . xmn−1
n−1

and a sharing of each variable xi into d+1 shares. A correct and non-complete sharing
of this set of monomials with (d + 1)t output shares exists if and only if a (t, d)-Sharing
Matrix can be constructed such that for each variable in the set ofmonomials, the Sharing
Matrix has exactly one column corresponding to its Sharing Vector and such that for
each monomial, the (up to) t variables of that monomial have different Sharing Vectors.
In other words, there exists a single mapping ρ : {0, . . . , n − 1} → {0, . . . , c − 1} that
is compatible with each monomial in the ANF:

∀m ∈ GF(2n) s.t. am = 1 : ∀i �= j ∈ {0, . . . , n − 1} s.t. mi = m j = 1 : ρ(i) �= ρ( j)

The mapping ρ assigns to each variable xi column ρ(i) of the SharingMatrix as Sharing
Vector.

The termswith degree lower than t also have to be compatible with themapping ρ so that
their variables are assigned to different Sharing Vectors. However, lower-degree terms
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naturally do not need to appear in each of the (d + 1)t output shares. Given a monomial
of degree l < t and a set of l (t, d)-Sharing Vectors, it is trivial to choose the (d + 1)l

output shares for the monomial to appear in.
We note that our Sharing Matrices are very similar to the Dn

t -tables of Bozilov et al.
[8], who also demonstrated that any t-degree function with t + 1 input variables can
be shared with the minimal (d + 1)t output shares. However, their work only treats the
sharing of t-degree functions with exactly t + 1 input variables. Since our goal is to find
a sharing of cubic functions with 8 input variables, we consider here the more general
case where both the degree t and the number of variables n are unconstrained.

4.2. Sharing any ANF

Naturally, not any function is compatible with a (t, d)-Sharing Matrix. In what follows,
we develop a heuristic method to determine efficient maskings with d + 1 shares for
any degree t-Boolean function starting from its unshared algebraic normal form (ANF).
If a compatibility mapping with a single Sharing Matrix cannot be found, our approach
is to split the monomials of the ANF into a number of subgroups, each for which a
(t, d)-Sharing Matrix and thus a correct and non-complete sharing exists. If the ANF
is split into s subgroups, then the number of intermediate shares before compression is
s × (d + 1)t . Our methodology finds the optimal sharing in terms of parameter s. We
do not claim optimality in the number of intermediate shares, since the minimum is not
necessarily a multiple of (d + 1)t .

OurHeuristicWewant tominimize the number of parts theANFshould be split into. This
is equivalent to restricting the expansion of the number of shares and thus limiting both
the required amount of fresh randomness and the number of registers for implementation.
We assume a (t, d)-SharingMatrix of c columns is known at this point.Aprocedure for

this is described in Sect. 4.1 andAlgorithm 3. There are cn possible mappings ρ to assign
one of the c Sharing Vectors to each of n variables. In an initial preprocessing step, we
iterate through all possible ρ and determine which t-degree monomials are compatible
with it. During this process, we eliminate redundant mappings (i.e. with an identical list
of compatible monomials) and the mappings without compatible monomials of degree t .
Note that up to this point (including for Algorithm 3), the specific function to be shared
does not need to be known.
The next step is function specific: We first attempt to find one mapping that can

hold all the monomials of the ANF. Its existence would imply that all the monomials
in the ANF can be shared using the same Sharing Matrix (see Lemma 4). This is not
always possible and even extremely unlikely for ANFs with many monomials. If this
first attempt is unsuccessful, we try to find a split of the ANF. A split is a set of mappings
that jointly are compatible with all monomials in the ANF of the Boolean function, i.e.
it implies a partition of the ANF into separate sets of monomials, each for which a
SharingMatrix exists. In this search, we first give preference to partitions into a minimal
number of subfunctions. With an FPGA target in mind, we also attempt to minimize the
number of variables each subfunction depends on. It is trivial to change this for ASIC
implementations.
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We perform the above described search for all possible normal bases.We note that our
search is heuristic and we do not claim optimality except in the number of split groups s.

Implementation Details We encode mappings and ANFs which are dependent on n
inputs as bitvectors with 2n entries. An entry in the bitvector at position m ∈ GF(2n)
corresponds to one monomial xm0

0 xm1
1 . . . xmn−1

n−1 of degree t = hw(m) and prescribes
whether this monomial is present in the ANF. Recall the ANF of an n-bit Boolean
function F :

F(x) =
⊕

m∈GF(2n)

amx
m0
0 xm1

1 . . . xmn−1
n−1

We thus define the bitvector representations

rep(F) =
∑
m

am2
m and rep(ρ) =

∑
m

αρ
m2

m,

where α
ρ
m = 1 if monomial m is compatible with mapping ρ. Consider for example the

function F = x0x2x4 ⊕ x1x5:

rep(x0x2x4 ⊕ x1x5) = (
22

0+22+24) + (
22

1+25) = 0x400200000

Now, we can determine whether for example a set of mappings (ρ1, ρ2) specifies a
two-split for a Boolean function F as follows. Assuming both are represented as a 2n-bit
vector, we check if the following condition holds:

rep(ρ1) | rep(ρ2) | rep(F) = rep(ρ1) | rep(ρ2),

where | refers to the Boolean OR-operation. The condition evaluates to true whenever
all monomials of the ANF of F are also compatible monomials with at least one of the
mappings ρ1 or ρ2.

Algorithm 1 Preprocessing of mappings
Input: n: number of input bits; t: deg(F); c: number of columns of (t, d)-Sharing Matrix
Output: L: list of mappings; α: compatibility α

ρ
m

1: L ← {(ρ(0), . . . , ρ(n − 1))|ρ(i) ∈ {0, . . . , c − 1}}
2: for ρ ∈ L do
3: for m ∈ GF(2n) s.t. hw(m) ≤ t do
4: α

ρ
m ← 0

5: if ρ(i) �= ρ( j)∀i �= j s.t. mi = m j = 1 then
6: α

ρ
m ← 1

7: end if
8: end for
9: if ∃ρ̂ ∈ L s.t. rep(ρ̂) = rep(ρ) or maxm,α

ρ
m=1 hw(m) < t then

10: L ← L \ {ρ}
11: end if
12: end for
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The preprocessing step is illustrated in Algorithm 1 and creates a list of mappings L .
The list initially contains all cn possible mappings, i.e. all assignments of n variables xi
to one of c Sharing Vectors (1). We iterate over L (2). For each monomial m up to the
target degree t (3), we check whether it is compatible with the mapping ρ, i.e. whether
for any two variables in the monomial m they do not have the same Sharing Vector (5).
After all compatible monomials for one mapping ρ have been determined, we check
for a duplicate–another mapping ρ̂ with an identical list of compatible monomials–
and eliminate it. We also check whether the mapping ρ is compatible with at least one
monomial of the target degree t and otherwise discard it (9,10). The runtime of the entire
preprocessing step is bounded by O(2n · cn).

