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Abstract
Diffie-Hellman key exchange (DHKE) is a widely adopted

method for exchanging cryptographic key material in real-
world protocols like TLS-DH(E). Past attacks on TLS-DH(E)
focused on weak parameter choices or missing parameter
validation. The confidentiality of the computed DH share, the
premaster secret, was never questioned; DHKE is used as a
generic method to avoid the security pitfalls of TLS-RSA.

We show that due to a subtle issue in the key derivation
of all TLS-DH(E) cipher suites in versions up to TLS 1.2,
the premaster secret of a TLS-DH(E) session may, under
certain circumstances, be leaked to an adversary. Our main
result is a novel side-channel attack, named Raccoon attack,
which exploits a timing vulnerability in TLS-DH(E), leaking
the most significant bits of the shared Diffie-Hellman secret.
The root cause for this side channel is that the TLS standard
encourages non-constant-time processing of the DH secret.
If the server reuses ephemeral keys, this side channel may
allow an attacker to recover the premaster secret by solving an
instance of the Hidden Number Problem. The Raccoon attack
takes advantage of uncommon DH modulus sizes, which
depend on the properties of the used hash functions. We
describe a fully feasible remote attack against an otherwise-
secure TLS configuration: OpenSSL with a 1032-bit DH
modulus. Fortunately, such moduli are not commonly used
on the Internet.

Furthermore, with our large-scale scans we have identified
implementation-level issues in production-grade TLS imple-
mentations that allow for executing the same attack by directly
observing the contents of server responses, without resorting
to timing measurements.

1 Introduction

Diffie-Hellman Key Exchange. In Diffie-Hellman (DH) Key
Exchange, a client A and a server B both use a prime p and a
generator g ∈ Z∗p as public parameters, where g generates a
cyclic subgroup G≤ Z∗p of prime order q. B chooses a secret
b∈Zq and A chooses a secret a∈Zq. B sends the DH “share”

Figure 1: Raccoon attack overview. The attacker passively
observes the public DH shares of a client-server connection
and uses an oracle in the TLS key derivation to calculate
the shared DH secret using a solver for the Hidden Number
Problem.

gb mod p to A, while A sends its share ga mod p to B. Both
parties can then compute (ga)b = (gb)a = gab mod p. If the
parameters p and q are chosen in such a way that the Com-
putational Diffie-Hellman Assumption (CDH) holds for G, a
third party that observes the transmitted values ga,gb mod p
cannot compute this shared secret gab.

TLS-DH(E). Transport Layer Security (TLS) relies on the
DH assumption and adapts the DH key exchange to compute
a shared key (ga)b between a client and a server. The shared
key is used as a premaster secret to derive all necessary cryp-
tographic material for the established connection. In practice,
TLS peers can use two DH key exchange types: TLS-DH and
TLS-DHE. In a TLS-DH connection, the server uses a static
value b. In TLS-DHE, the server uses an ephemeral value b.

Side-channel attacks against TLS. Due to its importance,
the TLS protocol was subject to many cryptographic analyses,
including the security of the TLS handshake structure [14]
and TLS-DHE [35]. These analyses confirm the security of
the design of TLS, which is essential for its implementation
and deployment. However, models used in these studies rely
on specific assumptions and implementation correctness. For

USENIX Association 30th USENIX Security Symposium    213



example, they assume that the secret-processing functions
work in constant time and do not leak any confidential data.
Such behavior is not always given in practice and can be prac-
tically exploited by an attacker using specific side channels.

A typical example of side-channel attacks are timing at-
tacks. In timing attacks, an attacker measures the response
time of an implementation to recover secret information.
There are numerous examples of timing side-channel attacks
that have been successfully applied to TLS. Brumley and
Boneh [20] showed how to recover the private key of a TLS-
RSA server by measuring timing differences in arithmetic
optimizations for different ciphertext lengths. AlFardan and
Paterson [6] were able to recover plaintext bytes from the
TLS Record Layer by observing subtle timing differences in
the computation of the HMAC. Meyer et al. [46] constructed
a Bleichenbacher oracle from timing differences in the han-
dling of valid and invalid PKCS#1 encoded premaster secrets
within the ClientKeyExchange message.

The standard strategy for preventing timing attacks is to
make implementations constant time, i.e., the implementa-
tion’s processing time should always be the same, regardless
of any conditions on the secret. Deploying such a countermea-
sure can be very challenging, especially if the side channel
results from the behavior described in the protocol specifi-
cation. For example, the Lucky 13 attack by AlFardan and
Paterson resulted from the failure in the TLS specification to
process ciphertext in constant time [6]. While the paper de-
scribes concrete countermeasure strategies, we could observe
several resurrections of this attack in recent years [4, 8, 57].

A timing oracle in the TLS-DH(E) KDF. We start our study
with the critical observation that the TLS specification pre-
scribes variable-length secrets as input to the key derivation
function (KDF); all TLS versions up to version 1.2 mandate
that the DH premaster secret must be stripped of leading zero
bytes before it is used to derive connection secrets. Since
the first step of the KDF is to apply a hash function to the
secret, this hash calculation will use less internal iterations
if a critical number of leading zeros has been stripped. For
example, for SHA-384 (cf. Table 1), the internal block size
is 128 bytes. Due to the structure of the length and padding
fields used in SHA-384, the last hash input block can contain
up to 111 bytes. Therefore, inputs with up to 239=128+111
bytes will be processed in two blocks. For inputs with 240
bytes and more, at least three hash blocks are necessary.

Processing an additional hash block results in an additional
hash compression computation. Therefore, for some DH
modulus sizes, the KDF is faster for premaster secrets with
leading zero bytes, since these zero bytes will be stripped. If
an attacker can use precise timing measurements to learn the
number of hash compressions performed on the premaster
secret, the attacker is also able to learn some leading bits of
the premaster secret. This behavior allows the attacker to
create a most significant bits (MSBs) oracle from a server
and to determine the MSBs of the DH secret.

The Hidden Number Problem. In 1996, Boneh and Venkate-
san presented the Hidden Number Problem (HNP) [17], orig-
inally to show that using the most significant bits (MSB) of
a Diffie-Hellman secret is as secure as using the full secret.
Their proof includes an algorithm that, given an oracle for
the MSBs of DH shared secrets where one side of the key
exchange is fixed, computes the entire secret for another such
key exchange. The algorithm presented in that seminal work
uses basis reduction in lattices to efficiently solve the Closest
Vector Problem. While initially presented as part of a positive
security result, the HNP and its solutions later were also used
as components in cryptographic attacks. For example, such
algorithms have been used to break DSA, ECDSA, and qDSA
with biased or partially known nonces [9,11,18,23,48–50,62].

Perhaps surprisingly, the original target of the HNP, Diffie-
Hellman key exchange, remained unattacked until now. We
close this gap by presenting the first full HNP-based attack on
Diffie-Hellman key exchange as implemented in TLS-DH(E).

Raccoon attack. The Raccoon attack can recover TLS-
DH(E) premaster secrets from passively-observed TLS-
DH(E) sessions by exploiting a side channel in the server
and solving the Hidden Number Problem using lattice reduc-
tion algorithms. The attack requires that the server reuses the
same Diffie-Hellman share across sessions, which is the case
for a server with static TLS-DH or a server reusing ephemeral
keys in TLS-DHE [61].

On a high level, the attack works as follows (cf. Figure 1):

1. The attacker records the TLS handshake, including both
the client DH share ga and the server share gb.

2. The attacker initiates new handshakes to the same server
(therefore with the same gb), using gri ·ga for some ran-
domly chosen ri. The premaster secret for these new
sessions is (gri ·ga)b = grib ·gab. The attacker can com-
pute the first term, and the second term is the targeted
DH secret.

3. For each handshake, the attacker measures the response
time of the server. For some modulus sizes, DH secrets
with leading zeroes will result in a faster server KDF
computation, and hence a shorter server response time.

4. Assume temporarily that the attacker can perfectly detect
the above case. Each such case can be converted to
an equation in the Hidden Number Problem. When a
sufficient number of equations has been determined, the
HNP can be solved to calculate gab, the secret Diffie-
Hellman value of the original handshake. The attacker
can then decrypt the original TLS traffic to recover its
plaintext.

Contributions. We make the following contributions:

• We present a novel side channel, stemming from the
TLS-DH(E) standard, that leaks the value of some most
significant bits of a DH shared secret.
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• We demonstrate that this side channel can be exploited
remotely, allowing an adversary to decrypt TLS traffic.
More broadly, our findings serve as another example of
the dangers of computations in cryptography that are
not constant-time, which are relevant to cryptographic
protocols beyond TLS.
• We perform large-scale scans of the most prominent

servers on the Internet to estimate the impact of the
vulnerability. Interestingly, with our scans, we were able
to find servers presenting different behavior based on
the first byte of the premaster secret; this allowed us to
construct a direct form of our Raccoon attack.
• We report the first attack targeting finite-field Diffie-

Hellman using the Hidden Number Problem as a crypt-
analytic tool.

