
Lower Bounds on the Degree of Block Ciphers

Phil Hebborn1, Baptiste Lambin1, Gregor Leander1, and Yosuke Todo1,2

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany,
phil.hebborn@rub.de,baptiste.lambin@protonmail.com,gregor.leander@rub.de

2 NTT Secure Platform Laboratories, Tokyo, Japan, yosuke.todo.xt@hco.ntt.co.jp

Abstract Only the method to estimate the upper bound of the algebraic
degree on block ciphers is known so far, but it is not useful for the designer
to guarantee the security. In this paper we provide meaningful lower
bounds on the algebraic degree of modern block ciphers.

Keywords: Block cipher · Algebraic degree · Minimum degree · Lower
bounds · Division property · Parity set

1 Introduction

Along with stream ciphers and, more recently, permutation based cryptography,
block ciphers are among the most efficient cryptographic primitives. As such
block ciphers are one of the cornerstones of our cryptographic landscape today
and indeed are used to ensure the security for a large fraction of our daily
communication. In a nutshell, a block cipher should be an, efficient to implement,
family of permutations that cannot be distinguished from a randomly selected
family of permutations without guessing the entire secret key. The community
has, in general, a rather good understanding of the security of block ciphers and
arguments of their security have become significantly more precise and, using
tool-based approaches for many aspects, significantly less error-prone. However,
for some of the most basic properties a block cipher should fulfill, good arguments
are still missing. One of those properties is the algebraic degree of a permutation,
resp. the degree of a family of permutations. For a randomly drawn permutation,
the degree is n − 1 almost certainly. Thus, in order to be indistinguishable
from a random permutation, a block cipher should also have degree n− 1. This
observation, and generalisations of it, leads indeed to a class of attacks called
integral attacks, introduced already in [11,16]. Very similar concepts are known
as high-order differential attacks [17] and cube-attacks [12].

It is highly desirable to be able to argue that a given block-cipher has degree
n− 1, or in general high degree. However, so far, we only have upper bounds on
the degree of our ciphers. Those bounds, see e.g., [17] and in particular [8,6] are
very efficient to compute in most cases and far from trivial. Unfortunately, upper
bounds on the degree are not very helpful for a designer of a cipher, as this is not
what is needed to argue about the security of a given design. What we actually
need, and what has not been achieved so far, is to give meaningful lower bounds
on the degree.



Algebraic Degree of Keyed (Vectorial) Functions. Before we describe our
results, we will define precisely the degree and discuss how lower and upper
bounds have to be understood in order to avoid confusion, see e.g., [10] for more
background on Boolean functions. Consider a general set-up of a (parameterized,
vectorial) Boolean function

Fk : Fn2 → Fm2

with k ∈ F`2. Any such function can be uniquely described by its algebraic normal
form as

Fk(x) =
∑
u∈Fn

2

pu(k)x
u

where xu is short for
∏
i x

ui
i and pu(k) are functions

pu : F`2 → Fm2

mapping keys to values in Fm2 . If there is no parameter, i.e., no key, then all pu
degenerate naturally to constants and if, on top, it is not a vectorial Boolean
function, i.e., if m = 1, these constants are just bits, i.e., pu ∈ F2. The definition
of (algebraic) degree is the same in all cases and is given as

deg(F ) := max
u
{wt(u) | pu 6= 0}.

Here wt(u) denotes the Hamming weight of u, i.e., the number of 1 and this
weight corresponds to the number of variables multiplied in xu.

For clarity, consider the case of a keyed vectorial function. The degree of F is
d or higher if there exist a u of Hamming weight d such that pu is not zero, i.e.,
not the constant zero function.

A lower bound d on the degree of F implies that there exists at least one key
and at least one output bit which is of degree at least d. An upper bound d on
the degree of F implies that for all keys all output bits are of degree at most d.

For cryptographic purposes, the degree as defined above is not always satisfac-
tory. An attacker can always pick the weakest spot, e.g., an output bit of lowest
degree. A vectorial function of high degree might still have very low degree in one
specific output bit or, more general, in a specific linear combination of output
bits. This motivates the notion of minimum degree. For this, one considers all
non-zero linear combination of output bits 〈β, F 〉 and the minimum degree of all
those Boolean functions

minDeg(F ) = min
β 6=0

deg(〈β, F 〉).

A lower bound d on the minimum degree of a function implies that for all com-
ponent functions 〈β, F 〉 there exist a key such that the degree of the component
function is at least d. An upper bound d on the minimum degree of a function
implies that there exist at least one component function that has degree at most
d for all keys.

2



Table 1. Summary of the number of rounds to get full degree/full minimum degree/ap-
pearance of all max-degree monomials. We also label “tight” when they fit with the
upper bounds.

full degree full minimum degree all max-degree monomials
GIFT-64 8 (tight) 10 11
SKINNY64 10 (tight) 11 (tight) 13
PRESENT 8 (tight) 10 11

note
AES algebraic degree is at least 116 in 4 rounds

0 2 4 6 8 10 12
0

8

16

24

32

40

48

56

63

3

8

19

33

47

58
61 62 62 63

3

8

18

29

39

49

55
59

61
63

# of rounds

d
eg
re
e

Algebraic degree on Skinny64.

UB
LB

0 2 4 6 8 10 12
0

8

16

24

32

40

48

56

63

2 3

8

17

33

47

58
61 62 62 63

2 2
5

8

14

26

39

50

57
61

63

# of rounds

d
eg
re
e

Minimum degree on Skinny64.

UB
LB

Figure 1. Algebraic degree and minimum degree on SKINNY64, where UB and LB
denote upper bound and lower bound, respectively.

Our Results. In this paper we present – for the first time – non-trivial lower
bounds on the degree and minimum degree of various block ciphers with the sole
assumption of independent round-keys. More precisely, we assume that after each
round a new round key is added to the full state.

We hereby focus in particular on the block ciphers that are used most fre-
quently as building blocks in the ongoing NIST lightweight project3, namely
GIFT-64, SKINNY64, and AES. Furthermore, we investigate PRESENT. Our results
are summarized in Table 1. To give a concrete example of our results, consider
the block cipher SKINNY64 [4]. We are able to show that 10 and 11 rounds are
sufficient to get full, i.e., 63, degree and minimum degree, respectively. Together
with the known upper bounds, we get a rather good view on the actual degree
development of SKINNY64 with increasing number of rounds (see Fig. 1). Besides
the degree and the minimum degree, we also elaborate on the appearance of all
n possible monomials of maximal degree, i.e., degree n − 1. While this is not
captured by a natural notion of degree, it does capture large classes of integral
attacks. With respect to this criterion, we also show that 13 rounds are enough
for SKINNY64.

3 https://csrc.nist.gov/Projects/lightweight-cryptography

3



Technical Contribution. Our results are based on the concept of division
property and require a non-negligible, but in all cases we consider, practical
computational effort. They can be derived within a few hours on a single PC.
All code required for our results will be made publicly available.

The main technical challenge in our work (and many previous works based
on division property) is to keep the model solvable and the number of division
trails in a reasonable range. For our purpose, we solve this by optimizing the
division property of the key, a freedom that was (i) previously not considered
and (ii) allows to speed-up our computations significantly.

Previous Works. This paper has strong ties with all the previous works related
to division property. Division property is a cryptanalysis technique introduced at
EUROCRYPT’15 by Todo [23], which was then further refined in several works
[24,25]. Technically, the papers at EUROCRYPT’20 [13] is the most important
previous work for us. We will give a more detailed review of previous works in
Section 2 when also fixing our notation.

Outline We present our notation related to the division property in Section 2.
We try to simplify and clarify some previous definitions and results. We hope
that in particular readers without prior knowledge on division property might
find it accessible. In Section 3 we provide a high-level overview of our results and
how they were achieved. As mentioned above, the main technical contribution is
the optimization for a suitable division-property for the key, which is explained
in Section 4. Our applications and the detailed results for the ciphers studied
are given in Section 5. Being the first paper to derive meaningful lower bounds
on ciphers by relying only on independent round-keys, our work leaves many
open questions and room for improvements. We elaborate on this in Section 6
concluding our work.

Finally we note that all our implementations are available at

https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree.

2 Notation and Preliminaries

Let us start by briefly fixing some basic notation. We denote by F2 the finite
field with two elements, basically a bit, and by Fn2 the n-dimensional vector
space over F2, i.e., the set of n-bit vectors with the XOR operation as the
addition. For x, y ∈ Fn2 we denote by 〈x, y〉 =

∑
i xiyi the canonical inner

product. For a function F : Fn2 → Fm2 given as F (x) = (F (1)(x), . . . , F (m)(x))
with F (i) : Fn2 → F2, the F (i) are referred to as the coordinate functions of F
and any linear combination 〈β, F (x)〉 of those as a component function of F . We
use + to denote all kind of additions (of sets, vectors, polynomials, monomials)
as it should be clear from context.

In this section we start by recalling the development of division property since
its first introduction by Todo [22]. The technique has been proven very helpful in

4



many applications and led to a large variety of results. The notion of trails [26]
has been an important technical improvement that itself already has undergone
several iterations. We try to simplify notations and at the same time make some
previous definitions and results more rigid and precise. The aim is to be self
contained and accessible to readers without prior knowledge on division property.
Before doing so, we briefly recapture the previous developments.

2.1 Previous Works on Division Properties

This paper has strong ties with all the previous works related to division property
and as such, we would like to precisely describe where our work fits and what
are the precise relations and differences with the division property. Division
property is a cryptanalysis technique introduced at EUROCRYPT’15 by Todo as
a technique to study the parity of xu [23]. This initial variant is by now referred
to as the conventional division property (CDP). This was further refined to the
bit-based division property (BDP) by Todo and Morii at FSE’16 [25]. The core
idea of the division property is to evaluate whether the ANF of a block cipher
contains some specific monomials. More precisely, given a monomial m in the
plaintext variables, the BDP can essentially allows us to derive one of two possible
results: either the ANF of a block cipher does not contain any multiple of the
monomial m, or we simply do not know anything (i.e., we cannot prove the
existence or non-existence of the monomial or its multiples). Another way to see
the BDP is that, for a given set X, it splits the space Fn2 into two distinct parts,
depending on the value of the sum su =

∑
x∈X x

u, u ∈ Fn2 :

– A set K ⊂ Fn2 such that for any u ∈ K, we do not know the value of su.
– For the remaining u ∈ Fn2 \K, we know that su = 0.

While this was already powerful enough to find new integral distinguishers (e.g.
[22,24]), the imperfect nature of the division property means that some known
integral distinguisher could not be explained using the division property. This was
noticed by Todo and Morii in their FSE’16 paper, as a 15-round distinguisher over
the block cipher SIMON [3] could not be explained with BDP. They thus extended
the concept to three-subset division property (3SDP) to cover this distinguisher.
Now, for a given monomial, the 3SDP can give us one of the following:

– The ANF does not contains any multiple of the monomial.
– The ANF contains exactly this monomial.
– We cannot prove neither existence nor non-existence of the monomials.

The term three-subset comes from the fact that we now split Fn2 into three parts:
one where we know that su = 0, one where we know that su = 1 (aka, the L set),
and the results is unknown for the remaining u’s (aka, the K set). Again, there
is still a loss of information and there are some cases where we do not get any
information.

The main reason for this loss of information comes from the fact that previous
techniques give results that are independent from the key used, hence the inability

5



to precisely compute (parts of) the ANF. This fact was noticed and exploited
at EUROCRYPT’20 by Hao et al. [13], where they introduced the three-subset
division property without unknown subset (3SDPwoU). Their idea was to remove
the “unknown subset”, splitting Fn2 into two parts, either su = 0 or su = 1,
however the implication for this is that we can no longer ignore the key. While
they applied this technique to stream ciphers, they mentioned that this technique
might be used for block ciphers, but left as an open problem.

It is worth noting that this idea of splitting Fn2 into two parts where either
su = 0 or su = 1 has also been studied as another view of the division property
by Boura and Canteaut at CRYPTO’16 [7] using the term parity set. However,
they did not focus on actual algorithmic aspects. For our results, the focus on
algorithmic aspects and in particular the notation of division trails is essential.

To summarize, originating with the division property, many variants such as
BDP, 3SDP, and the parity set (which is essentially the same as the 3SDPwoU)
have been proposed. After many algorithmic improvements for BDP and 3SDP,
nowadays, it enables us to evaluate the most extreme variant, parity set, which
allows to decide whether or not a specific monomial appears in the ANF.

2.2 Division Properties and the ANF

Any function F : Fn2 → Fn2 can be uniquely expressed with its algebraic normal
form.

F (x) =
∑
u

λux
u

where λu ∈ Fn2 . It is well known that the coefficients can be computed via the
identity

λu =
∑
x�u

F (x) (1)

where x � u if and only if xi ≤ ui for all i where elements of F2 are seen as
integers.

We start by recalling the division property, more accurately the definition of
parity set, as given in [7].

Definition 1 (Parity Set). Let X ⊆ Fn2 be a set. We define the parity set of
X as

U(X) :=

{
u ∈ Fn2 such that

∑
x∈X

xu = 1

}
The power of the division property as introduced in [23] is that (i) it is often
easier to trace the impact of a function on its parity set than on the set itself and
(ii) the evolution of certain parity sets is related to the algebraic normal form of
the functions involved.