Algorithm 2 Search for a l-split
Input: L: list of mappings; α: compatibility α

ρ
m ; F : target function

Output: S: a list of l-splits
1: S ← ∅
2: for (ρ1, . . . , ρl ) ∈ Ll do
3: if rep(ρ1) | . . . | rep(ρl ) | rep(F) = rep(ρ1) | . . . | rep(ρl ) then
4: S ← S ∪ {(ρ1, . . . , ρl )}
5: end if
6: end for

Algorithm 2 demonstrates the search for an l-split of mappings for a specific target
function F . Its runtime is |L|l = O(cln). In practice, the computation for our first-order
secure AES design with the parameters c = t + 1 = 4, l = 2, n = 8 takes 3.08s for
Algorithm 1 and 5.73s for Algorithm 2 on a recent Desktop PC.5

5. SCA-Protected AES on FPGA

In this section, we apply our masking methodology from Section 5 to achieve a first-
order secure FPGA-specific design of AES. We describe the structure of our design
in detail, compare it to state-of-the-art implementations and demonstrate side-channel
resistance by practical measurements.

Rotational Symmetry As noted in [39,45,67], the inversion in GF(28) has an algebraic
degree of 7 but can be decomposed into two cubic bijections:

x−1 = x254 = (x26)49

Since masking with d + 1 shares for a function with degree t requires at least (d + 1)t

output shares [51],we choose tomask the cubic bijections x26 and x49 instead of realizing
x−1 in one step. Moreover, since both components of the decomposition are power maps
themselves, they can both be implemented using the rotation symmetry approach. Using

5Averaged over 100 computations.
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the same method as before, we can thus find two Boolean functions F∗ and G∗ such
that F∗(φ(x)) = φ(x26)0 and G∗(φ(x)) = φ(x49)0.

S-Box Structure We illustrate the structure of the decomposed shared S-box in Fig. 6.
Our purpose is to reuse as much hardware as possible to minimize the utilized FPGA
resources. As before, a (shared) byte enters the circuit bit-serially via the input xi and
is saved to the upper shift register R1. Each byte share is then transformed to a normal
basis representation using the affine mapping p2n. By rotation of R1, the power map
x26 is calculated bit by bit using a shared implementation of Boolean function F∗. The
result is shifted bit-wise into the lower register R2 and when completed, the byte is
written back into the upper register in parallel. There, it is rotated to calculate the power
map x49 through shared Boolean function G∗. When all eight 2-share bits have been
calculated and shifted into the lower register, the resulting shares go through the final
affine transform,which transforms back into polynomial basis and applies theAES affine
function (n2p). The S-box output shares can be obtained bit by bit on wire yi .

The block F∗/G∗ can compute either shared Boolean function F∗ (corresponding
to power map x26) or Boolean function G∗ (corresponding to power map x49). Its
functionality is determined by a control selection bit.

5.1. Implementation

Since our fully bit-serialized design (cf. Table 1; row 4) occupies the smallest area in
LUTs and exhibits a lower latency than the byte-serialwith bit-serial S-box design based
on [55] (cf. Table 1; rows 3), we choose tomask this design rather than the byte-serialized
architecture. In general, it may not be true that a smaller area footprint for an unprotected
design results in a smaller footprint for the SCA-protected design, but the two designs in
this case are only different in their linear components, for which the cost increase with
SCA protection is linear. A similar reasoning holds for the latency.

G∗/F∗. Figure 5 shows the masking of the nonlinear block G∗/F∗ in more detail.
Note its significant optimization compared to Figure 5 in [23]. A control bit sel chooses
whether this block computes G∗ or F∗. We split each cubic functionG∗ and F∗ into two
parts

[
GA,GB

]
and

[
F A, FB

]
and share them according to the (3, 1)-SharingMatrix (4)

and Eqs. (1) and (2).
Functions F A, FB,GA and GB are found using the algorithm described in Sect. 4.2

for all possible normal bases. For both F∗ and G∗, we found that the minimum number
of mappings needed for a split is two.
We combine GA with F A and let the control bit sel pick one of the two. We do the

same with GB and FB . The possibility to incorporate the selection bit sel in the first
stage of both parts A and B can be attributed to the fact that we performed the search for
2-splits of both functions F∗ andG∗ simultaneously. Thisminimizes the registers needed
between the first and second stage considerably since each part creates immediately the
minimum number of eight output shares. These results were found for a normal basis
with β = 205. For the exact equations, we refer to “Appendix D”.

Each individual output share (or register input) depends on one share of each input (i.e.
8 bits) and the control bit sel. As stated before, we only refresh the cross-domain shares.
The six cross-domain shares thus depend on 10 variables in total and the shares z0 and



Spin Me Right Round Rotational Symmetry for FPGA-Specific AES 1137

Fig. 5. Illustration of the masked realization of the functions F∗/G∗.

z7 depend only on 9 variables. Since the number of LUTs can double for each additional
input variable, a standard LUTmapping could require as much as 16 LUTs for the cross-
domain shares and 8 LUTs for the other two shares. However, since F A, FB,GA and
GB are only cubic functions, we were able to find a more optimal mapping manually.
For block F A/GA, we can implement each cross-domain share with 7 LUTs and the
inner-domain shares with 6 LUTs, resulting in a total cost of 54 LUTs. The second part
of the split (FB/GB) has less monomials in the ANF and can be implemented with only
5 LUTs per share, which brings the total cost to 40 LUTs. The resulting 2 × 8 output
shares are stored in a register to prevent propagation of glitches. Finally, the shares of
the two blocks are compressed into d + 1 = 2 shares y0 and y1 using two 8-bit XORs.
Each of those can be implemented using 2 LUTs. In total, the entire circuit of G∗/F∗
thus occupies 16 registers and 54+40+4 = 98 LUTs and exhibits a latency of one clock
cycle (due to the compression).

