
Shorter Non-Interactive Zero-Knowledge Arguments and ZAPs
for Algebraic Languages

Geoffroy Couteau1, Dominik Hartmann2

1 CNRS, IRIF, Université de Paris, France
couteau@irif.fr

2 Ruhr-University Bochum, Germany
Dominik.Hartmann@rub.de

Abstract. We put forth a new framework for building pairing-based non-interactive zero-
knowledge (NIZK) arguments for a wide class of algebraic languages, which are an extension
of linear languages, containing disjunctions of linear languages and more. Our approach differs
from the Groth-Sahai methodology, in that we rely on pairings to compile a Σ-protocol into a
NIZK. Our framework enjoys a number of interesting features:
– conceptual simplicity, parameters derive from the Σ-protocol;
– proofs as short as resulting from the Fiat-Shamir heuristic applied to the underlying Σ-

protocol;
– fully adaptive soundness and perfect zero-knowledge in the common random string model

with a single random group element as CRS;
– yields simple and efficient two-round, public coin, publicly-verifiable perfect witness-indistinguishable

(WI) arguments(ZAPs) in the plain model. To our knowledge, this is the first construction
of two-rounds statistical witness-indistinguishable arguments from pairing assumptions.

Our proof system relies on a new (static, falsifiable) assumption over pairing groups which
generalizes the standard kernel Diffie-Hellman assumption in a natural way and holds in the
generic group model (GGM) and in the algebraic group model (AGM).
Replacing Groth-Sahai NIZKs with our new proof system allows to improve several impor-
tant cryptographic primitives. In particular, we obtain the shortest tightly-secure structure-
preserving signature scheme (which are a core component in anonymous credentials), the short-
est tightly-secure quasi-adaptive NIZK with unbounded simulation soundness (which in turns
implies the shortest tightly-mCCA-secure cryptosystem), and shorter ring signatures.
Keywords: zero-knowledge arguments, non-interactive zero-knowledge arguments, satistical
witness-indistinguishability, pairing-based cryptography, tight security, structure-preserving sig-
natures.

1 Introduction

Zero-knowledge proof systems, introduced in the seminal paper of Goldwasser, Micali, and Rack-
off [39], allow a prover to convince a verifier of the truth of a statement, without revealing anything
beyond this. Zero-knowledge proofs are among the most fundamental cryptographic primitives, and
enjoy a tremendous number of applications. A particularly useful kind of zero-knowledge proof sys-
tems are non-interactive zero-knowledge proofs (NIZKs) [13], which consist of a single flow from the
prover to the verifier. NIZKs have found a wide variety of applications in cryptography, ranging from
low-interactions secure computation protocols to the design of advanced cryptographic primitives and
protocols such as verifiable encryption, group signatures, structure-preserving signatures, anonymous
credentials, KDM-CCA2 and identity-based CCA2 encryption, among many others.

Early feasibility results for NIZKs were established in the 90’s, under standard assumptions such as
factorization, or the existence of (doubly-enhanced) trapdoor permutations [29]. While these results
demonstrated the possibility of building NIZKs under standard assumption for all NP languages (in
the common reference string model), they were typically built upon a reduction to an NP-complete
language such as graph hamiltonicity, and were concretely inefficient.

The Fiat-Shamir (FS) transform [30], which relies on a hash function to compile an interactive ZK
proof into a NIZK, provides a practical alternative to the above, leading to efficient NIZK arguments;
however, it only offers heuristic security guarantees and any security proof for the FS transform
must overcome several barriers [7, 38]1. Hence, for two decades after their introduction, essentially

1Alternatively, the Fiat-Shamir transform offers provable security in the random oracle model; we note
that there have been recent developments regarding instantiating Fiat-Shamir in the standard model under
strong assumptions [16,56].

2

two types of NIZKs coexisted: inefficient NIZKs provably secure in the standard (common reference
string) model, and heuristically secure practical NIZKs.

1.1 Pairing-Based NIZKs

With the advent of pairing-based cryptography, this somewhat unsatisfying situation changed. Start-
ing with the celebrated work of Groth and Sahai [45], a variety of pairing-based NIZK proof systems
have been introduced. These proof systems have in common that they handle directly a large class of
languages over abelian groups, avoiding the need for expensive reductions to NP-complete problems.
Due to its practical significance, the Groth-Sahai proof system (and its follow-ups) initiated a wide
variety of cryptographic applications. As of today, all known practically efficient (publicly verifiable)
NIZKs in the standard model rely on pairing-based cryptography. Existing pairing-based NIZK proof
systems can be divided in two categories:

NIZKs based on the Groth-Sahai (GS) methodology. These NIZKs directly rely on the tech-
niques developed in [45], and enhance the seminal construction in various ways [12, 24, 26, 37, 73].
Unfortunately, in spite of these optimizations, Groth-Sahai proofs remain often unsatisfyingly ineffi-
cient, and are in particular notably less efficient than (heuristic) NIZKs obtained with the Fiat-Shamir
transform. Furthermore, the design and analysis of a suitable NIZK, taking into account all existing
optimizations, is often a tedious and error-prone task.
Quasi-Adaptive NIZKs for Linear Languages. In light of the above, an alternative line of re-
search, starting with the work of [52] and culminating with [59], has investigated a different strategy
for building pairing-based NIZKs. Roughly, the approach relies on a hash proof system [21] (HPS) for
the target language over some abelian group G1, which can be seen as a kind of designated-verifier
NIZK proof, and makes it publicly verifiable by embedding the secret hashing key in the group G2.
Verifying the proof is done with the help of a pairing operation between G1 and G2. The HPS-based
approach leads to conceptually simple and very efficient proofs (e.g. a membership proof for the DDH
language can be made as short as a single group element in [59]). However, this efficiency comes with
strong limitations: this approach can only handle linear languages, and only provides a quasi-adaptive
type of soundness, where the common reference string is allowed to depend on the language.

1.2 Our Contribution

In this work, we introduce a new approach for building efficient, pairing-based non-interactive zero-
knowledge arguments for a large class of languages, where soundness relies on a new (but plausible,
static, and falsifiable) assumption, which extends the kernel Diffie-Hellman assumption [70] in a natu-
ral way. Our approach is very simple and natural; yet it has to our knowledge never been investigated.
It leads to proofs which are shorter and conceptually much simpler than proofs obtained with the
GS methodology. At the same time and unlike the HPS-based methodology, our proof system is not
limited to linear languages, but handles a more general class of witness samplable languages where,
roughly, the language parameters can be sampled together with a trapdoor which can be used to
decide membership in the language (in particular, this captures the important case of disjunctions of
linear languages, from which one can build linear-size NIZKs for circuit satisfiability using the GOS
methodology [43]) and achieves fully adaptive soundness with very short common random strings.

Statistical ZAPs and NIWIs. An additional benefit of our NIZK proof system is that it works
in the common random string model, where the CRS is just a random bit string. Furthermore,
we show that if we let the verifier pick the CRS himself, our proof system still satisfies statistical
witness-indistinguishability. Therefore, we obtain the shortest two-round publicly-verifiable witness-
indistinguishable argument system in the plain model (i.e., a ZAP [25]) for witness-samplable algebraic
languages. Our ZAPs can be turned into fully non-interactive witness-indistinguishable arguments in
the plain model, using the derandomization method of [8]. We emphasize that the ZAPs obtained
with our method are statistically witness-indistinguishable; to our knowledge, our construction is the
first pairing-based statistical ZAP (it is in addition publicly verifiable, and public coin). Existing
constructions of statistical ZAPs rely on the quasipolynomial hardness of LWE [6, 50], or rely on
subexponential variants of standard assumptions and are not public coin [55]. While our result comes

3

at the cost of basing soundness on a new pairing-based assumption, we believe that it represents
a significant contribution to the important and long standing open question of building statistical
ZAPs.

Simple Dual-Mode NIZKs. Eventually, a variant of our compiler allows to compile Σ-protocols
for algebraic languages into (dual-mode) NIZK proofs, based on the standard SXDH assumption, for
arbitrary algebraic languages (and not only witness-sampleable languages). While the proofs obtained
this way have the same size and features as (optimized) Groth-Sahai proofs, it provides a conceptually
simple and elegant way of constructing them.

High Level Overview. At a high level, our approach consists in compiling a three-move public coin
zero-knowledge protocol (so called Σ-protocol) with linear answers over an abelian group G1 into a
non-interactive zero-knowledge argument, by embedding the challenge e into a group G2 such that
there is an asymmetric pairing between G1 × G2 and a target group GT , and adding the embedded
challenge to the common reference string. Intuitively, correctness is preserved because the pairing can
be used to perform the verification procedure, zero-knowledge is perfect, and soundness follows from
the fact that a cheating adversary must compute a value in G1 which has a non-trivial relation to e,
which is conjectured to be intractable. An important part of our work is devoted to the analysis of
the soundness property of our proof system, and the underlying assumption.

In addition to the efficiency improvements it provides, an important conceptual advantage of
our approach over the Groth-Sahai methodology is that it gives a very simple and natural way to
construct NIZKs. The construction of optimized Groth-Sahai proofs is generally cumbersome, and a
significant amount of expertise is often required for the design of the best-possible GS proof in a given
context. In contrast, Σ-protocols are typically straightforward to construct, and require considerably
less expertise to optimize. Building a NIZK with our approach requires only to design an algebraic Σ-
protocol for the target language distribution, and compiling it into a NIZK (which essentially amounts
to adding a single group element to the CRS). Computation, communication and the underlying
assumption can be obtained in a straightforward way from the parameters of the underlying Σ-
protocol. We believe that this conceptual simplicity is an important feature toward making the use
of pairing-based NIZKs accessible to a wider spectrum of researchers and industrials.

1.3 Technical Overview

The starting point of our approach is a (somewhat folklore) Σ-protocol for algebraic languages [10,17].
AΣ-protocol is a three-move public-coin honest-verifier zero-knowledge proof system (i.e., the message
of the verifier is a random string, and the zero-knowledge property holds against verifiers that do
not deviate from the specifications of the protocol). In the following, we use the implicit notations
introduced in [28]: given a group G in additive form, we fix a generator g and write [x] for x · g.
Most, if not all, algebraic languages over abelian groups considered in the literature can be written
as LM,Θ := {x ∈ Gl|∃w ∈ Ztp : M(x) · w = Θ(x)}, where M : Gl 7→ Gn×t and Θ : Gl 7→ Gn are
linear maps sampled according to a distribution Dpar . This captures all algebraic languages defined by
systems of polynomial equations between secret exponents. Most Σ-protocols for algebraic languages
can then be seen as particular instantiations of the generic Σ-protocol represented on Figure 1.

To compile this Σ-protocol into a NIZK, we assume that all computations take place in a group
G1, such that there exists another group G2 together with an asymmetric pairing • : G1×G2 7→ GT .
We use the standard brackets with subscripts [·]1, [·]2, [·]T to extend the implicit notation to the three
groups G1,G2,GT . The setup algorithm of our proof system picks a random e ∈ Zp and sets the
common reference string to [e]2. The prover computes [a]1 as in the Σ-protocol, and obtains the value
d embedded in G2 by computing [d]2 := w ·[e]2+r·[1]2. Checking the verification equation can still be
done, with the help of the pairing: the verifier checks that [M(x)]1 • [d]2

?
= [Θ(x)]1 • [e]2 + [a]1 • [1]2.

While this construction is relatively simple, the bulk of our technical contribution is the detailed
analysis of the security guarantees it provides.

The Extended-Kernel Matrix Diffie-Hellman Assumption. To prove the soundness of our
NIZK, we introduce a new family of assumptions, which we call the extended-kernel Matrix Diffie-
Hellman assumption (extKerMDH). The regular KerMDH assumption with respect to a distribution

4

(M,Θ)
$←− Dpar

P V
[x],w [x]

r
$←− Zkp

[a] := [M(x)]r
e

$←− Zp
d := ew + r

check
[M(x)]d

?
= [Θ(x)]e+ [a]

[a]

e

d

Fig. 1. Generic Σ-protocol for algebraic languages LM,Θ from a distribution Dpar

Dist over an asymmetric pairing group states that, given a matrix [A]2 sampled from Dist, it is
infeasible to find a vector [v]1 where v is in the kernel of A. It is a natural computational analogue
of the decisional Matrix Diffie-Hellman assumption (which it implies), and was introduced in [70].
Our new assumption further generalizes the KerMDH assumption as follows: it states that it should
be infeasible, given [A]2, to find another matrix [A′]2 and a matrix [B]1 such that B spans the entire
kernel of A||A′. Intuitively, the adversary is allowed to extend the matrix [A]2, which facilitates
finding G1-vectors in its kernel; but each time the adversary extends A by one column, he must
provide an additional G1-vector (linearly independent of the previous vectors) in the kernel of the
extended matrix.

The extKerMDH assumption is a static, non-interactive assumption, which generalizes the KerMDH
assumption in a natural way. To provide further evidence for the security of our assumption, we prove
that it is unconditionally secure in the generic group model [78] (GGM), and that it reduces to
the discrete logarithm assumption in the algebraic group model [31] (AGM). On the downside, the
extKerMDH assumption might not in general be a falsifiable assumption [36, 71]: it states that it is
infeasible to output [A′]2 and a basis [B]1 of the kernel of A||A′, but verifying whether the G1-matrix
[B]1 is full rank is not efficiently feasible in general (indeed, the hardness of deciding whether a matrix
given in a group G is full rank is exactly the decisional matrix Diffie-Hellman assumption). However,
we show that for all witness-sampleable languages, there is a language trapdoor which does allow to
efficiently check whether B is full rank (intuitively, the trapdoor allows to put [B]1 in triangular form,
from which the rank can be easily checked), turning our new assumption into a falsifiable assumption.