Defining the addition of two subsets X,Y ⊆ Fn2 by

X+ Y := (X ∪ Y) \ (X ∩ Y)

6



the set of all subsets of Fn2 becomes a binary vector space of dimension 2n. Note
that this addition is isomorphic to adding the binary indicator vectors of the sets.
Also note that if an element is contained both in X and Y is not contained in the
sum.

From this perspective U is a linear mapping and the division property can be
seen as a change of basis. In particular for Xi ⊂ Fn2 it holds that

U
(∑

Xi
)
=
∑
U (Xi)

It was shown in [7] that there is a one to one correspondence between sets and
its parity set, that is the mapping

U : X 7→ U(X)

is a bijection and actually its own inverse, i.e.,

U(U(X)) = X.

Those properties follow from the linearity of U and the following lemma. The
proof is added for completeness and to get familiar with the notation.

Lemma 1. Let U be the mapping defined above and ` be an element in Fn2 . Then

1. U({`}) = {u ∈ Fn2 | u � `}
2. U({x ∈ Fn2 | x � `}) = {`}

Proof. For the first property, we note that xu = 1 if and only if u � x. Thus we
get

U({`}) =

u ∈ Fn2 such that
∑
x∈{`}

xu = 1


= {u ∈ Fn2 such that `u = 1}
= {u ∈ Fn2 | u � `}

For the second property, we see that
∑
x∈Fn

2 | x�`
xu = 1 if and only if u = `. Let

Au be the number of elements x � ` such that xu = 1 we get

Au = |{x � ` | xu = 1}| = |{x � ` | u � x}| = |{x ∈ Fn2 | u � x � `}|

and it holds that Au is odd if and only if ` = u, which completes the proof. ut

We next introduce the propagation of the division property and the notion of
the division trail. More formally, as our focus is the parity set, its propagation
is identical to the propagation of the so-called L set in 3SDP introduced in
[25]. Moreover, the division trail is identical to the three-subset division trail
introduced in [13].

The division property provides the propagation rule for some basic operations,
such as XOR or AND, and the propagation has been defined in this context as a

7



bottom-up approach. The propagation rule allows us to evaluate any ciphers
without deep knowledge for underlying theory for the division property, and it is
one of advantages as a cryptanalytic tool. On the other hand, for a mathematical
definition of the propagation, a top-down approach, starting with a general
function and deriving the propagation rules as concrete instances, is helpful.

Definition 2 (Propagation). Given F : Fn2 → Fm2 and a ∈ Fn2 , b ∈ Fm2 we say
that the division property a propagates to the division property b, denoted by

a
F−→ b

if and only if
b ∈ U(F (U({a})))

Here the image of a set X under F is defined as

F (X) :=
∑
a∈X
{F (a)},

that is again using the addition of sets as defined above.
The propagation is defined without specifying each concrete operation in

Definition 2. For any application, Definition 2 will never be applied directly.
Nevertheless, only using this definition reveals one important property of the
propagation very simply. Given U1 = U(X), for any function F , U2 = U(F (X)) is
evaluated as

U2 = U(F (X)) =
∑
x∈X
U(F ({x})) =

∑
a∈U(X)

U(F (U({a}))) =
∑
a∈U1

a
F−→b

{b}. (2)

This shows that our definition fits to the intuitive meaning of propagation: In
order to determine U2 after applying the function F , it is enough to consider
what happens with individual elements of U1 to start with. Here again, we like
to emphasize that the sum in Equation 2 is modulo two, that is, if an element
appears an even number of times on the right side, it actually does not appear
in U2. Of course, to evaluate the propagation in real, we need to mention the
concrete propagation a F−→ b, and we also give the following proposition, which
allows to easily deduce the possible propagation given the ANF of a function.

Proposition 1. Let F : Fn2 → Fm2 be defined as

F (x1, . . . , xn) = (y1, . . . , ym) = y

where yi are multivariate polynomials over F2 in the variables xi. For a ∈ Fn2
and b ∈ Fm2 , it holds that a F→ b if and only if yb contains the monomial xa.

Proof. By Definition 2, we have a F→ b if and only if b ∈ U(F (U({a}))). Using
Lemma 1, we can see that

Y := F (U({a})) = {F (x) | x � a, x ∈ Fn2}.

8



Hence b ∈ U(Y) exactly means
∑
x�a

F b(x) = 1. Note that F b is a Boolean function

over the variables x1, . . . , xn whose ANF is exactly yb, that is

F b(x) =
∑
u∈Fn

2

λux
u = yb.

Using the well known relation between a function and the coefficients of its ANF,
having

∑
x�a

F b(x) = 1 directly gives that λa = 1, i.e., the monomial xa appears

in the ANF of F b, said ANF being exactly yb. ut

We remark that all propagation rules already introduced in [25] are generated by
assigning concrete function to F . For completeness we recall these propagation
rules in Supplementary Material E.

Following previous work, we now generalize the definition above to the setting
where F is actually given as the composition of many functions

F = FR ◦ · · · ◦ F2 ◦ F1.

Definition 3 (Division Trail). Given F : Fn2 → Fn2 as

F = FR ◦ · · · ◦ F2 ◦ F1

and a0 . . . aR ∈ Fn2 we call (a0, . . . , aR) a division trail for the compositions of F
into the Fi if and only if

∀i ∈ {1, . . . , R}, ai−1
Fi−→ ai.

We denote such a trail by

a0
F1−→ a1

F2−→ · · · FR−−→ aR.

Using the same considerations as in Equation 2, we can now state the main
reason of why considering trails is useful

Theorem 1. Given F : Fn2 → Fn2 as

F = FR ◦ · · · ◦ F2 ◦ F1

and X ⊆ Fn2 . Then

U(F (X)) =
∑

a0,...,aR

a0∈U(X),a0

F1−→a1

F2−→··· FR−−→aR

{aR}

The important link between the division property and the ANF is the following
observations and is actually a special case of Proposition 1.

9



Corollary 1. Let F : Fn2 → Fn2 be a function with algebraic normal form

F (x) =
∑
u∈Fn

2

λux
u

where λu = (λ
(1)
u , . . . , λ

(n)
u ) ∈ Fn2 . Furthermore, let X be the set such that U(X) =

{`}. Then

λ
(i)
` = 1 ⇔ ei ∈ U(F (X))

Proof. If U(X) = {`}, by Lemma 1 we have

X = {x ∈ Fn2 | x � `}.

Now by Equation (1) we get

λ
(i)
` =

∑
x�`

F (i)(x) =
∑
x∈X

F (i)(x)

=
∑

x∈F (X)

xei =

{
1 if ei ∈ U(F (X))
0 otherwise

which concludes the proof. ut

Theorem 1 and Corollary 1 finally result in the following corollary.

Corollary 2. Let F : Fn2 → Fn2 be a function with algebraic normal form

F (x) =
∑
u∈Fn

2

λux
u

where λu = (λ
(1)
u , . . . , λ

(n)
u ) ∈ Fn2 and F = FR ◦ · · · ◦F2 ◦F1. Then λ

(i)
` = 1 if and

only if the number of trails

`
F1−→ a1

F2−→ · · · FR−−→ ei

is odd.

Proof. Follows immediately from the statements above. ut

This is what is actually solved using SAT solvers and/or mixed integer linear
programming techniques. Before going into the details of the algorithmic approach,
we explain why the case of a keyed function does not significantly change the
perspective in our application in the next section.

10



3 High-Level Approach

Conceptually, there is no difference between key variables and input variables
when it comes to division properties as used here and outlined in the previous
section. It is only about splitting the set of variables into two (or potentially
more) sets and changing the notation accordingly. Consider a function

E : Fn2 × Fm2 → Fn2
(x, k) 7→ E(x, k)

When thinking of E as a block cipher, we usually rephrase this as a family of
functions indexed by k, i.e., we consider

Ek : Fn2 → Fn2
where Ek(x) = E(x, k).

The algebraic normal form (ANF) of E and Ek are not identical, but related.
Starting with the ANF of E expressed as

E(x, k) =
∑

u∈Fn
2 ,v∈Fm

2

λu,vx
ukv, (3)

we get the ANF of Ek by rearranging terms as

Ek(x) =
∑
u∈Fn

2

∑
v∈Fm

2

λu,vk
v

xu =
∑
u∈Fn

2

pu(k)x
u,

where
pu(k) =

∑
v∈Fm

2

λu,vk
v

are the key-dependent coefficients of the ANF of function Ek.
Note that the degree of E and Ek, which we already defined in Section 1 are

usually different as

deg(E) = max
u∈Fn

2 ,v∈Fm
2

{wt(u) + wt(v) | λu,v 6= 0}

while
deg(Ek) = max

u∈Fn
2

{wt(u) | pu(k) 6= 0}.

Here, clearly, we are interested in the later.
In order to lower bound the degree of Ek by some value d, we have to find a

vector u of hamming weight d, such that pu(k) is non-zero. For a given u, there
are two basic approaches to do so.

11



Fixed Key. Conceptually, the easiest way to lower bound the degree of Ek
is to simply choose a random key k and, using Corollary 2 for computing one
ANF coefficient of large degree. If this is feasible for a random key and the
corresponding coefficient is actually 1, the degree must be larger or equal than
d. If, however, the corresponding coefficient is zero, nothing can be concluded
and one might have to repeat either for a different key or a different coefficient,
or both. The advantage of this approach is its conceptual simplicity and that it
can take an arbitrary key-scheduling into account. The significant drawback is
that this approach becomes quickly impossible in practice. We elaborate on our
initial findings using this approach in Section 6.

Variable Key. Luckily, we can use another approach. Namely, in order to show
that the degree of Ek is at least d, it is sufficient to identify a single u ∈ Fn2 of
Hamming weight d and an arbitrary v ∈ Fm2 such that λu,v 6= 0 (see Equation 3)
as this implies pu(k) 6= 0. While this approach might seem more difficult at first
glance, computationally it is significantly easier, especially when independent
round-keys are assumed.

By definition, the keyed function Ek has degree at least d if for one u ∈ Fn2 of
weight d and any v ∈ Fm2 the coefficient vector

λu,v = (λ(1)u,v, . . . , λ
(n)
u,v) ∈ Fn2 .

is non zero. So actually it is enough if, for one such u of weight d, an arbitrary v
and any 1 ≤ i ≤ n it holds that λ(i)u,v = 1.

3.1 Minimum Degree

However, from an attacker perspective it is sufficient if there exists a single output
bit of low degree. Thus, a stronger bound on the degree would potentially show
that for all i there exist a u of weight d and an arbitrary v such that λ(i)u,v = 1.
This would ensure that for each output bit there exists a key such that the degree
of this output bit is at least d.

Again, this is not enough, as the attacker could equally look at any linear
combination of output bits of her choice. The above result does not imply any
bound on the degree of such linear combinations. Indeed, we would like to show
that for each linear combination, there exists a key such that the degree of this
linear combination is at least d. This is exactly captured in the definition of
minimum degree.

Definition 4. The minimum degree of a function F : Fn2 → Fn2 is defined as

minDeg(F ) = min
β∈Fn

2 ,β 6=0
deg〈β, F 〉

Now, while for the degree it was sufficient to identify a single suitable coefficient
λ
(i)
u,v equal to one, things are more intricate here. There are, in principle, 2n − 1

component functions 〈β, F 〉 to be studied. Indeed, considering a single (u, v) pair

12



and the corresponding λu,v coefficient is not sufficient, as choosing any β such
that 〈β, λu,v〉 = 0 results in a component function that does not contain the
monomial kvxu in its ANF. It is this canceling of high degree monomials that
has to be excluded for lower bounding the minimum degree.

In order to achieve this it is sufficient (and actually necessary) to find a set

S = {(u1, v1), . . . , (ut, vt)}

of pairs (u, v) of size t ≥ n and compute the value of λ(i)u,v for all i and all
(u, v) ∈ S. This will lead to a binary matrix

MS(Ek) =


λ
(1)
u1,v1 λ

(1)
u2,v2 · · · λ

(1)
ut,vt

λ
(2)
u1,v1 λ

(2)
u2,v2 · · · λ

(2)
ut,vt

...
λ
(n)
u1,v1 λ

(n)
u2,v2 · · · λ

(n)
ut,vt

 .

What has to be excluded, in order to bound the minimum degree is that columns
of this matrix can be combined to the all zero vector, as in this case all monomials
kvixui cancel in the corresponding linear combination. Clearly, this is possible if
and only if the columns are linear dependent. This observation is summarized in
the following proposition.

Proposition 2. A keyed function Ek has minimum degree at least d if and only
if there exist a set S such that the matrix MS(Ek) has rank n and

d ≤ min
(u,v)∈S

wt(u)

3.2 Appearance of All High-Degree Monomials

Returning to the attacker perspective, it is clear that bounds on the minimum
degree are more meaningful than bounds on the algebraic degree. However, it
is also clear that even those are not enough to exclude the existence of integral
attacks. In particular, even so the minimum degree of a function is n− 1, it could
be the case that a certain monomial xu of degree n− 1 never occurs in the ANF
of the linear combination 〈β,Ek(x)〉 of output bits. That is, a minimum degree
of n− 1 does not exclude that 〈β, λu,v〉 = 0 for a fixed u and all v.