Masked S-Box The masked S-box (Fig. 6) has a latency of 26 cycles. In clock cycles 1 to
8, input x is shifted bit-serially into the upper register R1. In cycle 8, we also apply the
affine transform p2n. The evaluation of G∗ takes one clock cycle because of the register
stage between expansion and compression of shares. We use the block as a pipeline, so
the upper register R1 rotates continuously in clock cycles 9 to 16, feeding its content to
G∗ and the results are shifted bit-serially into R2 in clock cycles 10 to 17. The 7most sig-
nificant bits (in 2 shares) of the lower register R2 and the result of the lastG∗ computation
are written to the upper register R1 in cycle 17 as well. Then, register R1 rotates again
in cycles 18 to 25 and the results of F∗ are shifted into R2 in clock cycles 19 to 26. The
final affine transform is done in cycle 26. Result y can then be taken out bit-serially in 8
cycles, but this can be done in parallel with the loading of the next S-box input x into R1.

Vulnerability PotentialWhen R1 rotates, the input of F∗/G∗ instantly changes, and this
may result in first-order leakage. As an example, consider x1x2x6 as one of the terms
in the ANF of GB (see “Appendix D”). Let us denote the value of (x1, x2, x3, x6, x7) at
one clock cycle by (a, b, c, d, e). Based on Eq. (1), one of the eight terms in a 2-share
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Fig. 6. Illustration of the first-order secure AES S-box based on rotational symmetry when decomposed into
x26 and x49.

realization is z2 = a0b1d0. In the next clock cycle, register R1 rotates and (x1, x2, x6)
have the values (b, c, e), hence the same circuit evaluates z2 = b0c1e0. This means that
such a piece of circuit observes b1 in one clock cycle, and b0 in the next clock cycle.
Hence, during the transition (positive edge of the clock) the leakage of the circuit can
depend on both shares b0 and b1, hence breaking the non-completeness and inducing
first-order leakage.
In order to avoid this issue, we pre-charge the input of F∗/G∗ before every shift in

register R1. To this end, we employ an extra register at F∗/G∗’s input (see Fig. 6),
which is triggered at the negative edge of the clock, and reset (clear asynchronously)
when clock is high. During the first half of the clock cycle (when clock is high), this pre-
charge register clears the input of F∗/G∗. Once the clock changes to low, the value in R1
(already shifted) is stored in the register, hence given to F∗/G∗. At the next positive edge
of the clock, R1 shifts and at the same time the pre-charge register is cleared, thereby
precharging the F∗/G∗ input. This construction prevents any race between R1 being
shifted and the pre-charge register being cleared. Even if R1 is shifted earlier (since its
clock should have low skew) this transition does not pass through the pre-charge register,
and F∗/G∗’s input stays unchanged.

As a disadvantage, this construction can theoretically halve the maximum clock fre-
quency. However, we have observed that F∗/G∗ is not involved in the critical path of
the circuit realizing the full AES encryption. Hence, the maximum clock frequency is
not very much affected and can even be maintained if the duty cycle of the clock is
properly adjusted.
With respect to implementation, the F∗/G∗ block requires 98 LUTs and 16 flip-flops.

In addition, for each share we need 7 LUTs for both p2n and n2p, 1 LUT for the addition
of the round key and 4 LUTs for the multiplexer that chooses the parallel input to R1.
Each share also requires two 8-bit registers (R1 and R2) as well as one 8-bit register for
the precharging of the F∗/G∗ input. Therefore, our masked S-box can be implemented
with (98+2× (7+7+4+1)) = 136 LUTs and (16+2× (8+8+8)) = 64 flip-flops.
Further, the S-box has a fresh randomness cost of 2× 3 = 6 bits per F∗/G∗ evaluation,
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i.e. 6 bits per clock cycle. Each group of 3 bits is used in one part of the shared Boolean
function as in Eq. (2) (see Fig. 5 with ri ∈ GF(2)3).

Full AES We integrate the S-box into the same bit-serial AES design as used in Sect. 3.
The state and key array and linear components of the AES cipher (MixColumns, Ad-
dRoundKey and ShiftRows) have simply been duplicated for each share separately. This
results in occupying 23 × 2 = 46 LUTs and 4 × 2 = 8 registers. The latency of
ShiftRows and MixColumns stays the same as for an unmasked design. When plugging
in the masked S-box, we also need to adapt our control logic since the S-box latency has
changed and we require an extra control signal to select G∗ or F∗. This new control unit
uses 31 LUTs and 20 flip-flops. The design has a latency of 676 cycles per round with
a shorter last round of 640 cycles. In total, with 128 cycles of loading, one encryption
takes 6852 cycles. The total footprint of our masked AES (post-map) is 92 flip-flops
and 230 LUTs when the key schedule is masked and 220 LUTs when it is not.

Results It is difficult to compare these results to state-of-the-art masked AES implemen-
tations [5,21,31,61] since they target an ASIC platform. We can let Xilinx map these
designs to Spartan-6 resources, but unlike our design, they have not been optimized
specifically for this purpose. In Table 3, we do this first for various masked S-box im-
plementations. The results from other works are obtained by synthesis, translate and
map using Xilinx default settings apart from the KEEP HIERARCHY constraint which
is turned on to prohibit optimization across shares [50], as is common practice with
masked implementations [22, §2.4.1]. We stress that no optimization for FPGA has been
done for these designs. When comparing these results to the ASIC numbers reported in
the original works, the stark contrast between the worlds of ASICs and FPGAs is clearly
confirmed. Moreover, the FPGA footprint is strongly influenced by the coding style of
the creators (e.g. extent of hierarchy use, clock gating vs. clock enabling, …), which
is obviously different for each of the designs. We also see clearly the advantage of the
new sharing method for the Boolean functionG∗/F∗ compared to [23], both in resource
requirements and randomness consumption.
We should emphasize that all the considered designs are expected to provide only first-

order security with minimum number of shares for the state and key arrays. The random
bits, which we report in Table 3, are corresponding to the number of fresh random bits
required at each clock cycle. Since the other designs have a (pipelined) byte-serial S-box,
the number of required fresh masks per clock cycle is the same as those required for
every S-box evaluation. However, since in our design the S-box is bit-serial and does not
form a pipeline, the number of required fresh masks per S-box invocation is different.
We further report the same performance figures for the corresponding full AES

encryption-only implementations in Table 4.6 Note that for all these designs, both the
state and key arrays are shared.