Witness Samplable Languages. We give an intuition of the class of algebraic languages which
satisfy our requirements. Intuitively, an algebraic language L admits a NIZK (using our compiler)
where soundness reduces to a falsifiable assumption if the parameters of L can be sampled together
with a trapdoor which allows to efficiently check language membership. For example, this captures
the DDH language LDDH: given language parameters ([1]1, [s]1), the words in LDDH are of the form
([x]1, [x · s]1), and the trapdoor s allows to verify that a word (c1, c2) belongs to LDDH by checking
whether s · c1− c2 = [0]1. Witness samplable languages need not be linear languages: for example, the
language of ElGamal encryptions (in the exponent) of a plaintext m ∈ {0, 1} is not a linear language,
yet the ElGamal secret key allows to efficiently check wether a pair of group elements indeed encrypts
a bit, hence it is also captured by our methods. More generally, the conjunctions and disjunctions of
witness samplable languages are still witness samplable. On the other hand, some natural algebraic
languages are not witness-samplable; for example, the language of triples of the form ([1]1, [x]1, [x

2]1)
does not seem to be witness samplable (since it is not clear how one could generate a word-independent
trapdoor allowing to check membership to this language).

Witness-sampleable languages were originally introduced in [52], but were restricted to linear lan-
guages. We extend this notion of witness-sampleability to arbitrary algebraic languages, and will show
that many languages of interest are actually witness sampleable. For these languages, we therefore
obtain shorter NIZKs under a natural, static, falsifiable assumption. We note that for the case of
linear languages (such as the language of DDH tuple), our generalized notion of witness-samplability
is the same as the notion of [52], and applying our compiler to witness-samplable linear languages
leads to NIZKs which are actually secure under the standard KerMDH assumption (while still being
shorter than GS proofs).

5

1.4 Applications

Our new NIZKs have several attractive features and can be used to improve the efficiency of many
NIZK-based primitives. We provide a non-exhaustive list of some applications below. All applica-
tions we describe rely on witness-sampleable algebraic languages, making the underlying extKerMDH
assumption falsifiable.

Adaptive NIZKs for Linear Languages. We achieve the shortest and most efficient adaptive NIZKs
for (witness-sampleable) linear languages, with perfect zero-knowledge and computational soundness
under the kernel Diffie-Hellman assumption: a Groth-Sahai proof for the language of DDH tuples
consists of four group elements, while our NIZK requires only three group elements, and considerably
less pairings. We note that in the quasi-adaptive setting, where the common reference string is allowed
to depend on the language, the work of [59] gives NIZKs with two group elements (for non witness-
sampleable languages), or even a single group element (for witness-sampleable languages). Therefore,
our work can be seen as filling a remaining gap, providing a more complete picture of the size of
NIZKs for linear languages, depending on whether we allow quasi-adaptive soundness, and rely on
witness-sampleability. In addition to providing a stronger soundness guarantee, full adaptivity also
leads to increased efficiency when many proofs are run in some high level application: it allows to
rely on a single CRS (which, in our case, consists of a single group element), even when executing
many linear subspace proofs for different languages. In contrast, QA-NIZKs have a language-dependent
CRS; hence, a different CRS must be generated for each language. The comparison is summarised in
Table 1.

Scheme Assumption CRS Proof size Pairings WS Fully Adaptive

GS [45] SXDH 4 4(n+ 2t) 24(n(4t+ 8)) 7 3

KW [59] KerMDH 6 2(2) 3(n+ 1) 7 7

KW [59] KerMDH 4 1(1) 2(n) 3 7

Ours KerMDH 1 3(n+ t) 6(n+ nt+ 2) 3 3

Table 1. Comparison of existing NIZKs for the DDH language (linear languages described by an n × t
matrix). CRS/Proof size denotes the number of group elements in the common reference string/a proof.
Pairings denotes the number of pairing operations in proof verification. “WS” indicates whether the proof
system is restricted to witness sampleable languages.

Adaptive NIZKs for Disjunctions. Since our NIZKs are built by compiling a Σ-protocol, they
are compatible with the OR-trick of [20]. The OR-trick provides a general method to construct Σ-
protocols of partial satisfiability, such as “k of those n words belong to the language L”, from a
Σ-protocol for proving membership to L. Building upon this observation, we obtain shorter NIZKs
for disjunctions of statements. The state-of-the-art NIZK for partial satisfiability of equations is the
one in [73]. For the important case of the disjunction between two (resp. n) DDH languages, it gives
proofs of size 10 group elements under the SXDH assumption (resp. 4n + 2 group elements for 1-
out-of-n proofs). For the same language, our approach leads to proofs of size 7 (resp. 3n + 1 group
elements for 1-out-of-n proofs). This is detailed in Table 2. NIZKs for disjunctions of languages are a
core component in several applications; we outline some applications below.

Scheme Assumption CRS Proof size Pairings WS

[44,73] SXDH 4 10(
∑2
i=1 ni + 2ti + 2) 24(

∑2
i=1 4ni + 2niti) 7

Ours extKerMDH 1 7(
∑2
i=1 ni + ti + 1) 12(

∑2
i=1 ni + niti + 4) 3

Table 2. Comparison of existing NIZKs for the OR of two DDH languages (two linear languages described
by ni × ti matrices for i ∈ {1, 2}). CRS denotes the number of group elements in the common reference
string. “WS” indicates whether the proof system deals only with witness sampleable languages. Note that our
scheme can in fact handle non-witness sampleable languages; however, this comes at the cost of making the
underlying extKerMDH assumption non-falsifiable.

6

Ring Signatures. Ring signatures [74] allow a signer to anonymously sign on behalf of an ad-hoc
group to which it belongs. They are a core component in some e-voting and e-cash schemes [79] and
anonymous cryptocurrencies such as Monero [72]. A O(

√
N)-size proof of membership in a ring of

size N was designed by Chandran, Groth and Sahai [18] and subsequently improved in [73]; it relies
at its core on a NIZK for (`− 1)-out-of-` disjunction of DDH languages. Using our improved NIZK for
disjunction, we reduce the ring signature size by

√
N − 1 group elements, for rings of size N .

We observe that a O(logN)-size ring signature scheme was recently introduced in [5]. The authors
do not provide a concrete efficiency analysis and use generic tools which would likely render concrete
instantiations inefficient for reasonable group sizes. We note, though, that our proof system can be
used to instantiate the non-interactive witness indistinguishable proof system they rely upon, and
would likely lead to efficiency improvements comparable to what we get over the ring signature
of [73], for concrete instantiations of their building blocks.

Tightly-Secure QA-NIZKs with Unbounded Simulation Soundness. In several applications
in cryptography, the constructions require a NIZK for linear languages which satisfies a stronger
soundness guarantee: soundness should hold even if the adversary is allowed to see an arbitrary number
of simulated proofs. This stronger notion is known as unbounded simulation-soundness. The recent
work of [3] introduced the first unbounded simulation-sound quasi-adaptive NIZK (USS-QA-NIZK)
which achieves simultaneously compact CRS, compact proof size, and a tight security reduction. At
the core of their construction is the disjunction NIZK of [73], which has 10 group elements; this
accounts for most of the size of their USS-QA-NIZK, which has 14 group elements. By replacing
the disjunction proof by our new NIZK, we reduce the size of their USS-QA-NIZK to only 11 group
elements, and also reduce the CRS size, at the cost of requiring our new assumption. We provide
a comparison to existing USS-QA-NIZKs for linear languages on Table 3. In particular, our result
allows to further reduce the size of the tightly-secure IND-mCCA-secure public-key encryption scheme
of [4] (IND-mCCA refers to indistinguishability against chosen ciphertext attacks in the multi-user,
multi-challenge setting), with a security reduction independent of the number of decryption-oracle
requests of the CCA2 adversary, from 17 group elements to 14 group elements.

CRS Size Proof Size Pairings Sec. Loss Assumption

[60] 2n+ 3(t+ λ) + 10 20 2n+ 30 O(Q) DLIN
[59] (2t+ 6, n+ 6) (4, 0) t(n+ t+ 2) O(Q) SXDH
[61] 2n+ 3t+ 24λ+ 55 42 2n+ 10 3λ+ 7 DLIN
[33] (t+ 6λ+ 1, n+ 2) (3, 0) n+ 4 4λ+ 1 SXDH
[4] (3t+ 14, n+ 12) (n+ 16, 2t+ 5) 7n+ 5t+ 3nt+ 121 36 log(Q) SXDH
[3] (4t+ 4, 2n+ 8) (8, 6) n+ 30 6 log(Q) SXDH

Ours (4t+ 8, 2n+ 3) (8, 3) n+ 18 6 logQ
SXDH,
extKerMDH

Table 3. Comparison of existing unbounded simulation-sound NIZKs for linear languages. The notation
(x1, x2) denotes x1 elements in G1 and x2 elements in G2. Q denotes the number of simulation queries, λ
is the security parameter. (n, t) are the parameters of the underlying linear language, defined by a matrix
M ∈ Zn×tp , with n > t.

Tightly-Secure Structure-Preserving Signatures. The notion of structure-preserving cryptog-
raphy gives a paradigm for building modular protocols designed to be naturally expressed as sys-
tems of pairing-product equations, which makes them compatible with the Groth-Sahai methodol-
ogy. Structure-Preserving Signatures (SPS) are one of the most fundamental primitives in structure-
preserving cryptography. They are the core component in a variety of important applications, such
as anonymous credentials (see e.g. [9,14,15,19,22,32,47,65], to name just a few), mixnets and voting
systems [42], or simulation-sound NIZKs [40, 61].

A cryptographic scheme is tightly secure if its security loss is independent of the number of users
of the scheme. A tight security reduction gives guarantees that do not degrade with the size of the
setting in which the system is used. Tight security is especially important in structure-preserving
cryptography, where many components rely on the same cyclic group: if a non-tightly-secure scheme

7

is used and the number of users increases, this might require increasing the group size to compensate
for the security loss, degrading the performance of all other schemes relying on the same cyclic
group. There has been a long sequence of works that seeked to obtain increasingly shorter structure
preserving signatures with tight security reductions; we summarize them in Table 4.

The work of [34] provides a tightly-secure SPS with 14 group elements, which combines an algebraic
MAC scheme with the proof of [73] for the disjunction of two DDH languages. The latter has proof
size of 10 group elements. Replacing the OR-NIZK in their work by the shorter proof which we
introduce leads to a tightly-secure SPS with 11 group elements, matching the size of the best known
tightly-secure SPS [3]. The work of [3] improves over [34] by replacing the underlying OR-NIZK by a
designated-prover OR-NIZK, which suffices in this context. They show that in the designated-prover
setting, the size of the OR-NIZK can be reduced to 7 group elements. We observe that their technique
is actually compatible with our improved OR-NIZK, and leads to a quasi-adaptive designated-prover
OR-NIZK with only 5 group elements (which can be of independent interest). Overall, this leads
to a tightly-secure SPS with only 9 group elements under (a falsifiable flavor of) the extKerMDH
assumption, significantly improving over the efficiency of the state-of-the-art. Considering a setting
with security parameter λ = 80, a large possible number of signing queries Q = 230, and choosing
a group G of order p ≈ 22(λ+logL) to account for the security loss of L(Q) (assuming that the best
attack on the group is the generic √p-time attack), our scheme is actually computationally more
efficient than the state-of-the-art non-tightly-secure SPS of [53], and produces signatures which are
only slightly larger: 241 Bytes versus 201 Bytes.

Scheme Sig. Size PK Size Pairings Sec. Loss Assumption

[48] 10`+ 6 13 81l + 1 O(1) DLIN
[1] (7, 4) (5, n+ 12) 16 Q SXDH,XDLIN
[62] (10, 1) (16, 2n+ 5) 17 + 2n O(Q) SXDH,XDLINX
[58] (6, 1) (0, n+ 6) 3n+ 4 2Q2 SXDH
[53] (5, 1) (0, n+ 6) n+ 3 Q logQ SXDH
[2] (13, 12) (18, n+ 11) n+ 16 80λ SXDH
[51] (11, 6) (7, n+ 16) n+ 22 116λ SXDH
[34] (8, 6) (2, n+ 9) n+ 11 6 logQ SXDH
[4] (6, 6) (2, n+ 5) 7n+ 5t+ 3nt+ 121 36 logQ SXDH
[3] (7, 4) (2, n+ 11) n+ 31 6 logQ SXDH

Ours (7, 2) (7, n+ 8) n+ 23 6 logQ SXDH, extKerMDH

Table 4. Comparison of existing structure-preserving signatures for message space Gn1 , in their most efficient
variant. For [4], n and t are defined as in Table 3. The notation (x1, x2) denotes x1 elements in G1 and x2
elements in G2. Q denotes the number of signing queries, λ is the security parameter. In the tree-based scheme
of [48], ` denotes the depth of the tree (which limits the number of signing queries to 2`).

1.5 Related Work

We already mentioned related works on NIZKs and SPS. Our work was partly inspired by a line of
work initiated in [17,23], which compiles Σ-protocols into designated-verifier NIZKs, by encrypting the
challenge with a malleable cryptosystem, and putting the ciphertext in the CRS. The idea of hiding
the challenge of an interactive protocol in a CRS was also used in different contexts; for example, it
bears similarity with methods used in [35,54].

In a recent independent work [64], Lombardi et al. constructed statistical ZAP arguments under
standard pairing assumptions. Their result and our ZAPs are incomparable: we achieve public coin
ZAPs, while [64] only achieves a relaxed notion of reusable ZAPs with private verifier randomness,
and we only rely on a polynomial hardness assumption, while [64] requires quasi-polynomial hardness.
On the other hand, [64] relies on the quasi-polynomial hardness of the standard DLIN assumption,
while we must rely on a new assumption.

1.6 Organization

In Section 2, we recall necessary preliminaries. Section 3 introduces our new NIZK argument system.
Section 4 is devoted to the security analysis of the new proof system; to this end, it introduces

8

the notion of algebraic witness sampleability and the extKerMDH assumption. Section 5 extends
our construction to disjunctions of algebraic languages and Section 6 describes a variant of our
compiler which yields (dual-mode) NIZK proofs based on the SXDH assumption for arbitrary algebraic
languages (and not only witness-sampleable languages). While the proofs obtained this way have
the same size and features as (optimized) Groth-Sahai proofs, it provides a conceptually simple
and elegant way of constructing them. We outline several applications of our results in Section 7.
Appendix A provides examples to illustrate some of the notions we introduce. In Appendix B, we
prove the security of our new assumption in the generic group model and in the algebraic group model.
Appendix C shows that disjunctions of languages are in fact directly captured by the framework of
algebraic languages, without going through the OR-trick of [20].