In order to ensure that this does not happen we have to show that for each
fixed u of weight n− 1 there exist vectors vi such that MSu

(Ek) has full rank for

Su = {(u, v1), . . . , (u, vt)}.

Here, we are (i) more restricted in the choice of the pairs in S as we always have
to use the same fixed u and (ii) have to repeat the process n times, once for each
u of weight n− 1.

Interestingly, the appearance of all high-degree monomials excludes a large
class of integral distinguishers. Namely, for a cipher where all high-degree monomi-
als appear (for at least one key), there will not be integral distinguisher by fixing

13



bits that work for all keys. This is a consequence of the following observation
that separates the pre-whitening key from the remaining round keys.

Proposition 3. Let Ek : Fn2 → Fn2 be a cipher with ANF

Ek(x) =
∑
u∈Fn

2

pu(k)x
u

and consider a version of Ek with an additional pre-whitening key k0, i.e.

Ek,k0(x) := Ek(x+ k0)

with ANF
Ek,k0(x) =

∑
v∈Fn

2

qv(k, k0)x
v

If, for all u of weight n− 1 the coefficient pu(k), is non-constant, it follows that
qv(k, k0) is non-constant for all v of weight less than n.

Proof. We first express qv(k, k0) in terms of pu. We get

Ek,k0(x) = Ek(x+ k0) =
∑
u∈Fn

2

pu(k) (x+ k0)
u

=
∑
u∈Fn

2

pu(k)

∑
v�u

xvku⊕v0

 =
∑
v∈Fn

2

∑
u�v

pu(k)k
u⊕v
0

xv

This shows that
qv(k, k0) =

∑
u�v

pu(k)k
u⊕v
0

Now, for any v of weight at most n− 1, there exists at least one u′ � v of weight
n − 1 in the sum above. By the assumption on Ek it holds that pu′(k) is not
constant. Therefore, qv is not constant as a function in k and k0, which concludes
the proof. ut

3.3 The Key Pattern

Computing the values of λ(i)u,v is certainly not practical for arbitrary choice of
(u, v) and i. There is not a lot of freedom in the choice of u, especially not if we
aim at showing the appearance of all high degree monomials. However, there is a
huge freedom in the choice of v, that is in the key monomial kv that we consider.

It is exactly the careful selection of suitable v that has a major impact on
the actual running time and finally allows us to obtain meaningful results in
practical time. It is also here where assuming independent round-keys is needed.
Consider that case of a key-alternating block cipher depicted below4

4 Thanks to TikZ for Cryptographers [15]

14



Optional Expansion Algorithm

k

s0 f
s1

. . . f
sR

sR+1

k0 k1 kR−1 kR

When considering independent round-keys, the key monomial kv actually
consists of

kv = kv
(0)

0 kv
(1)

1 . . . kv
(R)

R .

Here, we can select for each round-key ki a suitable vector v(i) freely.
Returning to Corollary 2 and the division property, recall that λ(i)u,v = 1 if and

only if the number of division trails (u, v)→ ei is odd. The vector v and therefore
its parts v = (v(0), . . . , v(R)) correspond to (parts of) the input division property.
We will refer to v and its parts as the key-pattern. The number of trails, and
therefore the computational effort, is highly dependent on this choice. This is the
main technical challenge we solve, which is described in the following Section 4.

4 How to Search Input/Key/Output Patterns

As we already discussed above, we need to find u (called an input pattern)
and (v0, . . . , vR) (called a key pattern), in which the number of trails from
(u, v0, . . . , vR) to some unit vector ei (called a output pattern) is odd and, equally
important, efficiently computable. To do so, we will mainly rely on the use of
automatic tools such as MILP and SAT. We recall how to modelize different
operations in the supplementary material in Supplementary Material F.

Once we get such an input/key/output pattern, it is very easy to verify the
lower bound of the degree using standard techniques. We simply enumerate all
trails and check the parity of the number of trails5.

Therefore, the main problem that we need to solve is how to select suitable
input/key/output patterns. In general, we search key patterns whose Hamming
weight is as high as possible. The number of trails is highly related to the number
of appearances of the same monomial when they are expanded without canceling
in each round. Intuitively, we can expect such a high-degree monomial is unlikely
to appear many times. Unfortunately, even if the key pattern is chosen with
high weight, the number of trails tends to be even or extremely large when these
patterns are chosen without care.

Parasite Sub-Trails. To understand the difficulty and our strategy to find
proper input/key/output patterns, we introduce an example using SKINNY64.

5 We also provide a simple code to verify our results about lower bounds.

15



SC SC
>>> 1

>>> 2

>>> 3

0
2
4
0

0
E
6
0

EE
44
22
00

C
4

2
0

7
6

E
0

2
0

0
0

u

xr yr z r xr+1 yr+1

ei

vr+1

Figure 2. Extraction from the trail of SKINNY64

Assume that we want to guarantee that the lower bound of algebraic degree
of R-round SKINNY64 is 63. Given an input/key/output pattern, let us assume
that there is a trail that contains the trail shown in Fig. 2 somewhere in the
middle as a sub-trail. This sub-trail only focuses on the so-called super S-box
involving the 4th anti-diagonal S-boxes in the (r+1)th round and the 1st-column
S-boxes in the (r + 2)th round. A remarkable, and unfortunately very common,
fact is that this sub-trail never yields an odd-number of trails because we always
have the following two different sub-trails.

T1 : 0x76E0
SC−−→ 0xC420

ART (+0x2000)−−−−−−−−−→ 0xE420
MC−−→ 0x0E60

SC−−→ 0x0240

T2 : 0x76E0
SC−−→ 0x1420

ART (+0x2000)−−−−−−−−−→ 0x3420
MC−−→ 0x0360

SC−−→ 0x0240

The trail shown in Fig. 2 is T1, and we always have another trail T2. Like this,
when the number of sub-trails is even under the fixed input, key, and output
pattern of the sub-trail, we call it an inconsistent sub-trail. Moreover, inconsistent
sub-trails are independent of other parts of the trail and might occur in several
parts of trails simultaneously. Assuming that there are 10 inconsistent sub-trails,
the number of the total trails is at least 210. In other words, inconsistent sub-trails
increase the number of total trails exponentially .

Heuristic Approach. It is therefore important to avoid trails containing in-
consistent sub-trails. Instead of getting input/key/output pattern, the goal of
the first step in our method is to find a trail, where all sub-trails relating to each
super S-box are consistent, i.e., there is no inconsistent sub-trail as long as each
super S-box is evaluated independently. Note that this goal is not sufficient for
our original goal, and the number of total trails might still be even. Therefore,
once we get such a trail, we extract the input/key/output pattern from the found
trail, and check the total number of trails with this pattern.

We have several approaches to find such a trail. As we are actually going to
search for these patterns and enumerate the number of trails using MILP or SAT
solvers, the most straightforward approach is to generate a model to represent
the propagation by each super S-box accurately. However, modeling a 16-bit
keyed S-box has never been done before. Considering the difficulty to model even
an 8-bit S-box, it is unlikely to be a successful path to follow.

Another approach is to use the well-known modeling technique, where the
S-box and MixColumns are independently modeled, and exclude inconsistent

16



sub-trail in each super S-box only after detecting them in a trail6. This approach
is promising, but the higher the number of rounds gets, the less efficient it is as the
number of super S-boxes we need to check the consistency increases. Indeed, as
far as we tried, this approach is not feasible to find proper patterns for 11-round
SKINNY64.

The method that we actually used is a heuristic approach that builds the
trail round by round. Let xr, yr, and zr be an intermediate values for the input
of the (r+ 1)th S-box layer, output of the (r+ 1)th S-box layer, and input of the
(r + 1)th MixColumns in each trail, respectively. Our main method consists of
the following steps.

1. Given ei(= yR−1), determine (xR−2, vR−1), where the Hamming weight of
xR−2 and vR−1 is as high as possible and the number of trails from xR−2 to
ei is odd and small (1 if possible).

2. Compute (xR−3, vR−2, yR−2), where the Hamming weight of xR−3 and vR−2
is as high as possible and the number of trails from xR−3 to yR−2 is odd (1
if possible). Then, check if the number of trails from xR−3 to ei is odd (1 if
possible) under (vR−2, vR−1).

3. Repeat the procedure above to Rmid rounds. This results in a key pattern
(vRmid+1, . . . , vR−1), where the number of trails from xRmid

to ei is odd and
small (again, 1 in the best case).

4. Compute (v1, . . . , vRmid
) such that the number of trails from u(= x0) to

yRmid
is odd.

5. Compute the number of trails satisfying (u, v1, . . . , vR−1)→ ei.

Our method can be regarded as the iteration of the local optimization. As we
already discussed in the beginning of this section, we can expect that the number
of trails from pattern with high weight is small. The first three steps, called trail
extension in our paper, are local optimization in this context from the last round.
Note that these steps are neither a deterministic nor an exhaustive methods.
In other words, the trail extension is randomly chosen from a set of optimal or
semi-optimal choices. Sometimes, there is an unsuccessful trail extension, e.g., it
requires too much time to extend the trail after a few rounds or we run into trails
that cannot reach the input pattern u. The heuristic and randomized algorithm
allows, in case we faces such unsuccessful trail extensions, to simply restart the
process from the beginning.

As far as we observe some ciphers, unsuccessful trail extensions happens with
higher probability as the trail approaches the first round. Therefore, after some
Rmid rounds, we change our strategy, and switch to the more standard way of
searching for (u, v1, . . . , vRmid

), e.g., Rmid = 5 or 6 is used in SKINNY64. More
formally, we search trails from u to yRmid

while excluding inconsistent sub-trails.
Note that this is possible now because this trail has to cover less rounds. Once
we find such a trail, we extract the key-patterns (u, v1, . . . , vRmid

) from the trail
and check if the number of trails from (u, v1, . . . , vRmid

) to yRmid
is odd. If so,

6 When we use Gurobi MILP solver, we can easily implement this behavior by using
callback functions.

17



we finally extract the entire input/key/output pattern and verify the number of
trails satisfying (u, v1, . . . , vR−1)→ ei.

Our algorithm is not generic, and it only searches “the most likely spaces”
at random. Therefore, it quickly finds the proper pattern only a few minutes
sometimes, but sometimes, no pattern is found even if we spend one hour and
more.

We like to stress again that, once we find input/key/output patterns whose
number of trails is odd, verifying the final number of trails is easy and standard,
see the supplementary material, in Supplementary Material D), for the verification
code for GIFT as an example.

How to compute minimum-degree. The minimum degree is more important
for cryptographers than the algebraic degree. To guarantee the lower bound of
the minimum degree, we need to create patterns whose resulting matrix MS(Ek)
has full rank.

Our method allows us to get the input/key/output pattern, i.e., compute λ(i)u,v
for the specific tuple (u, v, i). However, to construct this matrix, we need to know
all bits of λu,v. And, the use of the input/key pattern for different output patterns
is out of the original use of our method. Therefore, it might allow significantly
many trails that we cannot enumerate them with practical time.

To solve this issue, we first restrict ourselves to use a non-zero key pattern
vR−1 for the last-but one round during the trail extension. This is motivated by
the observation that, usually, a single round function is not enough to mix the full
state. Therefore it is obvious that the ANF of some output bits is independent
of some key-bits kvR−1

r .
Equivalently, many output bits of λu,v are trivially 0, i.e., the number of trails

is always 0. Thus, the matrix MS(Ek) is a block diagonal matrix

MS(Ek) =


MS1

(Ek) 0 · · · 0
0 MS2

(Ek) · · · 0
...

...
. . .

...
0 0 · · ·MSm

(Ek)

 .

As such, MS(Ek) has the full rank when MSi
(Ek) has the full rank for all i.

This technique allows us to generate input/key/output patterns for the full-rank
matrix efficiently.

Even if we use non-zero vR−1, we still need to get full-rank block matrices.
Luckily, there is an important (algorithmic) improvement that we like to briefly
mention here. In many cases, it is not needed to compute the entire set of entries
of a matrix MS(F ) to conclude it has full rank. As an example, consider the
matrix

MS(F ) =

1 0 ∗
0 1 0
0 0 1


18



where ∗ is an undetermined value. Then MS(F ) has full rank, no matter what
the value of ∗ actually is. Even so this observation is rather simple, it is often an
important ingredient to save computational resources.

How to compute all high-degree monomials. Guaranteeing the appearance
of all high-degree monomials is more important for cryptographers than minimum
degree. Conceptually, it is not so difficult. We simply use a specific u in the 4th
step instead of any u whose Hamming weight is n− 1 and guarantee the lower
bound of the minimum degree. Then, we repeat this procedure for all us with
Hamming weight n− 1.

How to compute lower bounds for intermediate rounds. While the most
interesting result for cryptographers is to show the full algebraic degree and full
minimum degree, it is also interesting to focus on the degree or minimum degree
in the intermediate rounds and determine how the lower bounds increase.