A Note About Block RAM As stated in Sect. 3.3, we have intentionally avoided the
utilization of any BRAMs in our constructions. As a side note, if a BRAM is supposed
to be used in amasked implemented, its inputs must fulfil the non-completeness property

6We do not have access to the design of the full AES implementation of [61].
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Table 3. Comparison of first-order secure AES S-boxes, mapped for Spartan-6.

Design # LUTs # FFs # Slices # Random bits

Bilgin et al. [5] 361 92 177 32
Gross et al. [31] 327 208 242 18
Cnudde et al. [21] 340 144 283 54
Ueno et al. [61] 302 96 218 64
[23] 182 96 95 18
This work 144 64 67 6

Table 4. Comparison of first-order secure AES implementations, mapped for Spartan-6.

Design # LUTs # FFs # Slices # CCs∗ fmax
†

Bilgin et al. [5]‡ 1198 611 475 246 127 MHz
Gross et al. [31] 595 734 366 246 103 MHz
Cnudde et al. [21] 1191 642 553 276 181 MHz
[23] 293 124 162 6852 103 MHz
This work 230 92 108 6852 120 MHz

∗ Number of clock cycles
† From the Post-PAR Static Timing Report
‡ Nimble version

[47]. Therefore, we would require 8 such distinct BRAM instances, that – as formerly
stated – would result in wasting their available storage space.

5.2. SCA Evaluation

Measurement Setup For practical evaluations, we implement our full AES encryption
design on the target Spartan-6 FPGA of the SAKURA-G platform [54], a commonly
known and employed board for SCA evaluations. By means of a digital oscilloscope at
a sampling rate of 625MS/s, we measure the power consumption of the target FPGA,
which is clocked at a frequency of 6MHz, through the dedicated on-board AC amplifier.
Due to the very low power consumption of our design (particularly since the state and
key arrays are stored in shift register LUTs), we additionally employ an AC amplifier7

with 10dB gain. During the measurements, the masked AES core receives the shared
plaintext and the shared key and sends back the shared ciphertext.
Each of the required 18-bit fresh masks are provided by a dedicated 31-bit LFSR with

the feedback polynomial x31+x28+1. Such an LFSR has amaximum cycle 231−1with
only two taps [66], hence should suffice for more than 2 billion measurements. Each
LFSR is implemented by means of only 3 LUTs, of which two are employed as shift
register and the last one to make the feedback signal, i.e. the entire fresh mask generation
is realized in 18×3 = 54 LUTs. We arbitrarily initialize the LFSRs (not null) right after
the FPGA power-up. They are supplied with the same clock as the masked AES core,
but operate on the negative edge of the clock. This is done to reduce the effect of the
LFSR transitions on the SCA measurements associated to the masked AES core [21].

7ZFL-1000LN+ from Mini-Circuits.
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Evaluation Most of the related state-of-the-art schemes evaluate the masked design by
means of fixed-versus-random t-test [16,28,56]. It has recently been shown that such
evaluations on masked hardware with only 2 shares can yield misleading results [17].
In other words, when the measurement noise is low, such a t-test may always show de-
tectable leakage independent of the implementation and the underlyingmasking scheme.
Since our design is also prone to this issue due to its very low resource requirements,
we conduct attacks instead of such leakage assessment techniques. To this end, in order
to relax the necessity of having a detailed and accurate power consumption model, we
decide to perform Moments-Correlating DPA [42] (MC-DPA) which is a more robust
and theoretically more accurate form of Correlation-Enhanced Collision Attack [37]. In
short, we perform first- and second-order collision Moment-Correlation DPA attacks by
considering the leakage of one S-box evaluation as the model and thereby performing
the attack on another S-box evaluation. It is noteworthy that such linear collision attacks
recover the linear difference between the associated keys [11].
PRNG OFF. We first turn off the LFSR PRNG (for the fresh masks) as well as the

initial masking of the plaintext and key to emulate an unprotected implementation. The
sample trace shown in Fig. 7a covers eight S-box evaluations of the first encryption round
(indeed of the first two state rows).We also present the signal-to-noise ratio (SNR) curves
estimated based on the value of the plaintext bytes in Fig. 7b. To this end, we follow the
procedure explained in [38]. The SNR curves show a clear dependency on the plaintext
bytes, and hence the S-box inputs. Using 10000 traces and considering the leakage of the
second S-box evaluation (of state byte no. 4) as the model, we conduct a first-order MC-
DPA on the third S-box (of state byte no. 8), which yields the correlation curves shown
in Fig. 7c. The results indicate that very few traces are required to correctly identify the
difference between the corresponding key bytes. We further repeat the same experiment
for two other cases: (a) LFSR PRNG on and initial masking off, (b) LFSR PRNG off and
initial masking on. For both cases, we again observe clearly-distinguishable SNR curves
(although with lower amplitude, i.e. 0.02 compared to 13 in Fig. 7b). The sameMC-DPA
attacks also successfully recover the correct key difference using at most 100000 traces.
PRNG ON. When both the LFSR PRNG and initial masking are active, we collect

10000000 traces, each covering only the above-selected two S-box evaluations.8 Fol-
lowing the same scenario as in the case PRNG off, we perform both first-order and
second-order MC-DPA attacks. The corresponding results are shown in Fig. 8 and show
clearly that the countermeasure is effective at providing protection against first-order
side-channel analysis. On the other hand, a second-order attack does succeed, as can be
expected. This confirms that our measurement setup is sound.

5.3. Discussion

Higher-Order Resistance It is noticeable in Fig. 8b that the second-order attack suc-
ceeds with very low number of, e.g. 10000 traces. This is due to two facts: (a) masking
with minimum number of two shares has in general a strong vulnerability to second-

8Due to the high latency of the entire encryption, the measurement process is relatively slow.We also have
to cover at least two S-box evaluations (for collision MC-DPA) leading to long power traces. This limited our
analysis with respect to the number of collected traces.
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Fig. 7. PRNG and initial masking disabled, 10000 traces, a sample trace, b SNR curves based on 8 plaintext
bytes with the order from left to right: byte no. 0, 4, 8, 12, 1, 5, 9, 13, c first-order Moments-Correlating DPA
result targeting S-box no. 8 with model S-box no. 4, the black curve belonging to the correct key difference.