Responsible Disclosure. We responsibly disclosed our find-
ings to large server operators, major TLS implementations,
the IETF, and our national CERT. F5 assigned the issue CVE-
2020-5929. In particular, several F5 products enable a special
version of the attack, without the need for precise timing mea-
surements.1 OpenSSL assigned the issue CVE-2020-1968.2

OpenSSL uses fresh DH keys per default since version 1.0.2f
from 2016. To further mitigate the attack, OpenSSL moved all
remaining DH cipher suites to the weak ciphers list. In addi-
tion, motivated by this research, the developers also switched
to fresh generation of EC ephemeral keys in OpenSSL 1.0.2w
(these keys were previously long-lived). Mozilla assigned the
issue CVE-2020-12413. It has been solved by disabling DH
and DHE cipher suites in Firefox (which was already planned
before our report). Microsoft assigned the issue CVE-2020-
1596.3 BearSSL and BoringSSL are not affected because they
do not support DH(E) cipher suites. Botan, Mbed TLS, Wolf-
SSL and s2n do not support static DH cipher suites. Their
DHE cipher suites never reuse ephemeral keys.
Artifacts Availability. The code that was used in this
work is available under an Open Source license at
https://github.com/tls-attacker/raccoon-code.

2 Background

Here we provide a description of the Transport Layer Security
(TLS) handshake protocol and its key derivations.

2.1 Transport Layer Security (TLS)
The TLS protocol (previously known as SSL) provides con-
fidentiality, integrity, and authenticity to many common ap-
plications on the Internet. The latest version of the protocol
is TLS 1.3 [55], while the older versions TLS 1.0, 1.1, and
1.2 [26–28] are currently still deployed alongside of it. The

1https://support.f5.com/csp/article/K91158923
2https://www.openssl.org/news/secadv/20200909.txt
3https://portal.msrc.microsoft.com/en-US/security-guidance/

advisory/CVE-2020-1596

older versions SSLv3 and SSLv2 are considered to be inse-
cure. SSLv3 and TLS versions 1.0 to 1.2 all share a similar
structure, while TLS 1.3 overhauled the design of the protocol
and is fundamentally different from the previous versions. In
this work, we focus on SSLv3 and TLS versions 1.0 to 1.2.

The TLS protocol structure consists of two phases. In
the first phase, called the handshake, the client and server
negotiate the cryptographic algorithms and establish session
keys. In the second phase, the peers can securely send and
receive application data using the record protocol, which is
encrypted and authenticated using the keys and algorithms
established in the previous phase.

The aforementioned choice of cryptographic algorithms
is called a TLS cipher suite [28]. More precisely, a cipher
suite is a concrete selection of algorithms for all of the re-
quired cryptographic tasks. For example, the cipher suite
TLS_DHE_RSA_WITH_AES_128_CBC_SHA uses ephemeral DH
key exchange and RSA signatures over server DH shares in
order to establish a shared session key. In order to encrypt and
authenticate data, it uses symmetric AES-CBC encryption
with a 128-bit key and HMACs based on SHA-1.

In the following, we focus on cipher suites using DH(E) as
the key exchange method. To establish a TLS connection, the
client starts the TLS handshake by sending a ClientHello

message, which contains the supported cipher suites, the sup-
ported version(s), and TLS features, as well as a nonce (called
ClientRandom). The server answers this with a ServerHello,
containing a selected cipher suite and version, a nonce (called
ServerRandom), as well as other TLS features, which should
be used in this session. The server follows this message
up with a Certificate message, which contains an X.509
certificate of the server. In static-DH cipher suites, this
certificate contains a long-lived Diffie-Hellman public key
(g, p,gb mod p), while in TLS-DHE cipher suites the cer-
tificate contains an RSA or DSA public signature key. If a
DHE cipher suite is selected, the server sends a server key
exchange message, containing the ephemeral public DH key
(g, p,gb mod p), as well as a signature, generated with the pri-
vate key corresponding to the server’s certificate. The server
then sends a ServerHelloDone message, which signals to the
client that the server has finished sending this flight of mes-
sages. The client then sends a ClientKeyExchange message,
containing the client public key ga. Both parties now have
the cryptographic material to compute a shared secret called
the premaster secret (PMS) as gab = (ga)b = (gb)a (mod p).
The PMS is then used to derive the master secret using a key
derivation function (which we describe below); the master se-
cret is used to derive the individual symmetric keys. The client
then sends a ChangeCipherSpec message, indicating to the
server that the following messages sent from the client to the
server will be encrypted. The last message sent by the client
within the handshake is a Finished message, which contains
a cryptographic checksum over the transcript of the connec-
tion. The server answers this with its own ChangeCipherSpec
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message, indicating that from now on, all messages are en-
crypted, followed by the server’s Finished message.

2.2 Hash Functions
Hash functions are mappings h : {0,1}∗→{0,1}N which are
one-way, collision-free and do not allow to compute second
preimages [24]. A real-world hash function with close to
unbounded input length cannot be evaluated in constant time;
rather, for any reasonable implementation, the running time
for an input of length k is O(k). This can result in a timing side
channel in real-world applications if the hash function is used
with secret inputs of varying lengths [6]. Most common cryp-
tographic hash functions are built using a Merkle-Damgård
construction [24]. In this construction, the input is split into
fixed-size blocks, and each block is mixed into a state of the
computation using a compression function, until all blocks
have been processed. Prior to feeding the blocks to the com-
pression function, the input is extended by a length field, and
then padded to a multiple of the block size of the hash func-
tion; the extension and padding may necessitate creating an
additional input block. In some constructions, the output is
fed to a finalization function, which compresses the internal
state to the final output.

m1 m2 mn-1 mn

f f f f...

........

final Hash

Figure 2: Merkle-Damgård construction of common hash
functions, such as MD5, SHA-1 and SHA-256.

Table 1 gives an overview of hash functions relevant to this
work. The second and third columns indicate the input and
output block size, respectively.4 The fourth column provides
the minimum number of bytes appended to the input. For
example, when using SHA-256 (which uses a block size of
64 bytes), at least 9 bytes have to be appended to the input
message. Therefore, messages of up to 55 bytes will be
processed as one block, using two calls to the compression
function (due to the finalization function). Messages of length
between 56 and 128−9 = 119 bytes will be processed as two
input blocks, using three calls to the compression function.
Table 1 provides further examples for input block boundaries.

2.3 Key Derivation
Modern DHKE based protocols do not use the shared cryp-
tographic secret K = gab (or parts of it) directly as the key to
symmetric algorithms. Instead, K is used as the input to a
KDF which uses a fixed-size intermediate value seed, from

4Technically all presented hash functions operate on bits instead of bytes.
However, they are almost universally only used with bit lengths that are a
multiple of 8. Therefore our analysis only focuses on these cases.

Hash
function

Input
block
size

Output
size

Length
and
padding

Input block
borders

MD5 64 16 8+1 55, 119, 183, ...
SHA-1 64 20 8+1 55, 119, 183, ...
SHA-256 64 32 8+1 55, 119, 183, ...
SHA-384 128 48 16+1 111, 239, 367, ...

Table 1: Properties of common hash functions. The second
and third columns indicate the input and output block sizes.
The fourth column indicates the minimum size of the length
field and padding in the last block. The last column indicates
the maximum input sizes fitting into one, two, and three
blocks, respectively. All values are denoted in bytes.

which then arbitrary many pseudorandom bytes are derived.
TLS (and other typical cryptographic protocols) use a KDF
based on HMAC [41].

HMAC is a mechanism to compute message authentication
codes based on hash functions. The HMAC can be instanti-
ated with any hash function H and then inherits the parameters
of this function. For example, HMAC-SHA1 has an internal
block size of 64 bytes and an output size of 20 bytes.

HMACH(K,M) = H
(
(K⊕opad)||H

(
(K⊕ ipad)||M

))
Here K is a secret key, and opad and ipad are byte arrays
of hash input block size B filled with bytes 0x36 and 0x5C,
respectively. The secret key K must also have a fixed length B.
Therefore, before computing the HMAC, K is either padded
with zeros (if |K| < B) or hashed with the hash function H
(if |K|> B). This additional hash function invocation on the
secret key K can result in measurable timing differences.

HMAC provides a foundational mechanism to design a
pseudorandom function (PRF) for key derivation and key
expansion. The PRF in TLS uses a single hash function
H, a secret K, a label, and a seed to expand cryptographic
material [28]:

PRF(K, label,seed) =HMACH(K,A1 || label || seed) ||
HMACH(K,A2 || label || seed) ||
HMACH(K,A3 || label || seed) || ...

where A0 = label || seed and Ai = HMACH(K,Ai−1). Here
the label is a distinguishing ASCII string constant defined in
the TLS standard. The number of PRF iterations depends on
the desired output length. For example, three iterations can
be used to produce up to 96 output bytes if SHA-256 is used.