2 Preliminaries

Let P denote the set of all primes and λ ∈ N denote the security parameter. A probabilistic polynomial
time algorithm (PPT, also denoted efficient algorithm) runs in time polynomial in the (implicit)
security parameter λ. A function f is negligible if for any positive polynomial p there exists a bound
B > 0 such that, for any integer k ≥ B, |f(k)| ≤ 1/|p(k)|. We will write f(λ) ≈ 0 to indicate that f
is a negligible function of λ; we also write f(λ) ≈ g(λ) for |f(λ)− g(λ)| ≈ 0. For sampling an element
according to a distribution or selecting it uniformly random from a (finite) set, we write p $←− S. We
use the same notation for the output of a probabilistic algorithm. For output y of a deterministic
algorithm A on input x, we will also use y := A(x). Matrices will always be bold, upper-case letters
and vectors will be bold, lower-case letters. For a matrix A let span(A) := {x|∃r : x = Ar} and
ker(A) := {x|xTA = 0} the left kernel of A. All interactive protocols will be performed between a
prover P and a verifier V. If one party can deviate from the protocol, we will denote this by P̂ and
V̂ respectively. Additionally, a simulator will be called S. For language parameters ρ sampled from
a language distribution D, let Lρ denote the language defined by ρ and let Rρ denote its witness
relation. Finally, for a distribution D, we write Supp(D) for the support of the distribution.

2.1 Groups and Pairings

Throughout this work, let p ∈ P denote a prime with bit length polynomial in the security parameter λ.
Let G1, G2, GT be finite groups of prime order p with generators g1, g2 respectively and e : G1×G2 →
GT a bilinear map. We set gT := e(g1, g2), which is a generator of GT . PG = (p,G1,G2,GT , g1, g2, e)
is called a pairing group setting, if the following properties hold: e(g1, g2) 6= 0T (non-degenerate);
e(ag1, bg2) = ab · e(g1, g2) (bilinearity); and e is efficiently computable. Furthermore, we require the
existence of a probabilistic algorithm PGGen, which on input 1λ generates pairing parameters as
above with a group order close to 2λ, i.e. PG $←− PGGen(1λ).

Throughout this work, we will write all groups in implicit notation, i.e. for an additive pairing
group setting PG = (p,G1,G2,GT , g1, g2, e), we write [1]i := gi and [x]i := x · gi for all x ∈ Zp
and i ∈ {1, 2, T}. If the group is clear from context, we will omit the index. We write [x]1 • [y]2 :=
e([x]1 , [y]2) = [xy]T for pairings. The implicit notation also extends to matrices and vectors. For A ∈
Zn×tp ,A = (aij), let [A]k = ([aij]k) ∈ Gn×tk for k ∈ {1, 2, T} and we also extend the pairing notation
from above to [A]1 • [B]2 := e([A]1 , [B]2) = [AB]T for matrices A ∈ Zn×tp ,B ∈ Zt×mp . Furthermore,
we extend the implicit notation to linear (multivariate) polynomials. Let Pl := {[a0]+

∑l
i=0 aiXi|ai ∈

Zp for i ∈ {0, . . . , l}} ⊂ G[x = (X1, . . . , Xl)] be the set of linear multivariate polynomials over G in
l variables. For f ∈ Pl and y = (y1, . . . , yl) ∈ Zlp, we define the evaluation of f in y as applying the
group operation in the exponent, i.e.

f([y]) := f(y) = [a0] +

l∑
i=1

ai[yi] = [a0] +

l∑
i=0

[aiyi]

This allows us (in a slight abuse of notation) to use polynomials from Pl inside of matrices and equa-
tions in implicit notation without changing variable names, i.e. [a0]X0 = [a0X0], since the evaluation
of the polynomial is defined exactly that way. For a matrix A = (ai,j) ∈ Pn×tl , the evaluation of the
matrix (or vector) over Pl in a vector y ∈ Gl denotes the evaluation of all entries in the given vector,
i.e. A(y) := (ai,j(y)) ∈ Gn×t.

9

2.2 Matrix Assumptions

The assumptions used in this work are parametrised over matrix distributions. These are defined as
follows.

Definition 1 (Matrix Distribution). Let k, l ∈ N with k < l. We call Dk,l a matrix distribution,
if it outputs matrices over Gl×k of full rank k in polynomial time. If l = k + 1, we write Dk instead.
Without loss of generality, we assume that the first k rows of a matrix A ∈ Supp(Dk,l) form an
invertible matrix.

We base the soundness of our construction on an extension of the Kernel Diffie-Hellman assump-
tion. We recall its definition from [69] and the definition of the underlying Matrix Diffie-Hellman
assumption from [27].

Informally, the Dk,l-Matrix Diffie-Hellman assumption states that for a matrix distribution Dk,l,
it is hard to distinguish a random vector of length l from the image of a random vector of length k
under a matrix from said distribution.

Definition 2 (Dk,l-Matrix Diffie-Hellman assumption (Dk,l-MDDH)). Let Dk,l be a matrix
distribution, PGGen a pairing group generator and s ∈ {1, 2, T}. We say the Dk,l-Matrix Diffie-
Hellman assumption holds relative to PGGen in group Gs, if for all efficient adversaries A, the
function

AdvmddhPGGen,A(1
λ) = |Pr[A(Gs, [A]s, [Ax]s) = 1]− Pr[A(Gs, [A]s, [u]s) = 1]|

is negligible in λ with the probabilities taken over PG $←− PGGen, A
$←− Dk,l, x

$←− Zkp, u
$←− Zlp.

The computational analogue to the MDDH assumption is the KerMDH assumption [69]. Instead
of checking membership in the span, the adversary has to compute a vector in the (left) kernel of
a matrix. To make the assumption falsifiable, the adversary has to provide the kernel vector in the
opposite group of the challenge, i.e. for a matrix given in Gs, the adversary has to answer in group
G3−s.

Definition 3 (Dk,l-Kernel Diffie-Hellman assumption (Dk,l-KerMDH)). Let Dk,l be a matrix
distribution, PGGen a pairing group generator and s ∈ {1, 2}. We say the Dk,l-KerMDH assumption
holds relative to PGGen in Gs, if for all efficient adversaries A, the function

Advker−mdhPGGen,A(1
λ) = Pr[cTA = 0 ∧ c 6= 0|[c]3−s

$←− A(PG, [A]s)

is negligible in λ with probabilities taken over PG $←− PGGen(1λ),A $←− Dk,l.

An example for a matrix distribution for which the KerMDH and MDDH assumptions hold in the
AGM is the following:

Lk : M =



1 1 1 · · · 1
e1 0 0 · · · 0
0 e2 0 0

0 0 e3
. . . 0

...
.

...
0 · · · 0 ek


For k = 1, this distribution generates Diffie-Hellman matrices and for k ≥ 2 these matrices correspond
to the k-Lin assumption [49]. We will only consider the distribution Lk in this work as it is sufficient
for all of our applications. For more matrix distributions, see for example [59,69].

2.3 Σ-Protocols

Next, we recall the definition of Σ-protocols from [63]. A Σ-protocol is a public-coin, three-move
interactive proof between a prover P and a verifier V for a relation R, where the prover sends an
initial message a, the verifier responds with a random e

$←− {0, 1}λ and the prover concludes with a
message d. Lastly, the verifier outputs 1, if it accepts and 0 otherwise. This is depicted in Figure 2.

Three properties are required for a Σ-protocol: completeness, special soundness and special honest-
verifier zero-knowledge.

10

P
(x,w)

V
(x)

a
$←− P1(x,w)

e
$←− {0, 1}λ

d
$←− P2(x,w, a, e)

V (x, a, e, d) 0/1

a

e

d

Fig. 2. General Σ-protocol.

Definition 4 (Completeness). A three-move protocol ΠR for a relation R with prover P and ver-
ifier V is complete, if

Pr

[
out(V (x, a, e, d)) = 1

∣∣∣∣∣ (x,w) ∈ R, a $←− P1(x,w),

e
$←− {0, 1}λ, d $←− P2(x,w, a, e)

]
= 1

Definition 5 (Special soundness). A three-move protocol ΠR for a relation R has the special
soundness property, if a polynomial time algorithm E exists, which for a statement x and two accepting
transcripts (a, e, d), (a, e′, d′) of ΠR with e 6= e′ outputs a witness w, s.t. (x,w) ∈ R with overwhelming
probability.

Definition 6 (Special honest-verifier zero-knowledge). A three-move protocol ΠR for a relation
R is special honest-verifier zero-knowledge, if there exists a polynomial-time simulator S such that
the distributions of S(x, e) and the transcript of an honest protocol execution between P and V are
identical for (x,w) ∈ R, e ∈ {0, 1}λ.

2.4 Non-interactive Zero-Knowledge Arguments

An adaptive NIZK Π for a family of language distribution {Dpar}par consists of four probabilistic
algorithms:

– CRSGen(1λ). On input 1λ generates public parameters par (such as group parameters), a CRS
and a trapdoor T . For simplicity of notation, we assume that any group parameters are implicitly
included in the CRS.

– Prove(CRS, ρ, x, w). On input of a CRS, a language description ρ ∈ Dpar and a statement x with
witness w, outputs a proof π for x ∈ Lρ.

– Verify(CRS, ρ, x, π). On input of a CRS, a language description ρ ∈ Dpar , a statement and a proof,
accepts or rejects the proof.

– SimProve(CRS, T , ρ, x). Given a CRS, the trapdoor T , a language description ρ ∈ Dpar and a
statement x, outputs a simulated proof for the statement x ∈ Lρ.

Note that the CRS does not depend on the language distribution or language parameters, i.e. we
define fully adaptive NIZKs for language distributions.

The following properties need to hold for a NIZK argument (see e.g. [45]).

Definition 7 (Perfect Completeness:). A proof system Π for a family of language distributions
{Dpar}par is perfectly complete, if

Pr

[
Verify(CRS, ρ, x, π) = 1

∣∣∣∣∣ (par ,CRS, T) $←− CRSGen(1λ); ρ ∈ Supp(Dpar);

(x,w) ∈ Rρ;π
$←− Prove(CRS, ρ, x, w)

]
= 1

A proof system is sound, if it is hard to find proofs of incorrect statements. This is captured in
the following definition.

Definition 8 (Computational Soundness). A NIZK proof system Π for a family of language
distributions {Dpar}par is computationally sound, if for every efficient adversary A

Pr

[
Verify(CRS, ρ, x, π) = 1

∧x 6∈ Lρ

∣∣∣∣∣ (par ,CRS, T) $←− CRSGen(1λ);

ρ ∈ Supp(Dpar); (π, x)
$←− A(CRS, ρ)

]
≈ 0

with the probability taken over CRSGen.

11

A proof system is zero knowledge, if it is impossible to distinguish between the output of SimProve
and Prove. This is formalised as follows.

Definition 9 (Perfect Zero Knowledge). A NIZK proof system Π for a family of language distri-
butions {Dpar}par is called perfectly zero-knowledge, if for all λ, all (par ,CRS, T) ∈ Supp(CRSGen(1λ)),
all ρ ∈ Supp(Dpar) and all (x,w) ∈ Rρ, the distributions

Prove(CRS, ρ, x, w) and SimProve(CRS, T , ρ, x)

are identical.

We can relax the security of a NIZK argument to a Non-Interactive Witness Indistinguishable
(NIWI) argument by replacing the zero-knowledge property with the following witness indistinguisha-
bility property. Note that unlike NIZKs, which can only exist in the CRS model, NIWIs are possible
in the plain model.

Definition 10 (Statistical Witness Indistinguishability). A proof system Π = (CRSGen, Prove,
SimProve, Verify) for a family of language distributions {Dpar}par is statistically witness indistinguish-
able, if for every adversary A, every λ, every (par ,CRS, T) ∈ Supp(CRSGen(1λ)), all ρ ∈ Supp(Dpar)
and all x ∈ Lρ with witnesses w1, w2, we have

|Pr[A(CRS, ρ, x, π) = 1|π $←− Prove(CRS, ρ, x, w1)]

− Pr[A(CRS, ρ, x, π) = 1|π $←− Prove(CRS, ρ, x, w2)]| ≈ 0

The property adapts to interactive protocols in a natural way.

3 A Pairing-Based Compiler for NIZKs from Σ-Protocols

In this section, we will describe our new approach to pairing-based non-interactive zero-knowledge
arguments. Our starting point is a natural Σ-protocol for algebraic languages over abelian groups,
which was used (implicitly or explicitly) in previous works [11,17,46]. Before describing the protocol
and our NIZK construction, we formally introduce algebraic languages.

3.1 Algebraic Languages

We focus on languages that can be described by a set of algebraic equations over an abelian group.
More precisely, we will consider languages of the form {x ∈ Gl|∃w ∈ Ztp : M(x) ·w = Θ(x)}, where
M : Gl 7→ Gn×t and Θ : Gl 7→ Gn are linear maps, which can be sampled efficiently according to
a language distribution Dpar . These languages have been used previously in several works on zero-
knowledge proofs and hash proof systems over abelian groups [11, 17, 46], and are quite expressive:
they capture a wide variety of languages, including but not limited to, linear and polynomial relations
between committed values and the plaintexts of ElGamal-style ciphertexts, or polynomial relations
between exponents. We call these languages algebraic languages.

It will prove convenient in this work to view the linear maps M and Θ as matrices and vectors
over Pl, where Pl is the set of linear multivariate polynomial in l variables, via the natural extension.

Definition 11 (Algebraic Languages). Let t, l, n ∈ N, n > t and Pl := {[a0] +
∑l
i=1 aiXi} ⊂

G[X = (X1, . . . , Xl)] the set of linear multivariate polynomials of degree at most 1. Let Dpar be a
distribution that outputs pairs (M,Θ) ∈ Pn×tl × Pnl . We define the algebraic language LM,Θ ⊂ Gn:

LM,Θ := {x ∈ Gl|∃w ∈ Ztp : M(x) ·w = Θ(x)}

where M(x) (resp. Θ(x)) denotes the matrix(resp. vector) received by evaluating every entry of
M(resp. Θ) in the points of x.