In our paper, these lower bounds are computed by using the input/key/output
pattern, which is originally generated to guarantee the full degree and minimum
degree. For example, when we prove the lower bound of r rounds, we first
enumerate all trails on this pattern, and extract xR−r whose number of trails
(xR−r, vR−r+1, . . . , vR−1)→ ei is odd. Let X

(i)
R−r be the set of all extracted values,

and a lower bounds of the algebraic degree for r rounds is given by

max
i

max
u∈X(i)

R−r

wt(u).

A more involved technique is needed for the minimum degree. We first construct
the matrix MS(Ek) for R rounds, where for non-diagonal elements, we set 0 if
there is no trail, and we set ∗ if there is trail. If this matrix has the full rank, we
always have the full-rank matrix even when we focus on intermediate rounds. In
this case, a lower bounds of the minimum degree for r rounds is given by

min
i

max
u∈X(i)

R−r

wt(u).

How to compute upper bounds. While some work has been done previously
to find upper bounds on the algebraic degree [8,6], we want to point out that we
can easily compute such upper bounds using our MILP models, and our results
in Section 5 show that the resulting upper bounds are quite precise, especially
for the algebraic degree. Indeed, to prove an upper bound for R rounds and for
the i-th coordinate function, we simply generate a model for R rounds, fix the
output value of the trail to the unit vector ei and then simply ask the solver
to maximize wt(u). This maximum value thus leads to an upper bound on the
degree, since it is the maximum weight that u can have so that there is at
least one trail. Then, once we collected an upper bound ubi for each coordinate
function, we easily get an upper bound on the algebraic degree of the vectorial

19



s s s s s s s s s s s s s s s s

Figure 3. Round function of GIFT-64 using SSB-friendly description

function as maxi ubi. To get an upper bound on the minimum degree, recall that
the minimum degree is defined as the minimal algebraic degree of any linear
combination of all coordinate functions. Thus, in particular, this minimum degree
is at most equal to the minimal upper bound we have on each coordinate function,
i.e., using the upper bounds on each coordinate function as before, we simply
need to compute mini ubi.

5 Applications

Clearly, we want to point out that the result about the lower bounds do not
depend on how we model our ciphers. That is, the parity of the number of trails
must be the same as long as we create the correct model. However the number
of trails itself highly depends on the way we model, e.g., the number is 0 for one
model but it is 1,000,000 for another model. As enumerating many trails is a
time consuming and difficult problem, we have to optimize the model.

For example, we could use only the COPY, XOR and AND operations to
describe the propagation through the S-box. However this would lead to more
trails than necessary, while directly modeling the propagation using the convex
hull method as in [26] significantly reduces the induced number of trails.

We already mentioned earlier that we consider independent round-keys added
to the full state. In particular for GIFT and SKINNY, the cipher we study are
strictly speaking actually not GIFT and SKINNY. However, we stress that this is a
rather natural assumption that is widely used for both design and cryptanalysis
of block ciphers.

5.1 GIFT

GIFT is a lightweight block cipher published at CHES’17 by Banik et al. [2]. Two
variants of this block cipher exists depending on the block length (either 64-bit
or 128-bit) and use a 128-bit key in both case. Its round function and the Super
S-boxes are depicted in Figure 3. Note that in the original design, the round key
is added only to a part of the state.

20



Table 2. Propagation table for the S-box of GIFT

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 x x
1 x x x x
2 x x
4 x x x x
8 x x
3 x x x x
5 x x x x x x x x x x
6 x x
9 x x x x x x
A x x x x x x
C x x
7 x x x x x x
B x x x x
D x x x x x x x
E x x x x x x
F x

Modeling. The round function of GIFT-64 is very simple and only consist of
an S-box layer and a bit permutation layer. We give the propagation table of
this S-box in Table 2, namely, an x in row u and column v means that u S→ v
where S is the GIFT-64 S-box. For example, the column 0x1 corresponds to
the monomials appearing in the ANF of the first output bit of the S-box. The
linear inequalities required to modelize this table are given in the Supplementary
Material I. The bit permutation is simply modelized by reordering the variables
accordingly.

Algebraic degree. We applied our algorithm for GIFT-64 and obtained that
the algebraic degree of all coordinate functions is maximal (i.e., 63) after 9 rounds.
However, we can go even further and prove that 32 of the coordinate functions
are of degree 63 after only 8 rounds. As such, the algebraic degree of GIFT-64
as a vectorial function is maximal after only 8 rounds. In Figure 4 on the left
side, we give the lower and upper bounds for the algebraic degree of GIFT-64,
and in Supplementary Material A.1 we give the detailed lower and upper bounds
for each coordinate function. Note that we thus have two data-sets : one for 8
rounds and another one for 9 rounds. To get the curve for the lower bounds on
algebraic degree, we simply "merged" the data-sets and extracted the best lower
bound for each coordinate function and for each number of rounds. Thus this
curve shows the best results we were able to get.

While the execution time can widely vary depending on a lot of factors, in
practice our algorithm proved to be quite efficient when applied to GIFT-64.
Indeed, to prove that each output bit is of maximal degree after 9 rounds as well
as computing the lower bounds for a smaller number of rounds, we needed less
than one hour on a standard laptop, and about 30 minutes to find all coordinate
functions with algebraic degree 63 after 8 rounds (and again, also computing all
lower bounds for less rounds).

21



0 2 4 6 8 10
0

8

16

24

32

40

48

56

63

3

8

21

40

49

56

61
63

3

8

21

41

53

59
62 63

# of rounds

de
gr
ee

Algebraic degree of GIFT.

LB
UB

0 2 4 6 8 10 12
0

8

16

24

32

40

48

56

63

2 2
5

10

26

38

47

56

61
63

2
4

9

21

42

53

59
62 63 63

# of rounds

de
gr
ee

Minimum Degree of GIFT.

LB
UB

Figure 4. Algebraic degree and minimum degree for GIFT-64

Minimum degree. In about one hour of computation on a standard laptop,
we were able to show that the minimum degree is maximal after 10 rounds. In
Figure 4 on the right side we show the lower and upper bounds on the minimum
degree for each number of rounds from 1 to 10.

All maximal degree monomials. As described in Section 3.2 we were able
to show that all 63-degree monomials appear after 11 rounds for any linear
combination of the output bits. This computation was a bit more expensive than
the previous one, yet our results were obtained within about 64 hours.

5.2 SKINNY64

SKINNY is a lightweight block cipher published at CRYPTO’16 by Beierle et
al. [4]. SKINNY supports two different block lengths (either 64 bits or 128 bits).
The round function adopts the so-called AES-like structure, where significantly
lightweight S-box and MixColumns are used.

Please refer to Fig.2 for the figure of the round function of our variant of
SKINNY64.

Modeling. We introduce how to create the model to enumerate trails. For the
S-box, the method is the same as for GIFT, and the propagation table is shown in
Supplementary Material G.1 Table 13. Therefore, here, we focus on MixColumns.

Naively, propagation through linear layers would be done with a combination
of COPY and XOR propagations as in [13]. However, this leads to more trails
that we need to count, which thus increase the overall time needed for our
algorithm. Therefore, we use that MixColumns of SKINNY can be seen as the
parallel application of several small linear S-boxes, denoted by L-box hereinafter.
Formally, MixColumns is the multiplication over F24 , but equivalently, we can
see this operation over F2, where it is the multiplication with the following block

22



Table 3. Algebraic degree and minimum degree on SKINNY64

1R 2R 3R 4R 5R 6R 7R 8R 9R 10R 11R

degree UB 3 8 19 33 47 58 61 62 62 63 63
LB 3 8 18 29 39 49 55 59 61 63 -

minDeg
UB 2 3 8 17 33 47 58 61 62 62 63
LB 2 2 5 8 14 26 39 50 57 61 63

matrix over F2 
I4 0 I4 I4
I4 0 0 0
0 I4 I4 0
I4 0 I4 0

 ,

where I4 is the identity matrix over F2 of dimension 4. By carefully examining
the structure of this matrix, we can actually notice that it can be written as the
parallel application of 4 L-boxes, which is defined as

L(x1, x2, x3, x4) = (x1 ⊕ x3 ⊕ x4, x1, x2 ⊕ x3, x1 ⊕ x3),

Hence, instead of using the COPY and XOR operations, we consider that it
is actually the parallel application of this L-box. Thus, the modelization for
MixColumns is done in the same way as for S-boxes, and in Supplementary
Material G.1 Table 14 we show the corresponding propagation table.

Algebraic degree. Before we discuss the algebraic degree of SKINNY, we intro-
duce a column rotation equivalence. We now focus on SKINNY, where all round
keys are independent and XORed with the full state. Then, the impact on the
round constant is removed, and each column has the same algebraic normal form
with different input. Overall, we remove the last ShiftRows and MixColumns, and
the output bit is the output of the last S-box layer. Then, in the context of the
division property, once we find a trail (u, v0, . . . , vR)→ ei, we always have a trail
(u≪32·i, v≪32·i

0 , . . . , v≪32·i
R )→ ei+32·i), where u≪32·i is a value after rotating u

by i columns. The column rotation equivalence enables us to see that it is enough
to check the first column only.

We evaluated the upper bound of the algebraic degree for each coordinate
function in the first column. The UB of degree in Table 3 shows the maximum
upper bound among upper bounds for 16 coordinate functions. Please refer to
Supplementary Material A.2 for each upper bound. The LB of degree in Table 3
shows the lower bounds, where patterns listed in Supplementary Material C.1 is
used to achieve these results. These patterns are generated by using our systematic
method.

In 10 rounds, the lower bound is the same as the upper bound. In other words,
the full degree in 10 rounds is tight, and we can guarantee the upper bound of the
algebraic degree is never less than 63 in 10-round SKINNY under our assumption.

23



SC

Pattern 1

SC

Pattern 2

SC

Pattern 3

SC

Pattern 4

Figure 5. Deterministic trail extension for the last MixColumns and S-box

Minimum degree. The upper bound of the algebraic degree for bits in the 2nd
row is 62 in 10 rounds. Therefore, 10 rounds are clearly not enough when we
consider the full minimum degree. As we already discussed in Sect. 3.1, we need
to construct 64 input/key patterns whose matrix MS(Ek) has the full rank.

To guarantee the lower bounds of the minimum degree, the method shown in
Sect. 4 is used. In SKINNY64, when vR−2 is non-zero, the resulting matrix becomes
a block diagonal matrix, where each block is 16× 16 matrix. Moreover, thanks
to the column rotation equivalence, we always have input/key patterns such that
each block matrix is identical. Therefore, only getting one full-rank 16× 16 block
matrix is enough to guarantee the lower bound of minimum degree.

Unfortunately, the use of the technique described in Sect. 4 is not sufficient to
find patterns efficiently. We use another trick called a deterministic trail extension,
where we restrict the trail extension for the last MixColumns and S-box such that
it finds key patterns whose matrix is the full rank efficiently. Figure 5 summarizes
our restriction, where the cell labeled deep red color must have non-zero value in
the trail. We assume that taking the input of each pattern is necessary for the
trail to exist. Then, taking Pattern 1 (resp. Pattern 3) implies that λ(i)u,v can be 1
only when i indicates bits in the 1st nibble (resp. 3rd nibble). Taking Pattern 2
allows non-zero λ(i)u,v for i which indicates bits in the 1st, 2nd, and 4th nibbles.
Taking Pattern 4 allows non-zero λ(i)u,v for i which indicates bits in the 1st, 3rd,
and 4th nibbles. In summary, we can expect the following matrix

MS1(Ek) =


A ∗ 0 ∗
0 B 0 0
0 0 C ∗
0 ∗ 0 D

 ,

where 0 is 4× 4 zero matrix, and ∗ is an arbitrary 4× 4 matrix. We can notice
that this matrix is full rank if A, B, C, and D are full rank.

By using these techniques, we find 16 input/key patterns to provide the
lower bound of the minimum degree on SKINNY64 (see minDeg in Table 3), where
patterns listed in Supplementary Material C.2 are used to achieve these results.
In 11 rounds, the lower bound is the same as the upper bound, thus having full
minimum degree in 11 rounds is tight. In other words, we can guarantee the
upper bound of the minimum degree is never less than 63 in 11-round SKINNY
under our assumption.

24



s s s s s s s s s s s s s s s s

Figure 6. Round function of PRESENT using SSB-friendly description

All maximum-degree monomials. To guarantee the appearance of all maximum-
degree monomials, much more computational power must be spent. The column
rotation equivalence allows us to reduce the search space, but it is still 64 times
the cost of the minimum degree. After spending almost one week of computa-
tions, we can get input/key patterns to prove the appearance of all maximum-
degree monomials in 13-round SKINNY64. All input/key patterns are listed in
https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree.

5.3 PRESENT

PRESENT is another lightweight block cipher published at CHES’07 [5], with a
64-bit block size and two variants depending on the key-length : either 80 bits or
128 bits. Its round function is very similar to the round function of GIFT and is
also built using a 4-bit S-box and a bit permutation, see Figure 6.

Modeling. We give the propagation table for PRESENT’s S-box in Supplementary
Material G.2 Table 15, and the corresponding linear inequalities in Supplementary
Material K. As for GIFT-64, the bit permutation can easily be modelized by
reordering variables.

