
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2020, No. S1, pp. 88–131. DOI:10.13154/tosc.v2020.iS1.88-131

SKINNY-AEAD and SKINNY-Hash
Christof Beierle1§, Jérémy Jean2, Stefan Kölbl3, Gregor Leander1,

Amir Moradi1, Thomas Peyrin4, Yu Sasaki5, Pascal Sasdrich1¶ and
Siang Meng Sim4

1 Ruhr-Universität Bochum, Bochum, Germany
2 Agence nationale de la sécurité des systèmes d’information (ANSSI), Paris, France

3 Independent‖

4 School of Physical and Mathematical Sciences, Nanyang Technological University, Jurong West,
Singapore

5 NTT Secure Platform Laboratories, Tokyo, Japan

skinny@googlegroups.com

Abstract. We present the family of authenticated encryption schemes SKINNY-AEAD
and the family of hashing schemes SKINNY-Hash. All of the schemes employ a
member of the SKINNY family of tweakable block ciphers, which was presented at
CRYPTO 2016, as the underlying primitive. In particular, for authenticated en-
cryption, we show how to instantiate members of SKINNY in the Deoxys-I-like ΘCB3
framework to fulfill the submission requirements of the NIST lightweight cryptography
standardization process. For hashing, we use SKINNY to build a function with larger
internal state and employ it in a sponge construction. To highlight the extensive
amount of third-party analysis that SKINNY obtained since its publication, we briefly
survey the existing cryptanalysis results for SKINNY-128-256 and SKINNY-128-384 as
of February 2020. In the last part of the paper, we provide a variety of ASIC imple-
mentations of our schemes and propose new simple SKINNY-AEAD and SKINNY-Hash
variants with a reduced number of rounds while maintaining a very comfortable
security margin.
Keywords: SKINNY · Tweakable block cipher · Authenticated encryption · Hash
function · NIST · Lightweight cryptography

1 Introduction
SKINNY is a family of lightweight tweakable block ciphers proposed at CRYPTO 2016
[BJK+16a]. We specify how to provide the authenticated encryption and hashing functional-
ities, with the parameters as required in the NIST lightweight cryptography standardization
process, by using SKINNY as a base primitive.

Parts of this work is based on already published results. The new contributions can be
summarized as follows: We show how members of the SKINNY family of tweakable block
ciphers can be instantiated in the ΘCB3 framework [KR11] in order to fulfill the requirements
for the NIST lightweight cryptography standardization process1 (see also [Nat18]) and
provide 6 members of a new family of AEAD schemes, called SKINNY-AEAD. We further

§Part of the work of Christof Beierle was performed while he was affiliated with the University of
Luxembourg

¶Part of the work of Pascal Sasdrich was performed while he was affiliated with Rambus Cryptoraphy,
the Netherlands

‖Stefan Kölbl is now working at Google.
1https://csrc.nist.gov/Projects/Lightweight-Cryptography

Licensed under Creative Commons License CC-BY 4.0.
Received: 2019-12-10, Accepted: 2020-02-15, Published: 2020-06-22

https://doi.org/10.13154/tosc.v2020.iS1.88-131
mailto:skinny@googlegroups.com
https://csrc.nist.gov/Projects/Lightweight-Cryptography
http://creativecommons.org/licenses/by/4.0/

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 89

use members of the SKINNY family to construct functions with state sizes of 256 and 512
bit, which can be used in a sponge-based hashing mode, and define two members of a new
family of hash functions, called SKINNY-Hash. We provide several ASIC implementations
for all our SKINNY-AEAD and SKINNY-Hash members. To stress the extensive amount of
existing cryptanalysis of the SKINNY family of tweakable block ciphers, we provide a survey
on the external cryptanalysis of SKINNY-128-256 and SKINNY-128-384 as of February
2020.

1.1 SKINNY-AEAD
In short, SKINNY-AEAD uses a mode following the general ΘCB3 framework, instantiated
with SKINNY-128-384. The fact that SKINNY is a beyond birthday-bound secure tweakable
block cipher enables to achieve the provable security providing full security in the nonce-
respecting setting. A similar mode was also employed in the third-round CAESAR
candidate Deoxys-I [JNPS16]. Our primary design takes a 128-bit key, a 128-bit nonce,
and an associated data and a message of up to 264× 16 bytes. It then outputs a ciphertext
of the same length as the plaintext and a 128-bit tag. We also specify other members of
this family to support any combination of n`- and t`-bit nonces and tags, respectively,
where n` ∈ {96, 128} and t` ∈ {64, 128}.

Moreover, we also specify the lightweight version instantiated with SKINNY-128-256.
This design is motivated from the observation that the submission requirement to support
250 input bytes might be unnecessary for several of the use cases of the lightweight
cryptography. This family consists of two members that take a 128-bit key, a 96-bit
nonce, and an associated data and a message of up to 228 bytes as input and produce
the ciphertext and a t`-bit tag, where t` ∈ {64, 128}. Because of the restriction of the
maximum number of input message bytes, this family does not satisfy the submission
requirement to support input messages of up to 250 bytes, yet provides even smaller and
faster AEAD schemes.

1.2 SKINNY-Hash
SKINNY-Hash consists of two members of the hash function schemes that adopt the well-
known sponge construction. Our primary member uses a 384-bit to 384-bit function built
with SKINNY-128-384 to provide a 128-bit secure hash function and the secondary member
uses a 256-bit to 256-bit function built with SKINNY-128-256 to provide a 112-bit secure
hash function.

1.3 Features
Before going into the specifications, we briefly summarize the main features of our design.

• Well-understood design and high security margin. The SKINNY family of
tweakable block ciphers was designed as a solid Substitution-Permutation network
(SPN) having a well-analyzed security bound against the most fundamental cryptan-
alytic approaches: differential cryptanalysis [BS90] and linear cryptanalysis [Mat93].
In addition, SKINNY receives a lot of security analysis by third-party researchers,
which demonstrates its strong resistance against cryptanalysis. The cipher can basi-
cally be understood as a tweakable version of a tailored AES which omits components
not strictly necessary for the security or substitutes them by more lightweight choices.
Therefore, similar cryptanalytic approaches as for AES can be applied. However,
opposed to AES, the TWEAKEY framework allows to derive strong security arguments
in the related-key, related-tweak setting for SKINNY. Moreover, SKINNY offers a high
security margin. As of February 2020, based on our own cryptanalysis and the

90 SKINNY-AEAD and SKINNY-Hash

extensive external cryptanalysis since its publication, SKINNY-128-384 offers 28 (out
of 56) rounds, and SKINNY-128-256 offers 25 (out of 48) rounds of security margin
in the related-tweakey setting.

• Security proofs by a modular approach. The security of the authenticated
encryption schemes and hash functions are directly inherited from the well-known and
widely-applied modes of operation used in our design. Indeed, SKINNY-AEAD relies on
the proofs of the ΘCB3 mode, while for SKINNY-Hash we rely on the provable security
of the sponge framework. The security of our schemes can thus be reduced to the
ideal behavior of the underlying primitives SKINNY-128-384 and SKINNY-128-256.

• Beyond-birthday-bound security. By using a tweakable block cipher directly
constructed by the TWEAKEY framework, we obtain beyond-birthday-bound security
which allows to efficiently exploit the whole state. This is different to modes based
on OCB, which only offers security up to the birthday bound. Such modes would
require larger internal states to achieve the same security level.
Note that, however, OCB is birthday-bound secure based on the SPRP assumption
while ΘCB3 is beyond-birthday-bound secure based on the STPRP assumption.
Clearly, an oracle to a tweakable block cipher gives more freedom to the attacker
than an oracle to a classical block cipher.

• Efficient protection against side-channel attacks. Thanks to the structured
Sbox of SKINNY, which is an iteration of a quadratic permutation, its Threshold
Implementation [NRS11] (a provably-secure countermeasure against side-channel
analysis attacks) can be efficiently made. This helps us to efficiently integrate side-
channel countermeasures into various implementations of SKINNY with minimum
number of shares and limited number of fresh randomness, both affecting the area
overhead of the resulting design.

• General-purpose lightweight schemes. When designing a lightweight encryption
or hashing scheme, several use cases must be taken in account. While area-optimized
implementations are important for some very constrained applications, throughput
or throughput-over-area optimized implementations are also very relevant. Actually,
looking at recently introduced efficiency measurements (the FOAM value - Figure
Of Adversarial Merit [KPPY14]), one can see that our design choices are good for
many types of implementations, which is exactly what makes a good general-purpose
lightweight encryption scheme.

• Efficiency for short messages. Our algorithms are efficient for short messages.
For authenticated encryption, the main reason is because the design is based on
a tweakable block cipher, which allows to avoid any precomputation (like in OCB,
AES-GCM, etc.). In particular, the first 128-bit message block is handled directly and
by taking in account the tag generation, one needs only m+ 1 internal calls to the
tweakable block cipher to process messages of m blocks of 128 bits each (if there is
no associated data).
Our primary member for hashing requires at most 3(m+ 2) calls to the tweakable
block cipher for producing a 256-bit digest for a message of m blocks of 128 bits
each.

• Parallelizable mode. Our AEAD schemes are fully parallelizable as they are based
on the ΘCB3 mode, which employs independent calls to the tweakable block cipher.

• Flexibility. Our AEAD design allows for smooth parameter handling. We define
specific parameter sets to achieve the NIST requirements, but any user can in

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 91

principle choose its own separation into nonce, key and block counter by adapting
the key and tweak sizes at his/her convenience. This flexibility comes from the
unified vision of the key and tweak material brought by the TWEAKEY framework. In
a nutshell, one implementation of the underlying cipher is sufficient to support all
versions with different key and tweak sizes (which sum up to the same size).

2 Specification
By ‖ we denote the concatenation of bitstrings. Given a bitstring B, we denote by Bj the
j-times concatenation of B, where B0 is defined to be the empty string ε. For instance
0‖103 = 0103 = 01000 and (10)3 = 101010. We denote the length of a string B in bits by
|B|, where |ε| = 0.

2.1 Parameter Sets
2.1.1 AEAD

In a nutshell, our AEAD scheme adopts a mode that can be described in the ΘCB3
framework [KR11] by using either SKINNY-128-384 or SKINNY-128-256 as the underlying
tweakable block cipher.

Our primary member instantiates the ΘCB3 framework with the tweakable block
cipher SKINNY-128-384 used with 128-bit keys, 128-bit nonces and which produces 128-bit
authentication tags. Along with this primary AEAD scheme, we propose three additional
ones that extend the possible parameters and allow users to choose between two nonce
sizes (96 bits or 128 bits), and two tag sizes (128 bits or 64 bits). All of them are consistent
with NIST’s requirements.

We also specify two secondary options that are designed for processing short inputs.
Those are based on a second tweakable block cipher, namely SKINNY-128-256. The nonce
size is fixed to 96 bits, while users can choose between two tag sizes: 128 or 64 bits. The
maximum number of message blocks that can be processed with SKINNY-128-256-based
members is limited to 228 bytes. Users need to be careful about its usage because these
two algorithms do not meet NIST’s requirements to support input messages of up to 250

bytes.

2.1.2 Hashing

Overall, the SKINNY-Hash family contains two function-based sponge constructions (see
[BDPA11]), in which the underlying functions are built from the SKINNY-128-384 and
SKINNY-128-256 tweakable block ciphers. Both members, denoted SKINNY-tk3-Hash and
SKINNY-tk2-Hash, process input messages of arbitrary length and output a 256-bit digest.

A list of our proposed AEAD schemes (members M1 to M6), together with the two
hashing algorithms is provided in Table 1. For comparisons, we pair the AEAD members
M1, M2, M3 and M4 with the hashing algorithm SKINNY-tk3-Hash and the AEAD
members M5 and M6 with SKINNY-tk2-Hash as the constructions in the respective pairs
are based on the same variant of the SKINNY tweakable block cipher.

2.2 SKINNY-128-256 and SKINNY-128-384
We already published the SKINNY family of tweakable block ciphers in 2016 in [BJK+16a].
For the sake of completeness, we provide the specifications of the two members of the
SKINNY family that are relevant for our constructions, namely SKINNY-128-256 and
SKINNY-128-384.

92 SKINNY-AEAD and SKINNY-Hash

Table 1: Our proposed AEAD schemes and hashing algorithms.
Block Cipher Nonce Tag Key Hash Function Rate Capacity

underlying primitive bits bits bits type bits bits

M1 † SKINNY-128-384 128 128 128

384-bit sponge 128 256M2 SKINNY-128-384 96 128 128
M3 SKINNY-128-384 128 64 128
M4 SKINNY-128-384 96 64 128

M5 ∗ SKINNY-128-256 96 128 128 256-bit sponge 32 224
M6 ∗ SKINNY-128-256 96 64 128
†: Primary member. ∗: Do not strictly follow NIST requirements.

The tweakable block ciphers SKINNY-128-256 and SKINNY-128-384 both have a block
size of n = 128 bit and the internal state is viewed as a 4× 4 square array of cells, where
each cell contains a byte. We denote ISi,j the cell of the internal state located at Row i
and Column j (counting starts from 0). One can also view this 4× 4 square array of cells
as a vector of cells by concatenating the rows. Thus, we denote with a single subscript ISi
the cell of the internal state located at Position i in this vector (counting starts from 0)
and we have that ISi,j = IS4·i+j .

The ciphers follow the TWEAKEY framework from [JNP14] and therefore take a tweakey
input – instead of a key only – without any distinction between key and tweak input.

The two tweakable block ciphers SKINNY-128-256 and SKINNY-128-384 mainly differ
in the size of the tweakey input: they respectively process 2n = 256 or 3n = 384 tweakey
bits. The tweakey state is also viewed as a collection of two (resp., three) 4 × 4 square
arrays of cells of 8 bits each. We denote these arrays TK1 and TK2 for SKINNY-128-256
and TK1, TK2 and TK3 for SKINNY-128-384. Moreover, we denote TKzi,j the cell of
the tweakey state located at Row i and Column j of the z-th cell array. As for the internal
state, we extend this notation to a vector view with a single subscript: TK1i, TK2i and
TK3i.