12

Example: Linear Languages. Linear languages, capturing e.g. DDH relations, are obtained as a
special case of algebraic languages by restricting M(x) to be a constant matrix, independent of x and
Θ to being the identity. NIZKs for linear languages have been widely studied, see e.g. [52, 59].

Definition 12 (Linear subspace languages). Let Dpar be a parameter distribution that outputs
matrices from Gn×t. For A ∈ Supp(Dpar), we define the language LA := {x|∃w : Aw = x}. Specifi-
cally, the relation RA is defined such that (x,w) ∈ RA ⇔ x = Aw. We call Dpar witness samplable,

if there is a distribution D′par which outputs matrices from Zn×tp s.t. the distributions of A
$←− Dpar

and [B]
$←− D′par are indistinguishable.

Effectively, witness-samplability states that the language parameters can be sampled together
with a trapdoor matrix T which allows to check whether x ∈ L. For linear languages, this trapdoor
matrix is simply the exponents of all matrix entries, so the original matrix can be computed from the
trapdoor, hence we only sample the latter in the distribution D′par .

Σ-Protocol for Algebraic Languages. We introduce a generic Σ-protocol ΠΣ for algebraic lan-
guages on Figure 3.

(M,Θ) ∈ Supp(Dpar)

P V
w, [x] [x]

r
$←− Zkp

[a] := [M(x)]r
e

$←− Zp
d := ew + r

check
[M(x)]d

?
= [Θ(x)]e+ [a]

[a]

e

d

Fig. 3. Σ-protocol ΠΣ for the generic language LM,Θ

Theorem 13. The Σ-protocol ΠΣ is complete, special honest-verifier zero-knowledge and special
sound.

For the proof of Theorem 13 refer to e.g. [67]. We will however recall the special honest-verifier zero-
knowledge simulation algorithm SΠ , since we need it in our construction. The simulator receives as
input ([x], e) and samples d

$←− Ztp. Then it sets [a] := M(x)d− e[Θ(x)] and returns ([a],d).

3.2 Compiling ΠΣ into a NIZK

The main idea of our construction is to keep the Σ-protocol in group G1 while moving the challenge
e to a group G2, which admits a bilinear pairing e : G1 ×G2 → GT . This keeps the challenge hidden
while allowing verification due to the pairing. For protocol ΠΣ , the compiled NIZK ΠC

Σ is described
in Figure 4. We present a detailed security analysis in Section 4.

CRSGen (1λ): Prove (CRS, ([M]1 , [Θ]1), [x]1 ∈ Gl1,w ∈ Ztp):

par := PG $←− PGGen(1λ) r
$←− Ztp

e
$←− Zp [a]1 := [M(x)]1 r

CRS := (PG, [e]2), T := e [d]2 := [e]2 w + [r]2
return (par ,CRS, T) return σ := ([a]1 , [d]2)

SimProve (CRS, e, ([M]1 , [Θ]1), [x]1): Verify (CRS, ([M]1 , [Θ]1), [x]1 , σ = ([a]1 , [d]2)):
([a]1 ,d) := SΠ([x]1 , e) check
return σ := ([a]1 , [d]2) [M(x)]1 • [d]2

?
= [Θ(x)]1 • [e]2 + [a]1 • [1]2

Fig. 4. Compiled protocol ΠC
Σ , where SΠ denotes the special honest-verifier simulator of ΠΣ and

([M]1 , [Θ]1) ∈ P
n×t
l × Pnl is sampled from Dpar .

13

3.3 Compiled NIZK as a ZAP

The CRS in our compiled NIZK consists of just one (random) group element from G2; therefore, our
protocol actually works in the common random string model. Furthermore, we observe that by al-
lowing the verifier to choose the CRS himself and send it as its first flow, we can transform the NIZK
into a statistical ZAP in the plain model (i.e., a two-round publicly-verifiable statistical witness-
indistinguishable argument system, where the first flow can be reused for an arbitrary (polynomial)
number of proofs). We stress that this provides the first known construction of statistical ZAPs from
pairing-based assumptions; to our knowledge, the only existing constructions rely on the quasipoly-
nomial hardness of LWE [6, 50]. We can apply the derandomisation technique from [8] to obtain a
NIWI argument in the plain model. Since correctness and soundness carry over directly from the NIZK
case, it remains to show that our 2-round proof system is witness-indistinguishable. This is shown in
Lemma 14.

Lemma 14. The ZAP resulting from the protocol ΠC
Σ for a family of language distributions {Dpar}par

as described above is perfectly witness indistinguishable.

Proof. Let ρ := (M,Θ) ∈ Supp(Dpar) and x ∈ Lρ with two witnesses w1,w2 and let V̂ be a
(potentially misbehaving) verifier. Let [e]2 be the CRS (i.e., first flow) chosen by V̂. We have to
show that the distributions Prove([e]2 , ρ,x,w1) and Prove([e]2 , ρ,x,w2) are indistinguishable. A
proof consists of the two vectors [ai]1 = [M(x)]1 ri and [di]2 = [e]2 wi + [ri]2 for random vectors
ri, witnesses wi and e chosen by the verifier. Let w := w1 − w2. Note that M(x)w = 0, since
M(x)w = M(x)(w1 −w2) = Θ(x)−Θ(x) = 0. For i = 1, we have π1 = ([a1]1 = [M(x)r1]1 , [d1]2 =
[e]2 w1 + [r1]2). For i = 2 and by replacing w2 with w1 −w, we get π2 = ([a2]1 = [M(x)]1 r2, [d2]2 =
[e]2 w1 +([r2 − ew]2)). Let r′ := −ew+ r2 and consider a proof using witness w1 and random vector
r′. We get [a′]1 = [M(x)]1 r′ = [M(x)]1 (−ew+r2) = −e [M(x)]1 w+[M(x)]1 r2 = [M(x)]1 r2 = [a2]1
and [d′]2 = [e]2 w1 + [r′]2 = [d2]2. This is identical to the proof using w2 and randomness r2. r1, r2,
and r′ are distributed identically (i.e. uniformly random), hence the proof distributions for witness
w1 and w2 are identical.

4 Security Analysis

After describing our compiler, we will now argue its security in this section. We will first introduce
two properties of distributions of algebraic languages, which will come in handy in the security
analysis. Afterwards, we will introduce the new assumption under which all of our constructions are
computationally sound. Lastly, we will perform the security reductions themselves.

4.1 Generalised Witness Samplablility

The definition of witness samplability for linear languages does not carry over to the case of algebraic
languages, since only linear languages can be in the span of the kernel of their language trapdoor.
To handle this issue, we adapt the witness samplability by requiring the samplability of a language
trapdoor T, sampled together with the parameters of the language, which allows to efficiently check
the rank of (M||Θ)(x), which will be full for words not in the language, and lower otherwise. We
formally define our new notion of algebraic witness samplability in Definition 15.

Definition 15 (Algebraic Witness Samplability). Let t, l, n ∈ N with n > t. An algebraic
language distribution Dpar , outputting pairs ρ = (M,Θ) ∈ Pn×tl × Pnl is called witness samplable,
if there exists a second distribution D′par outputting pairs (ρ′ = (M′,Θ′),Tρ′ ∈ Zn×np), with D′par (1)
denoting the distribution of D′par restricted to the first component, such that the following properties
hold.

1. The distributions (Dpar) and (D′par (1)) are identical.

2. rank(Tρ′ · (M′||Θ′)(x)) =
{

t+ 1 x 6∈ Lρ′
l′ < t+ 1 x ∈ Lρ′

3. ∃R,S permutation matrices such that (R ·Tρ′ · (M′||Θ′) · S) (x) is an upper triangular matrix

A family of language distributions {Dpar}par is witness samplable, if Dpar is witness samplable for
all possible par .

14

Note that R,S are efficiently computable from Tρ′ · (M||Θ)(x) (even without knowledge of Tρ′), as
they only rearrange the rows and columns of Tρ′ · (M′||Θ′)(x) to a specific form.

The first property states that we can sample a distribution with or without a trapdoor without
altering the distribution. The second property is the rank condition itself, which shows language
membership. The last property guarantees that the second condition can always be verified in poly-
nomial time. To provide a better intuition of this property, we illustrate it on the language of ElGamal
encryptions of a bit (which is a special case of the OR-language for DDH tuples) in Appendix A of
the supplementary material.

Definition 16 (Trapdoor Reducibility). Let t, l,m, n ∈ N with n > t and Dpar be an algebraic
language distribution which outputs pairs ρ = (M,Θ) ∈ Pn×tl × Pnl .
Dpar is m-trapdoor reducible, if it is witness samplable with trapdoor distribution D′par and for

every language (ρ′,Tρ′) ∈ Supp(D′par), we can instead sample a reducibility trapdoor T′ρ′ ∈ Z(n−m)×n
p

such that the following properties hold.

– T′ρ′ ⊂ Tρ′ , i.e. the rows of T′ρ′ are a subset of the rows of Tρ′ .

– rank(T′ρ′ · (M||Θ)(x)) =

{
n−m x 6∈ Lρ′

m′ < n−m x ∈ Lρ′
– m columns of T′ρ′ · (M||Θ) are zero-columns and the last column is a non-zero column.

A family of language distributions {Dpar}par is trapdoor reducible, if Dpar is trapdoor reducible for
all possible par .

Trapdoor reducibility captures a stronger notion of witness samplability where in addition to
checking the rank of the matrix, we can also reduce the size of the check. Although this is not
a necessary property, it allows us to perform reductions to weaker-parametrised assumptions and
therefore to strengthen the security guarantees of our constructions for specific language distributions.
We illustrate it as well in Appendix A of the supplementary material.

4.2 Extended-Kernel Matrix Diffie-Hellman Assumption

For the linear case, the security of our compiled NIZKs can be reduced to the KerMDH assumption.
However for OR-proofs or general algebraic languages, it seems to be insufficient. Hence we propose
a generalisation of the KerMDH assumption, which we will call the extKerMDH assumption, and to
which we can reduce the soundness of our compiler for all algebraic languages.

Inadequacy of the KerMDH. Before we introduce our new assumption, we want to argue why
the existing KerMDH assumption is not sufficient for our application. To do so we give an (informal)
example.

For a linear language (described by matrix A), we can reduce soundness to the L1-KerMDH
assumption for matrix distribution L1 as follows. Suppose that a verifier in the Σ-protocol for a
linear language(Figure 3) sends e as its challenge. Then the verification equation is [Ad] = [x]e+ [a].
If A is from a witness samplable distribution, we can use the trapdoor to find a vector t in the kernel
of A, i.e. t ·A = 0. Multiplying the above equation with t then yields 0 = [tx]e+ [ta] and if x and a

are not in the span of A, we have a non-zero vector in the kernel of [1e]2, namely (ta
tx)

T and therefore
a solution to the KerMDH problem for [1e]2 ∈ Supp(L1). However for the simple binary OR proof
from [20] (see Figure 5 for more details), this approach already fails. Instead of one such equation,
we get two equations of the form 0 = [tixi]ei + [tiai] for i ∈ {0, 1} and with e = e0 + e1. Since
the two vectors consist of group elements, we can’t combine them to a single solution for the matrix
[1e]2. However, what we obtain are two linearly independent vectors in the kernel of [1, e, e0]ᵀ2 , namely
v1 = [t0a0, 0, t0x0]

ᵀ and v2 = [t1a1, t1x1,−t1x1]
ᵀ. We assume that such a relation is also hard to

compute and we formalise it as the extKerMDH assumption.

The extKerMDH Assumption.

15

Definition 17 (Dk-l-extended Kernel Diffie-Hellman Assumption (Dk-l-extKerMDH)). Let
l, k ∈ N, PG = (p,G1,G2,GT , g1, g2, e)

$←− PGGen(1λ) and Dk be a matrix distribution. The Dk-l-
extKerMDH assumption holds in Gs relative to PGGen, if for all efficient adversaries A, the following
probability is negligible.

Pr

 [C]3−s ∈ Gl+1×k+l+1
3−s ∧ [B]s ∈ Gl×ks

∧[C]3−s • [D′]s = 0
∧ rank(C) ≥ l + 1

∣∣∣∣∣∣∣
PG $←− PGGen(1λ),D $←− Dk

([C]3−s, [B]s)
$←− A(PG, [D]s)

[D′]s := [D
B]

s


The probability is taken over then randomness of A, Dk and PGGen.

If in addition to the rank condition, C is also required to be an upper triangular matrix (in which
case the bound on the rank can be verified in polynomial time), the assumption is called falsifiable
Dk-l-extKerMDH.

This assumption is to the best of our knowledge new and so we want to give an intuition on why we
deem it reasonable. First, it is a natural extension of the KerMDH assumption. We give the adversary
more freedom by allowing it to extend the given matrix but require it to output multiple, linearly
independent vectors in the kernel. As long as the number of linearly independent vectors is strictly
larger than the number of vectors the adversary gets to add, breaking the assumption requires finding
vectors in G1 which depend on [M]2 in a non-trivial way. Second, it is a static family of assumptions
(as opposed to Q-type assumptions; once [M]2 is fixed, our proof system will rely on an extKerMDH
assumption with fixed parameters). Third, we consider the issue of falsifiability. It turns out that the
extKerMDH assumption is not always falsifiable: to check the given matrix C for being a basis, one
must break a DDH-like problem. However in many concrete cases of interest (formally, each time
we will consider witness samplable languages), the matrix C can be brought in an upper triangular
form where the rank will be visible and we can instead reduce the security to the falsifiable variant.
Eventually, the assumption is unconditionally secure in the Generic Group Model (GGM) and can
be reduced to the discrete logarithm problem in the Algebraic Group Model (AGM). For the proofs,
refer to Appendix B.

4.3 Security Proof

With the two definitions and the new extKerMDH assumption, we can now finally prove the security
of our construction.

Theorem 18. 1. The protocol ΠC
Σ described in Figure 4 is a NIZK argument for any algebraic

language distribution Dpar outputting pairs ρ = (M,Θ) ∈ Pn×tl × Pnl , if the L1-t-extKerMDH
assumption holds in G2 relative to PGGen.