Algebraic degree. Using our algorithm, we were able to show that all output
bits have an algebraic degree of 63 after 9 rounds in about nine hours, including
the lower bounds for a smaller number of rounds. Even better, for 8 rounds, we
were able to show that 54 out of all 64 coordinate functions are actually already
of degree 63. We give the resulting lower and upper bounds for the algebraic
degree of PRESENT on the left side of Figure 7. As for GIFT-64, these curves
were obtained by taking the best bounds over all coordinate functions, and the
detailed bounds for each coordinate function are given in the Supplementary
Material A.3.

Minimum degree. Note that while directly using the PRESENT specification
would still allow us to get some results for the minimum degree, we found out a

25



0 2 4 6 8 10
0

8

16

24

32

40

48

56

63

3

9

27

46

54

60
62 63

3

9

27

46

55

60
62 63

# of rounds

de
gr
ee

Algebraic degree of PRESENT.

LB
UB

0 2 4 6 8 10 12
0

8

16

24

32

40

48

56

63

2 2
4

9

20

42

48

55

61
63

2
4

8

18

42

54

59
62 63 63

# of rounds

de
gr
ee

Minimum Degree of PRESENT.

LB
UB

Figure 7. Algebraic degree and minimum degree for PRESENT

way to largely improve the speed of the search for this case. Similarly to SKINNY64,
we used a deterministic trail extension for the last S-box layer. We give more
details about this observation and then how we managed it in Supplementary
Material J.

In short, we change the S-box in the last S-box layer to a linearly equivalent
one S′ (thus preserving the correctness of our results for the minimum degree)
and add additional constraints to help finding "good" key patterns during the
search. While these constraints could slightly restrict the search space, in practice
it proved to be a very efficient trick to speed up the search and was enough to
prove the full minimum degree over 10 rounds. The same trick is used for the all
monomial property since it is essentially the same as for the minimum degree,
only repeated several time for each possible input monomial. In the end, within
about nine hours, we were able to show that the minimum degree is also maximal
after 10 rounds using this trick. In Figure 7 on the right side, we give the lower
and upper bounds for the minimum degree over 1 to 10 rounds.

All maximal degree monomials. Showing that all 63-degree monomials
appear after 11 rounds for any linear combinations of output bits required quite
a bit more computational power, however we were still able to show this result
in about 17 days of computation.

5.4 AES

Despite many proposals of lightweight block ciphers, AES stays the most widely-
used block cipher. The application to AES of our method is thus of great interest.

However, our method uses automatic tools such as MILP or SAT and such
tools are not always powerful for block ciphers using 8-bit S-boxes like AES.
As therefore expected, our method also has non-negligible limitation, and it is
difficult to prove the full, i.e., 127, lower bound of algebraic degree. Yet, our
method can still derive new and non-trivial result regarding the AES.

Modeling. We first construct linear inequalities to model the propagation table
for the AES S-box, where we used the modeling technique shown in [1]. While

26



SR MC

20 80 40 08

80 04 20 10

80 04 20 08

02 08 04 10

20 80 40 08

04 20 10 80

20 08 80 04

10 02 08 04

74 00 00 00

00 D2 00 00

00 00 59 00

00 00 00 9C

83 00 00 00

00 0D 00 00

00 00 26 00

00 00 00 62

SB

F7 FD F7 7F

FD FE F7 BF

FD FE F7 7F

DF 7F FE BF

SR MC

FF 10 20 08

FF 80 04 08

FF 08 04 80

FF 08 08 40

FF 10 20 08

80 04 08 FF

04 80 FF 08

40 FF 08 08

80 D0 31 31

15 1A 24 85

6C C8 11 30

43 0A 72 1C

77 2D C6 4E

E8 E4 D3 3A

91 36 E6 4F

9C 75 8C A3

SB

FF BF EF 7F

FF FD FE 7F

FF 7F FE FD

FF 7F 7F FB

SR MC

FF 04 02 04

04 FF 40 20

04 02 FF 01

04 04 01 FF

FF 04 02 04

FF 40 20 04

FF 01 04 02

FF 04 04 01

FF 04 00 0A

FF 01 02 04

FF 40 0C 01

FF 08 20 00

00 BB EF 75

00 FC FC 7B

00 3F F2 FC

00 77 5F FB

SB

FF FE FB FE

FE FF F7 EF

FE EF FF F7

FE FE F7 FF

SR MC

20 00 00 00

00 10 00 00

00 00 08 00

00 00 00 04

20 00 00 00

10 00 00 00

08 00 00 00

04 00 00 00

5C 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

A1 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

SB

F7 00 00 00

00 DF 00 00

00 00 7F 00

00 00 00 FE

01 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

SB

FD 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

x0 (= u)

x1

x2

x3

x4

v1

v2

v3

v4

y4

Figure 8. Trail on 5-round AES

a few dozens of linear inequalities are enough to model 4-bit S-boxes, 3,660
inequalities are required to model the AES S-box. Moreover, the model for
MixColumns is also troublesome because the technique using L-boxes like SKINNY
is not possible. The only choice is a naive method, i.e., we would rely on the COPY
+ XOR rules for the division property [25]. Unfortunately, this method requires
184, which is equal to the weight of the matrix over F2, temporary variables, and
such temporary variables increase the number of trails. In particular, when the
weight of the output pattern in MixColumns is large, the number of sub-trails
exponentially increases even when we focus on one MixColumns.

Algebraic Degree. Due to the expensive modeling situation, proving full
algebraic degree is unlikely to be possible. Nevertheless, this model still allows us to
get non-trivial results. We exploit that the number of sub-trails can be restrained
to a reasonable size when the weight of the output pattern in MixColumns is
small. Namely, we extend the trail such that only such trails are possible.

Figure 8 shows one trail for 5-round AES. When the input/key/output pattern,
shown in red, is fixed, the number of trails is odd. Moreover, we confirmed that
the number of trails for reduced-number of rounds is odd, e.g., in 3-round AES,
the number of trails (x2, v3, v4)→ y4 is odd.

This result provides us some interesting and non-trivial results.
On 3-round AES, the input of this trail is 16 values with Hamming weight

7. In other words, the lower bound of the degree is 16 × 7 = 112. Considering
well-known 3-round integral distinguisher exploits that the monomial with all
bits in each byte is missing, this lower bound is tight.

27



From the 4-round trail, we can use the input, which includes 0xFF. Unfortu-
nately, using many 0xFF implies the output of MixColumns with higher Hamming
weight, and as we already discussed, the resulting number of trails increases
dramatically. While we can have 12 0xFF potentially, we only extend the trail to
4 0xFF. Then, the lower bound of the degree is 116 in 4-round AES.

The first column in x1 has 0xFFFFFFFF. When we use the naive COPY+XOR
rules, there are many trails from 0xFFFFFFFF to 0xFFFFFFFF via MixColumns.
However, this trail must be possible and this input (resp. output) cannot propagate
to other output (resp. input). Therefore, we bypass only this propagation without
using COPY+XOR rule. This technique allows us to construct x0 in Fig. 8. One
interesting observation is all diagonal elements take 0xFF, and well-known 4-
round intergral distinguisher exploits that the monomial with all bits in diagonal
elements is missing. Our result shows 5-round AES includes the monomial, where
84 bits are multiplied with the diagonal monomial.

While we can give non-trivial and large enough lower bound for 3-round and
4-round AES, the results are not satisfying. Many open questions are still left,
e.g., how to prove the full degree, full minimum degree, the appearance of all
high-degree monomials.

6 Conclusion

Cryptographers have so far failed to provide meaningful lower bounds on the
degree of block cipher, and in this paper, we (partially) solve this long-lasting
problem and give, for the first time, such lower bounds on a selection of block
ciphers. Interestingly, we can now observe that the upper bounds are relatively
tight in many cases. This was hoped for previously, but not clear at all before
our work.

Obviously, there are some limitations and restrictions of our current work
that, in our opinion, are good topics for future works. The main restriction is the
applicability to other ciphers. For now, all ciphers studied so far needed some
adjustment in the procedure to increase the efficiency and derive the results.
It would be great if a unified and improved method could avoid those hand
made adjustments. This restriction is inherently related to our heuristic search
approach for the key-pattern. A better search, potentially based on new insights
into how to choose the key-pattern in an optimal way, is an important topic for
future research. Moreover, if we focus on the appearance of all maximal degree
monomials, we still have a gap between the best integral distinguishers and
our results. Thus, either our bounds or the attacks might be improved in the
future. Finally, for now, computing good bounds for fixed key variants of the
ciphers is not possibly with our ideas so far. This is in particular important for
cryptographic permutations where we fail for now to argue about lower bounds
for the degree. Only in the case of PRESENT, we were able to compute a non-trivial
lower bound on the algebraic degree in the fixed key setting for a few bits for

28



10 rounds. Here, we counted the number of trails using a #SAT solver7 [21].
Especially for other ciphers with a more complicated linear layer like SKINNY, we
were not able to show a lower bound on any output bit.

Acknowledgment

This work was partially funded by the DFG, German Research Foundation)
under Germany´s Excellence Strategy - EXC 2092 CASA – 390781972 and the
by the German Federal Ministry of Education and Research (BMBF, project
iBlockchain – 16KIS0901K).

References

1. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP
modeling for (large) s-boxes to optimize probability of differential char-
acteristics. IACR Trans. Symmetric Cryptol. 2017(4), 99–129 (2017).
https://doi.org/10.13154/tosc.v2017.i4.99-129, https://doi.org/10.13154/tosc.
v2017.i4.99-129

2. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT:
A small present - towards reaching the limit of lightweight encryption. In:
Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345.
Springer (2017). https://doi.org/10.1007/978-3-319-66787-4_16, https://doi.org/
10.1007/978-3-319-66787-4\_16

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint
Arch. 2013, 404 (2013), http://eprint.iacr.org/2013/404

4. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 123–153. Springer (2016). https://doi.org/10.1007/978-3-662-53008-
5_5, https://doi.org/10.1007/978-3-662-53008-5\_5

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer (2007). https://doi.org/10.1007/978-3-540-74735-2_31, https://doi.org/
10.1007/978-3-540-74735-2\_31

6. Boura, C., Canteaut, A.: On the influence of the algebraic degree of f-1 on
the algebraic degree of G ◦ F. IEEE Trans. Inf. Theory 59(1), 691–702 (2013).
https://doi.org/10.1109/TIT.2012.2214203, https://doi.org/10.1109/TIT.2012.
2214203

7. Boura, C., Canteaut, A.: Another view of the division property. In: Robshaw,
M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 654–682.
Springer (2016). https://doi.org/10.1007/978-3-662-53018-4_24, https://doi.org/
10.1007/978-3-662-53018-4\_24

7 A #SAT solver is optimized to count the number of solutions for a given Boolean
formula.

29



8. Boura, C., Canteaut, A., Cannière, C.D.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer (2011). https://doi.org/10.1007/978-3-642-21702-9_15, https://doi.org/
10.1007/978-3-642-21702-9\_15

9. Brayton, R.K., Hachtel, G.D., McMullen, C., Sangiovanni-Vincentelli, A.: Logic
minimization algorithms for VLSI synthesis, vol. 2. Springer Science & Business
Media (1984)

10. Carlet, C., Crama, Y., Hammer, P.L.: Vectorial boolean functions for cryp-
tography. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods
in Mathematics, Computer Science, and Engineering, pp. 398–470. Cambridge
University Press (2010). https://doi.org/10.1017/cbo9780511780448.012, https:
//doi.org/10.1017/cbo9780511780448.012

11. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher Square. In: Bi-
ham, E. (ed.) FSE ’97. LNCS, vol. 1267, pp. 149–165. Springer (1997).
https://doi.org/10.1007/BFb0052343, https://doi.org/10.1007/BFb0052343

12. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomi-
als. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299.
Springer (2009). https://doi.org/10.1007/978-3-642-01001-9_16, https://doi.org/
10.1007/978-3-642-01001-9\_16

13. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset
division property without unknown subset - improved cube attacks against Trivium
and Grain-128AEAD. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part
I. LNCS, vol. 12105, pp. 466–495. Springer (2020). https://doi.org/10.1007/978-3-
030-45721-1_17, https://doi.org/10.1007/978-3-030-45721-1\_17

14. Hölldobler, S.: Van hau nguyen. an efficient encoding of the at-most-one constraint.
Tech. rep., Tech. rep. 2013-04, Technische Universität Dresden, Germany (2013)

15. Jean, J.: TikZ for Cryptographers. https://www.iacr.org/authors/tikz/ (2016)
16. Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: Daemen, J., Ri-

jmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer
(2002). https://doi.org/10.1007/3-540-45661-9_9, https://doi.org/10.1007/
3-540-45661-9\_9

17. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications
and Cryptography. The Springer International Series in Engineering and Computer
Science, vol. 276, pp. 227–233. Springer (1994)

18. McCluskey, E.J.: Minimization of boolean functions. The Bell System Technical
Journal 35(6), 1417–1444 (1956)

19. Quine, W.V.: The problem of simplifying truth functions. The American mathe-
matical monthly 59(8), 521–531 (1952)

20. Quine, W.V.: A way to simplify truth functions. The American Mathematical
Monthly 62(9), 627–631 (1955)

21. Thurley, M.: sharpsat - counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) Theory and Applications of
Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA,
USA, August 12-15, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4121, pp. 424–429. Springer (2006). https://doi.org/10.1007/11814948_38,
https://doi.org/10.1007/11814948\_38

22. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Rob-
shaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 413–432.
Springer (2015). https://doi.org/10.1007/978-3-662-47989-6_20, https://doi.org/
10.1007/978-3-662-47989-6\_20

30



23. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 287–314.
Springer (2015). https://doi.org/10.1007/978-3-662-46800-5_12, https://doi.org/
10.1007/978-3-662-46800-5\_12

24. Todo, Y.: Integral cryptanalysis on full MISTY1. J. Cryptology 30(3), 920–959
(2017). https://doi.org/10.1007/s00145-016-9240-x, https://doi.org/10.1007/
s00145-016-9240-x

25. Todo, Y., Morii, M.: Bit-based division property and application to Si-
mon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377.
Springer (2016). https://doi.org/10.1007/978-3-662-52993-5_18, https://doi.org/
10.1007/978-3-662-52993-5\_18

26. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching
integral distinguishers based on division property for 6 lightweight block ciphers.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031,
pp. 648–678 (2016). https://doi.org/10.1007/978-3-662-53887-6_24, https://doi.
org/10.1007/978-3-662-53887-6\_24

31



Supplementary Material
A Summary of All Results

A.1 GIFT-64

We give the detailed results about the lower and upper bounds for the algebraic
degree of each coordinate function for GIFT-64. Table 4 shows the upper bounds
for the algebraic for up to 9 rounds, as it is the number of rounds required to
reach an upper bound of 63 for each coordinate function. As we will see in the
next tables, we were able to show that these upper bounds are actually tight in
some cases (i.e., the lower bound is equal to the upper bound), especially for all
cases where the maximal degree is 63.