We now give the structural specifications of the ciphers.

2.2.1 Initialization

The ciphers receive a plaintext m = m0‖m1‖ · · · ‖m14‖m15, where the mi are 8-bit words.
The initialization of the ciphers’ internal state are performed by simply setting ISi = mi

for 0 ≤ i ≤ 15, i.e.,

IS =

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

 .

Note that the state is loaded row-wise rather than in the column-wise fashion as done for
example in the AES. This is a more hardware-friendly choice, as pointed out in [MPL+11].

The ciphers receive a tweakey input tk = tk0‖tk1‖ · · · ‖tk31 (resp., tk = tk0‖ · · · ‖tk47),
where the tki are 8-bit words. The initialization of the cipher’s tweakey state is performed

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 93

by simply setting for 0 ≤ i ≤ 15:

For 2n-bit tweakey: For 3n-bit tweakey:
TK1i = tki TK1i = tki

TK2i = tk16+i TK2i = tk16+i

TK3i = tk32+i

Note that the tweakey states are also loaded row-wise.

2.2.2 Round Function

One encryption round of SKINNY is composed of five operations in the following order:
SubCells, AddConstants, AddRoundTweakey, ShiftRows and MixColumns (see illustration
in Figure 1). The number r of rounds to perform during encryption depends on the tweakey

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Figure 1: The SKINNY round function applies five different transformations: SubCells
(SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC).

size. In particular, SKINNY-128-256 applies r = 48 and SKINNY-128-384 applies r = 56
rounds. Note that no whitening key is used.

SubCells. An 8-bit Sbox S8 is applied to every cell of the ciphers internal state. Its
design is simple and inspired by the PICCOLO Sbox [SIH+11].
If x0, . . ., x7 represent the eight input bits of the Sbox (x0 being the least significant
bit), it basically applies the below transformation on the 8-bit state:

(x7, x6, x5, x4, x3, x2, x1, x0)→ (x7, x6, x5, x4 ⊕ (x7 ∨ x6), x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by the bit permutation

(x7, x6, x5, x4, x3, x2, x1, x0) −→ (x2, x1, x7, x6, x4, x0, x3, x5),

repeating this process four times, except for the last iteration where there is just a
bit swap between x1 and x2. Besides, we provide in Appendix A the table of S8 and
its inverse in hexadecimal notations.

AddConstants. A 6-bit affine LFSR, whose state is denoted (rc5, rc4, rc3, rc2, rc1, rc0)
(with rc0 being the least significant bit), is used to generate round constants. Its
update function is defined as:

(rc5||rc4||rc3||rc2||rc1||rc0)→ (rc4||rc3||rc2||rc1||rc0||rc5 ⊕ rc4 ⊕ 1) .

The six bits are initialized to zero, and updated before used in a given round. The
bits from the LFSR are arranged into a 4× 4 array and only the first column of the
state is affected by the LFSR bits, i.e.,

c0 0 0 0
c1 0 0 0
c2 0 0 0
0 0 0 0

 ,

94 SKINNY-AEAD and SKINNY-Hash

with c2 = 0x2 and (c0, c1) = (0‖0‖0‖0‖rc3‖rc2‖rc1‖rc0, 0‖0‖0‖0‖0‖0‖rc5‖rc4).
The round constants are combined with the state, respecting array positioning, using
bitwise exclusive-or. The values of the (rc5, rc4, rc3, rc2, rc1, rc0) constants for each
round are given in Table 2 below, encoded to byte values for each round, with rc0
being the least significant bit.

Table 2: SKINNY Round Constants.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E
17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38
33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04
49 - 62 09,13,26,0C,19,32,25,0A,15,2A,14,28,10,20

AddRoundTweakey. The first and second rows of all tweakey arrays are extracted and
bitwise exclusive-ored to the ciphers internal state, respecting the array positioning.
More formally, for i = {0, 1} and j = {0, 1, 2, 3}, we have:

• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j for SKINNY-128-256,
• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j for SKINNY-128-384.

Then, the tweakey arrays are updated as follows: First, a permutation PT is applied on
the cells positions of all tweakey arrays: for all 0 ≤ i ≤ 15, we set TKzi ← TKzPT [i]
with

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] ,

for z ∈ {1, 2} (resp., z ∈ {1, 2, 3}). This corresponds to the following reordering of
the matrix cells, where indices are taken row-wise:

(0, . . . , 15) PT7−→ (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7).

Finally, every cell of the first and second rows of TK2 (resp., TK2 and TK3) are
individually updated with an LFSR. The LFSRs used are given in Table 3 (x0 stands
for the LSB of the cell).

Table 3: The LFSRs used in SKINNY to generate the round tweakeys. The TK parameter
gives the number of the corresponding tweakey word in the cipher.

TK s LFSR

TK2 8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)
TK3 8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

ShiftRows. As in the AES, in this layer, the rows of the cipher state cell array are rotated.
More precisely, the second, third, and fourth cell rows are rotated by 1, 2 and 3
positions to the right, respectively. In other words, a permutation P is applied on
the cells positions of the cipher internal state cell array: for all 0 ≤ i ≤ 15, we set
ISi ← ISP [i] with

P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12].

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 95

MixColumns. Each column of the cipher internal state array is multiplied by the following
binary matrix M:

M =

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 .

The final value of the internal state array provides the ciphertext with cells be-
ing unpacked in the same way as the packing during initialization. Test vectors for
SKINNY-128-256 and SKINNY-128-384 are provided in Appendix B. Note that decryption
is very similar to encryption as all cipher components have very simple inverses (SubCells
and MixColumns are based on a generalized Feistel structure, so their respective inverse
is straightforward to deduce and can be implemented with the exact same number of
operations).

2.3 The AEAD Scheme SKINNY-AEAD
The authenticated encryption scheme adopts the ΘCB3 mode using either SKINNY-128-384
or SKINNY-128-256 as the underlying tweakable block cipher, depending on the member
as shown in Table 1. In the following, we provide the detailed specification of the
scheme. Let SKINNY-128-384tk(P) denote the encryption of a plaintext P under the
tweakey tk with the SKINNY-128-384 algorithm and let SKINNY-128-256tk(P) be the
encryption of a plaintext P under the tweakey tk with the SKINNY-128-256 algorithm.
Let further SKINNY-128-384−1

tk (C) (resp. SKINNY-128-256−1
tk (C)) denote the decryption

of a ciphertext C under the tweakey tk with the SKINNY-128-384 (resp. SKINNY-128-256)
algorithm.

By (N,A,M), we denote the tuple of a nonce N , associated data A and a message M ,
where A and M can be of arbitrary length (including empty).

2.3.1 SKINNY-AEAD Based on SKINNY-128-384

This case applies to our primary member (M1), as well as M2, M3, and M4 (refer to Table 1).

Domain Separation. We first define a 1-byte string that ensures independence of tweak-
able block cipher calls for different kinds of computations (i.e., domain separation) and
also for different SKINNY-AEAD members. Let b7‖b6‖b5‖b4‖b3‖b2‖b1‖b0 be the bitwise rep-
resentation of this byte, where b7 is the MSB and b0 is the LSB (see also Figure 2). Then,
we use the following convention:

- b7 to b5 are always fixed to 0,

- b4 encodes the nonce size n` ∈ {0, 1}, where n` is set to 0 if the nonce size is 128 bits
and 1 if the nonce size is 96 bits,

- b3 encodes the tag size t` ∈ {0, 1}, where t` is set to 0 if the tag size is 128 bits and 1 if
the tag size is 64 bits,

- b2 to b0 are used for the actual domain separation, which is further specified as follows:

- 000: encryption of a full message block,
- 001: encryption of a partial message block,
- 010: computation of a full associated data block,

96 SKINNY-AEAD and SKINNY-Hash

- 011: computation of a partial associated data block,

- 100: generation of a tag if the message size in bits is a multiple of 128,

- 101: generation of a tag if the message size in bits is not a multiple of 128.

fixed to 0 𝑑𝑖: domain separation

𝑡ℓ: tag size
𝑛ℓ: nonce size

𝑏7 𝑏6 𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0

Figure 2: Domain separation and distinction of the different members.

Note that the nonce size (b4) and the tag size (b3) are fixed during the computation of
a single tuple of nonce N , associated data A and message M , while b2 to b0 vary across a
computation of a single (N,A,M).

In the following paragraphs, we specify the computations of a ciphertext C and a tag
tag for a given (N,A,M), key K, n`, and t`. For simplicity, we denote this single byte by
d0, d1, d2, d3, d4, or d5 depending on the 3-bit value for the domain separation, i.e.:

d0 = 000n`t`000,
d1 = 000n`t`001,
d2 = 000n`t`010,
d3 = 000n`t`011,
d4 = 000n`t`100,
d5 = 000n`t`101.

Associated Data Processing. The computation for the associated data is depicted
in Figure 3. If the byte-length of A is not a multiple of the block size (i.e., 16 bytes),
it has to be padded. In particular, if |A| denotes the length of A in bit, let A =
A0‖A1‖ . . . ‖A`a−1‖A`a

with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a
| < 128. Note that

if |A| is a multiple of 128, |A`a
| is set to the empty string ε and no padding is applied.

Otherwise, we apply the padding pad10* to A`a which is defined as

pad10*: X 7→ X‖1‖0127−|X| mod 128.

Each associated data block Ai is processed in parallel by SKINNY-128-384 as a plaintext
input under a 384-bit tweakey, where the structure of the 384-bit tweakey is as follows.

- The tweakey bytes tk0, . . . , tk15 store 8 bytes from a 64-bit LFSR, followed by 7 bytes of
zeros, and then the single byte for the domain separation (d2 or d3 whether it is a
padded block). The 64-bit LFSR plays the role of a block counter. It is defined as
follows: Let x63‖x62‖x61‖ · · · ‖x2‖x1‖x0 denote the 64-bit state of the LFSR. It is
initialized to LFSR0 = 063‖1 and updated as LFSRt+1 = upd64(LFSRt), where the
update function upd64 is defined by the polynomial x64 + x4 + x3 + x+ 1 as

upd64 : x63‖x62‖ . . . ‖x1‖x0 −→ y63‖y62‖ . . . ‖y1‖y0

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 97

with:

yi ← xi−1 for i ∈ {63, 62, . . . , 1}\{4, 3, 1},
y4 ← x3 ⊕ x63,

y3 ← x2 ⊕ x63,

y1 ← x0 ⊕ x63,

y0 ← x63.

Before loaded in the tweakey state, the order of the bytes of the LFSR state is
reversed, i.e., tk0‖tk1‖ . . . ‖tk15 = rev64(LFSRt)‖056‖d2 (resp. tk15 = d3 for the last
padded block), where rev64 is defined by

rev64 : x7‖x6‖x5‖x4‖x3‖x2‖x1‖x0 7→ x0‖x1‖x2‖x3‖x4‖x5‖x6‖x7 (∀i : |xi| = 8) .

- The tweakey bytes tk16‖tk17‖ . . . ‖tk31 store the nonce N . If n` = 1, i.e., if the nonce
size is 96 bits, 32-bit zeros are appended to N , thus, tk16‖tk17‖ . . . ‖tk31 = N‖032.

- The tweakey bytes tk32‖tk33‖ . . . ‖tk47 store the 128-bit key K.

The XOR sum of each block’s output is stored as Auth, which is later used in the final
authentication tag computation.

Remind that if the size of A is not a multiple of 128 bits, we use the domain separation
byte d3 to process the last padded block.

A0

E
0‖d2

N,K

0

A1

E
1‖d2

N,K
. . .

Ala−1

E
la−1‖d2

N,K

Auth. . .

(a) Without padding.

A0

E
0‖d2

N,K

0

A1

E
1‖d2

N,K
. . .

Ala−1

E
la−1‖d2

N,K

Ala10
∗

E
la‖d3

N,K

Auth. . .

(b) With padding.

Figure 3: Handling of the associated data: in the case where the associated data is a
multiple of the block size, no padding is needed. In the figures, E refers to SKINNY-128-384.
For simplicity, we denote the block counter by 0 . . . , `a − 1 (resp., 0, . . . , `a) but actually
refer to the state of the LFSRs serving as a block counter.

Encryption. The encryption of M is depicted in Figure 4 and Figure 5. First, suppose
that the size of M in bits is a multiple of 128 (Figure 4). In that case, M is parsed into
128-bit blocks M0,M1,M2, . . . ,M`m−1 and no padding is applied. Each message block Mi

is processed by SKINNY-128-384 as a plaintext input under a particular 384-bit tweakey
and the output is taken as the corresponding ciphertext block. The structure of the 384-bit
tweakey differs from the associated data processing only by the domain separation byte.
Here, the byte tk15 is fixed to d0 instead of d2.

To produce the tag, the XOR sum of the plaintext blocks noted Σ is computed and
then encrypted by SKINNY-128-384, where the 384-bit tweakey is analogously defined as
tk0‖tk1‖ . . . ‖tk47 = rev64(LFSR`m

)‖056‖d4‖N‖K. Finally, the output of this encryption
is XORed with Auth. If t` = 0, i.e., the tag size is 128 bits, the result of this XOR is a tag.
If t` = 1, i.e., the tag size is 64 bits, the result of this XOR is truncated by trunc64 to 64
bit, where the truncation functions trunci are defined for inputs of length at least i by

trunci : X = x0‖x1‖ . . . ‖x|X|−1 7→ x0‖x1‖ . . . ‖xi−1.