2. If the language distribution is witness samplable with trapdoors Tρ ∈ Zn×np , then it is a NIZK
argument if the falsifiable L1-t-extKerMDH holds in G2 relative to PGGen.

3. If the language distribution is m-trapdoor reducible, then it is a NIZK argument if the falsifiable
L1-(t−m)-extKerMDH holds in G2 relative to PGGen.

Proof. To prove theorem 18, we have to show completeness, perfect zero knowledge and computational
soundness. The first two properties are identical for all parts of the theorem. For the second and third
part, the witness samplability and the trapdoor reducibility directly imply the soundness statements,
if soundness holds in the first part.

Perfect Completeness: Let ρ = (M,Θ) ∈ Supp(Dpar). If Θ(x) = M(x) ·w and a = M(x) · r, we
get

[M(x)]1 • [d]2 = [M(x) · d]T
= [M(x) · (e ·w + r)]T
= [M(x) ·w · e]T + [M(x)r · 1]T
= [Θ(x) · e]T + [a · 1]T (since Θ(x) = M(x) ·w)

= [Θ(x)]1 • [e]2 + [a]1 • [1]2
Perfect Zero Knowledge: We have to show that the distributions Prove and SimProve are identical.

This directly follows from the perfect honest-verifier zero-knowledge property of the Σ-protocol, since
we use its simulator in SimProve.

16

Computational Soundness: We will show thatΠC
Σ is computationally sound, if the L1-t-extKerMDH

holds in G2 relative to PGGen. Assume an adversary A which forges a proof for ΠC
Σ with non-

negligible probability. We will construct an adversary B against the L1-t-extKerMDH assumption,
that uses adversary A and has the same success probability. B receives a challenge [1e]2 from its

challenger. B then sets [e]2 as the CRS and samples language parameters ρ $←− Dpar . Now B runs
A(CRS, ρ) and receives a statement x and a proof π = ([a]1 , [d]2) which are accepting with non-
negligible probability, i.e.

[M(x)]1 • [d]2 = [Θ(x)]1 • [e]2 + [a]1 • [1]2
0 = [a]1 • [1]2 + [Θ(x)]1 • [e]2 − [M(x)]1 • [d]2
0 = [a||Θ(x)|| −M(x)]1 •

[
1 e d

]ᵀ
2

If C := (a||Θ(x)|| −M(x)) has at least rank(C) = t + 1, then ([C]1 , [d]2) is a solution for the
assumption, since d has length t. This can be seen with simple linear algebra.

We know that M(x) has full rank t. By adding the two columns a and Θ(x), the rank cannot
decrease. Assume Θ(x) and a are not in the span of M, i.e. A did produce a forgery. Then a and
Θ(x) are completely independent of M and therefore the rank of the matrix will be increased by at
least 1 and B has a solution. For a regular proof however, a and Θ(x) are in the span of M(x) and
therefore linearly dependant on the columns of M(x), therefore the rank can not increase. This shows
that C is full rank if and only if A outputs a valid forgery and B wins in this exact case.

For the second part of the theorem, B samples (ρ,Tρ) from the trapdoor distribution D′par , which
is by definition indistinguishable from sampling ρ regularly. The statement is seen exactly as the first
one except for a multiplication with the trapdoor matrix, which yields a full rank matrix in upper
triangular form if and only if the given word is not in the language and we get a falsifiable solution.
For the third part, B samples (ρ,T′ρ) from the trapdoor reducibility distribution (which is again
indistinguishable from regular sampling) and B takes the matrix received by the multiplication with
the reducibility trapdoor. By removing the zero columns and removing the corresponding elements
from d, B can reduce d’s size by exactlym and therefore gets a solution to the L1-(t−m)-extKerMDH.

5 Extension to Disjunctions of Languages

In this section, we will show how to obtain efficient OR-proofs by applying our compiler to the generic
Σ-protocols for k-out-of-n disjunctions of [20]. As we show in appendix C, disjunctions of languages
can directly be described as algebraic languages; however, applying our transform directly to the
disjunction protocol of [20] allows us to save two group elements, hence we focus on this optimized
variant.

We briefly recall the method of [20] (for concreteness, we focus on 1-out-of-2 proofs; the general
case is similar). It starts from two Σ-protocols for memberships into languages Lρ0 ,Lρ1 , and produces
a Σ-protocol for the language Lρ0∨ρ1 . Consider a prover knowing a witness w for xi ∈ Lρi but not

for x1−i ∈ Lρ(1−i) . The prover chooses a random e1−i
$←− Zp and uses the special honest-verifier zero-

knowledge simulation algorithm to generate [a1−i], d1−i which form an accepting proof for x1−i ∈
Lρ(1−i) . Additionally it computes an honest commitment [ai] for the Σ-protocol for Lρi and sends
[a0], [a1] to the verifier, which returns a challenge e. The prover now sets ei := e− e1−i and continues
the honest protocol for xi ∈ Lρi , calculating di and concludes the protocol by sending d0, d1 and
e0. The verifier can then calculate e1 := e − e0 and check both proofs. This protocol can be seen
in Figure 5. While this does not immediately fit into the framework of Section 3, our approach is
still applicable: The prover again chooses a challenge e1−i

$←− Zp and simulates the first proof as
in the interactive variant and gets the second challenge for the honest proof part only in G2 as
[ei]2 = [e]2 − ([1]2 e1−i). In addition to the two regular proofs, we have to include [e0]2 in the proof.
This is illustrated in Figure 6. We get the following new, efficient OR-proof.

Theorem 19. Let D(0)
par ,D(1)

par be two algebraic language distributions outputting matrices of dimen-
sion n0 × t0 and n1 × t1 respectively. Applying the construction from Figure 6 yields a fully adaptive
NIZK argument for the OR-language of ρ0 ∈ Supp(D(0)

par), ρ1 ∈ Supp(D(1)
par) of size n0+n1+ t0+ t1+1,

if the L1 − (n0 + n1 + 1)− extKerMDH assumption holds in G2.

17

If both language distributions are witness samplable, the above holds for the falsifiable L1 − (n0 +
n1 + 1)− extKerMDH assumption.

If D(0)
par resp. D(1)

par is m0- resp. m1-trapdoor reducible, the above holds for the L1 − (n0 −m0 +
n1 −m1 + 1)− extKerMDH assumption.

The proof for Theorem 19 is almost identical to one for Theorem 18. The only difference lies in
the soundness proof, where we apply the witness samplability (trapdoor reducibility) trapdoors of
each language to the respective proofs separately and then combine the results by expressing e1 as
e− e0.

M0
$←− D(0)

par

M1
$←− D(1)

par

P V

([x0], [x1],w) ([x0], [x1])

ri
$←− Ztp

[ai] := Miri
e1−i

$←− Zp
([a1−i],d1−i)

$←− SM1−i([x1−i], e1−i)

e
$←− Zp

ei = e− e1−i
di := eiw + ri

e1 = e− e0
check

[Mi]di
?
= [xi]ei + [ai]
i ∈ {0, 1}

[a0], [a1]

e

d0,d1, e0

Fig. 5. Sigma protocol ΠM0∨M1 for the or language LM0∨M1 from [20]

CRSGen (1λ): Prove (CRS, ([Mi]1)i∈{0,1}, [x0]1 , [x1]1 ,w):

par := PG $←− PGGen(1λ) // xi = Miw

e
$←− Zp ri

$←− Ztip , e1−i
$←− Zp

CRS := (PG, [e]2), T := e [ei]2 = [e]2 − [e1−i]2
return (par ,CRS, T) ([ai]1 , [di]2) := ([Mi]1 ri, [ei]2 w + [ri]2)

([a1−i]1 ,d1−i)
$←− SM1−i([x1−i]1 , e1−i)

return π := ([a0]1 , [a1]1 , [d0]2 , [d1]2 , [e0]2)

SimProve (CRS, T = e, ([Mi]1)i∈{0,1}, [x0]1 , [x1]1): Verify (CRS, ([Mi]1)i∈{0,1}, [x0]1 , [x1]1 , π):

e0
$←− Zp parse π = ([e0]2 , ([ai]1 , [di]2)i∈{0,1}))

e1 = e− e0 [e1]2 = [e]2 − [e0]2
([aj]1 ,dj)

$←− SMj ([xj]1 , ej) for j ∈ {0, 1} for j ∈ {0, 1} check
return π := ([a0]1 , [a1]1 , [d0]2 , [d1]2 , [e0]2) [Mj]1 • [dj]2

?
= [xj]1 • [ej]2 + [aj]1 • [1]2

Fig. 6. Compiled protocol Πc
M0∨M1

. S(·) denotes the SHVZK-simulator for the respective language.

The construction naturally extends to the 1 out of n setting by letting the prover choose n − 1
challenges itself and setting the last as the difference of e and the sum of all chosen challenges. With
n matrices Mi, we get the following size, as the prover has to send n − 1 challenges to uniquely
determine the last challenge:

∑n
i=1(ni + ti) + n − 1. In the special case of the disjunction of two

DDH languages (as needed in e.g [34]), the compiled OR-trick yields a proof with 7 group elements.
The construction can easily be adapted to the setting of k-out-of-n disjunctions, by using a threshold
secret sharing (e.g. [77]) to force the adversary to choose at most n − k challenges by itself. Our
compiler can be applied in the same way as for the 1 out of n setting and yields NIZK arguments of
size

∑n
i=1(ni + ti) + n− k.

18

6 Obtaining Non-Interactive Zero-Knowledge Proofs

The previously shown constructions all yields zero knowledge arguments, i.e. proofs which are perfect
zero knowledge but only computationally sound. However, with a slight change (and at the cost of
proof size), our construction can also be used to achieve zero knowledge proofs from Σ-protocols
with linear answer. These proofs do not improve on the efficiency of Groth-Sahai proofs, but offer
more simplicity. Additionally, the proofs are not dependant on any language distributions, as we do
not require witness samplability. Lastly, we use a slightly different formalisation of zero-knowledge,
namely computational composable zero-knowledge [45]. To this end, we split the CRS generation into
two algorithms, CRSGen for generating a regular CRS and CRSSim to generate a simulation CRS
with a trapdoor T . Composable zero-knowledge requires that a regular CRS is indistinguishable from
a simulated CRS and that given a simulated CRS, real and simulated proofs are indistinguishable.

The idea for the proofs is to use the unconditional special soundness of the Σ-protocol and
adapt it to the NIZK setting. We provide two challenges in the CRS and have a prover answer
both with the same randomness. The special soundness property now guarantees the existence of a
witness, which results in perfect soundness. The problem with this approach is that it breaks the zero
knowledge property due to the special soundness extractor. To prevent this trivial leakage, we provide
the challenges to different generators. This yields unconditional soundness and computational zero
knowledge, if the DDH assumption holds in G2.

Let Π be a Σ-protocol as in Figure 2 with linear answer, i.e. a 3 move protocol with commitment
a, challenge e and response d, which is complete, special honest-verifier zero-knowledge and has the
special soundness property.

The compiled protocol Π ′ := (CRSGenΠ′ ,ProveΠ′ ,VerifyΠ′ ,CRSSimΠ′ ,SimProveΠ′) works as fol-
lows. For simplicity, we present the protocol for linear languages, however the algebraic case works
analogously.

CRSGenΠ′(1λ): CRSSimΠ′(1
λ):

PG $←− PGGen(1λ) PG $←− PGGen(1λ)
s0, s1

$←− Zp s0, s1
$←− Zp

[e0]2 , [e1]2
$←− G2 e

$←− Zp
CRS := (PG, ([si]2 , [eisi]2)

1
i=0) CRS = (PG, ([si]2 , [sie]2)

1
i=0)

return CRS T := (s0, s1, e)
return (CRS, T)

ProveΠ′(CRS, [A]1 , [x]1 ,w): SimProveΠ′(CRS, T = (e, s0, s1), [A]1 , [x]1):

r
$←− Zkp ([a]1 ,d)

$←− SΠ([x]1 , e)
[a]1 := [A]1 r d0 := s0d
[di]2 := [siei]2 w + [si]2 r d1 := s1d
return π := ([a]1 , ([di]2)

1
i=0) return π := ([a]1 , ([di]2)

1
i=0)

VerifyΠ′(CRS, [A]1 , [x]1 , π = (([a]1 , [di]2)
1
i=0)):

for i ∈ {0, 1} check
[A]1 • [di]2

?
= [x]1 • [eisi]2 + [a]1 • [si]2

Fig. 7. Compiled protocol Π ′ from Π. SΠ denotes the special honest-verifier zero-knowledge simulation
algorithm of the Σ-protocol Π.

Theorem 20. The compiled protocol Π ′ is NIZK proof, if Π is a Σ-protocol with linear answer and
the DDH assumption holds in G2 relative to PGGen.

Proof. We have to show, that Π ′ is correct, perfectly sound and computationally composable zero-
knowledge. We will prove these properties in the given order.

Correctness: As in the proof for 18, correctness follows directly from the correctness of the un-
derlying sigma protocol, the only difference being that the prover answers two challenges with two
different generators. Therefore, the compiled protocol is {perfectly, statistically, computationally}
correct if and only if the underlying protocol is {perfectly, statistically, computationally} correct.

19

Perfect Soundness: Assume there exists an adversary A which breaks the soundness of Π ′ with
non-negligible probability, i.e. ([x]1 , ([a]2 , [d1]2 , [d2]2))

$←− A(CRS, [A]1) is an accepting proof, yet
x 6∈ span(A). This means that

[A]1 • [di]2 = [x]1 • [eisi]2 + [a]1 • [si]2

and there are the two tuples ([a]1 , e0, s
−1
0 d0) and ([a]1 , e1, s

−1
1 d1), which are both accepting tran-

scripts in the underlying Σ-protocol Π. By the special soundness property, there is an extraction
algorithm E , which on input of these tuples would output a witness w for x ∈ span(A), which con-
tradicts the assumption. Note that we can’t compute w, since we can’t recover e0, e1 and the vectors
d0,d1 in Zp.