2.4 The Hidden Number Problem
To solve the Hidden Number Problem (HNP) [17], an adver-
sary must compute a secret integer α (in our case the premas-
ter secret of the TLS-DHE session under attack) modulo a
public prime p with bit-size n, given information about the
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k most significant bits (MSBs) of the n-bit representation of
random multiples α · ti mod p of this secret value. From these
MSBs the adversary can construct integers yi (e.g., by setting
the MSBs of yi as the known bits, and all other bits to 0) such
that for each i we have 0≤ α · ti mod p− yi < p/2` for some
` > 0. Each triple (ti,yi, `) contains ` bits of information on α.
The number ` := k−n+ log2(p)∈ [k−1,k] can be considered
the effective number of given MSBs. This number can also
be written as `= k− ε, where ε = n− log2(p) represents the
bias of the modulus (see Table 3 for the ε of some well-known
DH groups). If ` is not too small and we have a moderate
number of equations, the hidden number α can be recovered
by solving an instance of the Closest Vector Problem (CVP)
in a lattice [17, 34, 50]. If ` is small and a large number of
equations is available, Fourier analysis is considered more
promising [3, 47].

3 Raccoon Length Distinguishing Oracles

In this section we describe length distinguishing side channel
oracles which may be used in the Raccoon attack. All of these
oracles exploit the following fact:

The key derivation function KDF strips leading ze-
ros from the computed DH secret gab and performs
further computations based on the modified secret
string.

These computations can result in different timing behaviors
based on the number of removed bits or different error behav-
ior. An attacker observing the timing behavior can construct
an oracle from the behavior of an application using Diffie-
Hellman (DH) key exchange and use it to leak some of the
most significant bits (MSB) of the shared secret. This already
invalidates the standard indistinguishability assumption of the
cryptographic primitives used (DDH, PRF-ODH).

We define Ok,b(x) as an oracle that reveals if the k most
significant bits of the n-bit number xb mod p are zero:

Ok,b(x) =

{
True if MSBk(xb mod p) = 0 ,
False otherwise .

(1)

The effective number of bits leaked from this oracle de-
pends on the modulus length and bias, the underlying KDF
properties, as well as implementation details, and can range
from a fraction of a bit to several bytes in case the result is
True. In the following subsections, we give four different
constructions OH, OC, OP, and OD for such oracles. Then
in Section 4, we instantiate such oracles in the context of TLS
servers, and show in Section 5 how they can be used to run a
full attack to uncover the complete premaster secret.

3.1 OH: Hash Function Invocation
In HMAC constructions (RFC 2104 [41]), the shared secret
key gab may either be used directly in the HMAC computation

(if |gab| is smaller than the maximal HMAC key size), or it
must be hashed to a smaller size.

Consider a server that uses a DH prime modulus p with
|p|= 1025 bits and a PRF based on HMAC-SHA384. For this
PRF, the secret key k can at most be 128 bytes long, which is
the input block size of the hash function SHA-384 (Table 1).
For this purpose, the KDF first strips leading zero bits and
then converts K to a byte sequence. Now the KDF program
branches:

1. If the length of the byte sequence is at most 128 bytes,
this byte sequence is used directly as the HMAC key k.

2. If the length of the byte sequence is bigger than 128
bytes, the SHA-384 hash function is invoked once on this
byte sequence, and the resulting hash value, padded with
80 zero bytes, is used as the HMAC key: k = h||0x0...0.

Now assume that a man-in-the-middle (MitM) attacker
observed a DH key exchange. The goal of the attacker is
to learn the first bit of K = gab mod p. As described above,
there are two possibilities for a server-side KDF to process
the shared secret K = gab:

• The most significant bit of K is 0. The server strips the
leading zero bit and converts K to a byte array which
will consist of 128 bytes. Since the byte array is 128
bytes long, it is directly used in the HMAC computation:
HMACSHA−384(K, seed).
• The most significant bit of K is 1. The server converts

K to a byte array, which will consist of 129 bytes. A
129-byte long shared secret cannot be directly used in the
HMAC computation (see also Subsection 2.3); before
computing HMAC, the server needs to compute SHA-
384 over K. It can then use the SHA-384 output as an
input for the HMAC computation.

Observe how a shared secret K starting with 1 results in
an additional SHA-384 hash function invocation over K. In
the previous example, the modulus was exactly one bit bigger
than the block size of the hash function and leaked only the
most significant bit of the PMS. If the modulus is k bits bigger
than the block size, the attacker has a chance of 1/2` to leak
the top k bits of the PMS. As we show in Section 6, this
timing difference is observable by a remote attacker.

3.2 OC: Compression Function Invocations
This oracle exploits the number of invocations of the internal
compression function if the second branch in OH occurs, i.e.,
if the shared DH secret K = gab is bigger than the input block
length of the HMAC hash function.

As mentioned in Subsection 2.2, hash functions based on
the Merkle-Damgård scheme operate on blocks. The number
of blocks a hash function has to process depends on the input
length (see Table 1). If the DH shared secret K is used as a
key for an HMAC computation, it can have distinct timing
profiles depending on its length.
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To give an example for HMAC-SHA384, consider a 1913-
bit DH modulus p, which is encoded in 240 bytes. The server-
side KDF implementation now has to invoke the hash function
over the shared key K, since K is much larger than the allowed
128 bytes. We now get a MSBs oracle from the number of
compression function invocations:

1. If the most significant bit of K is 0, K will be coded into
239 bytes. Even with the 17 bytes added for length and
padding (cf. Table 1), it will fit into two blocks. Thus,
the server will execute three hash compressions.

2. If the most significant bit of K is 1, K will be decoded
into 240 bytes. Appending padding and the length field
will fit into three blocks; the server will execute four
hash compressions.

Analogously to the previous oracle, if the modulus is k bits
bigger than a critical block border, the attacker has a chance
of 1/2` to leak the top k bits of the PMS, where `= k− ε (see
Subsection 2.4).

3.3 OP: Key Padding

Another side channel arises based on the number of padding
bytes used to pad the DH shared key. The HMAC inter-
face [41] pads keys to the block size of the hash function. The
padding of the shared key can result in a timing side chan-
nel as different key lengths will lead to different amount of
padding applied, and therefore to a different number of calls
to the hash compression function. We show a practical attack
based on this side channel in Appendix A.

3.4 OD: Direct Side Channels

Until now, we discussed side channels based on small timing
differences in the processing of the shared DH secret. How-
ever, it is possible that an implementation provides a direct
oracle which does not rely on timing differences but relies
on direct differences in behavior, such as error messages or
handling of the connection state (like closing the underlying
socket). If an implementation behaves differently depending
on the shared secret, it provides an attacker with a direct side
channel. The reason why these direct oracles might be plausi-
ble is that, for example, the zero byte is considered a special
character in many programming languages. For example, in
C the zero byte is used to terminate strings. This can result
in programming errors, which can, in return, lead to observ-
able differences in response to network queries. We show in
Section 7 that a non-negligible number of real-world servers
indeed present such directly observable behavior differences.
In all observed cases, this side channel only leaked the most
significant byte of the PMS, which is equivalent to a leak of
k = n mod 8 bits for a prime p of bit-size n.

3.5 Further Oracle Considerations

Big number libraries. Even if a protocol does maintain lead-
ing zero bytes of the shared secret, the used big number library
might introduce an oracle that leaks the most significant bits.
If the big number library does not maintain fixed-size big num-
bers internally, the resulting shared secret has to be padded
by the application to the modulus size if the shared secret has
fewer bytes than the modulus.

Hitting the block boundaries with dangerous modulus
sizes. In our examples above, we used unusual modulus
sizes of 1025 and 1913 bits to instantiate the length distin-
guishing oracles. We arrived at these numbers by comput-
ing the input lengths for a given hash function that leak the
top x leading zero bits of the potential input at the critical
block border of the nth block, using the following formula:
cbb(x,b, p,n) = n∗b− p+x, where b is the block size of the
hash function in bits, and p is the fixed padding part of the
hash function, also in bits.

On the reliability of timing side channels. If the attacker
uses a timing side channel, the oracle will liekly give occa-
sionally wrong results, as timing measurements are inherently
noisy. Thus, any classifier will exhibit some probability of
false classification. The distinguishing attack can be made
practical if the attacker can send several queries to the target.
The attacker can then use standard statistical tests to build a
reliable oracle out of the noisy oracle. We give more details
in Subsection 6.1.

4 Raccoon Length Distinguishing Oracles in
TLS

In this section, we first describe the high-level attack scenario.
The main contribution of this section is a detailed analysis
of the different TLS key derivation functions, which results
in different critical block boundaries (cf. Subsection 3.5 and
Table 2) to trigger the length distinguishing oracles. We
concentrate our analysis on OHand OC, which result from the
TLS design combined with the hash function properties (e.g.,
different timing profiles for inputs of different block lengths).
We stress that OPand ODare implementation-dependent and
can potentially be found exploitable at any block boundary.