98 SKINNY-AEAD and SKINNY-Hash

Algorithm 1 The authenticated encryption algorithm SKINNY-AEAD-M1-Enc(K,N,A,M)
In: Key K, nonce N (both 128 bit), associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 128-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00000010‖N‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00000011‖N‖K(pad10*(A`a))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m ←M with |Mi| = 128 for i ∈ {0, . . . , `m − 1} and |M`m | < 128
Σ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-384rev64(LFSR)‖056‖00000000‖N‖K(Mi)
Σ← Σ⊕Mi

LFSR← upd64(LFSR)
if M`m = ε then

C`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00000100‖N‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00000001‖N‖K(0128)
C`m ←M`m ⊕ trunc|M`m

|(R)
LFSR← upd64(LFSR)
Σ← Σ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00000101‖N‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m
//Tag generation
tag← T ⊕ Auth
return (C, tag)

M0

E
0‖d0

N,K

C0

M1

E
1‖d0

N,K

C1

Mlm−1

E
lm−1‖d0

N,K

Clm−1

.

Σ

E
lm‖d4

N,K

tag

Auth

Figure 4: Encryption of SKINNY-AEAD with SKINNY-128-384 without padding when
t` = 128. Again, E refers to SKINNY-128-384. For simplicity, we denote the block counter
by 0, . . . , `m but actually refer to the state of the LFSRs serving as a block counter.

In the case |M | is not a multiple of 128 (Figure 5), the same padding pad10* as for the as-
sociated data is applied toM . In particular,M is split intoM = M0‖M1‖ . . . ‖M`m−1‖M`m

with |Mi| = 128 for i ∈ {0, . . . , `m−1} and 0 < |M`m
| < 127. The processing of the message

blocks Mi, i ∈ {0, . . . , `m − 1} is the same as in the case described above. The last cipher-
text block C`m is computed as the XOR sum of the encryption of 0 with SKINNY-128-384
under the 384-bit tweakey tk0‖tk1‖ . . . ‖tk47 = rev64(LFSR`m

)‖056‖d1‖N‖K (truncated
to |M`m

| bits) with the plaintext block M`m
.

For the tag computation, the checksum is computed as M0 ⊕M1 ⊕ · · · ⊕M`m−1 ⊕
pad10*(M`m) and it is encrypted with SKINNY-128-384 under the 384-bit tweakey

rev64(LFSR`m+1)‖056‖d5‖N‖K.

Similar as for the unpadded case, the encryption is XORed with Auth and truncated in
the same way as described above if t` = 1.

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 99

M0

E
0‖d0

N,K

C0

M1

E
1‖d0

N,K

C1

Mlm−1

E
lm−1‖d0

N,K

Clm−1

Mlm10∗

0n

E
lm‖d1

N,K

Clm

.

Σ

E
lm+1‖d5

N,K

tag

Auth

Figure 5: Encryption of SKINNY-AEAD with SKINNY-128-384 with padded message when
t` = 128. The last ciphertext block Clm is further truncated to have the same size as Mlm .
Again, we denote the block counter by 0, . . . , `m + 1 but actually refer to the state of the
LFSRs serving as a block counter.

Decryption. The decryption and tag verification procedure for given (K,N,A,C, tag) is
straightforward.

Formally, we provide the algorithms of the authenticated encryption members M1, M2,
M3, and M4, together with their decryption and tag verification procedure, in Algorithms 1,
2 (in the main text), 5, 6, 7, 8 and 9, 10 (in Appendix C), respectively.

2.3.2 SKINNY-AEAD with SKINNY-128-256

This case applies to the members M5 and M6 (refer to Table 1). It is very similar to the
previous case, the main difference being the definition of the tweakey states due to their
smaller sizes.

Domain Separation. The domain separation is exactly the same as in the previous case.
Note that b4 is always fixed to 1 as only 96-bit nonces can be used in the members M5
and M6.

Associated Data Processing. The computation for associated data A is very similar to
the previous case. The difference is that each associated data block Ai is processed by
SKINNY-128-256 as a plaintext input under a 256-bit tweakey, where the structure of the
256-bit tweakey is as follows.

- The tweakey bytes tk0, . . . , tk15 store 3 bytes from a 24-bit LFSR, the single byte for
the domain separation, followed by the 12-byte nonce N . The byte for the domain
separation is fixed to d2, i.e., 0001t`010, for a non-padded block and to d3 = 0001t`011
for a padded block. The 24-bit LFSR is defined below.
Let x23‖x22‖x21‖ · · · ‖x2‖x1‖x0 denote the 24 bits of the LFSR. It is initialized
to LFSR0 = 0231 and updated as LFSRt+1 = upd24(LFSRt), where the update
function upd24 is defined by the polynomial x24 + x4 + x3 + x+ 1 as

upd24 : x23‖x22‖ . . . ‖x1‖x0 7→ y23‖y22‖ . . . ‖y1‖y0

with

yi ← xi−1 for i ∈ {23, 22, . . . , 1}\{4, 3, 1},
y4 ← x3 ⊕ x23,

y3 ← x2 ⊕ x23,

y1 ← x0 ⊕ x23,

y0 ← x23.

100 SKINNY-AEAD and SKINNY-Hash

Algorithm 2 The decryption algorithm SKINNY-AEAD-M1-Dec(K,N,A,C, tag)
In: Key K, nonce N (both 128 bit), associated data A, ciphertext C (both arbitrarily long), 128-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00000010‖N‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00000011‖N‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m ← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m | < 128
Σ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-384−1
rev64(LFSR)‖056‖00000000‖N‖K

(Ci)
Σ← Σ⊕Mi

LFSR← upd64(LFSR)
if C`m = ε then

M`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00000100‖N‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00000001‖N‖K(0128)
M`m ← C`m ⊕ trunc|C`m

|(R)
LFSR← upd64(LFSR)
Σ← Σ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00000101‖N‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m
//Tag verification
tag′ ← T ⊕ Auth
if tag′ = tag then

return M
else

return ⊥

Before loaded in the tweakey state, the order of the bytes of the LFSR state is
reversed, i.e., tk0‖tk1‖ . . . ‖tk15 = rev24(LFSRt)‖d2‖N (resp. tk15 = d3 for the last
padded block), where rev24 is defined by

rev24 : x2‖x1‖x0 7→ x0‖x1‖x2 (∀i : |xi| = 8).

- The tweakey bytes tk16‖tk17‖ . . . ‖tk31 store the 128-bit key K.

Encryption and Decryption. The encryption of M is also very similar to the previous
case. Also, decryption and tag verification is straightforward.

Formally, in Appendix C, we provide the algorithms of the authenticated encryption
members M5 and M6, together with their decryption and tag verification procedure, in
Algorithms 11, 12 and 13, 14, respectively.

2.3.3 Remarks for Further Extension

Here, we explain two additional features of our AEAD schemes, which are not officially
included in the NIST submission but can be implemented efficiently depending on the
user’s demand.

Supporting More than 264 blocks with SKINNY-128-384. Recall that in the members
based on SKINNY-128-384, the tweakey bytes tk0, . . . , tk15 store 8 bytes for a 64-bit LFSR,
followed by 7 bytes of zeros, and then a single byte for the domain separation. If the
user wants to support input data of more than 264 blocks, it is possible to replace the 7

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 101

bytes of zeros by the following 56-bit LFSR. Note that this LFSR would be updated every
264 blocks, hence very rarely in comparison to the 64-bit LFSR. Let x55‖x54‖ · · · ‖x1‖x0
denote the 56 bits of the 56-bit LFSR. It is initialized to LFSR0 = 055‖1 and updated as
LFSRt+1 = upd56(LFSRt), where the update function upd56 is defined by the polynomial
x56 + x7 + x4 + x2 + 1 as

upd56 : x55‖x54‖ . . . ‖x1‖x0 −→ y55‖y54‖ . . . ‖y1‖y0

with:

yi ← xi−1 for i ∈ {55, 54, . . . , 1}\{7, 4, 2},
y7 ← x6 ⊕ x55,

y4 ← x3 ⊕ x55,

y2 ← x1 ⊕ x55,

y0 ← x55.

We stress that this additional functionality is only available in SKINNY-128-384-based
members, and cannot be adopted in SKINNY-128-256-based members.

Acceleration of Associated Data Processing. When associated data A is processed, we
fix 128 bits or 96 bits of the tweakey state to the nonce value N for SKINNY-128-384- and
SKINNY-128-256-based members, respectively. We note that it is not strictly necessary
to include N during the associated data processing, hence a potential acceleration of the
associated data processing could replace N with bits from A. This would reduce the
number of tweakable block cipher calls for processing A. In particular, the number of calls
could be halved in SKINNY-128-384-based members.

2.4 The Hash Functionality SKINNY-Hash
Overall, the SKINNY-Hash family consists of the function-based sponge constructions
SKINNY-tk3-Hash and SKINNY-tk2-Hash, in which underlying functions are built with
SKINNY-128-384 and SKINNY-128-256, respectively. We recall here that the sponge
construction [BDPA11] can be based on a cryptographic function as well as a cryptographic
permutation.

2.4.1 F384: 384-bit to 384-bit function
We build a function F384 : {0, 1}384 → {0, 1}384 based on SKINNY-128-384. Let x ∈
{0, 1}384 be an input to F384. Let SKINNY-128-384tk(P) be the encryption of a plaintext
P under a tweakey tk with the SKINNY-128-384 algorithm. The output of F384 is computed
as follows (see also Figure 6):

F384(x) = SKINNY-128-384x(0128)
∥∥∥SKINNY-128-384x(07‖1‖0120)

∥∥∥SKINNY-128-384x(06‖1‖0121).

2.4.2 F256: 256-bit to 256-bit function

We build a function F256 : {0, 1}256 → {0, 1}256 based on SKINNY-128-256. For this, let
SKINNY-128-256tk(P) be the encryption of a plaintext P under a tweakey tk with the
SKINNY-128-256 algorithm. The output of F256 is computed as follows (see also Figure 6):

F256(x) = SKINNY-128-256x(0128)
∥∥∥SKINNY-128-256x(07‖1‖0120).

102 SKINNY-AEAD and SKINNY-Hash

x F256(x)

Ẽtk2

Ẽtk2

0

1

||
256 256128

128

(a) Construction of F256.

||

Ẽtk3

Ẽtk3

Ẽtk3

0

1

2

384 384128

128

128

x F384(x)

(b) Construction of F384.

Figure 6: Construction of the functions F256 and F384 used in SKINNY-tk2-Hash and
SKINNY-tk3-Hash, respectively.

Algorithm 3 The hashing algorithm SKINNY-tk3-Hash
In: Message M of arbitrary length
Out: 256-bit digest H

//Absorbing phase
M0‖M1‖ . . . ‖M`m−1 ← pad10*(M) with |Mi| = 128 for i ∈ {0, . . . , `m − 1}
S384 ← 0128‖1‖0255

for all i = 0, . . . , `m − 1 do
S384 ← F384

(
S384 ⊕ (Mi‖0256)

)
//Squeezing phase
H0 ← trunc128(S384)
S384 ← F384

(
S384

)
H1 ← trunc128(S384)
H ← H0‖H1
return H

2.4.3 SKINNY-tk3-Hash

The computation of SKINNY-tk3-Hash simply follows the well-known sponge construction.
Differently from many of existing instantiations, we use the function F384 as an underlying
primitive. The construction is illustrated in Figure 7.

. . .

. . .
cIV`

rIV`

M‖10−1−|M | mod r

H0 H1

F` F` F` F`

Figure 7: The structure of SKINNY-Hash based on a sponge.

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 103

The 384-bit state, S384, is divided into 128-bit rate and 256-bit capacity, which are
initialized to the following values:

rIV384 = 0128,

cIV384 = 10255,

S384 = rIV384 ‖ cIV384.

The padding pad10* is applied to an input message M (note that the padding is always
applied, even if |M | is already a multiple of 128). The message blocks Mi are XORed to
the outer part of the state during the absorbing phase.

After the absorbing phase, the 128 bits of the rate are extracted as the first 128 bits
of the 256-bit digest. Then, S384 ← F384(S384) is applied once again and the 128 bits of
the rate are extracted as the last 128 bits of the 256-bit digest. The formal algorithm is
specified in Algorithm 3.

Algorithm 4 The hashing algorithm SKINNY-tk2-Hash
In: Message M of arbitrary length
Out: 256-bit digest H

//Absorbing phase
M0‖M1‖ . . . ‖M`m−1 ← pad10*32(M) with |Mi| = 32 for i ∈ {0, . . . , `m − 1}
S256 ← 032‖1‖0223

for all i = 0, . . . , `m − 1 do
S256 ← F256

(
S256 ⊕ (Mi‖0224)

)
//Squeezing phase
H0 ← trunc128(S256)
S256 ← F256

(
S256

)
H1 ← trunc128(S256)
H ← H0‖H1
return H

2.4.4 SKINNY-tk2-Hash

The 256-bit state S256, is divided into a 32-bit outer part and a 224-bit inner part, which
are initialized to the following values:

rIV256 = 032,

cIV256 = 10223,

S256 = rIV256‖cIV256.

A difference with the previous case is that the message M now has to be padded such
that its length is a multiple of 32 bits. Therefore, we apply the padding function pad10*32
which is defined as

pad10*32 : X 7→ X‖1‖031−|X| mod 32.

The message blocks Mi are XORed to the outer part of the state during the absorbing
phase. After the absorbing phase, the first 128 bits of the state are extracted as the first
128 bits of the 256-bit digest. Then, S256 ← F256(S256) is applied once again and the first
128 bits of the state are extracted as the last 128 bits of the 256-bit digest. This means
that in the squeezing phase, the rate is extended to 128 bits and the capacity is reduced
to 128 bits. The formal algorithm is specified in Algorithm 4.

104 SKINNY-AEAD and SKINNY-Hash

2.4.5 Table of Parameters and Security of SKINNY-Hash

For a summary, parameters of SKINNY-Hash are listed in Table 4.

Table 4: Parameters for SKINNY-Hash. The number of blocks of the first preimage is
denoted by L.