As mentioned in Section 5.1, we were able to show that 32 out of the 64
coordinate functions are already of maximal degree after only 8 rounds. From the
input/key patterns leading to this result, we were able to derive lower bounds
on the algebraic degree of these 32 coordinate functions from 1 up to 8 rounds,
which are given in Table 5.

To reach maximal degree for all coordinate function, we actually need to have
at least 9 rounds. Again, from the input/key patterns used to get this results, we
were able to derive lower bounds on the algebraic degree for a smaller number of
rounds, which are shown in Table 6.

A.2 SKINNY64

We summarize our results about lower bounds of algebraic degree and minimal
degree for each coordinate function of SKINNY64. In each table, the index 0 means
the LSB of bytes in the 1st row, and the index 15 means the MSB of bytes in
the 4th row.

Table 7 shows the upper bounds of algebraic degree on all coordinate functions
of SKINNY64. Note that we do not need to evaluate the other 48 bits thanks to
the column rotation equivalence, i.e., an index i+ 32j has the same degree as
the index i.

On lower bounds, Table 8 shows the lower bounds of algebraic degree on all
coordinate functions of SKINNY64 when the data data_set_skinny_64_degree
in Supplementary Material C is used. The lower bound of the algebraic degree is
defined as the maximum one of each round, and they are listed in LB of degree
in Table 3.

For minimum degree, we need to use patterns whose resulting matrix has the
full rank. Table 9 shows the lower bounds of algebraic degree on all coordinate
functions of SKINNY64 when the data data_set_skinny_64_min in Supplemen-
tary Material C is used. The lower bound of the minimum degree is defined as
the minimum one of each round, and they are listed in LB of minDeg in Table 3.

32



Table 4. Upper bounds of algebraic degrees of all coordinate functions of GIFT-64.

index 1R 2R 3R 4R 5R 6R 7R 8R 9R
0 2 4 9 21 42 53 59 62 63
1 2 5 12 28 46 56 60 62 63
2 3 8 21 41 53 59 62 63 63
3 3 8 20 38 52 59 61 63 63
4 2 4 9 21 42 53 59 62 63
5 2 5 12 28 46 56 60 62 63
6 3 8 21 41 53 59 62 63 63
7 3 8 20 38 52 59 61 63 63
8 2 4 9 21 42 53 59 62 63
9 2 5 12 28 46 56 60 62 63
10 3 8 21 41 53 59 62 63 63
11 3 8 20 38 52 59 61 63 63
12 2 4 9 21 42 53 59 62 63
13 2 5 12 28 46 56 60 62 63
14 3 8 21 41 53 59 62 63 63
15 3 8 20 38 52 59 61 63 63
16 2 4 9 21 42 53 59 62 63
17 2 5 12 28 46 56 60 62 63
18 3 8 21 41 53 59 62 63 63
19 3 8 20 38 52 59 61 63 63
20 2 4 9 21 42 53 59 62 63
21 2 5 12 28 46 56 60 62 63
22 3 8 21 41 53 59 62 63 63
23 3 8 20 38 52 59 61 63 63
24 2 4 9 21 42 53 59 62 63
25 2 5 12 28 46 56 60 62 63
26 3 8 21 41 53 59 62 63 63
27 3 8 20 38 52 59 61 63 63
28 2 4 9 21 42 53 59 62 63
29 2 5 12 28 46 56 60 62 63
30 3 8 21 41 53 59 62 63 63
31 3 8 20 38 52 59 61 63 63

index 1R 2R 3R 4R 5R 6R 7R 8R 9R
32 2 4 9 21 42 53 59 62 63
33 2 5 12 28 46 56 60 62 63
34 3 8 21 41 53 59 62 63 63
35 3 8 20 38 52 59 61 63 63
36 2 4 9 21 42 53 59 62 63
37 2 5 12 28 46 56 60 62 63
38 3 8 21 41 53 59 62 63 63
39 3 8 20 38 52 59 61 63 63
40 2 4 9 21 42 53 59 62 63
41 2 5 12 28 46 56 60 62 63
42 3 8 21 41 53 59 62 63 63
43 3 8 20 38 52 59 61 63 63
44 2 4 9 21 42 53 59 62 63
45 2 5 12 28 46 56 60 62 63
46 3 8 21 41 53 59 62 63 63
47 3 8 20 38 52 59 61 63 63
48 2 4 9 21 42 53 59 62 63
49 2 5 12 28 46 56 60 62 63
50 3 8 21 41 53 59 62 63 63
51 3 8 20 38 52 59 61 63 63
52 2 4 9 21 42 53 59 62 63
53 2 5 12 28 46 56 60 62 63
54 3 8 21 41 53 59 62 63 63
55 3 8 20 38 52 59 61 63 63
56 2 4 9 21 42 53 59 62 63
57 2 5 12 28 46 56 60 62 63
58 3 8 21 41 53 59 62 63 63
59 3 8 20 38 52 59 61 63 63
60 2 4 9 21 42 53 59 62 63
61 2 5 12 28 46 56 60 62 63
62 3 8 21 41 53 59 62 63 63
63 3 8 20 38 52 59 61 63 63

A.3 PRESENT

As for the previous ciphers, we now give the detailed lower and upper bounds
for the algebraic degree of each coordinate function of PRESENT. Table 10 gives
the upper bounds for each coordinate function for up to 9 rounds which is again
the minimal number of rounds such that we have an upper bound of 63 for each
coordinate function. As for GIFT-64, these upper bounds are tight in some cases,
and especially for all cases with maximal degree 63.

For 8 rounds of PRESENT, we proved that 54 out of the 64 coordinate functions
are of maximal degree, and the resulting lower bounds are given in Table 11.

33



Table 5. Lower bounds of algebraic degrees of some coordinate functions of GIFT-64.

index 1R 2R 3R 4R 5R 6R 7R 8R
2 3 8 19 40 49 56 61 63
3 3 8 18 35 47 56 61 63
6 3 8 20 34 49 56 61 63
7 3 8 18 35 47 56 61 63
10 3 8 20 40 49 56 61 63
11 3 8 18 35 47 56 61 63
14 3 8 19 36 49 56 61 63
15 3 8 18 35 47 56 61 63
18 3 8 20 34 49 56 61 63
19 3 8 18 35 47 56 61 63
22 3 8 19 38 51 56 61 63
23 3 8 18 35 47 56 61 63
26 3 8 20 34 49 56 61 63
27 3 8 18 35 47 56 61 63
30 3 8 19 40 49 56 61 63
31 3 8 18 35 47 56 61 63

index 1R 2R 3R 4R 5R 6R 7R 8R
34 3 8 19 40 49 56 61 63
35 3 8 18 35 47 56 61 63
38 3 8 19 38 51 56 61 63
39 3 8 18 35 47 56 61 63
42 3 8 20 34 49 56 61 63
43 3 8 18 35 47 56 61 63
46 3 8 19 36 49 56 61 63
47 3 8 18 35 47 56 61 63
50 3 8 20 34 49 56 61 63
51 3 8 18 35 47 56 61 63
54 3 8 20 40 49 56 61 63
55 3 8 18 35 47 56 61 63
58 3 8 20 34 49 56 61 63
59 3 8 18 35 47 56 61 63
62 3 8 19 40 52 56 61 63
63 3 8 18 35 47 56 61 63

Again, as for GIFT-64, we need one more round to prove that all coordinate
functions have an algebraic degree of 63, and the induced lower bounds are given
in Table 12.

34



Table 6. Lower bounds of algebraic degrees of all coordinate functions of GIFT-64.

index 1R 2R 3R 4R 5R 6R 7R 8R 9R
0 2 3 8 18 36 52 56 61 63
1 2 5 12 25 41 49 57 61 63
2 3 8 21 36 46 51 56 61 63
3 3 8 20 37 45 49 56 61 63
4 2 3 8 20 36 50 56 61 63
5 2 5 12 27 38 50 56 61 63
6 3 8 21 36 46 52 57 61 63
7 3 8 20 37 47 51 56 61 63
8 2 3 8 18 40 50 56 61 63
9 2 5 12 27 42 51 57 61 63
10 3 8 20 40 51 52 58 61 63
11 3 8 20 37 46 53 59 62 63
12 2 3 8 20 36 50 56 61 63
13 2 5 12 27 39 49 56 61 63
14 3 8 20 40 50 52 58 61 63
15 3 8 20 36 48 53 58 61 63
16 1 3 8 19 40 52 56 61 63
17 2 5 12 25 43 53 59 62 63
18 3 8 20 40 48 55 59 62 63
19 3 8 20 36 46 53 59 62 63
20 2 4 7 18 36 47 56 61 63
21 2 5 12 26 43 50 56 61 63
22 3 8 20 40 48 55 59 62 63
23 3 8 20 37 47 53 59 62 63
24 2 3 8 18 40 50 56 61 63
25 2 5 12 26 40 49 56 61 63
26 3 8 21 36 46 51 56 61 63
27 3 8 20 36 46 54 59 62 63
28 2 4 7 18 36 47 56 61 63
29 2 5 12 27 40 50 56 61 63
30 3 8 20 40 48 54 60 62 63
31 3 8 20 37 47 52 59 62 63

index 1R 2R 3R 4R 5R 6R 7R 8R 9R
32 1 3 8 19 40 51 56 61 63
33 2 5 12 27 40 52 58 61 63
34 3 8 20 38 48 54 60 62 63
35 3 8 20 36 45 53 59 62 63
36 2 3 8 18 39 51 56 61 63
37 2 5 12 27 42 49 57 61 63
38 3 8 20 37 44 53 59 62 63
39 3 8 20 36 46 54 59 62 63
40 2 3 8 18 39 51 56 61 63
41 2 5 12 27 39 49 56 61 63
42 3 8 21 35 45 53 59 62 63
43 3 8 20 37 46 51 57 61 63
44 2 3 8 18 36 52 56 61 63
45 2 5 12 26 42 51 58 61 63
46 3 8 20 37 47 53 59 62 63
47 3 8 20 37 46 50 57 61 63
48 2 3 8 18 38 48 56 61 63
49 2 5 12 27 40 50 57 61 63
50 3 8 20 38 46 53 59 62 63
51 3 8 20 36 47 49 57 61 63
52 1 3 8 19 40 49 56 61 63
53 2 5 12 26 42 52 57 61 63
54 3 8 20 38 48 51 57 61 63
55 3 8 20 36 47 53 59 62 63
56 1 3 8 19 40 49 56 61 63
57 2 5 12 27 41 50 57 61 63
58 3 8 20 40 49 56 59 62 63
59 3 8 20 35 49 54 58 61 63
60 1 3 8 19 40 51 56 61 63
61 2 5 12 28 40 51 56 61 63
62 3 8 20 40 49 53 59 62 63
63 3 8 20 37 46 51 57 61 63

35



Table 7. Upper bounds of algebraic degrees on all coordinate functions of SKINNY64.