Fig. 8. PRNG and initial masking enabled,Moments-Correlating DPA result targeting S-box no. 8 with model
S-box no. 4, a first-order with 10000000 traces, b second-order with 10000 traces.

order attacks [18], (b) higher-order attacks are sensitive to the noise level [48] and our
design (due to its extremely low resource utilization) has a very low switching noise
particularly when the masked S-box is evaluated the entire circuit stops till the termina-
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tion of the S-box. Hence, the S-box is the sole source of leakage at that time. Further,
our utilized LFSR PRNG (again using shift register LUTs) does not add a remarkable
amount of noise to the measurements. The number of traces required to successfully
perform a second-order attack is expected to rapidly grow with decreasing the SNR,
since accurately estimating higher-order statistical moments requires a larger amounts
of samples compared to lower-order moments in presence of noise [48]. Our first-order
secure implementation should therefore be combinedwith hiding countermeasures, such
as random shuffling and noisemodules. As an example we refer to [24], where the design
of such a noise generator on the same FPGA type is given. A combination of lowering
the SNR and restricting the number of encryptions performed with the same key should
be able to avoid higher-order attacks in practice.

Design Portability Our design is directly transferable to more modern Xilinx devices of
the 7 Series as they contain the same general architecture. Most notably, the Spartan 7
can feature as little as 938 slices. In fact, we transfered our first-order protected design
onto the smallest Spartan 7 device. Here it occupies 209 LUTs and 92 flip-flops in 84
slices at a frequency of 118 MHz–a slight improvement over the Spartan 6 results. The
reduction in the number of occupied slices can be attributed to the usage of Vivado
2018.3 to synthesize, place and route our design, which contains many algorithmic im-
provements over the older ISE 14.7 software used in Sect. 5.1. Transferring our design
to a different vendor would be a time consuming process as all Xilinx-specific prim-
itives need to be remapped. However, on a conceptional level the transfer is possible
whenever 6-input LUTs are available. This allows a transfer to ALTERA FPGAs based
on adaptive logic modules (ALM). On the other hand, MicroSemi and Lattice devices
which utilize 4-input LUTs cannot directly benefit from our design, but ourmethodology
still applies. Obviously, each vendor-specific FPGA structure might allow other custom
optimizations not discussed here.

Real-World ApplicationsOur implementations target very low area at the cost of latency.
Since area is considered relatively cheap with recent technologies, our design may not
be of interest for just any application. However, there are also many use cases where low
area and lowpower consumption are very important and low throughput is acceptable, for
example in the Internet of Things. Applications include remote measurement and smart
metering, especially when powered by solar energy. Also car key fobs are an excellent
use case example. The need for side-channel protection was shown by the Keeloq attacks
in [25]. Moreover, whenever reconfigurability of the product after shipment might be
necessary, an FPGA can be used instead of an ASIC and our designs are applicable. The
importance of such a feature was recently demonstrated by Tesla, when they updated
their key fobs after the attack from [68]. Even more concretely, our implementation of
AES can operate at a latency below 60μs per 128-bit block permitting its usage as the
central component in the keyless entry challenge-response protocols of nine out of ten
real-world car models without requiring to relax the time-out parameters [26, Table 5].
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6. Conclusion

Our contribution is manifold. First, we made several FPGA-specific AES implementa-
tions which compromise between the latency and area requirements. We improved the
latency of the formerly smallest known AES on Xilinx FPGAs [55]. Furthermore, we
achieved a new size record by replacing its S-box with our bit-serial rotational design
fitting into only 17 slices, while the former record by Sasdrich et al. [55] requires 21
slices–a 19% size reduction. This can be fully attributed to cutting the size of the S-box
by half from eight slices to four.
Second,with respect tomasking as anSCAcountermeasure,we developed an effective

heuristic to find sharings of any Boolean function with d + 1 shares by splitting its ANF
into a minimum number of sub-components, each of which can be shared with a Sharing
Matrix.
Third, we applied our heuristic to our AES S-box construction to obtain an FPGA-

specific masked AES. We further reduce the area overhead by exploiting the rotational
symmetry of a cubic decomposition of the inversion in GF(28). Our first-order secure
AES S-box requires only 144 LUTs, while the masked AES encryption requires 230
LUTs–a new area record on FPGAs. However, we should emphasize that such low area
footprints come at the cost of high latency. More precisely, our designs are suitable
for applications with no high throughput needs. Moreover, the byte-serial AES designs
we compare to, have not yet been optimized for FPGA-specific implementations. This
remains an interesting direction for future work. To promote further research as well as
for comparison purposes, the HDL code of our implementations is publicly available
online.9
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A. ANFs for Byte-Serial Unprotected S-box

The following results are valid in a normal basis with β = 145. To allow replication of
our results we share S∗ both as ANF and in a machine-readable notation (i.e. the 256-bit
vector).