Computational composable zero-knowledge: First we need to show that the outputs of CRSGen and
CRSSim are computationally indistinguishable. Let A be a PPT-adversary which can distinguish the
two distributions. We will build an adversary B on the DDH assumption in G2, which wins with the
same probability as A and does take only a constant time in addition to A’s runtime.
B receives a DDH-challenge PG, [1]2 , [a]2 , [b]2 , [c]2 for a, b, c ∈ Zp and has to output 1 iff c = ab.

B now generates a CRS by setting s0 = 1, s0e0 := a, s1 := b, s1e1 := c. If c = ab, then e0 = e1 and
therefore A receives a simulated CRS. Otherwise, e0 := c

b and therefore the CRS is distributed like a
regular CRS, since b is random. B outputs 1, if A outputs that the CRS is simulated and 0 otherwise
and therefore wins with the same probability as A.

Next, we have to show that simulated and real proofs are identical when using a simulated CRS.
This step is completely analogue to the proof in 18 as the indistinguishability follows from the special
honest-verifier zero-knowledge property of the underlying Σ-protocol.

7 Applications

7.1 NIZK for linear languages

Let G be a finite group of prime order p and Dk,n be a matrix distribution. We apply our compiler to
the standard Σ-protocol for membership to the linear language generated by A, for A ∈ Supp(Dk,n).
This protocol was formally analyzed in [67]. Applying our compiler yields the protocol ΠC

A shown in
Figure 8.

CRSGen (1λ): Prove(CRS, [A]1 , [x]1 ,w):

par := PG $←− PGGen(1λ) r
$←− Zkp

[e]2
$←− Zp [a]1 := [A]1 r

CRS := (PG, [e]2), T := e [d]2 := [e]2 w + [r]2
return (par , CRS, T) return π := ([a]1 , [d]2)

SimProve(CRS, T = e, [A]1 , [x]1): Verify(CRS, [A]1 , [x]1 , π = ([a]1 , [d]2)):

d
$←− Zkp check [A]1 • [d]2

?
= [x]1 • [e]2 + [a]1 • [1]2

[a]1 := [A]1 d− [x]1 e
return π := ([a]1 , [d]2)

Fig. 8. Compiled protocol Πc
A.

Theorem 21. Protocol Πc
A is a NIZK for the language LA, if Dk,n is witness samplable and the

L1-kerMDH (= L1-0-extKerMDH) assumption holds in G2 relative to PG.

Proof. If we show that A is k-trapdoor reducible, then the proof follows from Theorem 18. It is
easy to see that all witness samplable matrix distributions Dk,n are k-trapdoor reducible. We sample
A ∈ Zn×kp and compute an element in the kernel of A, which is exactly the reducibility trapdoor.

The construction above includes proofs for DDH tuples, the Schnorr protocol [75], and general
linear subspace membership. We compare our construction instantiated for the DDH language (and
asymptotic) with the Groth-Sahai framework [45] and the Kiltz-Wee proofs [59] on Table 1 from
Section 1. Our construction is more efficient than Groth-Sahai both in terms of proof size as well as

20

CRS size. For the verification, we also need less pairings (6 versus 24 for Groth-Sahai). Of course this
comes at the (mild) cost of assuming witness sampleability of the language (Note that the security is
based on the standard kerMDH assumption). On the other hand, our proofs are longer than the proofs
from [59] (linear versus constant size). However our construction yields fully adaptive zero-knowledge
arguments, while theirs yields quasi-adaptive zero-knowledge arguments and our CRS size is constant
while theirs is linear. Our construction closes a gap in characterizing the efficiency of NIZKs for linear
languages (with or without witness sampleability, with or without full adaptivity).

7.2 Disjunction of DDH Languages and Tight USS-QA-NIZKs

Using the construction of Section 5, we obtain a NIZK for the disjunction of two DDH languages with
only 7 group elements. This is three group elements less than the best previously known NIZK for this
language [73]. We provide a self-contained description of the resulting proof system in Figure 6. As
discussed in the introduction, combining this proof with the result of [3], we obtain shorter tightly-
secure QA-NIZKs with unbounded simulation-soundness (11 versus 14 group elements) and shorter
IND-mCCA-secure PKE with tight security reduction (14 versus 17 group elements).

7.3 Tightly-Secure Structure-Preserving Signatures

NIZKs arguments are an important building block in structure-preserving signatures (SPS). Since our
constructions yield shorter NIZK arguments for OR-proofs and (in the fully adaptive case) for linear
subspaces, substituting existing proofs with our constructions directly improves various SPS schemes.
For example, Gay et.al [34] use an Or-proof for two DDH languages in their construction; using our
OR-proof reduces the size of their tightly-secure SPS from 14 group elements to 11.

The same size was achieved recently by Abe et.al. [3]. They use a new approach in describing
the used OR-language as a conjunction statement and build a designated-prover quasi-adaptive NIZK
from this formalization, which is shorter than the (publicly-verifiable) OR-proof of [73] (7 versus 10
group elements). We notice that their OR-proof is compatible with our compiler, which allows us to
reduce its size down to 5 group elements. This in turn reduces the size of the SPS by 2, resulting in
a size of 9 group elements per signature.

Designated-Prover QA-NIZK for Disjunction of DDH languages First, we recall the def-
inition of designated-prover quasi-adaptive zero-knowledge. Designated-prover quasi-adaptive non-
interactive zero-knowledge is defined exactly as regular non-interactive zero-knowledge(2.4) except
that the CRSGen algorithm may now depend on the language for which the proof system is intended
and outputs additional, secret information for the prover. We will call this additional output ξ. The
main idea behind the designated prover variant is an alternate formulation of the disjunction language
for matrices from Z2n×n

p . However for n > 1, their formalisation does not yield a size improvement;
therefore we will only consider it for the case of n = 1, which already captures the case of two DDH-
matrices, which suffices to build tight SPS. Let Mi =

(mi,0
mi,1

)
∈ Z2×1

p be two matrices. We define the
language

L′M0∨M1
:=

{
[x] = [x0

x1
] ∈ G2

∣∣∣∣∃w0, w1 ∈ Zp s.t.
(
1 −m0,0

m0,1

)
(x0
x1

) = w0∧
(x0
x1

)w0 =
(m1,0
m1,1

)
w1

}
Lemma 22. For any two matrices M0,M1 as above, the languages LM0∨M1 and L′M0∨M1

are iden-
tical.

Proof. First, we will show that L′M0∨M1
contains all vectors from LM0∨M1

, i.e. all vectors x which
are in the span of either M0 or M1.

Assume x ∈ span(M0). Then there exists a z ∈ Zp s.t. x = M0z. From this, the first condition of
L′M0∨M1

shows

w0 =
(
1 −m0,0

m0,1

)
x =

(
1 −m0,0

m0,1

)
M0z

= (m0,0 −m0,1
m0,0

m0,1
)z

= 0 · z = 0

21

and since both matrices have a trivial kernel, the second condition shows w0 = w1 = 0 and x ∈
L′M0∨M1

.
On the other hand, assume that x = M1z. Then the second condition states

(x0
x1

)w0 =
(m1,0
m1,1

)
w1

⇔
(m1,0
m1,1

)
zw0 =

(m1,0
m1,1

)
w1

⇔ zw0 = w1

and from the first condition we get

w0 =
(
1 −m0,0

m0,1

)
x 6= 0

since x 6∈ span(M0). Therefore LM0∨M1
⊆ L′M0∨M1

follows.
Next, we will show that L′M0∨M1

⊆ LM0∨M1
. Let x ∈ L′M0∨M1

with witnesses w0, w1. First,
assume that w0 = 0. Then the first condition states that x ∈ span(M0) and therefore x ∈ LM0∨M1

.
Now assume w0 6= 0. Since M0 and M1 have full rank, the second equation is non-trivial, i.e. both
sides aren’t zero, especially w1 6= 0. Then we get

xw0 = M1w1

⇔ x = M1
w1

w0

and see that x ∈ span(M1). This proves L′M0∨M1
⊆ LM0∨M1 and therefore L′M0∨M1

= LM0∨M1

This different formalisation of the OR-language with a conjunction instead of a disjunction allows
us to express the language with a single matrix as an algebraic language. As a preparation, we will
rearrange the equations to give a better understanding of the resulting matrix. By rearranging the
first condition and setting γ =

m0,0

m0,1
, we get x0 = w0 + γx1 and for the second xiw0 −m1,iw1 = 0.

These equations describe membership in the language, however to ensure soundness, we also need to
include a commitment to γ. Then we get the following algebraic language for LM0∨M1 :

M =


1 0 0 X1

X0 −m1,0 0 0
X1 −m1,1 0 0
0 0 1 0
0 0 s 1

 ,Θ =


X0

0
0
c0
c1


where (c0, c1) is an ElGamal commitment to γ with randomness α. By applying our compiler to this
language, we obtain a proof with 9 group elements. However, the commitment part of the proof is
independent of the word x and only depends on the matrix M0. By relaxing the security of our NIZK
from fully adaptive to quasi adaptive, we can move the whole commitment part of the NIZK to the
CRS. This adds 6 group elements to the CRS ([c0]1 , [c1]1, their counterparts [ĉ0]1 , [ĉ1]1 in a and
[dα]2 , [dγ]2, the blinded values of α and γ in d) but removes 4 from the proof (two from d and two
from a), yielding a proof of size 5. The resulting protocol is shown on Figure 9. By plugging our new
designated-prover QA-NIZK argument into the transformation of [3], we get Lemma 23.

Lemma 23. There exists a structure-preserving signature scheme which reduces to the SXDH as-
sumption and the L1-1-extKerMDH assumption with security loss 6 logQ, where Q is the number of
signing queries, with a signature size is 9 group elements and a public key size of n+15 elements (for
length-n messages).

A comparison of the resulting SPS to existing schemes can be found in Table 4. We note that our
tight SPS can be converted into a bilateral tight SPS (where messages can be from both G1 and G2)
using the generic transform of [58], leading to a bilateral tightly-secure SPS of size 12 group elements
(versus 14 for the best known bilateral tight SPS [3]).

22

CRSGen(1λ, [M]1 ,M0,M1): Prove(CRS, ξ, [M]1 , [x]1 ,w):

e
$←− Zp, s, α

$←− Zp r
$←− Z3

p

γ :=
m0,0

m0,1

[a
ĉ0
ĉ1

]
1
= [M(x)]1

(r
α̂
γ̂

)
(c0, c1) = ([α]1 , [sα+ γ]1)

[
d
dα
dγ

]
2

= [e]2 w +
[r
α̂
γ̂

]
α̂, γ̂

$←− Zp return π = ([a]1 ∈ G3
1, [d]2 ∈ G2

2)
(ĉ0, ĉ1) = ([α̂]1 , [sα̂+ γ̂]1)
dα = α · e+ α̂
dγ = γ · e+ γ̂
CRS = ([s]1 , [e]2 , [dα]2 , [dγ]2 , ([ci]1 , [ĉi]1)

1
i=0)

ξ = (α, γ, α̂, γ̂)
T = (e, s, α, γ, α̂, γ̂)
return (CRS, T , ξ)

SimProve(CRS, [M]1 , T , [x]1): Verify(CRS, [x]1 , π):

d
$←− Z3

p parse π = ([a]1 , [d]2)[a
ĉ0
ĉ1

]
1
= [M(x)]1

(
d
dα
dγ

)
− e [x]1 check

return π = ([a]1 ∈ G3
1, [d]2 ∈ G2

2) [M(x)]1 •
[

d
dα
dγ

]
2

?
= [Θ(x)]1 • [e]2 +

[a
ĉ0
ĉ1

]
1
• [1]2

Fig. 9. Designated-prover quasi-adaptive non-interactive zero-knowledge argument for the or-language of two
DDH matrices.

7.4 Ring Signatures

An example of the use of k-out-of-n OR-proofs is the construction of sublinear ring signatures in
the standard model [18, 73]. The two constructions produce signatures of size O(

√
N), where N is

the size of the ring. The previous works reduce the size of the signature by rearranging the list of
potential signers in the ring into a square matrix, and commit to two bit vectors of weight one, where
one denotes the row and the other the column of the used key. Then, a NIZK is used to show that
the signature was produce with the key at the corresponding (committed) coordinates in the matrix.
This NIZK requires at its core a proof that the two vectors are actually bit vectors and sum to 1. This
can be rephrased as an (n − 1)-out-of-n proof of opening of the commitments to 0, together with a
proof that their sum opens to one. The proof given in [73] requires 4 ·

√
N group elements, while our

proof from Section 5 only requires 3 ·
√
N + 1 group elements.

Acknowledgements. We would like to thank Dennis Hofheinz for discussions and contributions to
early stages of this work, and Eike Kiltz for helpful comments.

The first author was supported by ERC Project PREP-CRYPTO (724307), and the second author
was supported by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy
(EXC 2092 CASA), and the German Federal Ministry of Education and Research (BMBF) iBlockchain
project.

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size structure-
preserving signatures: Generic constructions and simple assumptions. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 4–24. Springer, Heidelberg (Dec 2012)

2. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-preserving signatures
with almost tight security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402,
pp. 548–580. Springer, Heidelberg (Aug 2017)

3. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK and SPS with tighter
security. Asiacrypt 2019 (2019)

4. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure simulation-sound QA-NIZK
with applications. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp.
627–656. Springer, Heidelberg (Dec 2018)

5. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures: Logarithmic-size, no
setup - from standard assumptions. In: Rijmen, V., Ishai, Y. (eds.) EUROCRYPT 2019, Part III. pp.
281–311. LNCS, Springer, Heidelberg (May 2019)

23

6. Badrinarayanan, S., Fernando, R., Jain, A., Khurana, D., Sahai, A.: Statistical zap arguments
7. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS. pp. 106–115. IEEE

Computer Society Press (Oct 2001)
8. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. In: Boneh, D. (ed.) CRYPTO 2003.

LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg (Aug 2003)
9. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous

credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 356–374. Springer, Heidelberg (Mar
2008)

10. Ben Hamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient UC-secure authenti-
cated key-exchange for algebraic languages. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 272–291. Springer, Heidelberg (Feb / Mar 2013)

11. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge arguments and appli-
cations to the malicious setting. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 107–129. Springer, Heidelberg (Aug 2015)

12. Blazy, O., Fuchsbauer, G., Izabachène, M., Jambert, A., Sibert, H., Vergnaud, D.: Batch Groth-Sahai.
In: Zhou, J., Yung, M. (eds.) ACNS 10. LNCS, vol. 6123, pp. 218–235. Springer, Heidelberg (Jun 2010)

13. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended ab-
stract). In: 20th ACM STOC. pp. 103–112. ACM Press (May 1988)

14. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation
for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500.
Springer, Heidelberg (Mar 2009)

15. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (Aug 2004)

16. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation intractability from strong
KDM-secure encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol.
10820, pp. 91–122. Springer, Heidelberg (Apr / May 2018)

17. Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-knowledge proofs of knowledge.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 193–221. Springer,
Heidelberg (Apr / May 2018)

18. Chandran, N., Groth, J., Sahai, A.: Ring signatures of sub-linear size without random oracles. In: Arge,
L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 423–434. Springer,
Heidelberg (Jul 2007)

19. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification anonymous credentials.
In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 14. pp. 1205–1216. ACM Press (Nov 2014)

20. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness
hiding protocols. In: Desmedt, Y. (ed.) CRYPTO’94. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg
(Aug 1994)

21. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer,
Heidelberg (Apr / May 2002)

22. Damgård, I.: Payment systems and credential mechanisms with provable security against abuse by indi-
viduals. In: Goldwasser, S. (ed.) CRYPTO’88. LNCS, vol. 403, pp. 328–335. Springer, Heidelberg (Aug
1990)

23. Damgård, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homomorphic encryption. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 41–59. Springer, Heidelberg (Mar 2006)

24. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-NIZK proofs. In:
PKC 2019, Part I. pp. 314–343. LNCS, Springer, Heidelberg (2019)

25. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS. pp. 283–293. IEEE Computer Society
Press (Nov 2000)

26. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 630–649. Springer, Heidelberg (Mar 2014)

27. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assump-
tions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer,
Heidelberg (Aug 2013)

28. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework for Diffie-Hellman
assumptions. Journal of Cryptology 30(1), 242–288 (Jan 2017)

29. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single
random string (extended abstract). In: 31st FOCS. pp. 308–317. IEEE Computer Society Press (Oct
1990)

30. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems.
In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (Aug 1987)

24

31. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H.,
Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Heidelberg (Aug
2018)

32. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: NDSS 2014. The Internet
Society (Feb 2014)

33. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin,
M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (May
2016)

34. Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure structure-preserving signa-
tures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 230–258.
Springer, Heidelberg (Apr / May 2018)

35. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without
PCPs. Cryptology ePrint Archive, Report 2012/215 (2012), http://eprint.iacr.org/2012/215

36. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In:
Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 99–108. ACM Press (Jun 2011)

37. Ghadafi, E., Smart, N., Warinschi, B.: Groth–sahai proofs revisited. Cryptology ePrint Archive, Report
2009/599 (2009), http://eprint.iacr.org/2009/599

38. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: 44th FOCS. pp. 102–115.
IEEE Computer Society Press (Oct 2003)

39. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM
Journal on Computing 18(1), 186–208 (1989)

40. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In:
Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (Dec
2006)

41. Groth, J.: Sub-linear size pairing-based non-interactive zero-knowledge arguments. Cryptology ePrint
Archive, Report 2009/390 (2009), http://eprint.iacr.org/2009/390

42. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In: Kurosawa, K. (ed.) ASI-
ACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer, Heidelberg (Dec 2007)

43. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C.
(ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (Aug 2006)

44. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-knowledge. Journal of the
ACM (JACM) 59(3), 11 (2012)

45. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (Apr 2008)

46. Hamouda, F.B., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: Efficient UC-Secure authen-
ticated key-exchange for algebraic languages. Cryptology ePrint Archive, Report 2012/284 (2012),
http://eprint.iacr.org/2012/284

47. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and their application to
anonymous credentials. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp.
491–511. Springer, Heidelberg (Dec 2014)

48. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti,
R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (Aug 2012)

49. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. Cryptology ePrint
Archive, Report 2007/288 (2007), http://eprint.iacr.org/2007/288

50. Jain, A., Jin, Z.: Statistical zap arguments from quasi-polynomial lwe. Tech. rep., Cryptology ePrint
Archive, Report 2019/839, 2019. https://eprint. iacr. org . . .

51. Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure structure-preserving signatures. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 123–152. Springer, Heidelberg
(Mar 2018)

52. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (Dec 2013)

53. Jutla, C.S., Roy, A.: Improved structure preserving signatures under standard bilinear assumptions. In:
Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 183–209. Springer, Heidelberg (Mar 2017)

54. Kalai, Y., Paneth, O., Yang, L.: On publicly verifiable delegation from standard assumptions. Cryptology
ePrint Archive, Report 2018/776 (2018), https://eprint.iacr.org/2018/776

55. Kalai, Y.T., Khurana, D., Sahai, A.: Statistical witness indistinguishability (and more) in two messages.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 34–65. Springer,
Heidelberg (Apr / May 2018)

56. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security of Fiat-Shamir for proofs.
In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 224–251. Springer,
Heidelberg (Aug 2017)

57. Kiltz, E., Loss, J.: The algebraic group model and its applications. Cryptology ePrint Archive, Report
2017/620 (2017), http://eprint.iacr.org/2017/620

http://eprint.iacr.org/2012/215
http://eprint.iacr.org/2009/599
http://eprint.iacr.org/2009/390
http://eprint.iacr.org/2012/284
http://eprint.iacr.org/2007/288
https://eprint.iacr.org/2018/776
http://eprint.iacr.org/2017/620

25

58. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assumptions, revisited. In:
Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 275–295. Springer,
Heidelberg (Aug 2015)

59. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (Apr 2015)

60. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability: Simulation-sound quasi-
adaptive NIZK proofs and CCA2-secure encryption from homomorphic signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (May 2014)

61. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans - tightly secure constant-size
simulation-sound QA-NIZK proofs and applications. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015,
Part I. LNCS, vol. 9452, pp. 681–707. Springer, Heidelberg (Nov / Dec 2015)

62. Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving signatures: Standard
model security from simple assumptions. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 296–316. Springer, Heidelberg (Aug 2015)

63. Lindell, Y.: An efficient transform from sigma protocols to NIZK with a CRS and non-programmable
random oracle. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 93–109. Springer,
Heidelberg (Mar 2015)

64. Lombardi, A., Vaikuntanathan, V., Wichs, D.: Statistical ZAPR arguments from bilinear maps (2020)
65. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H.M., Adams, C.M.

(eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (Aug 1999)
66. Maurer, U.M.: Abstract models of computation in cryptography (invited paper). In: Smart, N.P. (ed.)

10th IMA International Conference on Cryptography and Coding. LNCS, vol. 3796, pp. 1–12. Springer,
Heidelberg (Dec 2005)

67. Maurer, U.M.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.) AFRICACRYPT 09.
LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (Jun 2009)

68. Mizuide, T., Takayasu, A., Takagi, T.: Tight reductions for diffie-hellman variants in the algebraic group
model. In: CT-RSA 2019. pp. 169–188. LNCS, Springer, Heidelberg (2019)

69. Morillo, P., Ràfols, C., Villar, J.L.: Matrix computational assumptions in multilinear groups. Cryptology
ePrint Archive, Report 2015/353 (2015), http://eprint.iacr.org/2015/353

70. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 729–758. Springer, Heidelberg (Dec 2016)

71. Naor, M.: On cryptographic assumptions and challenges (invited talk). In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (Aug 2003)

72. Noether, S.: Ring signature confidential transactions for monero. Cryptology ePrint Archive, Report
2015/1098 (2015), http://eprint.iacr.org/2015/1098

73. Ràfols, C.: Stretching groth-sahai: NIZK proofs of partial satisfiability. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 247–276. Springer, Heidelberg (Mar 2015)

74. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 552–565. Springer, Heidelberg (Dec 2001)

75. Schnorr, C.P.: Efficient identification and signatures for smart cards (abstract) (rump session). In:
Quisquater, J.J., Vandewalle, J. (eds.) EUROCRYPT’89. LNCS, vol. 434, pp. 688–689. Springer, Hei-
delberg (Apr 1990)

76. Schwartz, J.T.: Probabilistic algorithms for verification of polynomial identities. In: International Sym-
posium on Symbolic and Algebraic Manipulation. pp. 200–215. Springer (1979)

77. Shamir, A.: How to share a secret. Communications of the Association for Computing Machinery 22(11),
612–613 (Nov 1979)

78. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EURO-
CRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (May 1997)

79. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. In: International
Conference on Information Security Practice and Experience. pp. 48–60. Springer (2005)

80. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: International Symposium on Symbolic and
Algebraic Manipulation. pp. 216–226. Springer (1979)

http://eprint.iacr.org/2015/353
http://eprint.iacr.org/2015/1098

Supplementary Material

A Witness Samplability Examples

A.1 Example for Algebraic Witness Sampleability

To provide a better intuition of algebraic witness sampleability, we illustrate it below on the language
of ElGamal encryptions of a bit (which is a special case of the OR-language for DDH tuples).

Example 24. Distribution of languages of ElGamal encryptions of a bit:

M ∈



1 0 0
s 1 0
0 X1 1
0 X2 − 1 s


∣∣∣∣∣∣∣∣s

$←− Zp

 ∈ P4×3
2 , Θ =


X1

X2

0
0

 ∈ P4
2

LM,Θ := {(x1, x2) ∈ G2|r $←− Zp, b ∈ {0, 1}, x1 = [r], x2 = [sr + b]}
For x = (x1, x2) as above, the witness is w = (r, b,−rb). This can be easily checked:

M(x) ·w =


1 0 0
s 1 0
0 r 1
0 sr + b− 1 s

 ·
 r

b
−rb



=


r

rs+ b
rb− rb

srb+ b2 − b− srb

 =


r

rs+ b
0

(b+ 1)(b− 1)

 =


r

rs+ b
0
0


= Θ(x)

The language distribution is witness samplable since for every s ∈ Zp, we have the trapdoor T.

T =


1 0 0 0
s (−1) s (−1)
0 0 1 0
0 0 s (−1)


Looking at the matrix product:

T · (M||Θ) =


1 0 0 0
s (−1) s (−1)
0 0 1 0
0 0 s (−1)

 ·

1 0 0 X1

s 1 0 X2

0 X1 1 0
0 X2 − 1 s 0



=


1 0 0 X1

0 sX1 −X2 0 sX1 −X2

0 X1 1 0
0 sX1 −X2 + 1 0 0


With the right permutations (swapping column 2 and 4), the matrix can be brought into an upper
triangular form. Furthermore, if x ∈ LM,Θ, then row 2 or 4 will consist only of zeros and the matrix
won’t have full rank. Otherwise both will be non-zero and therefore the matrix has full rank.

A.2 Example for Trapdoor Reducibility

We continue the previous example and show the trapdoor reducibility of the language of ElGamal
ciphertexts of bits.

27

Example 25. Let M,Θ,T be defined as in Example 24. The witness reducibility trapdoor for LM,Θ

is

T′ :=

(
s (−1) s (−1)
0 0 s (−1)

)
One can easily see that T′ is a submatrix of T. Looking at the product T′ · (M||Θ)(x) shows the
other two properties:

T′ · (M||Θ)(x) =

(
s (−1) s (−1)
0 0 s (−1)

)
·


1 0 0 X1

s 1 0 X2

0 X1 1 0
0 X2 − 1 s 0


=

[
0 sX1 −X2 0 sX1 −X2

0 sX1 −X2 + 1 0 0

]
The resulting matrix contains exactly the two rows used to check the rank of the matrix and contains
two zero columns without the last column being one of them. This shows that the language LM,Θ is
2-trapdoor reducible.

B Security of extKerMDH in the Generic and Algebraic Group Models

B.1 Generic and algebraic groups

In this section, we study the extKerMDH assumption. To argue the soundness of this new assumption,
we will prove that it holds in generic and algebraic group models. We begin with some notation
(adapted from [57]) and then introduce the Generic Group Model and the Algebraic Group Model.

Definition 26 (Time and Adv). Let Gρ be a security game with parameters ρ and A an adversary
for said game. We denote the result of the game Gρ with adversary A as GAρ and say that A wins,
if GAρ = 1.

For the advantage of an adversary A in a security game Gρ, we write AdvG
ρ,A := Pr[GA

ρ = 1] and
we denote the running time of the experiment as TimeG

ρ,A. In the generic group model, oracle queries
count as one time unit.

Next, we define how to measure the hardness of a problem.

Definition 27 ((ε, t)-hardness). We call a problem G (ε, t)-hard in the generic(algebraic) group
model, if for any generic(algebraic) algorithm A it holds that

TimeG
A ≤ t =⇒ AdvG

A ≤ ε

Lastly, we define generic/algebraic reductions.

Definition 28 (Generic/algebraic reduction). Let G,H be two generic(algebraic) security games.

We write H
(∆ε,∆t)
=====⇒ G if there is a generic(algebraic) algorithm R, called a (∆ε, ∆t)-reduction, such

that for every generic(algebraic) algorithm A, an algorithm B is defined as RA (denoting the algorithm
R with access to A) which satisfies

TimeH
B ≤ ∆t ·TimeG

A

AdvH
B ≥

1

∆ε
·AdvG

A

Intuitively, H
(∆ε,∆t)
=====⇒ G states that if H is hard in the GGM/AGM, then G is too. This is

equivalent to saying that if H is (ε, t)-hard, then G is (ε ·∆ε,
t
∆t

)-hard.
As an example, the dlog problem is (tp , t)-hard in generic groups [66,78].

28

Generic (Bilinear) Group Model. The generic group model was first introduced by Shoup in [78]
and extended to the setting of bilinear groups by Groth [41], however only for the case of symmetric
pairing groups. We use a simple extension to capture asymmetric pairings. The intention of the generic
group model is to limit an adversary to only using the regular group operation when trying to solve
a hard problem. This is done by hiding the group structure from the adversary and only providing it
with group operation oracles and handles to (hidden) group elements. This restricted model allows
for information theoretic proofs of hardness, which gives strong guarantees for generic groups. Elliptic
curves are an example for groups which are presumed to be generic.