index 1R 2R 3R 4R 5R 6R 7R 8R 9R 10R 11R
0 3 8 19 33 47 58 61 62 62 63 63
1 3 7 16 31 45 57 61 62 62 63 63
2 2 5 12 26 40 52 59 61 62 63 63
3 2 4 9 21 38 50 58 61 62 63 63
4 3 3 8 19 33 47 58 61 62 62 63
5 3 3 8 19 33 47 58 61 62 62 63
6 2 3 8 19 33 47 58 61 62 62 63
7 2 3 8 19 33 47 58 61 62 62 63
8 3 6 9 17 34 49 58 61 62 63 63
9 3 6 9 17 34 49 58 61 62 63 63
10 2 5 9 17 34 49 58 61 62 63 63
11 2 4 8 17 33 49 58 61 62 63 63
12 3 6 14 25 38 51 58 61 62 63 63
13 3 6 14 24 38 51 58 61 62 63 63
14 2 5 12 23 37 51 58 61 62 63 63
15 2 4 9 19 33 49 58 61 62 63 63

Table 8. Lower bounds of algebraic degree on all coordinate functions of SKINNY64,
where data_set_skinny_64_degree is used.

index 1R 2R 3R 4R 5R 6R 7R 8R 9R 10R 11R
0 3 8 18 29 38 49 55 59 61 63
1 3 7 16 27 39 48 52 58 61 63
2 2 5 10 22 35 46 49 57 61 63
3 2 4 9 21 34 45 50 56 61 63
4 3 3 8 18 29 40 47 53 57 61 63
5 3 3 7 16 27 40 49 54 57 61 63
6 2 3 7 16 27 39 49 52 57 61 63
7 2 2 5 12 24 37 47 50 57 61 63
8 3 6 9 15 26 42 51 57 61 63
9 3 5 8 15 28 41 50 54 58 61 63
10 2 5 8 15 27 41 49 53 58 61 63
11 2 4 7 13 24 39 45 52 58 61 63
12 3 6 13 20 32 44 49 53 58 61 63
13 3 5 12 21 34 43 51 56 59 62 63
14 2 5 12 20 32 42 47 54 57 61 63
15 2 4 9 18 28 42 48 53 57 61 63

36



Table 9. Lower bounds of algebraic degree on all coordinate functions of SKINNY64,
where data_set_skinny_64_min is used.

index 1R 2R 3R 4R 5R 6R 7R 8R 9R 10R 11R
0 3 6 13 25 35 44 52 58 60 62 63
1 3 5 10 24 35 44 50 53 58 61 63
2 2 3 7 14 28 41 49 53 58 61 63
3 2 2 5 12 20 32 44 51 57 61 63
4 3 3 8 18 30 40 49 53 57 61 63
5 3 3 7 14 27 37 50 53 57 61 63
6 2 3 7 14 26 38 48 52 57 61 63
7 2 2 5 12 21 33 44 52 57 61 63
8 3 6 8 16 28 41 51 53 57 61 63
9 3 5 8 15 27 41 49 53 58 61 63
10 2 3 5 8 15 28 39 50 57 61 63
11 2 2 5 8 14 26 39 51 57 61 63
12 3 6 13 21 33 41 49 54 57 61 63
13 3 5 12 21 33 42 49 53 57 61 63
14 2 3 7 14 27 38 48 53 57 61 63
15 2 2 5 12 20 31 45 51 57 61 63

37



Table 10. Upper bounds of algebraic degrees of all coordinate functions of PRESENT.

index 1R 2R 3R 4R 5R 6R 7R 8R 9R
0 2 4 8 18 42 54 59 62 63
1 3 6 12 22 48 56 61 62 63
2 3 6 12 22 48 56 61 62 63
3 3 6 12 22 48 56 61 62 63
4 2 4 12 27 48 56 61 62 63
5 3 6 18 33 49 57 61 63 63
6 3 6 18 33 49 57 61 63 63
7 3 6 18 33 49 57 61 63 63
8 2 4 12 27 48 56 61 62 63
9 3 6 18 33 49 57 61 63 63
10 3 6 18 33 49 57 61 63 63
11 3 6 18 33 49 57 61 63 63
12 2 4 12 27 48 56 61 62 63
13 3 6 18 33 49 57 61 63 63
14 3 6 18 33 49 57 61 63 63
15 3 6 18 33 49 57 61 63 63
16 2 6 12 30 46 56 60 62 63
17 3 9 18 36 50 59 61 63 63
18 3 9 18 36 50 59 61 63 63
19 3 9 18 36 50 59 61 63 63
20 2 6 18 42 53 59 61 63 63
21 3 9 27 46 55 60 62 63 63
22 3 9 27 46 55 60 62 63 63
23 3 9 27 46 55 60 62 63 63
24 2 6 18 42 53 59 61 63 63
25 3 9 27 46 55 60 62 63 63
26 3 9 27 46 55 60 62 63 63
27 3 9 27 46 55 60 62 63 63
28 2 6 18 42 53 59 61 63 63
29 3 9 27 46 55 60 62 63 63
30 3 9 27 46 55 60 62 63 63
31 3 9 27 46 55 60 62 63 63

index 1R 2R 3R 4R 5R 6R 7R 8R 9R
32 2 6 12 30 46 56 60 62 63
33 3 9 18 36 50 59 61 63 63
34 3 9 18 36 50 59 61 63 63
35 3 9 18 36 50 59 61 63 63
36 2 6 18 42 53 59 61 63 63
37 3 9 27 44 54 60 62 63 63
38 3 9 27 44 54 60 62 63 63
39 3 9 27 44 54 60 62 63 63
40 2 6 18 42 53 59 61 63 63
41 3 9 27 44 54 60 62 63 63
42 3 9 27 44 54 60 62 63 63
43 3 9 27 44 54 60 62 63 63
44 2 6 18 42 53 59 61 63 63
45 3 9 27 44 54 60 62 63 63
46 3 9 27 44 54 60 62 63 63
47 3 9 27 44 54 60 62 63 63
48 2 6 12 30 46 56 60 62 63
49 3 9 18 36 50 59 61 63 63
50 3 9 18 36 50 59 61 63 63
51 3 9 18 36 50 59 61 63 63
52 2 6 18 42 53 59 61 63 63
53 3 9 27 46 55 60 62 63 63
54 3 9 27 46 55 60 62 63 63
55 3 9 27 46 55 60 62 63 63
56 2 6 18 42 53 59 61 63 63
57 3 9 27 46 55 60 62 63 63
58 3 9 27 46 55 60 62 63 63
59 3 9 27 46 55 60 62 63 63
60 2 6 18 42 53 59 61 63 63
61 3 9 27 46 55 60 62 63 63
62 3 9 27 46 55 60 62 63 63
63 3 9 27 46 55 60 62 63 63

38



Table 11. Lower bounds of algebraic degrees of some coordinate functions of PRESENT.

index 1R 2R 3R 4R 5R 6R 7R 8R
5 3 5 15 28 48 55 61 63
6 3 4 12 30 47 55 61 63
7 3 5 15 30 48 56 61 63
9 3 4 12 30 47 55 61 63
10 3 4 12 30 47 55 61 63
11 3 5 15 28 48 55 61 63
13 3 4 12 26 47 55 61 63
14 3 4 12 30 48 55 61 63
15 3 5 15 31 48 55 61 63
17 3 9 14 30 46 55 61 63
18 3 9 14 30 46 55 61 63
19 3 9 14 30 46 55 61 63
20 2 6 18 42 49 55 61 63
21 3 9 27 42 50 58 62 63
22 3 9 27 43 52 60 61 63
23 3 9 27 46 50 58 62 63
24 2 6 18 41 47 55 61 63
25 3 9 27 44 52 60 61 63
26 3 9 27 44 53 55 61 63
27 3 9 27 44 49 55 61 63
28 2 6 18 42 48 55 61 63
29 3 9 27 43 48 55 61 63
30 3 9 27 44 52 55 61 63
31 3 9 27 44 48 55 61 63
33 3 9 14 29 47 55 61 63
34 3 9 14 29 46 55 61 63
35 3 9 14 32 46 55 61 63

index 1R 2R 3R 4R 5R 6R 7R 8R
36 2 6 18 42 48 55 61 63
37 3 9 27 41 47 55 61 63
38 3 9 27 41 48 55 61 63
39 3 9 27 39 50 55 61 63
40 2 6 18 42 49 55 61 63
41 3 9 27 43 50 58 62 63
42 3 9 27 43 47 55 61 63
43 3 9 27 43 50 58 62 63
44 2 6 18 36 48 55 61 63
45 3 9 27 39 49 55 61 63
46 3 9 27 39 51 55 61 63
47 3 9 27 42 52 60 61 63
49 3 9 14 29 48 55 61 63
50 3 9 14 32 46 55 61 63
51 3 9 14 29 47 55 61 63
52 2 6 18 42 48 55 61 63
53 3 9 27 43 47 55 61 63
54 3 9 27 41 52 55 61 63
55 3 9 27 46 48 55 61 63
56 2 6 18 42 48 55 61 63
57 3 9 27 46 49 55 61 63
58 3 9 27 46 49 55 61 63
59 3 9 27 46 53 59 61 63
60 2 6 18 42 48 55 61 63
61 3 9 27 46 54 56 61 63
62 3 9 27 43 51 55 61 63
63 3 9 27 46 53 59 61 63

39



Table 12. Lower bounds of algebraic degrees of all coordinate functions of PRESENT.

index 1R 2R 3R 4R 5R 6R 7R 8R 9R
0 2 4 7 15 33 48 55 61 63
1 3 6 11 15 33 48 55 61 63
2 3 6 11 15 33 48 55 61 63
3 3 6 11 15 33 48 55 61 63
4 2 4 12 24 48 53 59 61 63
5 3 6 18 23 42 46 55 61 63
6 3 6 18 23 42 48 55 61 63
7 3 6 18 24 45 49 55 61 63
8 2 4 12 24 45 48 55 61 63
9 3 6 18 24 48 53 59 61 63
10 3 6 18 22 48 53 55 61 63
11 3 5 15 29 48 56 58 62 63
12 2 4 12 24 48 48 55 61 63
13 3 6 18 23 48 48 55 61 63
14 3 6 18 24 48 52 55 61 63
15 3 6 18 23 48 52 58 62 63
16 2 6 11 21 33 48 55 61 63
17 3 9 17 27 33 48 55 61 63
18 3 9 16 29 39 51 58 62 63
19 3 9 17 21 31 47 55 61 63
20 2 6 18 42 48 48 55 61 63
21 3 9 27 46 48 53 59 61 63
22 3 9 27 44 48 48 55 61 63
23 3 9 27 43 48 50 58 62 63
24 2 6 18 36 48 46 55 61 63
25 3 9 27 44 47 48 55 61 63
26 3 9 27 42 48 50 58 62 63
27 3 9 27 42 43 48 55 61 63
28 2 6 18 42 47 48 55 61 63
29 3 9 27 45 48 49 55 61 63
30 3 9 27 46 48 48 55 61 63
31 3 9 27 43 46 49 55 61 63

index 1R 2R 3R 4R 5R 6R 7R 8R 9R
32 2 6 10 24 39 49 55 61 63
33 3 9 16 24 39 50 55 61 63
34 3 9 16 26 37 50 58 62 63
35 3 9 16 28 42 51 55 61 63
36 2 6 18 42 48 50 58 62 63
37 3 9 27 44 48 50 58 62 63
38 3 9 27 36 44 50 55 61 63
39 3 9 27 36 48 48 55 61 63
40 2 6 18 42 47 51 55 61 63
41 3 9 27 44 49 56 58 62 63
42 3 9 27 42 48 51 55 61 63
43 3 9 27 44 48 48 55 61 63
44 2 6 18 36 47 48 55 61 63
45 3 9 27 44 47 55 61 62 63
46 3 9 27 39 48 52 55 61 63
47 3 9 27 44 48 48 55 61 63
48 2 6 11 27 33 48 55 61 63
49 3 9 17 27 35 48 55 61 63
50 3 9 17 25 35 48 55 61 63
51 3 9 17 27 36 47 55 61 63
52 2 6 18 42 48 53 59 61 63
53 3 9 27 44 47 50 58 62 63
54 3 9 27 39 48 48 55 61 63
55 3 9 27 42 48 53 59 61 63
56 2 6 18 39 52 55 61 62 63
57 3 9 27 39 48 48 55 61 63
58 3 9 27 43 48 48 55 61 63
59 3 9 27 46 48 50 58 62 63
60 2 6 18 42 45 48 55 61 63
61 3 9 27 41 48 48 55 61 63
62 3 9 27 36 46 48 55 61 63
63 3 9 27 43 45 50 58 62 63

40



B Example of Our Heuristic Approach

To understand our heuristic approach, we demonstrate a concrete examples of
the trail extension. As an example, let us focus on SKINNY64, and the goal is to
guarantee the degree 63 in the MSB of the first nibble after 10 rounds. In other
words, we want to find input pattern u and key pattern (v1, . . . , v9), where the
number of trails satisfying

(u, v1, . . . , v9)→ y9 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


is odd. The Hamming weight of u must be 63, and we first assign such an u. In
this example, the following

u =


F F F F

F F F E

F F F F

F F F F


is used.

The first step is to determine (x8, v9), where the Hamming weight of x8 and
v9 is as high as possible and the number of trails from x8 to y9 is odd (1 if
possible). Specifically, we create an MILP model to represent the division trail
from u to y9 and first maximize the weight of x8 and then maximize the weight
of v9. Note that the optimality of this local maximization is not important, and
this step is done to randomly pick one of proper (the weight of x8 and v9 is large)
trail extensions. The following trail is an example of the first trail extension.