rep(S∗) = 0x1c14813636f5767d6abc937b490334efd066cb1449f

7ad147f30286c8bbef414

S∗(x) = x1 ⊕ x2 ⊕ x1x3 ⊕ x2x3 ⊕ x0x2x3 ⊕ x1x2x3 ⊕ x0x1x2x3 ⊕ x0x4 ⊕ x1x4
⊕ x0x1x4 ⊕ x2x4 ⊕ x0x2x4 ⊕ x0x1x2x4 ⊕ x3x4 ⊕ x0x3x4 ⊕ x0x1x3x4
⊕ x0x1x2x3x4 ⊕ x1x5 ⊕ x0x1x5 ⊕ x0x2x5 ⊕ x1x2x5 ⊕ x0x1x3x5 ⊕ x0x2x3x5
⊕ x2x4x5 ⊕ x0x2x4x5 ⊕ x3x4x5 ⊕ x0x3x4x5 ⊕ x1x3x4x5 ⊕ x0x1x3x4x5
⊕ x2x3x4x5 ⊕ x0x2x3x4x5 ⊕ x1x2x3x4x5 ⊕ x1x6 ⊕ x2x6 ⊕ x3x6 ⊕ x1x3x6
⊕ x0x1x3x6 ⊕ x0x2x3x6 ⊕ x0x1x2x3x6 ⊕ x4x6 ⊕ x0x4x6 ⊕ x1x4x6 ⊕ x2x4x6
⊕ x0x2x4x6 ⊕ x1x2x4x6 ⊕ x0x1x2x4x6 ⊕ x3x4x6 ⊕ x0x1x3x4x6 ⊕ x1x2x3x4x6
⊕ x1x5x6 ⊕ x2x5x6 ⊕ x3x5x6 ⊕ x0x3x5x6 ⊕ x0x1x3x5x6 ⊕ x1x2x3x5x6
⊕ x0x1x2x3x5x6 ⊕ x0x4x5x6 ⊕ x1x4x5x6 ⊕ x0x2x4x5x6 ⊕ x1x2x4x5x6
⊕ x2x3x4x5x6 ⊕ x1x2x3x4x5x6 ⊕ x0x1x2x3x4x5x6 ⊕ x7 ⊕ x0x7 ⊕ x1x7
⊕ x0x1x7 ⊕ x0x2x7 ⊕ x1x2x7 ⊕ x0x1x2x7 ⊕ x1x3x7 ⊕ x2x3x7 ⊕ x0x2x3x7
⊕ x4x7 ⊕ x0x4x7 ⊕ x3x4x7 ⊕ x0x1x3x4x7 ⊕ x1x2x3x4x7 ⊕ x5x7 ⊕ x0x5x7
⊕ x0x1x5x7 ⊕ x2x5x7 ⊕ x0x2x5x7 ⊕ x1x2x5x7 ⊕ x3x5x7 ⊕ x0x3x5x7
⊕ x2x3x5x7
⊕ x0x1x2x3x5x7 ⊕ x1x4x5x7 ⊕ x0x1x4x5x7 ⊕ x2x4x5x7 ⊕ x0x2x4x5x7
⊕ x0x1x2x4x5x7 ⊕ x0x3x4x5x7 ⊕ x0x1x3x4x5x7 ⊕ x0x2x3x4x5x7
⊕ x1x2x3x4x5x7 ⊕ x6x7 ⊕ x1x6x7 ⊕ x0x1x6x7 ⊕ x2x6x7 ⊕ x0x2x6x7
⊕ x1x2x6x7 ⊕ x0x3x6x7 ⊕ x1x3x6x7 ⊕ x2x3x6x7 ⊕ x0x2x3x6x7 ⊕ x1x2x3x6x7
⊕ x4x6x7 ⊕ x1x4x6x7 ⊕ x2x4x6x7 ⊕ x0x2x4x6x7 ⊕ x1x2x4x6x7
⊕ x0x1x2x4x6x7
⊕ x0x3x4x6x7 ⊕ x1x3x4x6x7 ⊕ x2x3x4x6x7 ⊕ x0x2x3x4x6x7 ⊕ x0x5x6x7
⊕ x1x5x6x7 ⊕ x2x5x6x7 ⊕ x0x2x5x6x7 ⊕ x3x5x6x7 ⊕ x0x1x2x3x5x6x7
⊕ x1x4x5x6x7 ⊕ x2x4x5x6x7 ⊕ x1x3x4x5x6x7 ⊕ x0x1x3x4x5x6x7
⊕ x2x3x4x5x6x7

Furthermore, we provide the equations for the conversion from a polynomial base of
GF(28) with α = 2 to a normal base with β = 145 (p2n) and the conversion back
concatenated with the affine function of the AES S-box (n2p).
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p2n0(x) = x0 ⊕ x1 ⊕ x3 ⊕ x6
p2n1(x) = x0 ⊕ x1 ⊕ x2 ⊕ x6 ⊕ x7
p2n2(x) = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4
p2n3(x) = x0 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ x6
p2n4(x) = x0 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ x5
p2n5(x) = x0 ⊕ x1 ⊕ x2 ⊕ x4
p2n6(x) = x0 ⊕ x2 ⊕ x3 ⊕ x4
p2n7(x) = x0 ⊕ x3 ⊕ x4 ⊕ x6

n2p0(x) = x0 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ 1

n2p1(x) = x1 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ 1

n2p2(x) = x1
n2p3(x) = x1 ⊕ x2 ⊕ x3
n2p4(x) = x2
n2p5(x) = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ 1

n2p6(x) = x0 ⊕ x4 ⊕ 1

n2p7(x) = x1 ⊕ x2 ⊕ x4 ⊕ x5

B. ANFs for Bit-Serial Unprotected S-box

The following results are valid in a normal basis with β = 133. To allow replication of
our results we share S∗ both as ANF and in a machine-readable notation (i.e. the 256-bit
vector).

rep(S∗) = 0x70355d75860553518544703c10a90ad5ef30c359047bf

6e4cccce9c4635703a8

S∗(x) = x0x1 ⊕ x0x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x3 ⊕ x4 ⊕ x0x4 ⊕ x1x4 ⊕ x2x4 ⊕ x1x2x4
⊕ x3x4 ⊕ x0x3x4 ⊕ x0x2x3x4 ⊕ x1x2x3x4 ⊕ x1x5 ⊕ x1x2x5 ⊕ x0x1x2x5 ⊕ x3x5
⊕ x0x1x3x5 ⊕ x0x2x3x5 ⊕ x1x2x3x5 ⊕ x0x1x2x3x5 ⊕ x1x4x5 ⊕ x0x1x4x5
⊕ x1x2x4x5 ⊕ x0x1x2x4x5 ⊕ x1x3x4x5 ⊕ x0x1x3x4x5 ⊕ x1x2x3x4x5
⊕ x0x1x2x3x4x5 ⊕ x1x6 ⊕ x0x2x6 ⊕ x1x2x6 ⊕ x0x1x2x6 ⊕ x0x3x6 ⊕ x1x3x6
⊕ x2x3x6 ⊕ x0x2x3x6 ⊕ x1x2x3x6 ⊕ x0x1x2x3x6 ⊕ x4x6 ⊕ x0x4x6 ⊕ x0x1x4x6
⊕ x2x4x6 ⊕ x0x2x4x6 ⊕ x1x2x4x6 ⊕ x1x3x4x6 ⊕ x5x6 ⊕ x0x1x5x6 ⊕ x2x5x6
⊕ x1x2x5x6 ⊕ x3x5x6 ⊕ x0x3x5x6 ⊕ x1x2x3x5x6 ⊕ x0x1x2x3x5x6 ⊕ x2x4x5x6
⊕ x0x2x4x5x6 ⊕ x3x4x5x6 ⊕ x0x3x4x5x6 ⊕ x1x3x4x5x6 ⊕ x0x1x3x4x5x6
⊕ x0x2x3x4x5x6 ⊕ x1x2x3x4x5x6 ⊕ x0x1x2x3x4x5x6 ⊕ x7 ⊕ x1x7 ⊕ x2x7
⊕ x1x2x7 ⊕ x0x1x2x7 ⊕ x0x3x7 ⊕ x0x1x3x7 ⊕ x4x7 ⊕ x0x1x4x7 ⊕ x0x2x4x7
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⊕ x0x1x2x4x7 ⊕ x2x3x4x7 ⊕ x1x5x7 ⊕ x0x1x5x7 ⊕ x2x5x7 ⊕ x0x2x5x7
⊕ x2x3x5x7 ⊕ x0x2x3x5x7 ⊕ x1x2x3x5x7 ⊕ x1x4x5x7 ⊕ x1x2x4x5x7
⊕ x3x4x5x7 ⊕ x1x3x4x5x7 ⊕ x0x1x2x3x4x5x7 ⊕ x6x7 ⊕ x2x6x7 ⊕ x1x2x6x7
⊕ x3x6x7 ⊕ x0x3x6x7 ⊕ x2x3x6x7 ⊕ x1x2x3x6x7 ⊕ x4x6x7 ⊕ x1x4x6x7
⊕ x0x3x4x6x7 ⊕ x1x3x4x6x7 ⊕ x0x1x2x3x4x6x7 ⊕ x5x6x7 ⊕ x1x5x6x7
⊕ x2x5x6x7 ⊕ x0x2x5x6x7 ⊕ x1x2x5x6x7 ⊕ x3x5x6x7 ⊕ x1x3x5x6x7
⊕ x0x1x3x5x6x7 ⊕ x2x3x5x6x7 ⊕ x1x2x3x5x6x7 ⊕ x4x5x6x7
⊕ x1x4x5x6x7 ⊕ x2x4x5x6x7 ⊕ x0x2x4x5x6x7 ⊕ x2x3x4x5x6x7
⊕ x0x2x3x4x5x6x7 ⊕ x1x2x3x4x5x6x7