In the generic group model, we define an injective encoding function J·K : G → {0, 1}n, which
assigns a random bitstring to each group element. The encoding function is defined adaptively by
the challenger, who chooses a fresh random encoding, whenever a new group element comes up. The
adversary only receives encodings of group elements. Since the adversary now can’t compute anything
by itself, the challenger provides the adversary with a group operation oracle O(·, ·), which takes two
encodings of group elements and returns the encoding of their “sum”. This way, provided an encoding
of a group generator, the adversary can generate random group elements and invert group elements
in polynomial time using the standard double and add algorithm. Checking the equality of two group
elements is simply comparing their encodings.

In the asymmetric pairing group setting, we have three groups instead of one and the pairing
e. However, the approach from before extends naturally to this setting. We define three encoding
functions J·Ki : Gi → {0, 1}n for i ∈ {1, 2, T}, one for each group. For simplicity, we will slightly abuse
this notation and combine it with the implicit notation, i.e. for x ∈ Zp, JxKi := J[x]iKi. The challenger
now provides three group operation oracles as well, again one for each group. Note that the encoding
functions are still chosen adaptively. Especially, if an element [x]1 ∈ G1 already has an encoding JxK1,
the same encoding will not necessarily be defined for group G2. If an encoding is not defined for a
group but given to the respective oracle, the oracle returns ⊥. Additionally, a fourth oracle OPair(·, ·)
has to be provided, which, given the encoding of two group elements JxK1 , JyK2, returns the encoding
of JxyKT .

Algebraic (Bilinear) Group Model For the Algebraic Group Model (AGM), we will use and
extend the definition of Fuchsbauer et.al. [31] and Mizuide et.al [68]. The AGM takes the middle
ground between the standard model and the generic group model. Adversaries in the AGM are allowed
to see and use the structure of the group, however they are required to also output a representation
of every output group element as a linear combination of the inputs. Adversaries adhering to this
requirement are called algebraic. The definition of [31] only captures regular groups. Their definition
is extend in [68] for symmetric pairing groups with outputs only allowed to be from the target group
GT . For our protocols however, we require asymmetric pairings and multiple outputs from different
groups. We will therefore extend their definition of algebraic adversaries accordingly and define the
Algebraic Asymmetric Bilinear Group Model(AABGM).

Informally, an algebraic adversary in our model has to output a representation of each output
group element relative to all input elements of the respective group. For elements from the target
group GT , representations relative to pairings of input elements are also allowed. This notion is
formalized in the following Definition 29.

Definition 29 (Algebraic Adversaries). Let PG = (p,G1,G2,GT , g1, g2, e) be a pairing group
and [x]1 = ([x1]1 , . . . , [xn]1) ∈ Gn1 , [y]2 = ([y1]2 , . . . , [ym]2) ∈ Gm2 , [Z]T = ([z1]T , . . . , zl) ∈ GlT be
vectors in G1, G2 and GT respectively. Let [x]1, [y]2, [z]T be the input for an algorithm A. A is called
algebraic, if in addition to its output

S =
([
S
(1)
1

]
1
, . . . ,

[
S
(1)
n′

]
1
,
[
S
(2)
1

]
2
, . . . ,

[
S
(2)
m′

]
2
,
[
S
(T)
1

]
T
. . . ,

[
S
(T)
l′

]
T

)
∈ Gn

′

1 ×Gm
′

2 ×Gl
′

T ,

A provides a vector

s = ((αij)1≤i≤n′
1≤j≤n

, (βij)1≤i≤m′
1≤j≤m

, (γijk) 1≤i≤l′
1≤j≤n
1≤k≤m

, (γ′ij)1≤i≤l′
1≤j≤l

) ∈ Zζp

with ζ = n · n′ +m ·m′ + l′ · (l + n ·m)

29

such that

S
(1)
i =

n∑
j=1

αijxj for i ∈ {1, . . . , n′}

S
(2)
i =

m∑
j=1

βijyj for i ∈ {1, . . . ,m′}

S
(T)
i =

n∑
j=1

m∑
k=1

e(xj , yk)
γijk +

l∑
j=1

γ′ijzi for i ∈ {1, . . . , l′}

The additional output will be denoted as (S; s)
$←− A([x]1, [y]2, [z]T).

B.2 Analysis of extKerMDH in the GGM and AGM

We now prove the security of our assumption in the Generic Bilinear Group Model and the Algebraic
Asymmetric Bilinear Group Model for the matrix distribution Lk. We start with the algebraic group
model and prove that the dlog problem implies the hardness of the Lk-extKerMDH.

Theorem 30. dlog
(1,1+

O(k3)
t)

=======⇒ Lk-l-extKerMDH, i.e. if the dlog problem is (ε, t + O(l3))-hard in
the algebraic bilinear group model, then the Lk-l-extKerMDH problem is (ε, t)-hard in the algebraic
bilinear group model as well.

Proof. Let PG be a pairing group setting. Assume an algebraic adversary A on the Lk-l-extKerMDH
assumption. We will describe an adversary B on the dlog assumption which queries A exactly once
and only computes a polynomial number of additional operations and is still algebraic.

Let [e]2 be the dLog challenge for adversary B in group G2. B then generates a matrix

M =


1 · · · 1
e1 0

. . .
0 ek


2

$←− Lk

and replaces e1 with e. Then B callsA with input (PG, [M]2) and receives a solution (C = ([ci,j]1)i,j , [B̂]2)
with probability ε after time t with witness vector s. Since A receives no inputs in G1, s contains the
discrete logarithms of all ci,j . Let M̂ := (M

B). If A did indeed output a valid solution, then CM̂ = 0
and therefore for i ∈ {0, . . . , l}:

ci,0 + ci,1e+

k+1+l∑
j=k+2

ci,jm̂j,i = 0.

Each equation contains l + 1 variables and there are l + 1 equations. This equation system can be
solved in time O(l3) and contains e as a variable, so B can output it as its solution by using only
algebraic operations.

In the generic bilinear group model, we can use the same technique, however the generic adversary
A will not output a representation of its solution. Yet B can compute it, since it has to simulate
the group operation oracles for A. A again gets only the generator for group G1 and by counting all
oracle queries of A to the group operation oracle for G1, B gets the discrete logarithms of the matrix
C as in the proof above. It remains to describe how to simulate the bilinear groups for the adversary
A.

Theorem 31. dlog
(1,1+

O(k3)
t)

=======⇒ Lk-l-extKerMDH, i.e. if the discrete logarithm (dLog) problem is
(ε, t+O(l3))-hard in the generic bilinear group model, then the Lk-l-extKerMDH problem is (ε, t)-hard
in the generic bilinear group model as well.

30

Proof. Let A be a generic adversary on the Lk-l-extKerMDH assumption. with running time t and
success probability ε. We will construct a generic adversary B on the dLog assumption which uses
adversary A. Let JeK2 be the dLog challenge of B and let O2(·, ·) denote the group oracle for the
challenge group of B. B generates k − 1 random elements (Je2K2 , . . . , JekK2) from its group using the
oracle O2 and sets e1 := e and

JMK2 =


J1K2 · · · J1K2
Je1K2 J0K2

. . .
J0K2 JekK2


JMK2 is given to A as its challenge. Additionally, B has to provide encodings of generators to pairing
groups to A, however B only knows an encoding for its own group. Therefore, B generates a pairing
group PG $←− PGGen with G2 = G and chooses random encodings for the generators g1, gT itself and
gives them to A. Now B has to answer the oracle queries of A. For group G1 and GT , B behaves just
like a normal oracle, since B does know the underlying groups. For G2, the group provided to B by
the challenger, B forwards all oracle queries to its own oracle O2 and forwards its answers to A. The
pairing oracle is the challenging part, since B does not know e. Therefore, B internally replaces e with
a variable X and regards elements from G2 as polynomials in X, i.e. it outputs a new encoding, if
a polynomial is not equal to an already seen polynomial. This introduces an error probability, since
two different polynomials might yield the same group element when evaluated at e. However by the
Schwartz-Zippel-Lemma [76,80], an upper bound for this probability is 1

p and therefore negligible and
B’s simulation of the oracles is perfect except with negligible probability. By recording all of A’s oracle
queries, B gets the discrete logarithms of A’s solution from G1 and can therefore solve its challenge
as described in the proof for Theorem 30.

With the above, we can prove an even stronger statement: We can also show that the Lk-l-
extKerMDH is as hard as the Lk-KerMDH for any k and any l. The proof is straightforward with the
algorithm above: Instead of embedding the dlog challenge in a fresh matrix, one simply forwards the
KerMDH challenge matrix to the adversary and uses the same method to compute all entries of the
challenge matrix. One can then use linear algebra to find an element in the kernel of the matrix. and
corollary 32 follows.

Corollary 32. If the Lk-KerMDH problem is (ε, t+ k · O(l3))-hard in the
generic(algebraic) bilinear group model, then the Lk-extKerMDH problem is
(ε, t)-hard in the generic(algebraic) bilinear group model as well.

C Disjunctions of Algebraic Languages

C.1 Disjunction matrices

We show that the disjunction of algebraic languages can again be described as an algebraic language.
This approach was described in [11] and we recall it in Definition 33.

Definition 33 (Disjunction matrices). For i ∈ {0, 1}, let Mi ∈ Pni×tili
and Θi ∈ Pnili define two

algebraic languages LMi,Θi .
The disjunction matrix M̂ ∈ P(n0+n1+1)×(t0+t1+2)

l0+l1
and target vector Θ̂ ∈ Pn0+n1+1

l0+l1
for the lan-

guage LM̂,Θ̂ = L(M0,Θ0)∨(M1,Θ1) is built as seen in Figure 10

The idea of this construction is simple: Due to the −1 in the first component of Θ̂, either the
(t0 + 1)-component or the (t0 + t1 + 2)-component (or both) of the witness has to be non-zero.
Therefore, either Θ0 or Θ1 are added at least once to the result of the matrix-witness multiplication.
Since all entries of Θ̂ except for the first are 0, they have to be cancelled by their respective matrix
M0 or M1, since all other entries in the matrix are 0, too. Therefore, any accepting witness for the
new algebraic language contains at least one witness for one of the two languages, which is exactly
what is required.

Since the resulting matrix is again algebraic, we can apply our construction and get a NIZK
argument the size of both proofs for the single languages plus two G2 element. One can easily check

31

M̂ :=



0 · · · 0 1 0 · · · 0 1
0 · · · 0 0
...
. . .

...
... M0 Θ0

0 · · · 0 0
0 · · · 0 0

M1 Θ1
...
. . .

...
...

0 · · · 0 0


,Θ̂ :=


−1
0
...
0



Fig. 10. Disjunction matrix

that if both matrix/vector pairs are from witness samplable (trapdoor reducible) distributions with
trapdoors T0,T1, then the disjunction matrix distribution is witness samplable (trapdoor reducible)
too. The new trapdoor matrix is simply the combination of both trapdoors together with a row of at
the top and a column in the front containing exactly one 1 as seen in Figure 11.

T̂ :=



1 0 · · · · · · · · · 0
0 0 · · · 0
... T0

...
. . .

...
0 0 · · · 0
0 0 · · · 0
...
...
. . .

... T1
0 0 · · · 0


Fig. 11. Disjunction trapdoor

One can expand this construction to obtain 1 out of n NIZK arguments by adding more matrices
on the diagonal with their respective Θ and added 1s to the first row above the Θs. The resulting
arguments consist of

∑n
i=1(ti+ni)+n+1 group elements, where the matrix Mi as dimensions ni×ti.

C.2 k-out-of-n Disjunction Matrix

Now we will adapt the disjunction matrix to the k out of n setting. First we will define a k out of n
OR-language.

Definition 34 (k out of n OR Languages). Let (ni, ti, li)ni=1 ∈ N and Si = (Mi ∈ Pni×tili
,Θi ∈

Pnili)
n
i=1 describe n algebraic languages.

We denote the k out of n disjunction language for the set S := {Si} as

LkS := {(x ∈ Gli)ni=1|∃I ⊂ {1, . . . , n}, |I| ≥ k : ∀i ∈ I∃wi ∈ Ztip : Mi(xi) ·wi = Θi(xi)}

The next step is to adapt the disjunction matrix from Figure 10. The main problem lies in assuring
that the prover knows enough witnesses. For the 1 out of n scenario, this is easy as we only need to
ensure that at least one witness is given, which can be done by simply adding the values. However for
k ≥ 2, this approach does not work any longer. Instead we use a slightly different approach. We still
add all the values multiplied with the Θs, but now they have to sum to k and not −1. If all values
are either 0 or 1, this is enough to show that the prover knows exactly k witnesses. Therefore we let
the prover commit to the factors and prove, that all these commitments contain a bit. We can do this
with the ElGamal commitments of bits that we introduced in Example 24.

Definition 35 (Generalised Disjunction Matrix). Let ME and ΘE denote the polynomial ma-
trix and vector from 24. Then the generalised k out of n disjunction matrix Mk

S and the vector Θk
S

for a set of algebraic languages S as above looks as follows.

32

Mk
S :=



0 · · · 0 1 0 0 0 · · · 0 1 · · · 0 1 0 0
0 · · · 0 0 · · · 0
...
. . .

... ME,n

... · · · 0
0 · · · 0 0 · · · 0

. . .

0 · · · 0
...

. . .
... ME,1

0 · · · 0
0 · · · 0 0 0
...

. . .
... M1 Θ1

...
...

0 · · · 0 0 0

...

0 · · · 0

Mn Θn

...
. . .

...
0 · · · 0



Θk
S :=



k
ΘE,1

...
ΘEn

0
...
0


The upper part of the matrix is used to ensure that a prover has to know k witnesses as described

below while the lower part is the same as in the 1 out of n case. Of course the commitment matrices
in the upper part are evaluated in the different bits and witnesses.

The resulting matrix is a (
∑n
i=1(ni+5))× (

∑n
i=1(ti+1)+2) matrix and therefore a proof has the

size
∑n
i=1(ni + ti + 5) + 2. The result is more academic in nature as the construction from Section 5

is a lot more efficient.

	Shorter Non-Interactive Zero-Knowledge Arguments and ZAPs for Algebraic Languages