4.1 TLS Attack Scenarios
For the attack scenarios described below, the attacker needs
access to a functional oracle from Section 3. Furthermore, the
honest client and server have to use a vulnerable TLS version
and negotiate TLS-DHE or a connection with a static TLS
key share.

Raccoone: Length distinguishing attack on ephemeral
keys. The goal of the Raccoone attack is to detect the leading
bits in the DH shared secret in a MitM attacker model with
ephemeral keys. If the attacker wants to perform the attack, it
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can measure the presented side channels in Section 3 at two
different positions within a TLS connection:

• The attacker can target the server and measure the time
the server used to compute the premaster secret. The
attacker can do this by measuring the time between the
server receiving the ClientKeyExchange message and
the server sending its Finished message.
• Or, the attacker can target the client and measure the

time the client used to compute the premaster secret. The
attacker can do this by measuring the time the client took
to read the ServerKeyExchange message up to sending
the Finished message by the client.

By repeatedly observing TLS-DHE handshakes between
an honest client A and an honest server B the attacker can
learn typical timing values. After this, the attacker will be
able to detect if leading zero bytes are present in the unknown
pms by observing faster response times.

This length distinguishing attack is applicable even if the
server does not reuse ephemeral DH values. However, in this
case the attack poses little threat in practice, since the attacker
merely learns the length of a fully ephemeral, one-time shared
secret. This does not allow the attacker to decrypt or modify
traffic.

Raccoons: Length distinguishing attack on a static key. In
this scenario, the attacker has recorded a previous TLS-DH(E)
session, and the goal is to recover the length of the premaster
secret used in this session between two honest peers. In
contrast to Raccoone, in this scenario, the server uses a static
key, or is reusing the same ephemeral DH secret for a certain
period of time, covering the recorded TLS-DHE session and
the full duration of the attack.

To perform the attack, the attacker selects an appropri-
ate oracle of OH, OC, OPand OD from Section 3, con-
nects to the server and sends a Diffie-Hellman share in a
ClientKeyExchange message. For the length distinguishing
attack, this ClientKeyExchange message contains the origi-
nally observed key share from the honest client. Note that an
attacker can also send related key shares here to retrieve the
MSBs of related premaster secrets (see Section 5). Of course,
the attacker cannot construct a valid Finished message since
the secret key is unknown to the attacker. The server receiving
a message crafted by the attacker will, therefore, terminate the
connection by either sending a fatal Alert message or closing
the TCP connection. However, the server always needs to
compute the premaster secret and derive the master secret
using the PRF. Therefore, the server’s response will depend
on the leading bits of the premaster secret.

If the attacker uses a timing side channel, the reliability
of the side channel can be improved as described in Subsec-
tion 3.5.

4.2 Analysis of TLS Key Derivations

Since the TLS key derivation is of special interest for this
paper, we will analyze it in detail. The starting point for the
key derivation is the PMS. In a two-step key derivation, first
a master secret is computed from this premaster secret, and
then two sets of keys (one for each communication direction)
are derived from the master secret.

How exactly the master secret is derived from the pre-
master secret depends on the negotiated protocol version
and cipher suite. Note that an attacker can observe the
ClientKeyExchange message on any version or cipher suite
and then send it as part of a different protocol version and
cipher suite to a server (as long as the server supports it). We
now analyze different TLS versions and how they use the
premaster secret to derive further keys with their PRFs. Our
analysis of critical block borders is summarized in Table 2.

Protocol version /
Cipher suites

Key derivation Critical pms comp.
block borders

TLS 1.2 (_SHA384) SHA-384 PRF 128, 239, 367, ...
TLS 1.2 (others) SHA-256 PRF 64, 119, 183, ...
TLS 1.0 and 1.1 MD5/SHA-1 PRF 110, 238, 366, ...
SSLv3 Custom MD5/SHA-1 45, 54, 55, 56, 99, 118,

119, 120, ...

Table 2: Key derivation properties of non-PSK cipher suites.
The first and second column provide the protocol version,
cipher suite, and the hash algorithms used in the key derivation
function. The last column provides critical block borders for
premaster secrets pms in bytes. For example, a 239-byte long
pms consumes one less SHA-384 hash compression than a
240 bytes long pms.

TLS 1.2. In TLS 1.2 the master secret is derived from an
HMAC-based PRF construction. The master secret is com-
puted as:

ms = PRF(pms, label,ClientRandom || ServerRandom) .

The premaster secret will be used as a key for HMAC op-
erations within the PRF. The used HMAC depends on the
selected cipher suite. Per default, SHA-256 is used, but the
cipher suite could also specify the usage of SHA-384 (if the
cipher suite name ends with _SHA384). For TLS 1.2 the side
channel analysis of Section 3 can be directly applied. The
premaster secret maximum size is the size of the DH key.
In configurations with recommended DH key sizes larger
than 2000 bits, the computed premaster secret will with over-
whelming probability be larger than the block border (64 bytes
for SHA-256 and 128 bytes for SHA-384). If the premaster
secret is larger than the block size of the hash function, it must
be hashed before using it in the HMAC computation. This
potentially enables a side channel based on the number of
hash compression function invocations (cf. Subsection 3.2).
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Note that in the case of SHA-384-PRFs with DH key sizes
slightly bigger than 1024 bits, the hash function invocation
side channel and the resulting oracle OH can be used (see Sub-
section 3.1).
TLS 1.0 and TLS 1.1. These two protocol versions use the
same PRF, which is based on a combination of SHA-1 and
MD5. In this PRF, the premaster secret is split into two halves:
The first half enters an expansion function based on MD5,
while the second half enters a distinct key expansion function
based on SHA-1. The final output of the TLS 1.0 and 1.1 PRF
is the XOR of these two expansion functions. If the premaster
secret has an odd number of bytes, the byte in the middle of
the PMS will be used by both halves.

Since TLS 1.0 and TLS 1.1 split the shared secret into
two halves, the computations for inputs that reach the block
borders changes in comparison to TLS 1.2, as each hash
function adds its own padding and length bytes internally.
Note that since two hash functions are used at the same time
(with identical input lengths and hash function properties such
as input block size, length, and padding, see Table 1), the
created side channel is amplified. For TLS 1.0 and TLS 1.1
the size of inputs which leak the top x leading zero bytes at
the nth block border can be computed with the formula

cbbTLS1.0/1.1(x,n) = (64n−9) ·2+ x , (2)

where x is the number of most significant bytes to be leaked.
SSLv3. Even though SSLv3 is deprecated, there still exist
servers on the web which support it.5 SSLv3 key derivation is
strictly different from the key derivation used in TLS. While
the leading zero bytes from the premaster secret are stripped,
the master secret is then computed as

ms :=MD5(pms || SHA1(pms || ”A” || r1 || r2)) ||
MD5(pms || SHA1(pms || ”BB” || r1 || r2)) ||
MD5(pms || SHA1(pms || ”CCC” || r1 || r2)) ,

(3)

where r1 := ClientRandom and r2 := ServerRandom.
This computation results in more opportunities for an at-

tacker to construct a possible side channel from an additional
hash function compression invocation. The outer MD5 func-
tions hash the shared secret in concatenation with the output
of the inner SHA-1 function. The outer function adds an off-
set of 20 bytes to the shared secret. As this operation is done
three times, the side channel within the MD5 computation
is amplified by a factor of three. The inner SHA-1 computa-
tion hashes different inputs each time. The first call hashes
a label of length 1, while the second call hashes a label of
length 2, and the last call hashes a label of length 3. Each time
two (32-byte long) random values of the client and server are
hashed as well. This generates a total offset of 65, 66 and 67
bytes, respectively. The resulting inputs (in bytes) which leak

5According to the SSL pulse measurements of September 2020, SSLv3
is supported by 4.4% of the servers from the Alexa top 150k list.

the top x leading zero bytes at the nth block in SSLv3 can
therefore be computed as:

cbbSSL(x,n) = 64n− (9+20)+ x

cbbSSL−A(x,n) = 64n− (9+65)+ x ; n > 1
cbbSSL−BB(x,n) = 64n− (9+66)+ x ; n > 1

cbbSSL−CCC(x,n) = 64n− (9+67)+ x ; n > 1

(4)

TLS DHE-PSK. Although not as widespread, TLS also of-
fers a variety of cipher suites that allow the usage of preshared
keys (PSK) [31]. In DHE-PSK, the client basically performs
the same handshake as a normal DHE handshake, resulting in
the shared DH value gab mod p. Then, both client and server
authenticate using a premaster secret which is computed based
on the preshared key PSK as

pms := len(gab mod p) || gab mod p || len(PSK) || PSK ,
(5)

where len(x) indicates a two-byte length value of x (in bytes).
Since DHE-PSK changes the way the premaster secret is

computed, the block borders for the Raccoon attack change
as well. Interestingly, the block borders depend on the length
of the preshared key PSK. DHE-PSK shifts the length of the
PMS, which enters the PRF by 4+ |PSK| bytes. This can
bring otherwise unfeasible modulus sizes in proximity to the
critical block border for the attacker. An attacker being able to
set a PSK for an arbitrary, attacker-controlled identity could
therefore choose a PSK to reach the advantageous critical
block boundaries. A related side channel exists in SSH and is
described in Section 8.