Furthermore, we provide the equations for the conversion from a polynomial base of
GF(28) with α = 2 to a normal base with β = 133 (p2n) and the conversion back
concatenated with the affine function of the AES S-box (n2p).

p2n0(x) = x0 ⊕ x3
p2n1(x) = x0 ⊕ x1 ⊕ x5 ⊕ x6 ⊕ x7
p2n2(x) = x0 ⊕ x2 ⊕ x3 ⊕ x5
p2n3(x) = x0 ⊕ x4 ⊕ x6 ⊕ x7
p2n4(x) = x0 ⊕ x1 ⊕ x3 ⊕ x5 ⊕ x7
p2n5(x) = x0 ⊕ x2 ⊕ x3 ⊕ x6
p2n6(x) = x0 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7
p2n7(x) = x0 ⊕ x5 ⊕ x7

n2p0(x) = x6 ⊕ 1

n2p1(x) = x1 ⊕ 1

n2p2(x) = x0 ⊕ x1 ⊕ x2
n2p3(x) = x0 ⊕ x2 ⊕ x4
n2p4(x) = x1 ⊕ x2 ⊕ x3
n2p5(x) = x0 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ 1

n2p6(x) = x0 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ 1

n2p7(x) = x0 ⊕ x6

C. Masking and Graph Colouring

In Sect. 4, we raised the question of how many columns a (t, d)-Sharing Matrix can
have. We can connect this problem to that of finding balanced colourings of a graph.

Graph Colouring Consider a graph (V, E) with vertices V = {0, . . . , d}t corresponding
to the rows of a t-column Sharing Matrix M . In other words, the vertices of G are words
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0 1

0 1

(a) Hypercube, H(1, 2)

0 1

2 3

(b) Hypercube, H(2, 2)

0 1

2 3

4 5

6 7

(c) Hypercube, H(3, 2)

Fig. 9. a Unique 2-colouring of H(1, 2) up to inversion, b extension of H(1, 2) to H(2, 2), c extension of
H(2, 2) to H(3, 2). Dashed lines indicate new edges.

of length t with base d + 1. There are (d + 1)t vertices in total. Let two vertices in G
be connected by an edge when their labels differ in exactly one coordinate, i.e. their
Hamming distance is one.10 Such a graph is called a Hamming graph H(t, d + 1). The
case d = 1 is better known as a Hypercube graph [7]. It automatically follows that
each pair of connected vertices {v1, v2} ∈ E have exactly t − 1 coordinates in common.
Recall, that in a (t, d)-Sharing Matrix, no two rows may have t common elements. The
problem of finding column t + 1 is thus equivalent to assigning to each vertex v a label
L(v) ∈ {0, . . . , d} such that ∀{v1, v2} ∈ E : L(v1) �= L(v2). An example of such a
labelling for t = 3 and d = 1 is shown in Eq. 4. Hence, if we can find a valid (d + 1)-
colouring L of the graph H(t, d + 1), then this implies the existence of a (t, d)-Sharing
Vector that can be added to the Sharing Matrix M as extra column.
Given this equivalence, we can also provide an alternative proof for Lemma 3:

Proof. We consider the case d = 1, i.e. the vertices of H(t, 2) are bitvectors of length
t and H(t, 2) defines a t-dimensional hypercube. We show the existence and uniqueness
of the t + 1st column by showing the existence and uniqueness of a 2-colouring of the
graph. It is well known that all hypercube graphs are bipartite, i.e. can be coloured with
only two colours. This proves the existence of a t + 1-column (t, 1)−Sharing Matrix
for any t . Next, we show the uniqueness of this column by showing that the 2-colouring
of a hypercube graph is unique up to an inversion of the colours. Figure 9 depicts two
1-hypercubes (t = 1) and shows clearly that a 2-colouring of the vertices is unique up
to an inversion of the colours. We refer to the colouring as Lt and its inverse L̄t . By
definition, they have two properties:

∀{vi , v j } ∈ E : Lt (vi ) �= Lt (v j ) and L̄t (vi ) �= L̄t (v j ) (7)

∀vi : Lt (vi ) �= L̄t (vi ) (8)

Now, we show by induction that a t + 1-dimensional hypercube only has a unique
colouring Lt+1 and its inverse L̄t+1. Consider a t-dimensional hypercube graph G =
(V, E), which can only be coloured using Lt or L̄t . From this graph, we construct a

10Note that we use the general (non-binary) notion of Hamming Weight which counts the number of
different coordinates (not bits).
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hypercube graph of dimension t + 1 with vertices V ′ = V × {0, 1} and edges