Algorithm State size Absorb Squeeze Security Security
Rate Capacity Rate Capacity (collision) (2nd preimage)

SKINNY-tk3-Hash 384 128 256 128 256 128 256− log2(L)
SKINNY-tk2-Hash 256 32 224 128 128 112 224− log2(L)

3 Security Claims
We provide our security claims for the different variants of SKINNY-AEAD and SKINNY-Hash
in Table 5. Basically, for all versions of SKINNY-AEAD, we claim full 128-bit security for
key recovery, confidentiality and integrity (unless the tag size is smaller than 128 bits, in
which case the integrity security claims drop to the tag size) in the nonce-respecting model.
For all versions of SKINNY-Hash, we claim that it is hard to find a collision, preimage or
second-preimage with substantially less than 2c/2 hash evaluations, where c represents the
capacity bitsize (c = 256 for M5 and c = 224 for M6).

One can see that we do claim full 128-bit security for all variants of SKINNY-AEAD
with a tag size of 128 bit for a nonce-respecting user. More precisely, confidentiality is
perfectly guaranteed and the forgery probability is 2−τ , where τ denotes the tag size,
independently of the number of blocks of data in encryption queries made by the adversary.
This is very different than other modes like AES-GCM [MV04] or OCB3 [KR11], which only
ensure birthday-bound security. In comparison, OCB3 only provides security up to the
birthday bound, more precisely up to roughly 2n/2 blocks of data since it relies on XE/XEX
(a construction of a tweakable block cipher from a standard block cipher with security
only up to the birthday bound). To give a numerical example, with 240 blocks ciphered
(about 16 TeraBytes), one gets an advantage of about 2−48 to generate a valid tag for
most operating modes in the nonce-respecting scenario. For the same amount of data, the
advantage remains 2−128 for members M1/M2/M5 of SKINNY-AEAD.

Table 5: Security claims of SKINNY-AEAD and SKINNY-Hash. The bit security of our
designs is expressed in terms of calls to the internal primitive, up to a small logarithmic
factor.

Security (bits)
SKINNY-AEAD (nonce-respecting) M1 M2 M3 M4 M5 M6

Key recovery 128 128 128 128 128 128
Confidentiality for the plaintext2 128 128 128 128 128 128
Integrity for the plaintext/AD/nonce 128 128 64 64 128 64

Security (bits)
SKINNY-Hash M1/M2/M3/M4 M5/M6

Collision 128 112
(2nd)-preimage 128 112

2The confidentiality bit security drops to the tag length if an adversary has the decryption oracle but

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 105

We assume that the total size of the associated data and the total size of the message
in SKINNY-AEAD do not exceed 268 bytes for M1/M2/M3/M4 and 228 bytes for M5/M6.
Moreover, the maximum number of messages that can be handled for a same key is 2nl

for all variants of SKINNY-AEAD (nl = 128 for M1/M3, nl = 96 for M2/M4/M5/M6). This
will ensure that as long as different fixed-length nonces are used, the tweak inputs of all
the tweakable block cipher calls are all unique.

Related-Cipher Attacks. By encoding the length of the tag and nonce into the domain
separation, we obtain a proper separation between the SKINNY-AEAD members that employ
the same instance of the SKINNY tweakable block cipher. We do not claim security
against related-cipher attacks between members that employ the two different instances
SKINNY-128-384 and SKINNY-128-256, e.g., M2 and M5.

Nonce-Misuse Setting. The above security claims are void under reuse of nonces. As
pointed out in [VV17] for the case of Deoxys-I, the scheme is vulnerable to a universal
forgery attack and a CCA decryption attack with complexity of only three queries. Because
we are basically using the same mode, the attacks would apply to SKINNY-AEAD as well.

4 Design Rationale
For a detailed design rationale of the tweakable block ciphers SKINNY-128-256 and
SKINNY-128-384, we refer to the original design paper [BJK+16a, BJK+16b]. We de-
cided not to modify the primitives from their original specification. The rationale for
this is that none of the extensive third-party cryptanalysis, that we discuss in detail
in Section 5, pointed to any weakness of the ciphers nor any bad design choices. Indeed, all
the third-party cryptanalysis confirmed the validity of the original design and its rationale.
We furthermore do not see any change in the specification that would improve the ciphers
to the extent that would justify such a modification. All design choices of SKINNY are
optimized for its goal: Obtaining a cipher well suited for many lightweight applications.

4.1 Rationale for the AEAD scheme
The reason for choosing the ΘCB3 mode for the tweakable block cipher SKINNY-128-384
or SKINNY-128-256 is its provable security providing full security in the nonce-respecting
setting. More precisely, for ΘCB3 using an ideal tweakable block cipher, confidentiality is
perfectly guaranteed and the forgery probability is independent of the number of blocks
of data in encryption/decryption queries made by the adversary. Those strong security
guarantees along with its performance features are the design rationale for our choice.

We state the security bound of ΘCB3 in the nonce-respecting setting:

Lemma 2 of [KR11]. Let
∏

= ΘCB3[Ẽ, τ] where Ẽ is an ideal tweakable block
cipher. Let A be an adversary. Then Advpriv∏ (A) = 0 and Advauth∏ (A) ≤ (2n−τ)/(2n − 1).

We denote by Adv±prp
SKINNY-TK2(A) and Adv±prp

SKINNY-TK3(A) the SPRP-advantage against
SKINNY-128-256 and SKINNY-128-384 respectively. Replacing the ideal tweakable block
cipher with SKINNY, we have the security bounds for our members as shown in Table 6.

On OCB and Tweakable Block Ciphers. The OCB mode was first published in [RBBK01]
(i.e., OCB1). It has later been refined to OCB2 in [Rog04] and finally to OCB3 in [KR11].
That last paper describes the actual ΘCB3 framework we employ in SKINNY-AEAD by using

will not use it to decrypt any authentic ciphertext and tag directly.

106 SKINNY-AEAD and SKINNY-Hash

Table 6: Provable security bounds for our provided AEAD members.

Members Security Bounds

M1, M2
Advpriv∏ (A) ≤ Adv±prp

SKINNY-TK3(A)

Advauth∏ (A) ≤ (2128 − 1)−1 + Adv±prp
SKINNY-TK3(A)

M3, M4
Advpriv∏ (A) ≤ Adv±prp

SKINNY-TK3(A)

Advauth∏ (A) ≤ 264(2128 − 1)−1 + Adv±prp
SKINNY-TK3(A)

M5
Advpriv∏ (A) ≤ Adv±prp

SKINNY-TK2(A)

Advauth∏ (A) ≤ (2128 − 1)−1 + Adv±prp
SKINNY-TK2(A)

M6
Advpriv∏ (A) ≤ Adv±prp

SKINNY-TK2(A)

Advauth∏ (A) ≤ 264(2128 − 1)−1 + Adv±prp
SKINNY-TK2(A)

a dedicated tweakable block cipher. The classical OCB (1–3) mode does not employ a
dedicated tweakable block cipher, but rather a usual block cipher in an XEX-like construction.
Recently, OCB3 employed with the AES was selected as one of the winners of the CAESAR
competition in the category for high-performance applications [KR16]. However, this
scheme only offers birthday-bound security.

More generally, a tweakable block cipher can be described as a family of block ciphers
parameterized by a public parameter, the tweak. The idea of a block cipher that gets a
public parameter for achieving variability goes back to the design of the Hasty Pudding
Cipher [Sch98], a submission to the AES competition. This was later formalized in the
notion of a tweakable block cipher by Liskov, Rivest and Wagner at CRYPTO 2002 [LRW02].
The motivation is that independent block cipher calls are needed at the mode-of-operation
level, as in OCB. Liskov, Rivest and Wagner suggested that the source of variability should
be directly incorporated in the primitive itself instead at the mode-of-operation level. This
is a big difference to the classical OCB mode. There, a block cipher E is employed in a
construction that can be understood as a tweakable block cipher (i.e., the tweakable block
cipher ETK is just defined as E(T1,T2)

K (x) = EK(x⊕ T1)⊕ T2)). In that sense, OCB can be
seen as an instance of the more general TAE mode, the tweakable authenticated encryption
mode defined in [LRW02]. Indeed, Liskov, Rivest and Wagner have already proven a similar
statement as Lemma 2 in [KR11]:

Theorem 3 of [LRW02]. If Ẽ is a secure tweakable block cipher, then Ẽ used in TAE
mode will be unforgeable and pseudorandom.

In other words: The advantage of the adversary only comes from the distinguishing
advantage of the tweakable block cipher and not from the mode.

However, the XEX construction used in OCB and also in ΘCB3 does not lead to an
ideal tweakable block cipher. In fact, it only offers security up to the birthday bound.
The TWEAKEY framework [JNP14] was introduced at ASIACRYPT 2014 as a method to
build tweakable block ciphers from scratch (i.e., without employing an already existing
underlying block cipher in a specific construction) with strong security arguments against

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 107

differential and linear attacks. The intention of the TWEAKEY framework was to obtain
beyond birthday-bound secure tweakable block ciphers and to consider key and tweak as
the similar type of input (called the tweakey) such that the separation into key and tweak
can be done by the user in a flexible way.

It is natural to employ a beyond-birthday secure tweakable block cipher in a mode
following the TAE (resp., ΘCB3) framework in order to exploit its full strength. The third-
round CAESAR candidate Deoxys-I [JNPS16] is an already existing example following
this design principle.

Our Modifications. In comparison to other modes of operation, we have decided to
replace the usual block counter by an LFSR, which can be implemented with just a few
operations. There is indeed no reason to use the increment function x 7→ x+ 1 over the
integers, as the security simply relies on the function having a maximal cycle. The same
argument has been made for instance in the original OCB mode where Gray codes have
been suggested to derive inner tweak values. Here in our AEAD mode, we adopted LFSRs
with maximal periods and which can be easily implemented in both hardware and software
as block counters.

4.2 Rationale for the Hash Function Scheme
We use the well-known sponge construction, originally presented in [BDPVA07], that is
also adopted in the NIST standard SHA-3 [Dwo15] so that SKINNY-Hash can inherit its
elegant features. Here, we give some arguments for our design choices with respect to the
following points:

1. the sponge construction using a cryptographic function as a building block,

2. the sizes of rate and capacity, and

3. our constructions of the 256- and 384-bit functions.

Function-Based Sponge. Although a lot of existing designs following the sponge frame-
work use a cryptographic permutation as an underlying primitive, the designers do not
restrict the underlying primitive to be a permutation and show a lot of analysis for the case
that the underlying primitive is a function (see [BDPA11] for a detailed documentation on
cryptographic sponges and several of its variants). There does not exist any significant
disadvantage to base an entire construction on a function instead of a permutation. For
example, the bounds for the indifferentiability and the collision resistance are almost
identical between those two constructions.

In some case, the function-based sponge constructions is more difficult to attack than
the permutation based sponge constructions, because the adversary does not have access to
the inverse oracle for the function based constructions. This makes a significant difference
of the security against second-preimage attacks. For permutation-based constructions,
second preimages can be found by generating collisions on the inner part between queries
to f and f−1, which allows a generic attack with a cost of 2c/2. For function-based designs
on the other hand, the best strategy is performing a similar second-preimage attack against
Merkle-Damgård constructions [KS05] that requires (2c)/L where L is the number of
blocks included in the first preimage.

Choices of Rate and Capacity. We adopt the most natural choice for SKINNY-tk3-Hash.
The 256-bit capacity ensures 128-bit indifferentiability. Hence, no particular attack can be
performed under 2128 computational cost.

The choice for SKINNY-tk2-Hash is very optimized for lightweight use-cases. The
224-bit capacity in the absorption phase ensures the minimum requirement of 112-bit

108 SKINNY-AEAD and SKINNY-Hash

security. We change the rate and capacity for the squeezing phase to reduce the number of
function calls in the squeezing phase. The security in this situation is analyzed in [NO14].
Let c and c′ be the capacity in the absorption and the squeezing phases, respectively. It
was shown that c′ can be enlarged with preserving O(2c/2) security for indifferentiability
as long as c′ ≥ c/2 + log2 c. We are aiming at 112-bit security, hence the suitable size for
c′ is c′ ≥ 224/2 + log2 224 ≈ 119.8. Because we cannot produce 256-bit hash digest in a
single block, we set c′ = 128 so that the 256-bit hash digest can be produced with two
blocks.

The results in [NO14] are for permutation-based schemes, however we got confirmation
from the authors that almost the same bound can be obtained for the function-based
schemes. Strictly speaking, the bound is slightly better for the function-based schemes
because the adversary cannot access the inverse oracle.

Rationale of F256 and F384. The security argument of the sponge construction assumes
the usage of a random permutation, resp., function. To provide a secure instance of the
sponge, we are going to use a function indifferentiable from random. The function F256 is
indifferentiable from a 256-bit random function up to O(2128) queries. Very intuitively, the
only way to differentiate F256 from an ideal object is to find the case that two simulators
of Ẽtk2 in the ideal world, one is for the plaintext 0 and the other is for the plaintext 1,
return the same output value under the same tweakey input. This occurs with probability
2−128.

The same intuitive argument applies to F384. However, the bound is worse than the
one for F256 by a factor of 3 because the adversary now has three ways to indifferentiate
the real and ideal worlds: collision of the simulators output between the first and the
second simulators, between the first and third simulators, and between the second and the
third simulators.

5 Security Analysis of the SKINNY TBC
We claim security of the SKINNY family in the related-tweakey model. We now provide an
analysis of its security and then mention the best cryptanalytic results published to date.

5.1 Differential/Linear Cryptanalysis
In order to argue for the resistance of SKINNY against differential and linear attacks,
in [BJK+16a] we computed lower bounds on the minimum number of active Sboxes, both
in the single-key and related-tweakey models. We recall that, in a differential (resp. linear)
characteristic, an Sbox is called active if it contains a non-zero input difference (resp. input
mask). In contrast to the single-key model, an attacker is allowed to introduce differences
(resp. masks) within the tweakey state in the related-tweakey model. We considered the
three cases of choosing input differences in TK1 only, both TK1 and TK2, and in all of
the tweakey states TK1, TK2 and TK3, respectively. Table 7 presents lower bounds on
the number of active Sboxes for up to 30 rounds. For computing the bounds, a Mixed-
Integer Linear Programming (MILP) model following the approach in [MWGP11,SHS+13]
was used.