If the attacker is not an authenticated user, they could use
the DHE-PSK premaster secret processing within the PRF
to perform a different length-distinguishing attack. Since
the PSK length also directly influences the PRF computation
time, the server response time could be used to determine
the length of the PSK. Note that this is possible even if the
server does not repeat the DH public keys and strictly uses
ephemeral keys in DHE-PSK.

4.3 Dangerous TLS Modulus Sizes
Since the server chooses the modulus size and the attacker
has no variable-size inputs to the PRF (except for DHE-PSK
cipher suites), the attacker cannot influence the block borders
of the hash function and thus optimize their usability as a
side channel. Usually servers choose moduli whose lengths
are of the form 2n, like 210 = 1024, 211 = 2048 or 212 =
4096. The server is free to deviate from these and move to
arbitrary sizes. For common bit lengths 2n, the block border
will never realistically reach a critical block border as the
PMS would require too many leading zero bits. However,
if a server deviates from these common modulus sizes, it
can become possible for an attacker to hit the critical block
borders. For example, LibTomCrypt6 used to create 1036 bit

6https://github.com/libtom/libtomcrypt
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moduli, which would make OH feasible. A list of dangerous
modulus sizes is given in an extended version of this paper.7

5 Raccoon Premaster Secret Recovery Attack

Until now, we have discussed a distinguishing attack on TLS,
which allows an attacker to determine leading zero bytes
of the premaster secret. If the server reuses the DH values
for multiple connections (cf. [61]), the distinguishing attack
can be turned into a full premaster secret recovery attack.
This is the case for TLS-DH and for TLS-DHE if the server
disregards best practices and reuses ephemeral keys. Our
attack is based on the well-known Hidden Number Problem
described by Boneh and Venkatesan [17].

We use the attack scenario Raccoons from Subsection 4.1
which leaks the top k bits of the PMS. We assume the server
reuses the same secret DH exponent b; this reuse does usually
not depend on the TLS version or cipher suite (except for
export cipher suites not considered here), so our Raccoons

attacker can choose a beneficial TLS version and cipher suite
for the attack, as long as they are supported by the server. The
attack proceeds in four phases:
Phase 1: Passive MitM. In this phase, the attacker records
a complete TLS-DH(E) session and extracts ga from the
ClientKeyExchange message as well as gb, g and p from
the ServerKeyExchange or Certificate message.
Phase 2: Active web attacker. In this phase, the attacker
interacts as a client with the server. However, instead of
choosing a secret ephemeral DH value a′ and sending ga′

in the ClientKeyExchange message, the attacker chooses
random values ri ∈ Zq and sends the value xi = gagri in
the ClientKeyExchange message (cf. Figure 3). To fin-
ish this part of the TLS handshake, the attacker sends a
ChangeCipherSpec and the client’s Finished message, where
the content of the Finished message is chosen randomly be-
cause the attacker lacks the keys (master secret and the sym-
metric keys) to compute a valid Finished message correctly.

After sending ClientKeyExchange, the attacker starts mea-
suring a chosen length distinguishing oracle OH, OC, OP, or
OD, until some Alert message arrives from the server. The
attacker may repeat the measurement by sending the same
value ri to the server until some statistical test (e.g., Mann-
Whitney [44]) indicates that a sufficiently high probability
level has been reached. If the measurement indicates that the
leading k bits have been stripped, we have found a candidate
ri for an HNP equation. If the measured time indicates that
less than k bits have been stripped, a new random value ri+1
is chosen by the attacker and phase 2 is repeated.
Phase 3: Constructing an instance of HNP. Now that the
attacker has learned that for the candidate ri the oracle
Ok,b(ri) is True, the attacker knows that 0 < ri

b mod p =
gabgbri mod p < 2n−k. Subtracting 2n−k−1, we obtain the

7https://eprint.iacr.org/2020/1151

centered equation∣∣α · ti mod p− yi
∣∣< 2n−k−1 = p/2`+1 , (6)

where α := gab mod p is unknown (the hidden number) and
ti := (gb)ri mod p, yi := 2n−k−1 are known to the attacker.

Equation 6 corresponds to the randomized version of HNP
as defined by Boneh and Venkatesan [17], except that in our
case the oracle does not reveal the MSBs directly, but only
whether they are zero or not. Moreover, we center the equation
around zero and take the bias of p into account, as in [50].
Phase 4: Computing the premaster secret. Phase 2 and
3 are repeated until the attacker has obtained a sufficient
number of equations to solve the HNP instance and recovers
the hidden number gab, which is the premaster secret of the
connection the attacker observed in phase 1 of the attack.
We will show in Subsection 6.2 that this is indeed possible.
With the premaster secret the attacker can then derive the
master secret; with the master secret the attacker can proceed
to compute the symmetric keys and decrypt the connection.

6 Evaluation

In this section, we will analyze if the requirements of the Rac-
coon attack can actually be fulfilled by a real-world attacker,
namely, measuring the timing difference by the created side
channel and solving the HNP for real modulus sizes with
realistic leak sizes.

6.1 Timing Measurements
As demonstrated by the Lucky 13 attack [6], applying a hash
function to inputs of varying lengths results in a measurable
difference in processing times. We now shortly revisit this
finding by evaluating the OpenSSL library (version 1.1.1),
before putting it in the context of our attack.

Figure 3 shows a plot of the processing time (in cycles)
to compute HMAC with SHA-256 and SHA-384 for keys
of varying lengths, on 1024-byte messages. To simplify the
presentation, we report the median processing time across
10,000 experiments per input length. The step-like increase in
processing time as the key size increases can clearly be seen.
The first step in the increase of processing time leads to oracle
OH, the hash function invocation oracle. The subsequent,
slightly smaller steps lead to oracle OC, the compression
function invocation oracle. The smallest visible steps (for
SHA-256, when the input length is 128 · k− i,1≤ i≤ 8, and
similarly for SHA-384) lead to oracle OP; we analyze the cost
of exploiting this side channel in Appendix A.
Is the difference in processing times measurable in a re-
mote setting? To measure if the side channel is big enough
for a remote attacker, we created a test setup consisting of
two (non-virtual) machines, one simulating the attacker ma-
chine and one simulating a victim server. The machines are
directly connected with a 1 Gbit/s connection. The attacker
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Figure 3: Processing time to compute HMAC-SHA-256 and
HMAC-SHA-384 with keys of varying lengths for inputs
1KB in length, measured in CPU cycles. Reported values are
medians across 10,000 experiments per key length, performed
with OpenSSL version 1.1.1.

machine used an Exablaze ExaNIC HPT network adapter.
This network card is specifically built to generate high preci-
sion hardware timestamps.

For the evaluation, a tool on the attacker machine repeatedly
performed handshakes with the victim TLS server. The tool
generated a DH private value and computed the resulting
DH shared secret, alternating between handshakes where
the DH secret starts with a single leading zero byte or no
leading zero bytes. For each handshake, the tool recorded
the fact if the MSBs of the DH secret are zero, as well as the
server’s response time. To analyze whether the side channel
is measurable we used a modulus size of 1032 bits, as this
creates the hash function invocation side channel OH (see
Subsection 3.1). We collected 100,000 measurements each
for premaster secrets with a leading zero byte and without a
leading zero byte.

In broad terms, the attacker would use a classifier to ap-
proximate the oracle’s response. That is, the attacker collects
server response times from handshakes using DH share ga+r,
and attempts to deduce from these measurements the oracle
response OH(ga+r). Any classifier will exhibit some proba-
bility of false classification. False negatives occur when the
classifier concludes that OH(x) = False when OH(x) = True.
Similarly, false positives occur when the classifier wrongly
concludes OH(x) = True when OH(x) = False.

In our experiments, the Mann-Whitney test [44] performed
very well for distinguishing between the two cases. This test
can be configured with a desired false positive probability,
which then determines the (empirical) false negative proba-
bility. With 100 samples per case (200 measurements overall)

and a 10% false positive rate, the false negative rate was
10.4% (we also empirically confirmed that the false positive
rate is 10%). To estimate these false-reporting rates, we con-
ducted 200,000 experiments, where in each experiment the
samples for each set were randomly selected from the pool of
100,000 collected samples. Increasing the number of samples
to 1,000 (2,000 measurements overall) allowed us to achieve
a false positive rate of 0.009200% and a false negative rate of
0.000795%.8

An attacker would have to account for the false reporting
rates when performing the attack. In order to deal with false
positives, the attacker re-measures timings for any reported
positive. That is, the attacker first performs 200 measure-
ments for each x value. For values where the classifier outputs
OH(x) = True, the attacker re-measures the processing time
for x, obtaining 2,000 more measurements, and re-runs the
classifier.