E ′ = {{(vi , 0), (vi , 1)},∀vi ∈ V} ∪ {{(vi , k), (v j , k)},∀{vi , v j } ∈ E, k ∈ {0, 1}}

Naturally, a valid colouring Lt+1 has to agree with either Lt or L̄t on the subgraphs
G0,G1 with nodes V × {0} and V × {1}, as both are isomorphic to G, hence

(Lt+1|G0 , Lt+1|G1) ∈ {(Lt ,Lt ), (L̄t , L̄t ), (Lt , L̄t ), (L̄t ,Lt )}

Now, edges of the form {(vi , 0), (vi , 1)} and the colouring property (7) prohibit the
choice of equal labellings. Hence, only two possibilities for Lt+1 remain, which are
identical up to an inversion:

(Lt+1|G0 , Lt+1|G1) = (Lt , L̄t ),

(L̄t+1|G0 , L̄t+1|G1) = (L̄t ,Lt )

�

As before, the proof cannot be generalized for d > 1. In Sect. 4.1, we therefore provided
specific numbers in Table 2. With this Appendix, we mean to show that the problem of
finding non-complete maskings is related to finding the number of d + 1-colourings of
Hamming graphs. To the best of our knowledge, there is not yet a formula to describe this
number. We note that not all colourings can be transformed to columns for the Sharing
Matrix, since many of them are equivalent up to a renaming of the colours.

D. ANFs for Masked S-box

The following 2-splits are valid in a normal basis with β = 205.

F A(x) = x2x0 ⊕ x2x1 ⊕ x3x1 ⊕ x3x2x0 ⊕ x3x2x1 ⊕ x4x0 ⊕ x4x2 ⊕ x4x2x0 ⊕ x4x2x1
⊕ x5x2 ⊕ x5x4 ⊕ x6x0 ⊕ x6x2x1 ⊕ x6x4x0 ⊕ x6x5x4 ⊕ x7x1 ⊕ x7x3 ⊕ x7x3x0
⊕ x7x3x1 ⊕ x7x3x2 ⊕ x7x4x1 ⊕ x7x4x2 ⊕ x7x5 ⊕ x7x5x2 ⊕ x7x5x4

FB(x) = x2x1x0 ⊕ x4 ⊕ x4x3x1 ⊕ x5x0 ⊕ x5x1x0 ⊕ x5x4x1 ⊕ x6 ⊕ x6x5x1 ⊕ x7x6x2
⊕ x7x6x4

GA(x) = x2x0 ⊕ x2x1 ⊕ x3x1 ⊕ x3x2x1 ⊕ x4x0 ⊕ x4x2 ⊕ x4x2x0 ⊕ x4x2x1 ⊕ x5x3
⊕ x5x4x2 ⊕ x6x2x0 ⊕ x6x2x1 ⊕ x6x3x2 ⊕ x6x4 ⊕ x6x4x0 ⊕ x6x5x3 ⊕ x6x5x4
⊕ x7x1 ⊕ x7x2x0 ⊕ x7x3x0 ⊕ x7x4 ⊕ x7x4x0 ⊕ x7x4x1 ⊕ x7x4x2 ⊕ x7x5x3

GB(x) = x0 ⊕ x1x0 ⊕ x2x1x0 ⊕ x3x1x0 ⊕ x4x1x0 ⊕ x4x3 ⊕ x5x1x0 ⊕ x5x2x1 ⊕ x5x4x0
⊕ x6 ⊕ x6x4x3 ⊕ x6x5x1 ⊕ x7x6x2 ⊕ x7x6x4
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To allow a convenient replication of our results we additionally provide the functions in
a machine-readable notation (i.e. the 256-bit vector).

rep(F A) = 0x0000000000000000000100110014170400010000000200

420001001000726460

rep(FB) = 0x00000000000100100000000000000000000000040000000

10004000a04010080

rep(GA) = 0x0000000000000000000001000017022400010100000310

600010010000724460

rep(GB) = 0x00000000000100100000000000000000000000040100000

1000200480108088a

Furthermore, we provide the equations for the conversion from a polynomial base of
GF(28) with α = 2 to a normal base with β = 205 (p2n) and the conversion back
concatenated with the affine function of the AES S-box (n2p).

p2n0(x) = x0 ⊕ x2 ⊕ x7
p2n1(x) = x2 ⊕ x6
p2n2(x) = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7
p2n3(x) = x0 ⊕ x4 ⊕ x5 ⊕ x6
p2n4(x) = x4 ⊕ x7
p2n5(x) = x1 ⊕ x3 ⊕ x4 ⊕ x7
p2n6(x) = x0 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ x6 ⊕ x7
p2n7(x) = x0 ⊕ x2 ⊕ x5 ⊕ x6

n2p0(x) = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ 1

n2p1(x) = x0 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ 1

n2p2(x) = x1 ⊕ x2 ⊕ x3 ⊕ x6 ⊕ x7
n2p3(x) = x3 ⊕ x5 ⊕ x6⊕
n2p4(x) = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7
n2p5(x) = x1 ⊕ x7 ⊕ 1

n2p6(x) = x0 ⊕ x4 ⊕ 1

n2p7(x) = x0 ⊕ x3 ⊕ x6 ⊕ x7
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E. Finding Sharing Matrices

Algorithm 3 Backtracking Procedure for constructing (t, d)-Sharing Matrices
1: M ← from Lemma 2
2: c ← t
3: while True do
4: for i ∈ {1, . . . , (d + 1)t − 1} do
5: Li,c ← {0, . . . , d}
6: end for
7: L0,c ← {0}
8: while Mc not completely determined do
9: if ∃r : Lr,c = ∅ then
10: Break
11: else if ∃r : |Lr,c| = 1 then
12: Mr,c ← Lr,c[0]
13: else
14: Pick r, l (& record backtrack point)
15: Mr,c ← Lr,c[l]
16: end if
17: for i ∈ {1, . . . , (d + 1)t − 1} \ {r} do
18: if #{ j : Mi, j = Mr, j } = t − 1 then
19: Li,c ← Li,c \ {Mr,c}
20: end if
21: end for
22: end while
23: if Mc not completely determined then
24: if Backtracking possible then
25: Jump to last backtrack point
26: else
27: Stop Algorithm
28: end if
29: end if
30: c ← c + 1
31: end while
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