For lower bounding the number of linear active Sboxes we used the same approach
by considering the inverse of the transposed linear transformation, i.e., M>. We only
considered the single-key model as there is no cancellation of active Sboxes in linear
characteristics, see [KLW17]. Note that those bounds are for single characteristic only and
do not quantify any potential clustering into differentials (resp. linear hulls).

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 109

Table 7: The bounds on the number of active Sboxes in SKINNY from [BJK+16a]. Note
that the bounds on the number of linear active Sboxes in the single-key model are also valid
in the related-tweakey model. In case the MILP optimization was too long, upper bounds
are given between parentheses. The bounds indicated by ? were obtained from [ABI+18]
in which the authors used Matsui’s algorithm for obtaining the minimum number of active
Sboxes. The bounds indicated by † were obtained from [NSS20] by using MILP with more
informative constraints.
Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66
TK1 0 0 1 2 3 6 10 13 16 23 32 38 41 45 49
TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35
TK3 0 0 0 0 0 0 1 2 3 6 10 13 16 19 24

SK Lin 1 2 5 8 13 19 25 32 38 43 48 52 55 58 64

Model 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SK 75 82 88 92 96 102 108 112? 116? 124? 128? 132? 136? 142? 148?
TK1 54 59 62 66 70 75 79 83 85 88 95 102 (108) (112) (120)
TK2 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96
TK3 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85

SK Lin 70 76 80 85 90 96 102 107 110† 115† 121† 127† 130† 135† 141†

5.2 Other Attacks
In the original design document [BJK+16a,BJK+16b], we also analyzed the security of
SKINNY with regard to meet-in-the-middle attacks, impossible differential attacks, integral
attacks, slide attacks, invariant subspace cryptanalysis, and algebraic attacks. We provide
a brief summary of the results and refer the reader to the original documents for details.

5.2.1 Meet-in-the-Middle Attacks

We used the property that full diffusion is achieved after six rounds (in both directions) to
estimate that meet-in-the middle attacks might work up to at most 22 rounds.

5.2.2 Impossible Differential Attacks

We constructed an 11-round truncated impossible differential which can be used for a
16-round key-recovery attack on SKINNY members with a block size of 128 bit with data,
time, and memory complexities of 288.5 in the single-key model.

5.2.3 Integral Attacks

We constructed a 10-round integral distinguisher and used it for a 14-round key-recovery
attack.

5.2.4 Slide Attacks

The distinction between the rounds is ensured by the round constants and thus the
straightforward slide attacks cannot be applied. However, due to the small state of the
LFSR, round constants can collide in different rounds.

We took into account all possible sliding numbers of rounds and deduced what is the
difference in the constants that is obtained every time. As these constant differences might
impact the best differential characteristic, we experimentally checked the lower bounds on
the number of active Sboxes for all these constant differences by using MILP.

110 SKINNY-AEAD and SKINNY-Hash

In the single-key setting, by allowing any starting round for each value of the slid pair,
the lower bounds on the number of active Sboxes reach 36 after 11 rounds, and 41 after 12
rounds. We thus expect that slide attacks do not threaten the security of SKINNY.

5.2.5 Invariant Subspace Attacks

The non-trivial key schedule already provides a good protection against such attacks for a
larger number of rounds. The main concern that remains are large-dimensional subspaces
that propagate invariant through the Sbox. We checked that no such invariant subspaces
exist. Moreover, we computed all affine subspaces of dimension larger than two that get
mapped to (different) affine subspaces and checked if those can be chained to what could
be coined a subspace characteristic. It turns out that those subspaces can be chained only
for a very small number of rounds. To conclude, the non-trivial key schedule and the use
of round-constants seem to sufficiently protect SKINNY against those attacks.

5.2.6 Algebraic Attacks

The Sbox S8 of SKINNY members with a block size of 128 bit has an algebraic degree of 6
and thus, algebraic attacks do not seem to be a threat.

5.3 Third-Party Cryptanalysis
Since the publication of the cipher in 2016, there has been lots of cryptanalysis by external
researchers.3 To the best of our knowledge, we provide a complete list of formally published
papers (in the English language) related to mathematical cryptanalysis of SKINNY, as of
February 2020. We found 30 such papers in total.

14 of those, namely [ABC+17,ZR18,EKKT18,AK18,SGL+17,HV18,BCLR17,ST17,
PN17,ZZ18,ZW16,YQC17,ADG+19,DLU19], only consider the variants of SKINNY with
a block size of 64 bit or SKINNY-128-128 and we do not mention their results here. We
briefly mention the results of the remaining 16 papers in the following.

In [LGS17], the authors conduct cryptanalysis on various variants of SKINNY in the
related-tweakey model. For SKINNY-128-256 (resp. SKINNY-128-384), they obtain a 23-
round (resp. 27-round) related-tweakey impossible differential attack with time complexity
2251.47 (resp. 2378), data of 2124.47 (resp. 2126.03) chosen plaintexts and 2248 (resp. 2368)
memory. The impossible differential attack uses a truncated related-tweakey impossible
differential over 12 rounds (resp. 16 rounds for the impossible differential attack on
SKINNY-128-384). Those complexities were improved under the assumption that the
public tweak is loaded in TK-1. For SKINNY-128-384 (resp. SKINNY-128-256), they
obtain a 27-round (resp. 22-round) related-tweakey rectangle attack with time complexity
2331 (resp. 2251.03), data of 2112 (resp. 2118.92) chosen plaintexts and 2144 (resp. 2120)
memory. The rectangle attacks use actual differential trails with their exact probability.
The results indicate that the actual probability of the best differential trails gets lower
than estimated by the number of active Sboxes as the number of rounds increases.

In [SMB18], the authors analyze different SKINNY variants with regard to zero-correlation
and related-tweakey impossible differential attacks. For SKINNY-128-256, they obtain
a related-tweakey impossible differential attack on 23 rounds with time complexity of
2243.41, data of 2124.41 chosen plaintexts and 2155.41 memory. They utilize a 15-round
related-tweakey impossible differential.

In [TAY17], the authors apply impossible differential cryptanalysis on SKINNY in the
single-key model. They utilize the 11-round impossible differential described in the design

3To encourage third-party analysis, we organized three cryptanalysis competitions for SKINNY
during the last years. Details can be found at https://sites.google.com/site/skinnycipher/
cryptanalysis-competition.

https://sites.google.com/site/skinnycipher/cryptanalysis-competition
https://sites.google.com/site/skinnycipher/cryptanalysis-competition

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 111

document. They obtain a key-recovery attack of 20 rounds SKINNY-128-256 with time
complexity 2245.72, data of 292.1 chosen plaintexts and memory 2147.1. They further attack
22 rounds of SKINNY-128-384 with time complexity 2373.48, data 292.22 and memory 2147.22.

In [SSD+18], the authors used constrained programming for applying the Demirci-Selcuk
meet-in-the-middle attack. The authors find an 10.5-round distinguisher and a 22-round
key-recovery attack on SKINNY-128-384 with time complexity 2382.46, data complexity of
296 chosen plaintexts and memory complexity of 2330.99. In [CSSH19], the authors derived
a 22-round Demirci-Selcuk meet-in-the-middle key-recovery attack with a reduced time
complexity of 2366.28 by using a key-bridging technique.

In [CHP+18], the authors introduce the Boomerang Connectivity Table (BCT) that
quantify the boomerang switching effect in Sboxes wit regard to the boomerang attack.
They apply their method to SKINNY and show that the probabilities of the attacks presented
in [LGS17] are not precise. Later in [SQH19], the authors re-evaluated the probabilities of
the boomerang dstinguishers from [LGS17] using a generalized framework for the BCT.
In [WP19], a 4-round boomerang distinguisher on SKINNY with probability 1 is presented.

In [AST+17], the authors proposed a method to model the actual DDT of large Sboxes
in order to compute exact probabilities of differential trails. Applied to SKINNY members
with a block size of 128 bit, the authors showed that the probability of any 14-round
(single-key) differential trail is upper bounded by 2−128, while the designers proved a lower
bound of 61 active Sboxes (ensuring only a probability upper bounded by 2−122).

In [LTW18], the authors present algorithms for finding subspace trails. They find
5-round subspace trails for all SKINNY members.

In [ABI+18], the authors conduct an exhaustive search over all possible word per-
mutations to be used as a replacement for the ShiftRows permutation and derived the
minimum number of active Sboxes with regard to differential cryptanalysis using Matsui’s
branch-and-bound algorithm. Their results show that the ShiftRows permutation used
in SKINNY is actually among the best permutations. By using Matsui’s algorithm, they
computed the bounds for up to 40 rounds in the single-key setting, while the designers
only gave bounds for up to 22 rounds. Table 7 is updated with their improved bounds
starting from 23 rounds.

In [BCC19], the authors present a new framework for studying mixture-differential
distinguishers and the multiple-of-8 property, two kind of distinguishers that were recently
introduced to distinguish round-reduced versions of the AES. The authors analyze AES-
like SPN ciphers with regard to those properties and show that similar results as for the
AES can be obtained even for AES-like ciphers for which the MixColumns operation has
non-optimal branch number. Applied to SKINNY, the authors show that 5-round SKINNY
has the multiple-of-2h property, where h ∈ {1, 2, . . . , 11, 13}.

In [BGLS19], the authors present a tool, called Peigen, for evaluating cryptographic
properties of Sboxes. They analyzed the Sbox of SKINNY-128 and found out that it has 601
linear structures and that it is (7, 2)-linear and (3, 7)-linear, meaning that 22 components
are affine on all cosets of a certain 7-dimensional linear subspace, resp., 27 components are
affine on all cosets of a certain 3-dimensional linear subspace.

In [KB19], the authors experimentally evaluated the diffusion properties and the indices
of strong nonlinearity of the round functions of some lightweight block ciphers, including
SKINNY.

In [ZCGP20], the authors introduce a new method for checking the resistance of an SPN
cipher against integral distinguishers, truncated differentials and impossible differential
distinguishers in the single-key setting by considering an algebraic representation of the
round function and analyzing its structure. They could find several 10-round integral
distinguishers, the 11-round impossible differential distinguishers, and a 7-round truncated
differential distinguisher. They further analyze SKINNY-128-128 explicitly and provide a
practical 11-round attack in the single-key model.

112 SKINNY-AEAD and SKINNY-Hash

In [ZDM+20], the authors provide a new key-recovery model of related-key rectangle
attacks on block ciphers with linear key schedules. Applying their technique to SKINNY,
the authors obtain a 28-round related-tweakey rectangle attack on SKINNY-128-384 with
time complexity 2315.25, data of 2122 chosen plaintexts and memory 2122.32.

As a summary, Table 8 shows the maximum number of rounds that can be attacked so
far. Both of the underlying primitives SKINNY-128-256 and SKINNY-128-384 still offer a
security margin of at least 50%.

Table 8: Number of rounds of SKINNY that can be attacked by the best key-recovery
attacks (in the related-tweakey model) known so far.

SKINNY-128-256 SKINNY-128-384

23/48 28/56
47.9% 50.0%

Remark on security margin. We would like to emphasise that Table 8 reflects the security
margin of the underlying tweakable block cipher SKINNY-128-256 and SKINNY-128-384.
In the context of SKINNY-AEAD and SKINNY-Hash, most of the attack model does not hold
(for example due to data limit or limited control over the input to the TBC) and the attacks
are not applicable to SKINNY-AEAD or SKINNY-Hash that uses the same reduced-round
SKINNY. For example, having a theoretical attack on 28-round SKINNY-128-384 does not
imply an attack on SKINNY-AEAD or SKINNY-Hash that uses 28-round SKINNY-128-384.

6 Hardware Implementations
We also provide performance results and area footprints of SKINNY-AEAD and SKINNY-Hash
when implemented on a hardware platform. To this end, in addition to the tk3 and
tk2 constructions of SKINNY-Hash, we realized two sets of implementations for each
SKINNY-AEAD variant: one as encryption-only and the other one supporting both encryption
and decryption functionalities. We further considered two different instances of the
underlying SKINNY module: a round-based implementation performing every cipher round
in a clock cycle, and a byte-serial implementation mainly processing a single byte per
clock cycle. The corresponding results are depicted in Table 9 and Table 11, respectively,
where the area footprint (in GE), maximum clock frequency, and maximum throughput
for two standard cell libraries IBM 130 and UMC 90 are reported. In order to achieve the
maximum throughput, we simulated the SKINNY-AEAD implementations with 100 blocks
of 16-byte associated data A and 100 blocks of 16-byte message M , thereby obtaining
the required number of clock cycles. Note that the number of clock cycles is independent
of the value of the given associated data and the message as our implementations are
constant-time preventing any leakage through the timing side channel. For SKINNY-Hash
we obtained the number of required clock cycles by simulating the implementation with a
message of 100 blocks of 16-byte (for SKINNY-tk3-Hash) and a message of 100 blocks of
4-byte (for SKINNY-tk2-Hash).

We further realized the side-channel protected variant of all aforementioned implemen-
tations. We applied a masking countermeasure with 2 shares and made use of the concept
explained in [RBN+15], i.e., how to achieve dth order security using d + 1 shares. It is
noteworthy that due to the special construction of the SKINNY Sbox, its SCA-protected
version with 2 shares does not require any fresh randomness. Similar observations have
been reported in [RBN+15] and [DDE+19], where particular functions (mainly made by a
combination of AND-XOR) can be uniformly shared without any fresh masks. Therefore,
in all variants of SKINNY-AEAD, it is sufficient to present the entire inputs and output

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 113

(including the associated data, message, key, tag and output) by two uniformly-masked
additive shares. It also holds for SKINNY-Hash, while SKINNY-tk3-Hash requires an ad-
ditional 384-bit of initial mask used to initialize the state S384 in a shared way with 2
shares. Trivially, SKINNY-tk3-Hash also needs such an initial mask (of 256 bits). The
performance results and the area footprint of all implementations are given in Table 10
and Table 12. The particular implementations can be found in the supplementary material
and at https://sites.google.com/site/skinnycipher/downloads.