Iterating over a total of m DH values, in expectation at
most m · 255/256 values are true negatives,9 of which m ·
255/256 · 10% · 0.009200% = m · 9.1 · 10−6 will be falsely
labeled as positives in both classification rounds. Similarly,
m/256 are true positives, of which m/256 ·(1−10.4%) ·(1−
0.000795%)=m ·0.35% will be correctly labeled as positives
in both classification rounds.

The attacker needs to collect roughly 180 true positive
values to solve the HNP problem for a 1024 bit modulus (see
Section 6.2). Choosing m = 55,000 results in 192 correctly
identified positives in expectation, and 0.5 false positives. The
overall required number of timing samples is therefore 22.34
million. These numbers are not necessarily optimal.

Other classification methods and scenarios. Estimating the
cost of performing the attack over the public Internet is an in-
teresting challenge, but outside the scope of this work. Crosby
et al. have examined the feasibility of performing such timing
attacks and found significant variability that depends on the
attacker and victim hosts and the distance between them [22].
They have also suggested a different classifier than the one we
use, the “Box Test”. We have in fact, initially used this test as
our classifier, but it significantly underperformed the Mann-
Whitney test. Surprisingly, Crosby et al. have also considered
the Mann-Whitney test, but reported that it underperformed
their Box Test [22] (their test setup includes measurements
on the same LAN, similarly to ours, as well as measurements
over the Internet). The reason for this discrepancy is unclear
to us. At any rate, providing a comprehensive comparison of
classifiers is again an interesting task, but also out of scope
for this work.

8To estimate these lower rates, we ran our classifier on 20 million sets of
randomly-sampled 2,000 measurements.

9If we denote the most significant byte of the modulus as v, then v−1/256

shared secrets are true negatives. It is common for v to be smaller than 256,
slightly lowering the attack cost, but we prefer to give a worst-case analysis.
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6.2 Solving the HNP
We simulated and solved the HNP problem for DH groups G
with 1024, 1036, 2048, 3072 and 4096 bits and varying oracle
sizes k = 8,12,16,20,24.

To reduce the number of exponentiations we do not sim-
ulate querying the oracle, because the oracle for larger bit
leaks only has a very low success probability. In order to
avoid a large number of false guesses, we choose values
0 < y′i < 2n−k, which we interpret as a value y′i = gabgbri with
MSBk(gabgbri mod p) = 0 for some unknown ri. We then
calculate ti := (gab)−1y′i = gbri mod p, 1≤ i≤ d, and assume
that we could have guessed a corresponding ri with probability
1/2` in the first place. We take y1 = y2 = . . .= yd = 2n−k−1 and
get d equations |gabti mod p− yi|< p/2`+1, where `= k− ε

is the effective number of bits leaked (see Section 5). To solve
this instance of the HNP, we consider the lattice L(B) in Zd+2

generated by the column vectors of

B =



1
dp/2e

d2`et1 d2`ey1 d2`ep
d2`et2 d2`ey2 d2`ep

...
...

. . .
d2`etd d2`eyd d2`ep


.

This lattice contains the vector v1 = (p,0, . . . ,0)>, which is
usually a shortest non-zero vector. More importantly, the
lattice contains the hidden vector v2 = (α,∗, . . . ,∗)>, where
α = min{gab mod p, p− gab mod p}. The first component
of that vector reveals the secret gab.

The expected length of the hidden vector v2 is approxi-
mately

√
(d +2)/12 · p. But also, by the Gaussian heuris-

tic, the length of a “typical” shortest vector in L(B) is ap-
proximately

√
(d +2)/(2πe)(detB)1/(d+2), where detB ≈

2`d−1 pd+1. If the number d of equations is sufficiently large
and ` is not too small, v2 is expected to be smaller than typical
shortest vectors in L(B) and we may hope to recover ±v2 as
the second vector (after ±v1) in a reduced basis of L(B).

For our experiments we used the BKZ 2.0 [21] version
of the Block-Korkine-Zolotareff [58] lattice basis reduction
algorithm with two block sizes β = 40,60. We used the imple-
mentation of the fplll/fpylll library [25] in the SageMath [63]
computer algebra system. The results are shown in Table 3.

6.3 Putting It All Together
As we have shown in Subsection 6.1, it generally is possible to
measure the timing difference from the presented side channel.
Depending on the modulus size, the supported version and
cipher suites, an attacker might be able to measure the timing
difference in a remote setup. An attacker can then use the
measurements to solve an instance of the HNP, as described
in Subsection 6.2. We showed that for real modulus sizes
(around 1024 bits), we could solve the equations with an 8-bit

leak. This demonstrates that it is generally possible to perform
the Raccoon secret recovery attack against TLS, and therefore
compute the PMS and decrypt the session. Currently deployed
TLS servers also commonly use 2048-bit moduli. Solving the
HNP for those sizes and an 8-bit leak is yet unsolved, and it
is still an open question how hard it actually is. Nevertheless,
note that an attacker can potentially leak more than 8 bits,
making the attack feasible against bigger moduli.

7 Alexa Top 100k Scan

To estimate the impact of the vulnerability on currently de-
ployed servers, we conducted a scan among the Alexa Top
100k on port 443. We evaluated how common static-DH
cipher suites are by trying to negotiate them. Addition-
ally, we evaluated how prevalent key reuse is in TLS-DHE
and evaluated the used modulus sizes. We also tried to
find servers that are vulnerable to a direct oracle by send-
ing ClientKeyExchange messages, which either resulted in
a PMS with a leading zero byte or not and by observing
the server’s behavior. For this purpose, we used techniques
from [16,45] and carefully observed the TCP connection state
and tried omitting messages. We performed each handshake
three times to rule out inconsistencies in the server behavior.
If a server showed at least occasionally different behavior, we
performed additional handshakes (97 each) to collect more
data on the issue.
DH & DHE support. The results of our scan are shown
in Table 4. In total, 86607 servers of the scanned servers
supported SSL/TLS. A total of 32% of the scanned servers
supported DHE cipher suites. Only a single server advertised
support for static DH cipher suites.
Key reuse. Although typically servers reuse ephemeral keys
until they are restarted, it is not enough to monitor the
ephemeral key in two consecutive handshakes in order to
validate if a server reuses ephemeral keys, as many hosts are
using load balancing setups in which multiple different TLS
servers are handling incoming connections. Usually, each
server manages its own ephemeral keys, and these keys are
not shared across servers. Since we do not know how many
potential servers are within a load balancing setup, we do
not know how many handshakes we have to perform to make
sure that we can detect key reuse. To overcome this issue, we
observed all public keys which were transmitted to us during
the whole scanning process. If we observed at least one reuse,
we considered the server as a server reusing ephemeral keys.
We did not evaluate for how long these servers reused their
public keys, as this would require a longitudinal study that is
outside the scope of this work.

Our scans showed that a total of 3.33% of the scanned
servers reused their ephemeral DH keys. This is slightly
lower than the 4.4% reported by Springall et al. in 2016 [61],
but note that Springall et al. scanned the Alexa Top 1 Million,
whereas we scanned the Alexa Top 100K. Furthermore, DHE
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DH group n ε k

24 20 16 12 8

RFC 5114 1024 0.532
β = 40, d = 50

T = 6s±0s
β = 40, d = 60
T = 10s±1s

β = 40, d = 80
T = 26s±4s

β = 40, d = 100
T = 111s±4s

β = 60, d = 200
T = 9295s±467s

LibTomCrypt 1036 0.000
β = 40, d = 50

T = 6s±0s
β = 40, d = 60
T = 10s±1s

β = 40, d = 80
T = 28s±1s

β = 40, d = 100
T = 52s±5s

β = 60, d = 180
T = 5613s±205s

SKIP 2048 0.056
β = 40, d = 100
T = 112s±5s

β = 40, d = 120
T = 207s±18s

β = 60, d = 160
T = 977s±46s

β = 60, d = 250
T = 13792s±47s

RFC 3526 3072 0.000
β = 40, d = 150
T = 1243s±59s

β = 40, d = 190
T = 2390s±65s

β = 60, d = 250
T = 27192s±312s

RFC 7919 4096 0.000
β = 40, d = 200
T = 3601s±6s

β = 60, d = 250
T = 30023s±85s

Table 3: Our parameter choices and calculation costs to recover gab in a Raccoon attack for five well-known DH groups, using
BKZ 2.0 with block size β, number of equations d and average calculation time T . We aborted the BKZ reductions as soon as the
hidden number was found (up to BKZ loop completion). Each simulation was repeated 8 times with random secrets on a vCPU
with 2 GHz clock speed. The bit-size n of the modulus and its bias ε = n− log2 (p) are also given. Note that for k = 8, we had to
use more equations for the RFC 5114 group than for the LibTomCrypt group, mainly due to the larger bias (`= 7.468� 8).

support by major clients declined during this period, and
OpenSSL removed ephemeral key reuse in 2016. Springall et
al. did measure the time period for key reuse, and found that
1.3% of servers supporting DHE reused values for at least one
day, and 1.2% for at least 7 days.