Table 9: Unprotected, round-based ASIC implementations of our SKINNY-AEAD and
SKINNY-Hash members using IBM 130 and UMC 90 standard cell libraries.

IBM 130 UMC 90
Area Freq. Throughput Area Freq. Throughput
GE MHz MBit/s GE MHz MBit/s

SKINNY-AEAD-M1-Enc 7627 184 406 7808 269 594
SKINNY-AEAD-M2-Enc 7595 181 400 7808 287 633
SKINNY-AEAD-M3-Enc 7100 189 418 7291 267 589
SKINNY-AEAD-M4-Enc 7069 164 363 7266 233 514
SKINNY-AEAD-M5-Enc 6512 171 428 6636 298 743
SKINNY-AEAD-M6-Enc 5953 208 519 6099 288 720

SKINNY-AEAD-M1-Enc-Dec 10370 158 349 10239 227 501
SKINNY-AEAD-M2-Enc-Dec 10318 166 367 10210 240 530
SKINNY-AEAD-M3-Enc-Dec 9817 167 368 9671 244 539
SKINNY-AEAD-M4-Enc-Dec 9772 164 362 9564 202 447
SKINNY-AEAD-M5-Enc-Dec 8844 166 416 8894 268 670
SKINNY-AEAD-M6-Enc-Dec 8290 166 414 8332 222 555

SKINNY-tk3-Hash 8622 212 154 8894 285 207
SKINNY-tk2-Hash 5730 211 66 6019 304 95

Table 10: SCA-protected (2 shares), round-based ASIC implementations of SKINNY-AEAD
and SKINNY-Hash members using IBM 130 and UMC 90 standard cell libraries.

IBM 130 UMC 90
Area Freq. Throughput Area Freq. Throughput
GE MHz MBit/s GE MHz MBit/s

SKINNY-AEAD-M1-Enc 13812 427 192 14481 885 398
SKINNY-AEAD-M2-Enc 13787 427 192 14445 885 398
SKINNY-AEAD-M3-Enc 12716 427 192 13422 885 398
SKINNY-AEAD-M4-Enc 12692 427 192 13383 885 398
SKINNY-AEAD-M5-Enc 12653 435 228 13263 885 464
SKINNY-AEAD-M6-Enc 11555 422 221 12203 885 464

SKINNY-AEAD-M1-Enc-Dec 18817 446 201 20534 909 409
SKINNY-AEAD-M2-Enc-Dec 18768 444 200 20460 917 413
SKINNY-AEAD-M3-Enc-Dec 17723 446 201 19474 909 409
SKINNY-AEAD-M4-Enc-Dec 17675 444 200 19400 917 413
SKINNY-AEAD-M5-Enc-Dec 17285 435 228 18888 820 430
SKINNY-AEAD-M6-Enc-Dec 16180 448 235 17828 820 430

SKINNY-tk3-Hash 18388 429 64 19178 787 118
SKINNY-tk2-Hash 12404 405 26 13041 794 52

7 New Variants
As shown in Section 5.3, the SKINNY tweakable block cipher went through a lot of third-party
analysis efforts already and still has a very large security margin at time of writing. The
best known attacks against SKINNY-128-256 cover only 23 rounds [LGS17,SMB18] (out
of 48 rounds), while the best attack against SKINNY-128-384 covers 28 rounds [ZDM+20]

https://sites.google.com/site/skinnycipher/downloads

114 SKINNY-AEAD and SKINNY-Hash

Table 11: Unprotected, byte-serial ASIC implementations of SKINNY-AEAD/ SKINNY-Hash.
IBM 130 UMC 90

Area Freq. Throughput Area Freq. Throughput
GE MHz MBit/s GE MHz MBit/s

SKINNY-AEAD-M1-Enc 7270 532 57 7253 1124 121
SKINNY-AEAD-M2-Enc 7238 532 57 7237 1124 121
SKINNY-AEAD-M3-Enc 6723 418 45 6709 654 71
SKINNY-AEAD-M4-Enc 6690 418 45 6707 654 71
SKINNY-AEAD-M5-Enc 6157 439 55 6199 1429 180
SKINNY-AEAD-M6-Enc 5601 478 60 5669 1429 180

SKINNY-AEAD-M1-Enc-Dec 9554 291 31 9038 327 35
SKINNY-AEAD-M2-Enc-Dec 9485 228 25 8939 340 37
SKINNY-AEAD-M3-Enc-Dec 9002 284 31 8516 392 42
SKINNY-AEAD-M4-Enc-Dec 8947 258 28 8428 524 57
SKINNY-AEAD-M5-Enc-Dec 8002 264 33 7702 412 52
SKINNY-AEAD-M6-Enc-Dec 7456 267 34 7179 422 53

SKINNY-tk3-Hash 8406 485 17 8405 741 26
SKINNY-tk2-Hash 5554 402 6 5484 538 8

Table 12: SCA-protected (2 shares), byte-serial ASIC implementations of SKINNY-AEAD
and SKINNY-Hash members.

IBM 130 UMC 90
Area Freq. Throughput Area Freq. Throughput
GE MHz MBit/s GE MHz MBit/s

SKINNY-AEAD-M1-Enc 13289 287 8 13939 424 11
SKINNY-AEAD-M2-Enc 13265 287 8 13913 424 11
SKINNY-AEAD-M3-Enc 12195 287 8 12881 424 11
SKINNY-AEAD-M4-Enc 12171 287 8 12852 424 11
SKINNY-AEAD-M5-Enc 12143 274 9 12756 448 14
SKINNY-AEAD-M6-Enc 11048 274 9 11694 448 14

SKINNY-AEAD-M1-Enc-Dec 17115 342 9 18452 478 13
SKINNY-AEAD-M2-Enc-Dec 17065 342 9 18369 478 13
SKINNY-AEAD-M3-Enc-Dec 16019 342 9 17394 478 13
SKINNY-AEAD-M4-Enc-Dec 15968 342 9 17309 478 13
SKINNY-AEAD-M5-Enc-Dec 15528 248 8 16719 610 19
SKINNY-AEAD-M6-Enc-Dec 14432 248 8 15660 610 19

SKINNY-tk3-Hash 17698 265 2 18793 505 4
SKINNY-tk2-Hash 11827 292 1 12514 348 1

(out of 56 rounds). All these attacks have very high complexity, much more than 2200

in computational complexity and sometimes up to almost 2384, and only work in the
related-tweakey model where differences need to also be inserted in the tweak and/or
key input. This means that for both SKINNY-128-256 and SKINNY-128-384 versions, the
security margin is at least of 50% and actually much more if one considers only single-key
attacks and/or attacks with a complexity lower than 2128 (in the single-key model, the
best known attacks against SKINNY-128-256 cover only 20 rounds [TAY17], while the best
attack against SKINNY-128-384 covers 22 rounds [TAY17, SSD+18,CSSH19], again all
these attacks having a very high computational complexity).

Most block ciphers have a security margin usually at very best around 20/30%. This indi-
cates that a 50% security margin may be overly large. For this reason, we naturally propose
new variants for the versions of SKINNY-AEAD and SKINNY-Hash based on SKINNY-128-384:
SKINNY-AEAD-M1+, SKINNY-AEAD-M2+, SKINNY-AEAD-M3+, SKINNY-AEAD-M4+ as well as
SKINNY-tk3-Hash+. These members share exactly the same specifications as SKINNY-AEAD-M1,
SKINNY-AEAD-M2, SKINNY-AEAD-M3, SKINNY-AEAD-M4 and SKINNY-tk3-Hash, except that
the number of SKINNY-128-384 rounds is reduced from 56 to 40 to give a very comfortable

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 115

security margin of around 30% (in the worst-case related-tweakey scenario, without even
excluding attacks with complexity significantly higher than 2128). The security claims of
these new members are exactly the same as the security claims of the old members they
are based on, but they are expected to be around 1.4x faster than their counterparts for
the same area cost.

Acknowledgements
The work described in this paper has been supported in part by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972.

References
[ABC+17] Ralph Ankele, Subhadeep Banik, Avik Chakraborti, Eik List, Florian Mendel,

Siang Meng Sim, and Gaoli Wang. Related-key impossible-differential at-
tack on reduced-round Skinny. In Dieter Gollmann, Atsuko Miyaji, and
Hiroaki Kikuchi, editors, Applied Cryptography and Network Security - 15th
International Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017,
Proceedings, volume 10355 of LNCS, pages 208–228. Springer, 2017.

[ABI+18] Gianira N. Alfarano, Christof Beierle, Takanori Isobe, Stefan Kölbl, and
Gregor Leander. ShiftRows alternatives for AES-like ciphers and optimal
cell permutations for Midori and Skinny. IACR Trans. Symmetric Cryptol.,
2018(2):20–47, 2018.

[ADG+19] Ralph Ankele, Christoph Dobraunig, Jian Guo, Eran Lambooij, Gregor
Leander, and Yosuke Todo. Zero-correlation attacks on tweakable block
ciphers with linear tweakey expansion. IACR Trans. Symmetric Cryptol.,
2019(1):192–235, 2019.

[AK18] Ralph Ankele and Stefan Kölbl. Mind the gap - A closer look at the security of
block ciphers against differential cryptanalysis. In Cid and Jacobson Jr. [CJ19],
pages 163–190.

[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M.
Youssef. MILP modeling for (large) s-boxes to optimize probability of dif-
ferential characteristics. IACR Trans. Symmetric Cryptol., 2017(4):99–129,
2017.

[BCC19] Christina Boura, Anne Canteaut, and Daniel Coggia. A general proof
framework for recent AES distinguishers. IACR Trans. Symmetric Cryptol.,
2019(1):170–191, 2019.

[BCLR17] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella. Proving
resistance against invariant attacks: How to choose the round constants.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, volume 10402
of LNCS, pages 647–678. Springer, 2017.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryp-
tographic sponge functions. http://sponge.noekeon.org/, 2011.

116 SKINNY-AEAD and SKINNY-Hash

[BDPVA07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT hash workshop, 2007.

[BGLS19] Zhenzhen Bao, Jian Guo, San Ling, and Yu Sasaki. PEIGEN – a platform
for evaluation, implementation, and generation of S-boxes. IACR Trans.
Symmetric Cryptol., 2019(1):330–394, 2019.

[BJK+16a] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of
LNCS, pages 123–153. Springer, 2016.

[BJK+16b] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. IACR
Cryptology ePrint Archive, 2016:660, 2016.

[BS90] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems.
In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology
- CRYPTO ’90, 10th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 11-15, 1990, Proceedings, volume 537 of
LNCS, pages 2–21. Springer, 1990.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
connectivity table: A new cryptanalysis tool. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 -
37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II, volume 10821 of LNCS, pages 683–714. Springer, 2018.

[CJ19] Carlos Cid and Michael J. Jacobson Jr., editors. Selected Areas in Cryptography
- SAC 2018 - 25th International Conference, Calgary, AB, Canada, August
15-17, 2018, Revised Selected Papers, volume 11349 of LNCS. Springer, 2019.

[CSSH19] Qiu Chen, Danping Shi, Siwei Sun, and Lei Hu. Automatic demirci-selçuk
meet-in-the-middle attack on SKINNY with key-bridging. In Jianying Zhou,
Xiapu Luo, Qingni Shen, and Zhen Xu, editors, Information and Communi-
cations Security - 21st International Conference, ICICS 2019, Beijing, China,
December 15-17, 2019, Revised Selected Papers, volume 11999 of LNCS, pages
233–247. Springer, 2019.

[DDE+19] Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Florian
Mendel, and Robert Primas. Protecting against statistical ineffective fault
attacks. IACR Cryptology ePrint Archive, 2019:536, 2019.

[DLU19] Patrick Derbez, Virginie Lallemand, and Aleksei Udovenko. Cryptanalysis of
SKINNY in the framework of the SKINNY 2018-2019 cryptanalysis competi-
tion. In Kenneth G. Paterson and Douglas Stebila, editors, Selected Areas
in Cryptography - SAC 2019 - 26th International Conference, Waterloo, ON,
Canada, August 12-16, 2019, Revised Selected Papers, volume 11959 of LNCS,
pages 124–145. Springer, 2019.

[Dwo15] Morris J Dworkin. SHA-3 standard: Permutation-based hash and extendable-
output functions. Federal Inf. Process. Stds.(NIST FIPS)-202, 2015.

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 117

[EKKT18] Zahra Eskandari, Andreas Brasen Kidmose, Stefan Kölbl, and Tyge Tiessen.
Finding integral distinguishers with ease. In Cid and Jacobson Jr. [CJ19],
pages 115–138.

[HV18] Mathias Hall-Andersen and Philip S. Vejre. Generating graphs packed with
paths. IACR Trans. Symmetric Cryptol., 2018(3):265–289, 2018.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, volume 8874 of LNCS, pages 274–288. Springer, 2014.

[JNPS16] Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Deoxys
v1.41, 2016. Submission to CAESAR, available via https://competitions.
cr.yp.to/round3/deoxysv141.pdf.

[KB19] I. Khairullin and V. Bobrov. On cryptographic properties of some lightweight
algorithms and its application to the construction of s-boxes. In 2019 IEEE
Conference of Russian Young Researchers in Electrical and Electronic Engi-
neering (EIConRus), pages 1807–1810, 2019.

[KLW17] Thorsten Kranz, Gregor Leander, and Friedrich Wiemer. Linear cryptanalysis:
Key schedules and tweakable block ciphers. IACR Trans. Symmetric Cryptol.,
2017(1):474–505, 2017.

[KPPY14] Khoongming Khoo, Thomas Peyrin, Axel York Poschmann, and Huihui Yap.
FOAM: searching for hardware-optimal SPN structures and components with a
fair comparison. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems - CHES 2014 - 16th International Workshop,
Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731 of
LNCS, pages 433–450. Springer, 2014.

[KR11] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Antoine Joux, editor, Fast Software Encryption - 18th
International Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011,
Revised Selected Papers, volume 6733 of Lecture Notes in Computer Science,
pages 306–327. Springer, 2011.

[KR16] Ted Krovetz and Phillip Rogaway. OCB (v1.1), 2016. Submission to CAESAR,
available via https://competitions.cr.yp.to/round3/ocbv11.pdf.

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for
much less than 2n work. In Ronald Cramer, editor, Advances in Cryptology -
EUROCRYPT 2005, 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26,
2005, Proceedings, volume 3494 of LNCS, pages 474–490. Springer, 2005.

[LGS17] Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of SKINNY
under related-tweakey settings (long paper). IACR Trans. Symmetric Cryptol.,
2017(3):37–72, 2017.

[LRW02] Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block
ciphers. In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002,
22nd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 2002, Proceedings, volume 2442 of LNCS, pages 31–46.
Springer, 2002.

https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf

118 SKINNY-AEAD and SKINNY-Hash

[LTW18] Gregor Leander, Cihangir Tezcan, and Friedrich Wiemer. Searching for
subspace trails and truncated differentials. IACR Trans. Symmetric Cryptol.,
2018(1):74–100, 2018.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth,
editor, Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory
and Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27,
1993, Proceedings, volume 765 of LNCS, pages 386–397. Springer, 1993.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES.
In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT
2011 - 30th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of LNCS, pages 69–88. Springer, 2011.

[MV04] David McGrew and John Viega. The Galois/Counter mode of opera-
tion (GCM). Submission to NIST. http://csrc. nist. gov/CryptoToolk
it/modes/proposedmodes/gcm/gcm-spec. pdf, 2004.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In ChuankunWu,
Moti Yung, and Dongdai Lin, editors, Information Security and Cryptology -
7th International Conference, Inscrypt 2011, Beijing, China, November 30
- December 3, 2011. Revised Selected Papers, volume 7537 of LNCS, pages
57–76. Springer, 2011.

[Nat18] National Institute of Standards and Technology. Announcing request for
nominations for lightweight cryptographic algorithms. Federal Register,
83(166):43656–43657, 2018. https://www.govinfo.gov/content/pkg/FR-2018-
08-27/pdf/2018-18433.pdf.

[NO14] Yusuke Naito and Kazuo Ohta. Improved indifferentiable security analysis
of PHOTON. In Michel Abdalla and Roberto De Prisco, editors, Security
and Cryptography for Networks - 9th International Conference, SCN 2014,
Amalfi, Italy, September 3-5, 2014. Proceedings, volume 8642 of LNCS, pages
340–357. Springer, 2014.

[NSS20] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Lightweight Authenticated
Encryption Mode Suitable for Threshold Implementation. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020,
39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Proceedings, LNCS, Springer, To appear.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware
implementation of nonlinear functions in the presence of glitches. J. Cryptology,
24(2):292–321, 2011.

[PN17] Raluca Posteuca and Gabriel Negara. New related-key attacks and properties
of SKINNY-64-128 cipher. Proceedings of the Romanian Academy, Series A,
18, Special Issue 2017:333–350, 2017.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-
cipher mode of operation for efficient authenticated encryption. In Michael K.
Reiter and Pierangela Samarati, editors, CCS 2001, Proceedings of the 8th
ACM Conference on Computer and Communications Security, Philadelphia,
Pennsylvania, USA, November 6-8, 2001., pages 196–205. ACM, 2001.

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 119

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, volume 9215 of LNCS, pages 764–783. Springer, 2015.

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and re-
finements to modes OCB and PMAC. In Pil Joong Lee, editor, Advances
in Cryptology - ASIACRYPT 2004, 10th International Conference on the
Theory and Application of Cryptology and Information Security, Jeju Island,
Korea, December 5-9, 2004, Proceedings, volume 3329 of LNCS, pages 16–31.
Springer, 2004.

[Sch98] Rick Schroeppel. The Hasty Pudding Cipher. NIST AES proposal, 1998.

[SGL+17] Siwei Sun, David Gerault, Pascal Lafourcade, Qianqian Yang, Yosuke Todo,
Kexin Qiao, and Lei Hu. Analysis of AES, SKINNY, and others with constraint
programming. IACR Trans. Symmetric Cryptol., 2017(1):281–306, 2017.

[SHS+13] Siwei Sun, Lei Hu, Ling Song, Yonghong Xie, and Peng Wang. Automatic
security evaluation of block ciphers with s-bp structures against related-key
differential attacks. In Dongdai Lin, Shouhuai Xu, and Moti Yung, editors,
Information Security and Cryptology - 9th International Conference, Inscrypt
2013, Guangzhou, China, November 27-30, 2013, Revised Selected Papers,
volume 8567 of LNCS, pages 39–51. Springer, 2013.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In
Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th Interna-
tional Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings,
volume 6917 of LNCS, pages 342–357. Springer, 2011.

[SMB18] Sadegh Sadeghi, Tahereh Mohammadi, and Nasour Bagheri. Cryptanalysis
of reduced round SKINNY block cipher. IACR Trans. Symmetric Cryptol.,
2018(3):124–162, Sep. 2018.

[SQH19] Ling Song, Xianrui Qin, and Lei Hu. Boomerang connectivity table revis-
ited. application to SKINNY and AES. IACR Trans. Symmetric Cryptol.,
2019(1):118–141, 2019.

[SSD+18] Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and Lei Hu.
Programming the demirci-selçuk meet-in-the-middle attack with constraints.
In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology
- ASIACRYPT 2018 - 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia,
December 2-6, 2018, Proceedings, Part II, volume 11273 of LNCS, pages 3–34.
Springer, 2018.

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search tool from
design and cryptanalysis aspects - revealing structural properties of several
ciphers. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part III, volume 10212 of LNCS, pages
185–215, 2017.

120 SKINNY-AEAD and SKINNY-Hash

[TAY17] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. Impossible
differential cryptanalysis of reduced-round SKINNY. In Marc Joye and
Abderrahmane Nitaj, editors, Progress in Cryptology - AFRICACRYPT 2017
- 9th International Conference on Cryptology in Africa, Dakar, Senegal, May
24-26, 2017, Proceedings, volume 10239 of LNCS, pages 117–134, 2017.

[VV17] Serge Vaudenay and Damian Vizár. Under pressure: Security of caesar candi-
dates beyond their guarantees. IACR Cryptology ePrint Archive, 2017:1147,
2017.

[WP19] Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds.
application to AES variants and Deoxys. IACR Trans. Symmetric Cryptol.,
2019(1):142–169, 2019.

[YQC17] Dong Yang, Wen-Feng Qi, and Hua-Jin Chen. Impossible differential attacks
on the SKINNY family of block ciphers. IET Information Security, 11(6):377–
385, 2017.

[ZCGP20] Wenying Zhang, Meichun Cao, Jian Guo, and Enes Pasalic. Improved security
evaluation of spn block ciphers and its applications in the single-key attack
on SKINNY. IACR Trans. Symmetric Cryptol., 2019(4):171–191, 2020.

[ZDM+20] Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang. Gener-
alized related-key rectangle attacks on block ciphers with linear key schedule:
applications to SKINNY and GIFT. Designs, Codes and Cryptography, pages
1–24, 2020.

[ZR18] Wenying Zhang and Vincent Rijmen. Division cryptanalysis of block ciphers
with a binary diffusion layer. IET Information Security, August 2018.

[ZW16] Yafei Zheng and Wenling Wu. Biclique attack of block cipher SKINNY. In
Kefei Chen, Dongdai Lin, and Moti Yung, editors, Information Security and
Cryptology - 12th International Conference, Inscrypt 2016, Beijing, China,
November 4-6, 2016, Revised Selected Papers, volume 10143 of LNCS, pages
3–17. Springer, 2016.

[ZZ18] Pei Zhang and Wenying Zhang. Differential cryptanalysis on block ci-
pher skinny with MILP program. Security and Communication Networks,
2018:3780407:1–3780407:11, 2018.

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 121

A The 8-bit Sbox for SKINNY

/* SKINNY Sbox */
uint8_t S8 [256] = {

0x65 ,0x4c ,0x6a ,0x42 ,0x4b ,0x63 ,0x43 ,0x6b ,0x55 ,0x75 ,0x5a ,0x7a ,0x53 ,0x73 ,0x5b ,0x7b ,
0x35 ,0x8c ,0x3a ,0x81 ,0x89 ,0x33 ,0x80 ,0x3b ,0x95 ,0x25 ,0x98 ,0x2a ,0x90 ,0x23 ,0x99 ,0x2b ,
0xe5 ,0xcc ,0xe8 ,0xc1 ,0xc9 ,0xe0 ,0xc0 ,0xe9 ,0xd5 ,0xf5 ,0xd8 ,0xf8 ,0xd0 ,0xf0 ,0xd9 ,0xf9 ,
0xa5 ,0x1c ,0xa8 ,0x12 ,0x1b ,0xa0 ,0x13 ,0xa9 ,0x05 ,0xb5 ,0x0a ,0xb8 ,0x03 ,0xb0 ,0x0b ,0xb9 ,
0x32 ,0x88 ,0x3c ,0x85 ,0x8d ,0x34 ,0x84 ,0x3d ,0x91 ,0x22 ,0x9c ,0x2c ,0x94 ,0x24 ,0x9d ,0x2d ,
0x62 ,0x4a ,0x6c ,0x45 ,0x4d ,0x64 ,0x44 ,0x6d ,0x52 ,0x72 ,0x5c ,0x7c ,0x54 ,0x74 ,0x5d ,0x7d ,
0xa1 ,0x1a ,0xac ,0x15 ,0x1d ,0xa4 ,0x14 ,0xad ,0x02 ,0xb1 ,0x0c ,0xbc ,0x04 ,0xb4 ,0x0d ,0xbd ,
0xe1 ,0xc8 ,0xec ,0xc5 ,0xcd ,0xe4 ,0xc4 ,0xed ,0xd1 ,0xf1 ,0xdc ,0xfc ,0xd4 ,0xf4 ,0xdd ,0xfd ,
0x36 ,0x8e ,0x38 ,0x82 ,0x8b ,0x30 ,0x83 ,0x39 ,0x96 ,0x26 ,0x9a ,0x28 ,0x93 ,0x20 ,0x9b ,0x29 ,
0x66 ,0x4e ,0x68 ,0x41 ,0x49 ,0x60 ,0x40 ,0x69 ,0x56 ,0x76 ,0x58 ,0x78 ,0x50 ,0x70 ,0x59 ,0x79 ,
0xa6 ,0x1e ,0xaa ,0x11 ,0x19 ,0xa3 ,0x10 ,0xab ,0x06 ,0xb6 ,0x08 ,0xba ,0x00 ,0xb3 ,0x09 ,0xbb ,
0xe6 ,0xce ,0xea ,0xc2 ,0xcb ,0xe3 ,0xc3 ,0xeb ,0xd6 ,0xf6 ,0xda ,0xfa ,0xd3 ,0xf3 ,0xdb ,0xfb ,
0x31 ,0x8a ,0x3e ,0x86 ,0x8f ,0x37 ,0x87 ,0x3f ,0x92 ,0x21 ,0x9e ,0x2e ,0x97 ,0x27 ,0x9f ,0x2f ,
0x61 ,0x48 ,0x6e ,0x46 ,0x4f ,0x67 ,0x47 ,0x6f ,0x51 ,0x71 ,0x5e ,0x7e ,0x57 ,0x77 ,0x5f ,0x7f ,
0xa2 ,0x18 ,0xae ,0x16 ,0x1f ,0xa7 ,0x17 ,0xaf ,0x01 ,0xb2 ,0x0e ,0xbe ,0x07 ,0xb7 ,0x0f ,0xbf ,
0xe2 ,0xca ,0xee ,0xc6 ,0xcf ,0xe7 ,0xc7 ,0xef ,0xd2 ,0xf2 ,0xde ,0xfe ,0xd7 ,0xf7 ,0xdf ,0 xff

};