Key lengths. The key lengths used by the scanned servers
can be seen in Table 4. The data shows that servers that
reuse ephemeral keys generally tend to use weaker keys than
servers who do not.

Modulus sizes # Domains # With key reuse

1024 bits 5310 2213
2048 bits 23428 1116
4096 bits 3045 4
8192 bits 1 0
Other 277 0

Total 32061 3333

Table 4: The observed key lengths for DHE cipher suites in
the Alexa Top 100k scan. Units denote the number of domains
with the corresponding key length.

Perfect direct oracles. A total of 87 servers were exhibiting
a perfect direct oracle as described in Subsection 3.4, mean-
ing that they were reliably showing different behavior based
on the leading zero byte of the PMS. Almost all of these
servers (84) were reusing their ephemeral keys. We finger-
printed this vulnerability and were able to attribute most of
the discovered oracles to F5. F5 confirmed the vulnerability
and released a patch on the 9th of September 2020 in Security
Advisory K91158923 (CVE-2020-5929). These servers were
sending either one or two handshake failure alerts depending

on whether the PMS started with a zero byte or not. The vul-
nerability was not present on all supported cipher suites. Note
that an attacker could still use any vulnerable cipher suite to
attack the connection of a non-vulnerable cipher suite.

Imperfect direct oracles. We found 815 servers which did
not show a perfect oracle, meaning that they did not allow for
a distinction with every executed handshake, but only occa-
sionally showed a distinguishing behavior. We assume that
we observe this behavior because of another factor that we did
not control (or cannot control) that influences the behavior dif-
ference. These factors may include CDN setups, where only
parts of the CDN are vulnerable, internal memory allocations,
network issues, or resource shortages. We did not exclude
these hosts from our study but investigated if the behavior
difference correlates with a leading zero byte in the PMS or
not. Any behavior difference unrelated to a leading zero byte
is expected to happen with roughly the same probability on all
executed handshakes. If the difference is somehow related to
a leading zero byte, we should see a non-uniform distribution
of the responses, which can be used by an attacker to distin-
guish if the PMS for a given ClientKeyExchange message
will start with a zero byte or not. To check if the behavior
difference is sufficiently correlating, we used Fisher’s Exact
test [32] in the cases where we observed only two different
responses, while we used the Chi-square [33] test if we had
more than two different responses from a server. These tests
compute a p-value, which indicates whether a null hypoth-
esis is correct. In our case, the null hypothesis was that the
observed behavior difference was appearing by chance, and
is unrelated to a leading zero byte. For each host, we tested
each cipher suite in each protocol version individually and
accepted all hosts as vulnerable for which the p-value on one
of the executed tests was smaller than 10−9. Given these tests,
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we discovered that a total of 815 servers (excluding perfect
oracles) showed an observable difference based on a leading
zero byte in the PMS, however, none of these servers were
reusing ephemeral public keys. As of the time of writing,
we do not know which implementation is responsible for this
behavior.

Conclusion The evaluation shows that a non-negligible
amount of servers are reusing ephemeral keys, and there-
fore are generally vulnerable to Raccoon attack. Over 66% of
those servers use keys that can be exploited by us with k = 8,
while the remaining servers require more bits to be leaked in
order to practically solve the HNP with our approach. The
data also shows that OD is found in real TLS implementations.

8 Impact on TLS and Beyond

Exploitability. The Raccoon attack is generally hard to ex-
ploit, since the prerequisites for the attack are quite rare
nowadays. Parallel to the disclosure of this vulnerability,
the last major browser (Firefox) stopped supporting DHE ci-
pher suites. Even if the conditions of the attack are met, the
attack still requires precise timing measurements, which are
hard to perform in real networks.

Stronger attackers in a co-located setup may be able to use
more advanced techniques like cache side channels to avoid
timing measurements. We consider these stronger attacker
models outside the scope of this work.

Attacking ECDH and ECDHE Cipher Suites. ECDH(E)
cipher suites are generally not affected by the Raccoon at-
tack, as TLS mandates that leading zero bytes are preserved.
However, we identified some implementations which strip
leading zero bytes from the coordinates, and then add those
bytes back. This may result in a small timing side channel
that leaks the MSB of the x-coordinate of the shared point.
The EC-HNP [37] is related to the HNP and could potentially
be applied here. However, a full analysis of this potential
vulnerability is outside the scope of this work.

Downgrading TLS Sessions to DHE. Typical TLS connec-
tions are established with TLS ECDHE cipher suites. If an
attacker can perform the complete attack within the hand-
shake timeout, the attacker could perform a downgrade at-
tack, and target TLS sessions that would otherwise not use
Diffie-Hellman. The attacker acts as a MitM, and removes
any non-DHE cipher suites from the cipher suite list in the
ClientHello message. Assuming both the client and server
support at least one common DHE cipher suite, they will then
attempt to handshake with it. The primary defense mechanism
in TLS against such attacks is the Finished message, which
includes a hash over the entire session transcript. But since
the attacker learns the shared secret within the handshake
timeout, the attacker can forge a valid Finished message,
leading to a full break in security.

However, performing the attack fast enough is likely in-

feasible. The typical handshake timeout is around 30 sec-
onds. The attacker needs to handshake with the victim server
millions of times within this short period while performing
accurate timing measurements for each server response. Fur-
thermore, the attacker then needs to solve an instance of the
HNP problem, which we were only able to accomplish with
hours of computation time for small leaks.

One caveat is that some TLS libraries exhibit behavior that
allows an attacker to stall TLS handshakes indefinitely [2].
Such behavior would make the online downgrade plausible.

Moreover, TLS False Start [43] allows the client to send
encrypted application-layer data before receiving the server’s
Finished message. In principle, if the client is willing to
use DHE with False Start, the attacker does not need to learn
the shared secret within the handshake timeout, but rather
at any point in the future. The data sent under False Start is
typically particularly sensitive, such as authentication cookies;
compromise of this data at any point in the (short) future
typically leads to a full break in security. The False Start
standard explicitly allows DHE cipher suites, but only with
well-known groups with 3072-bit modulus or larger; however,
typical TLS client implementations disallow DHE use with
False Start altogether. To summarize, this concern is mostly
theoretical.

TLS 1.3. In TLS 1.3 the leading zero bytes are preserved
for DHE cipher suites (as well as for ECDHE ones). So
broadly speaking, Raccoon does not apply to TLS 1.3. Note
that our attack could work on a variant of TLS 1.3, which
explicitly allows key reuse (or even encourages it), called ETS
or eTLS [59]. If ephemeral keys get reused in either variant,
they could lead to micro-architectural side channels.

DTLS. The DTLS KDF [54] is analogous to that of TLS, and
has the same properties with regards to timing. However, an
attacker may not be able to measure the timing difference,
as DTLS does not necessarily send an error message when
sessions are ungracefully terminated: DTLS is UDP-based,
so it does not send TCP FIN or RST packets, and some im-
plementations do not send alert messages at all. An attacker
may be able to overcome these difficulties using techniques
similar to [7], but we consider this out of scope for this work.

SSH. In SSH, ephemeral key reuse is far less common than
in TLS (as shown by [64] in 2017). This is probably due to
the more homogeneous deployment of SSH, and the raised
security requirements, as a break in SSH could lead to remote
code execution. In SSH, the shared secret is encoded as
an mpint, which explicitly removes leading zero bytes. In
contrast to TLS, the shared secret is hashed with the session
transcript to generate the ‘exchange hash’. This essentially
removes the attack prerequisite for a dangerous modulus size.
The attacker can guarantee that the difference of a stripped
zero byte always results in less processed blocks within the
hash function, since attacker-controlled messages with non-
fixed length are included in the computation. To summarize,
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SSH servers which reuse ephemeral DH values are at greater
risk to the attack than TLS servers which do so, but such SSH
servers are rare.

Interestingly, SSH also strips the leading zero bytes of the
shared secret for X25519. RFC 8731 [1] explicitly mentions
that this is a potential problem, as it leaks the leading zero
byte of the shared secret, but decided not to address the issue
for backwards compatibility reasons.

Other protocols. XML Encryption [30] and IPsec [39, Sec-
tion 2.14] preserve leading zero bytes. JSON Web Encryp-
tion [38] only offers ECDH key agreement. The estab-
lished shared secret is processed according to NIST SP 800-
56A [52], which requires leading zero bytes to be preserved.