/* Inverse SKINNY Sbox */
uint8_t S8_inv [256] = {

0xac ,0xe8 ,0x68 ,0x3c ,0x6c ,0x38 ,0xa8 ,0xec ,0xaa ,0xae ,0x3a ,0x3e ,0x6a ,0x6e ,0xea ,0xee ,
0xa6 ,0xa3 ,0x33 ,0x36 ,0x66 ,0x63 ,0xe3 ,0xe6 ,0xe1 ,0xa4 ,0x61 ,0x34 ,0x31 ,0x64 ,0xa1 ,0xe4 ,
0x8d ,0xc9 ,0x49 ,0x1d ,0x4d ,0x19 ,0x89 ,0xcd ,0x8b ,0x8f ,0x1b ,0x1f ,0x4b ,0x4f ,0xcb ,0xcf ,
0x85 ,0xc0 ,0x40 ,0x15 ,0x45 ,0x10 ,0x80 ,0xc5 ,0x82 ,0x87 ,0x12 ,0x17 ,0x42 ,0x47 ,0xc2 ,0xc7 ,
0x96 ,0x93 ,0x03 ,0x06 ,0x56 ,0x53 ,0xd3 ,0xd6 ,0xd1 ,0x94 ,0x51 ,0x04 ,0x01 ,0x54 ,0x91 ,0xd4 ,
0x9c ,0xd8 ,0x58 ,0x0c ,0x5c ,0x08 ,0x98 ,0xdc ,0x9a ,0x9e ,0x0a ,0x0e ,0x5a ,0x5e ,0xda ,0xde ,
0x95 ,0xd0 ,0x50 ,0x05 ,0x55 ,0x00 ,0x90 ,0xd5 ,0x92 ,0x97 ,0x02 ,0x07 ,0x52 ,0x57 ,0xd2 ,0xd7 ,
0x9d ,0xd9 ,0x59 ,0x0d ,0x5d ,0x09 ,0x99 ,0xdd ,0x9b ,0x9f ,0x0b ,0x0f ,0x5b ,0x5f ,0xdb ,0xdf ,
0x16 ,0x13 ,0x83 ,0x86 ,0x46 ,0x43 ,0xc3 ,0xc6 ,0x41 ,0x14 ,0xc1 ,0x84 ,0x11 ,0x44 ,0x81 ,0xc4 ,
0x1c ,0x48 ,0xc8 ,0x8c ,0x4c ,0x18 ,0x88 ,0xcc ,0x1a ,0x1e ,0x8a ,0x8e ,0x4a ,0x4e ,0xca ,0xce ,
0x35 ,0x60 ,0xe0 ,0xa5 ,0x65 ,0x30 ,0xa0 ,0xe5 ,0x32 ,0x37 ,0xa2 ,0xa7 ,0x62 ,0x67 ,0xe2 ,0xe7 ,
0x3d ,0x69 ,0xe9 ,0xad ,0x6d ,0x39 ,0xa9 ,0xed ,0x3b ,0x3f ,0xab ,0xaf ,0x6b ,0x6f ,0xeb ,0xef ,
0x26 ,0x23 ,0xb3 ,0xb6 ,0x76 ,0x73 ,0xf3 ,0xf6 ,0x71 ,0x24 ,0xf1 ,0xb4 ,0x21 ,0x74 ,0xb1 ,0xf4 ,
0x2c ,0x78 ,0xf8 ,0xbc ,0x7c ,0x28 ,0xb8 ,0xfc ,0x2a ,0x2e ,0xba ,0xbe ,0x7a ,0x7e ,0xfa ,0xfe ,
0x25 ,0x70 ,0xf0 ,0xb5 ,0x75 ,0x20 ,0xb0 ,0xf5 ,0x22 ,0x27 ,0xb2 ,0xb7 ,0x72 ,0x77 ,0xf2 ,0xf7 ,
0x2d ,0x79 ,0xf9 ,0xbd ,0x7d ,0x29 ,0xb9 ,0xfd ,0x2b ,0x2f ,0xbb ,0xbf ,0x7b ,0x7f ,0xfb ,0 xff

};

B Test Vectors for SKINNY-128-256 and SKINNY-128-384

/* Skinny -128 -256 */
Tweakey : 009 cec81605d4ac1d2ae9e3085d7a1f3

1 ac123ebfc00fddcf01046ceeddfcab3
Plaintext : 3 a0c47767a26a68dd382a695e7022e25
Ciphertext : b731d98a4bde147a7ed4a6f16b9b587f

/* Skinny -128 -384 */
Tweakey : df889548cfc7ea52d296339301797449

ab588a34a47f1ab2dfe9c8293fbea9a5
ab1afac2611012cd8cef952618c3ebe8

Plaintext : a3994b66ad85a3459f44e92b08f550cb
Ciphertext : 94 ecf589e2017c601b38c6346a10dcfa

122 SKINNY-AEAD and SKINNY-Hash

C The AEAD Algorithms for M2–M6

Algorithm 5 The authenticated encryption algorithm SKINNY-AEAD-M2-Enc(K,N,A,M)
In: 128-bit key K, 96-bit nonce N , associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 128-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a

← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a
| < 128

Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00010010‖N‖032‖K(Ai)
LFSR← upd64(LFSR)

if A`a
6= ε then

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00010011‖N‖032‖K(pad10*(A`a
))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m ←M with |Mi| = 128 for i ∈ {0, . . . , `m−1} and |M`m | < 128
Σ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-384rev64(LFSR)‖056‖00010000‖N‖032‖K(Mi)
Σ← Σ⊕Mi

LFSR← upd64(LFSR)
if M`m = ε then

C`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00010100‖N‖032‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00010001‖N‖032‖K(0128)
C`m

←M`m
⊕ trunc|M`m |(R)

LFSR← upd64(LFSR)
Σ← Σ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00010101‖N‖032‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m

//Tag generation
tag← T ⊕ Auth
return (C, tag)

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 123

Algorithm 6 The decryption algorithm SKINNY-AEAD-M2-Dec(K,N,A,C, tag)
In: 128-bit key K, 96-bit nonce N , associated data A, ciphertext C (both arbitrarily long),
128-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00010010‖N‖032‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00010011‖N‖032‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m

← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m
| < 128

Σ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-384−1
rev64(LFSR)‖056‖00010000‖N‖032‖K(Ci)

Σ← Σ⊕Mi

LFSR← upd64(LFSR)
if C`m = ε then

M`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00010100‖N‖032‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00010001‖N‖032‖K(0128)
M`m

← C`m
⊕ trunc|C`m |(R)

LFSR← upd64(LFSR)
Σ← Σ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00010101‖N‖032‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m

//Tag verification
tag′ ← T ⊕ Auth
if tag′ = tag then

return M
else

return ⊥

124 SKINNY-AEAD and SKINNY-Hash

Algorithm 7 The authenticated encryption algorithm SKINNY-AEAD-M3-Enc(K,N,A,M)
In: Key K, nonce N (both 128 bit), associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 64-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00001010‖N‖K(Ai)
LFSR← upd64(LFSR)

if A`a
6= ε then

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00001011‖N‖K(pad10*(A`a
))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m

←M with |Mi| = 128 for i ∈ {0, . . . , `m−1} and |M`m
| < 128

Σ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-384rev64(LFSR)‖056‖00001000‖N‖K(Mi)
Σ← Σ⊕Mi

LFSR← upd64(LFSR)
if M`m

= ε then
C`m

← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00001100‖N‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00001001‖N‖K(0128)
C`m ←M`m ⊕ trunc|M`m |(R)
LFSR← upd64(LFSR)
Σ← Σ⊕ pad10*(M`m

)
T ← SKINNY-128-384rev64(LFSR)‖056‖00001101‖N‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m

//Tag generation
tag← trunc64(T ⊕ Auth)
return (C, tag)

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 125

Algorithm 8 The decryption algorithm SKINNY-AEAD-M3-Dec(K,N,A,C, tag)
In: Key K, nonce N (both 128 bit), associated data A, ciphertext C (both arbitrarily
long), 64-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00001010‖N‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00001011‖N‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m

← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m
| < 128

Σ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-384−1
rev64(LFSR)‖056‖00001000‖N‖K(Ci)

Σ← Σ⊕Mi

LFSR← upd64(LFSR)
if C`m = ε then

M`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00001100‖N‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00001001‖N‖K(0128)
M`m

← C`m
⊕ trunc|C`m |(R)

LFSR← upd64(LFSR)
Σ← Σ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00001101‖N‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m

//Tag verification
tag′ ← trunc64(T ⊕ Auth)
if tag′ = tag then

return M
else

return ⊥

126 SKINNY-AEAD and SKINNY-Hash

Algorithm 9 The authenticated encryption algorithm SKINNY-AEAD-M4-Enc(K,N,A,M)
In: 128-bit key K, 96-bit nonce N , associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 64-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00011010‖N‖032‖K(Ai)
LFSR← upd64(LFSR)

if A`a
6= ε then

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00011011‖N‖032‖K(pad10*(A`a
))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m

←M with |Mi| = 128 for i ∈ {0, . . . , `m−1} and |M`m
| < 128

Σ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-384rev64(LFSR)‖056‖00011000‖N‖032‖K(Mi)
Σ← Σ⊕Mi

LFSR← upd64(LFSR)
if M`m

= ε then
C`m

← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00011100‖N‖032‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00011001‖N‖032‖K(0128)
C`m ←M`m ⊕ trunc|M`m |(R)
LFSR← upd64(LFSR)
Σ← Σ⊕ pad10*(M`m

)
T ← SKINNY-128-384rev64(LFSR)‖056‖00011101‖N‖032‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m

//Tag generation
tag← trunc64(T ⊕ Auth)
return (C, tag)

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 127

Algorithm 10 The decryption algorithm SKINNY-AEAD-M4-Dec(K,N,A,C, tag)
In: 128-bit key K, 96-bit nonce N , associated data A, ciphertext C (both arbitrarily long),
64-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00011010‖N‖032‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00011011‖N‖032‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m

← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m
| < 128

Σ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-384−1
rev64(LFSR)‖056‖00011000‖N‖032‖K(Ci)

Σ← Σ⊕Mi

LFSR← upd64(LFSR)
if C`m = ε then

M`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00011100‖N‖032‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00011001‖N‖032‖K(0128)
M`m

← C`m
⊕ trunc|C`m |(R)

LFSR← upd64(LFSR)
Σ← Σ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00011101‖N‖032‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m

//Tag verification
tag′ ← trunc64(T ⊕ Auth)
if tag′ = tag then

return M
else

return ⊥

128 SKINNY-AEAD and SKINNY-Hash

Algorithm 11 The authenticated encryption algorithm SKINNY-AEAD-M5-Enc(K,N,A,M)
In: 128-bit key K, 96-bit nonce N , associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 128-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 023‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00010010‖N‖K(Ai)
LFSR← upd24(LFSR)

if A`a
6= ε then

Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00010011‖N‖K(pad10*(A`a
))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m

←M with |Mi| = 128 for i ∈ {0, . . . , `m−1} and |M`m
| < 128

Σ← 0128

LFSR← 023‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-256rev24(LFSR)‖00010000‖N‖K(Mi)
Σ← Σ⊕Mi

LFSR← upd24(LFSR)
if M`m

= ε then
C`m

← ε
T ← SKINNY-128-256rev24(LFSR)‖00010100‖N‖K(Σ)

else
R← SKINNY-128-256rev24(LFSR)‖00010001‖N‖K(0128)
C`m ←M`m ⊕ trunc|M`m |(R)
LFSR← upd24(LFSR)
Σ← Σ⊕ pad10*(M`m

)
T ← SKINNY-128-256rev24(LFSR)‖00010101‖N‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m

//Tag generation
tag← T ⊕ Auth
return (C, tag)

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 129

Algorithm 12 The decryption algorithm SKINNY-AEAD-M5-Dec(K,N,A,C, tag)
In: 128-bit key K, 96-bit nonce N , associated data A, ciphertext C (both arbitrarily long),
128-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 023‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00010010‖N‖K(Ai)
LFSR← upd24(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00010011‖N‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m

← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m
| < 128

Σ← 0128

LFSR← 023‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-256−1
rev24(LFSR)‖00010000‖N‖K(Ci)

Σ← Σ⊕Mi

LFSR← upd24(LFSR)
if C`m = ε then

M`m ← ε
T ← SKINNY-128-256rev24(LFSR)‖00010100‖N‖K(Σ)

else
R← SKINNY-128-256rev24(LFSR)‖00010001‖N‖K(0128)
M`m

← C`m
⊕ trunc|C`m |(R)

LFSR← upd24(LFSR)
Σ← Σ⊕ pad10*(M`m)
T ← SKINNY-128-256rev24(LFSR)‖00010101‖N‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m

//Tag verification
tag′ ← T ⊕ Auth
if tag′ = tag then

return M
else

return ⊥

130 SKINNY-AEAD and SKINNY-Hash

Algorithm 13 The authenticated encryption algorithm SKINNY-AEAD-M6-Enc(K,N,A,M)
In: 128-bit key K, 96-bit nonce N , associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 64-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 023‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00011010‖N‖K(Ai)
LFSR← upd24(LFSR)

if A`a
6= ε then

Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00011011‖N‖K(pad10*(A`a
))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m

←M with |Mi| = 128 for i ∈ {0, . . . , `m−1} and |M`m
| < 128

Σ← 0128

LFSR← 023‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-256rev24(LFSR)‖00011000‖N‖K(Mi)
Σ← Σ⊕Mi

LFSR← upd24(LFSR)
if M`m

= ε then
C`m

← ε
T ← SKINNY-128-256rev24(LFSR)‖00011100‖N‖K(Σ)

else
R← SKINNY-128-256rev24(LFSR)‖00011001‖N‖K(0128)
C`m ←M`m ⊕ trunc|M`m |(R)
LFSR← upd24(LFSR)
Σ← Σ⊕ pad10*(M`m

)
T ← SKINNY-128-256rev24(LFSR)‖00011101‖N‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m

//Tag generation
tag← trunc64(T ⊕ Auth)
return (C, tag)

Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim 131

Algorithm 14 The decryption algorithm SKINNY-AEAD-M6-Dec(K,N,A,C, tag)
In: 128-bit key K, 96-bit nonce N , associated data A, ciphertext C (both arbitrarily long),
64-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 023‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00011010‖N‖K(Ai)
LFSR← upd24(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00011011‖N‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m

← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m
| < 128

Σ← 0128

LFSR← 023‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-256−1
rev24(LFSR)‖00011000‖N‖K(Ci)

Σ← Σ⊕Mi

LFSR← upd24(LFSR)
if C`m = ε then

M`m ← ε
T ← SKINNY-128-256rev24(LFSR)‖00011100‖N‖K(Σ)

else
R← SKINNY-128-256rev24(LFSR)‖00011001‖N‖K(0128)
M`m

← C`m
⊕ trunc|C`m |(R)

LFSR← upd24(LFSR)
Σ← Σ⊕ pad10*(M`m)
T ← SKINNY-128-256rev24(LFSR)‖00011101‖N‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m

//Tag verification
tag′ ← trunc64(T ⊕ Auth)
if tag′ = tag then

return M
else

return ⊥

	Introduction
	SKINNY-AEAD
	SKINNY-Hash
	Features

	Specification
	Parameter Sets
	SKINNY-128-256 and SKINNY-128-384
	The AEAD Scheme SKINNY-AEAD
	The Hash Functionality SKINNY-Hash

	Security Claims
	Design Rationale
	Rationale for the AEAD scheme
	Rationale for the Hash Function Scheme

	Security Analysis of the SKINNY TBC
	Differential/Linear Cryptanalysis
	Other Attacks
	Third-Party Cryptanalysis

	Hardware Implementations
	New Variants
	The 8-bit Sbox for SKINNY
	Test Vectors for SKINNY-128-256 and SKINNY-128-384
	The AEAD Algorithms for M2–M6