9 Related Work

Timing side channels caused by hash functions. In 2013,
AlFardan and Paterson showed that tiny timing differences
by processing inputs of different lengths can be used for
the Lucky 13 attack [6]. Albrecht et al. showed that years
later, the same vulnerability was still affecting real-world
implementations and common (but not recommended) miti-
gation techniques are ineffective [5]. Some developers have
changed the interface of HMAC functions to mitigate flaws
like Lucky 13 [53]. These interfaces now also take the max-
imum amount of data that could have been passed to the
HMAC function as an input.

Bleichenbacher’s Attack. Daniel Bleichenbacher was the
first to describe a real-world attack on TLS recovering the
premaster secret [15]. His attack relied on a direct oracle
where the server revealed if the decrypted RSA plaintext was
PKCS#1 compliant or not. The primary condition for this
compliance is for the two most significant bytes of the plain-
text to take a specific value, making the attack somewhat
similar to Raccoon. Furthermore, Bleichenbacher’s attack
relies on an attacker choosing a multiplier s and querying
whether m · s starts with these specific MSBs, where m is the
plaintext the attacker wishes to decrypt. One could therefore
think that Raccoon could be mounted using the same attack
algorithm. However, in Raccoon the attacker cannot choose
the multiplier. Rather, the attacker can only compute grb

for a known r, and query whether grb ·gab is compliant; the
first multiplier essentially acts as a pseudorandom function
from the attacker’s point of view. Recent work by Ronen et
al. [56] does use lattices and the HNP to perform the attack
in parallel, but most variants of Bleichenbacher’s attack use
ad-hoc algorithms where the attacker carefully chooses values
for s. To conclude, while Raccoon shares some similarities to
Bleichenbacher’s attack, and both can be mounted using HNP
solvers, the latter is often mounted using simpler algorithms.

While the TLS specification has described the attack coun-
termeasures already in version 1.0 [26], several works later
showed that this attack was still applicable in different vari-

ants. Klíma et al. discovered a second-level oracle which re-
vealed the same information, but on checking a different value,
namely the TLS version number embedded in the PMS [40].
ROBOT showed that years later, many modern TLS servers
are still vulnerable to variants of the attack [16].
Attacks on export-grade crypto. Another line of attacks ex-
ploited the usage of export-grade cryptography and obsolete
protocols to break TLS. DROWN recovered premaster secrets
from secure TLS-RSA connections by exploiting public-key
reuse and instances of the (deprecated) SSLv2 protocol [10];
DROWN is also an instance of Bleichenbacher’s attack. Log-
jam [2] and FREAK [13] targeted 512-bit key sizes used in
DHE-EXPORT and RSA-EXPORT cipher suites to recover
the PMS based on weak export keys. Raccoon attack does not
rely on the presence of outdated cryptographic mechanisms.
Timing attacks against the TLS handshake. Brumley and
Boneh measured the timing differences in TLS-RSA decryp-
tion on different ciphertexts [20]. From these timing differ-
ences, they were able to compute the private key of the server.
Meyer et al. constructed a Bleichenbacher oracle from timing
differences in the handling of valid and invalid PKCS#1 mes-
sages, which they used to compute the PMS of a previously
recorded TLS-RSA session [46].
Attacks using HNP solvers. The HNP has been applied in
many attacks against DSA, ECDSA with partially known
nonces and signatures in zero-knowledge proofs, using a
variety of side channels [11, 23, 34, 50, 51]. Breitner and
Heninger used a lattice-based HNP solver to compute private
ECDSA signing keys generated by cryptocurrency code [18].

Some previous attacks on the TLS protocols also have
made use of lattice techniques and HNP solvers. Brumley
and Tuveri exploited a timing side channel in the ECDSA
signature generation during the TLS handshake [19].
Attacks against TLS Diffie-Hellman. In addition to the
above-mentioned Logjam attack [2], there exist several stud-
ies on the security of TLS Diffie-Hellman. Valenta et al.
analyzed the impact of small-subgroup attacks [64]. Dorey et
al. analyzed how plausibly deniable backdoored parameters
could be generated [29]. Additionally, they performed a study
to analyze the prevalence of such parameters.
Proofs on TLS-DH(E). TLS-DHE and TLS-DH have been
proven secure under the PRF-ODH assumption by [36] and
[42], respectively. As this work has shown, this assumption
is not met by current real-world TLS implementations.

10 Conclusions

Beyond the specifics of the attack, we argue that its existence
can also teach us broader lessons for cryptographic protocols.
Forgoing forward secrecy is dangerous. Forward secrecy
is a well-known security goal for cryptographic protocols and
was intensively analyzed in the context of TLS in [61]. Our
attack exploits the fact that servers may reuse the secret DH
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exponent for many sessions, thus forgoing forward secrecy.
In this context, Raccoon teaches a lesson for protocol secu-
rity: For protocols where some cryptographic secrets can be
continuously queried by one of the parties, the attack surface
is made broader. The Raccoon attack shows that we should
be careful when giving attackers access to such queries.

Secrets should be constant-size. The dangers of non-
constant-time implementations are well-known. For example,
they have been repeatedly demonstrated to break ECDSA as
used in TLS. One of the reasons for these breaks is that the
processing of variable-length secret values within the imple-
mentation usually results in non-constant execution time. We
argue that future protocol designs should make sure that all
their secrets (including intermediate values and their internal
number representation) are of fixed size.

Countermeasures. The most straightforward mitigation
against the attack is to remove support for TLS-DH(E) en-
tirely, as most major client implementations have already
stopped supporting them. Moreover, server operators should
disable DHE key reuse, which completely prevents the practi-
cal attack even if support for DHE cipher suites is prioritized.

Updating the TLS specification to preserve leading zero
bytes is impractical. In fact, experience shows that even de-
ployment of new protocol features conforming to the existing
specification is hard. This is because many implementations
in the wild only implement a subset of the specification, often
in a buggy way; see [12]. Since TLS 1.3 is not vulnerable
to the attack by design, we propose to focus on the TLS 1.3
deployment rather than trying to update the old specification.

To prevent timing-based side channels in legacy applica-
tions with length-varying secrets, vendors must ensure that
functions are implemented in constant time. This can be done
as in the Lucky 13 mitigation or by computing the values
for different fake parameters and discarding the fake ones
afterwards. However, one has to be very careful when imple-
menting such mitigations; previous research has shown that
this kind of mitigations adds code complexity and may still
leave the side channel open [5] or introduce even more severe
vulnerabilities [60].
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Figure 4: Running time of the SHA-256 finalize function for
inputs of varying lengths, measured in CPU cycles. Reported
values are medians across 10,000 experiments per key length,
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A Exploiting OP

Following Subsection 6.1 (see Figure 3), we now discuss
mounting the attack using OP, the Key Padding Oracle. To
recap: The computation time of HMAC-SHA256 exhibits
small “steps” when the input key length is 128 ·k− i,1≤ i≤ 8.
In particular, when using a 1024-bit (128 bytes) DH modulus,
there is a measurable timing difference when the MSB is zero.
Unlike previous oracles discussed in this work, this oracle
allows attacking commonly-used modulus sizes, albeit at a
much greater cost due to the smaller timing difference.

Figure 5: Running time of the SHA-256 update function for
inputs of varying lengths, measured in CPU cycles. Reported
values are medians across 10,000 experiments per key length,
performed with OpenSSL version 1.1.1.

Our closer analysis revealed that this timing difference
stems from the “finalize” function of the hash implementa-
tion. Figure 4 presents the (median) running time of this
function for each input length. In broad terms, for inputs
which are slightly shorter than a full block, the call to “fi-
nalize” must execute an additional internal call to the hash
compression function. Contrast with Figure 5 which shows
the running time of the “update” function; Figure 3 shows the
total running time for computing HMAC-SHA-256, which
includes both functions as internal calls, and therefore shows
both step-like behaviors.

We repeated the calculation from Subsection 6.1 for this
smaller side channel. With 1,000 samples per case (2,000 mea-
surements overall), and a 20% false positive rate, the false
negative rate is 7.72%.10 Increasing the number of measure-
ments to 20,000 achieved a false positive rate of 0.004170%
and a false negative rate of 0.012530%.11 Repeating the same
calculation from Subsection 6.1, the attack therefore requires
roughly 302 million handshakes with the target server in to-
tal (compared to 22 million handshakes when exploiting the
easier case of exploiting OH, as described in Subsection 6.1).
These numbers are not necessarily optimal.

10As before, we estimated these rates using 200,000 experiments.
11We estimate these rates using 10 million sets of randomly-sampled

20,000 measurements. We further note that we configured the test with a
false positive rate of 0.01%, but obtain a lower false positive rate. This could
be an artifact of the approximations the test uses internally.
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