SC SC
>>> 1

>>> 2

>>> 3

1
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

7
0
0
0

1
0
4
2

0
0
0
2

0
0
4
0

0
0
0
0

1
0
0
0

0
0
0
2

0
0
4
0

0
0
0
0

1
0
0
0

0
0
0
E

0
0
6
0

0
0
0
0

7
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

u x
F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

y z  x9 y9

v

Then, the number of trail is only 1 when (x8, v9, y9) is fixed.
The second step is to determine (x7, v8, y8), where the Hamming weight of x7

and v8 is as high as possible and the number of trails from x7 to y8 is odd (1 if
possible). Then, we use x8 and y8 generated one step before, and the following
trail is an example of the second trail extension.

SC SC
>>> 1

>>> 2

>>> 3

0
0
0
2

0
0
4
0

0
0
0
0

1
0
0
0

0
0
0
E

0
0
6
0

0
0
0
0

7
0
0
0

C
0
2
0

0
2
4
0

0
0
0
0

2
0
1
4

C
2
0
4

0
0
1
0

0
0
2
0

2
0
4
0

4
2
0
4

0
0
1
0

0
0
2
0

2
0
4
0

6
E
0
6

0
0
7
0

0
0
E
0

E
0
6
0

8
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

u x
F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

y z  x8 y8

v

41



The number of trails from x7 to y8 with the key pattern v8 is only 1. Besides,
the number of trails from x7 to y9 with the key pattern (v8, v9) is also 1.

We continue this procedure step by step, and the following trails are examples
of the third and fourth trail extensions.

SC SC
>>> 1

>>> 2

>>> 3

E
0
6
6

0
2
5
0

0
2
C
0

A
4
2
4

E
2
C
4

0
2
2
6

0
4
6
0

A
0
5
0

2
2
4
4

0
2
2
2

0
4
2
0

2
0
1
0

E
E
6
6

0
E
E
E

0
6
E
0

E
0
7
0

4
2
0
4

0
0
1
0

0
0
2
0

2
0
4
0

6
E
0
6

0
0
7
0

0
0
E
0

E
0
6
0

C
0
8
0

0
0
0
4

0
0
4
0

8
0
4
0

u x
F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

y z  x7 y7

v

SC SC
>>> 1

>>> 2

>>> 3

E
6
E
6

E
E
E
0

6
2
C
0

2
4
F
0

E
E
C
0

E
2
F
6

6
4
E
0

2
6
E
0

2
2
4
0

2
2
F
2

6
4
2
0

2
2
6
0

E
E
6
0

E
E
F
E

7
6
E
0

E
E
B
0

2
2
4
4

0
2
2
2

0
4
2
0

2
0
1
0

E
E
6
6

0
E
E
E

0
6
E
0

E
0
7
0

C
C
8
0

C
0
0
4

0
0
C
0

0
4
8
0

u x
F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

y z  x6 y6

v

The number of trails in each step is only 1, and finally, the number of trails from
x5 to y9 is 1 with the key pattern (v6, v7, v8, v9).

Now, we have the pattern (x5, v6, v7, v8, v9) → y9 whose number of trails
is 1. Since the Hamming weight of x5 is large enough, we change our strategy.
Here, the key pattern (v1, v2, v3, v4) whose number of trails from u to y5 is odd
is searched all at once.

F

0
0
0
0

C
0
0
0

0
0
0
0

0
0
0
0

u
F
F
F
F

F
F
F
F

F
F
F
F

F
F
F
F

v1

F

0
0
0
0

0
0
0
0

0
0
2
0

0
0
0
0

v2

F

0
0
0
2

6
0
0
4

0
0
0
0

0
1
E
0

v3

F

A
8
0
4

0
6
0
4

E
0
0
0

8
0
0
6

v4

F

8
8
0
8

8
0
0
4

0
0
0
C

8
0
0
0

v5

SC

2
2
4
0

2
2
F
2

6
4
2
0

2
2
6
0

E
E
6
0

E
E
F
E

7
6
E
0

E
E
B
0

x y

The number of trails from u to y5 with the key pattern (v1, v2, v3, v4, v5) is 11.
We finally combine (v1, . . . , v5) with (v6, . . . , v9) and enumerate the number

of trails from u to y9 with the key pattern (v1, . . . , v9). In this example, because
using this x5 are necessary, the number of trails is still 11.

42



C Input/Key/Output Pattern for SKINNY64

Here, we list all input/key/output patterns for SKINNY64. Thanks to the column
rotation equivalence, 16 patterns are enough to list everything for algebraic degree
and minimum degree. For others, please refer to

https://github.com/LowerBoundsAlgDegree/LowerBoundsAlgDegree
to avoid listing too many patterns.

For SKINNY64, we think that the state is represented as
x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15

 .

In the context of the division property, we focus on
∏15
i=0 x

ui
i , and the in-

put/key/output pattern is represented by 16 hexadecimal digits as

s0s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15.

C.1 data_set_skinny_64_degree

in : FFFFFFFFFFFFFEFF
k00 : 0000000000000000
k01 : 0460000000000000
k02 : 000004000000 C000
k03 : 80080000 C4C40880
k04 : 008000008000000C
k05 : 08004080 C00C4080
k06 : 0000 C040004800C0
k07 : 0000400000000000
k08 : 0000000000000000
out : 1000000000000000

in : FFFFFFFFFEFFFFFF
k00 : 0000000000000000
k01 : 0000000000000024
k02 : 0000040060080000
k03 : C008C0C008008000
k04 : C40084004008C4CC
k05 : 0440 C400C004C800
k06 : 0040808000040040
k07 : 0000000000000000
k08 : 0000000000000000
out : 2000000000000000

in : FFFFFEFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000020000
k02 : 0000600000000080
k03 : 848006808008800C
k04 : 04008440 C0048800
k05 : 00400 C0080400000
k06 : 0000080000000000
k07 : 0000800000000000
k08 : 0000000000000000
out : 4000000000000000

in : FFFFFEFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000000000
k02 : 0008800200000200
k03 : 8024048020004008
k04 : 04000000 C804C800
k05 : 00008000400800 C0
k06 : 0000000000000000
k07 : 0000000000000000
k08 : 0000000000000000
out : 8000000000000000

in : FFFFFFFFFFFFFEFF
k00 : 0000000000000000
k01 : 0002000000000000
k02 : 000000 A40800E000
k03 : 8004 C000808C0884
k04 : CC00C4006004C088
k05 : 0480 CC00C4048080
k06 : 0000 C88000040440
k07 : 0000400000000000
k08 : 0000000000000000
k09 : 6000000000000000
out : 0100000000000000

in : FFFFFFFFFFFFFEFF
k00 : 0000000000000000
k01 : 0002000000000000
k02 : 0000086805006000
k03 : 8004 C000800C0880
k04 : CC00C4004008C008
k05 : 0400 C400C0044820
k06 : 0080 C04000000080
k07 : 0000000000000000
k08 : 0000000000000000
k09 : C000000000000000
out : 0200000000000000

in : FFFFFFFFFEFFFFFF
k00 : 0000000000000000
k01 : 0000000000000020
k02 : 04600200 C0000000
k03 : C00880C00C08C000
k04 : C0008400C008C4C8
k05 : 04 C0C4008004C800
k06 : 0000 C08000040080
k07 : 0000000000000000
k08 : 0000000000000000
k09 : 4000000000000000
out : 0400000000000000

in : FFFFFEFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000020000
k02 : 0000600000000048
k03 : C86800808004C008
k04 : 040080804004 C80C
k05 : 00408400400 C0800
k06 : 0000800000080000
k07 : 0000000000000000
k08 : 0000000000000000
k09 : 8000000000000000
out : 0800000000000000

in : FFFFFFFFFEFFFFFF
k00 : 0000000000000000
k01 : 0000000000000000
k02 : 0420000840000000
k03 : 8000004008808008
k04 : 4000000000000400
k05 : 808000000000 C000
k06 : 0000600000400000
k07 : 000004000000 C000
k08 : 0000000000000400
out : 0010000000000000

in : FFFFFEFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000060000
k02 : 0000000 C000008E0
k03 : 440806809000 E004
k04 : C000408488CC5400
k05 : 8000 C04404800000
k06 : 000000000000 C000
k07 : 0000400000000800
k08 : 0000080000004000
k09 : 0000000000800000
out : 0020000000000000

in : FEFFFFFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000004100000000
k02 : 8002000000040000
k03 : 04 C06004800C64E0
k04 : 48 C8C00084008E0C
k05 : 8000000400400 C00
k06 : 0000080000008000
k07 : 0000400000400000
k08 : 0000080000004000
k09 : 0000000000000000
out : 0040000000000000

in : FFFFFFFFFFFFFEFF
k00 : 0000000000000000
k01 : 0084000000000000
k02 : 0000040000088000
k03 : C000800088040040
k04 : 04 C0CC08C008C088
k05 : C000440088000400
k06 : 800000000000 C000
k07 : 0000 C00000000000
k08 : 0000000000008000
k09 : 0000000000000000
out : 0080000000000000

in : FFFFFFFFFFFFFEFF
k00 : 0000000000000000
k01 : 0820000000000000
k02 : 000000000002 C006
k03 : C000800484860C68
k04 : E4C0EC00800844E8
k05 : 08048400400 C8840
k06 : 0000 C800000C4800
k07 : 0040500000800080
k08 : 0040000000000000
k09 : 0000000000400000
out : 0001000000000000

in : FFEFFFFFFFFFFFFF
k00 : 0040000000000000
k01 : 0000000000040000
k02 : 0000600400000042
k03 : C482020060000000
k04 : 800084840080 E008
k05 : 0408 C440400C8080
k06 : 0000 C4800004C000
k07 : 0000400000000840
k08 : 0000000000000000
k09 : 8000000000000000
out : 0002000000000000

in : FFFFFFFFFFFFFEFF
k00 : 0000000000000000
k01 : 0040000000000000
k02 : 000002840 A01A008
k03 : 00008000802 C0084
k04 : 8680 C40C8004C0C8
k05 : 0C04CC00C80C8080
k06 : 0000 C000000CC040
k07 : 0040 C00000000080
k08 : 0000000000000000
k09 : 0000000000000000
out : 0004000000000000

in : FFFFFFFFFFFFFEFF
k00 : 0000000000000000
k01 : 0080000000000000
k02 : 000004200000 E000
k03 : C00AE004C06A0802
k04 : 04808600800 E80E8
k05 : 000400004804 C800
k06 : 0000 C4000004C840
k07 : 0000800000000000
k08 : 0000000000000000
k09 : 0000000000000000
out : 0008000000000000

43



C.2 data_set_skinny_64_min

in : FFFFFFFEFFFFFFFF
k00 : 0000000800000000
k01 : 0000000000000000
k02 : 0000000000008004
k03 : 0000000480040000
k04 : 8084800004080400
k05 : 84 C04C4088044028
k06 : 0400 C880C0040000
k07 : 0000 C00000040000
k08 : 0000400000000000
k09 : 0000000000400000

in : FFFFFFFFFFFFFEFF
k00 : 0000000000000000
k01 : 0042000000000000
k02 : 0000020008028002
k03 : E004E000A0E80404
k04 : 88 C8CE00C008C004
k05 : C4C0C4008004C008
k06 : 0400 C400C0040840
k07 : 0000000000000000
k08 : 0000800000000000
k09 : 0000000000800000

in : FFFFFFFFFFFFFEFF
k00 : 0000000000000000
k01 : 0004000000000000
k02 : 0000004204080004
k03 : 8006 C00040360C02
k04 : A8C0E60800068008
k05 : 00008000400 C0400
k06 : 0000 C00000000000
k07 : 0000800000000000
k08 : 0000000000000000
k09 : 0000000400000000

in : FFFFFEFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000020000
k02 : 0000 E00000000020
k03 : 8080080880048008
k04 : 04004000 C8448000
k05 : 000020800004 C040
k06 : 0000 C000000000C0
k07 : 0000000000000000
k08 : 0000000000000000
k09 : 0000000800000000

in : FFFFFEFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000020000
k02 : 0004 A000000004E0
k03 : 448808888004800C
k04 : C0008C08C808C404
k05 : 0CC00440C00CC840
k06 : 0000 C040000400C0
k07 : 0000400000000000
k08 : 0000000000000000
k09 : 6000000000000000

in : FFFFFEFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000040000
k02 : 0808800000000088
k03 : C04808C88004C008
k04 : 04008 C044400C804
k05 : 08 C08080008C40C0
k06 : 0000 C40000000000
k07 : 0000800000000000
k08 : 0000000000000000
k09 : C000000000000000

in : FFFFFFFFFFFFFEFF
k00 : 0000000000000000
k01 : 0004000000000000
k02 : 0000002002088008
k03 : 80048004 C0280C88
k04 : CCC0C4004000800C
k05 : 0C008400C00C4080
k06 : 0000400008800000
k07 : 0000000000000040
k08 : 0000000000000000
k09 : 4000000000000000

in : FFFFFFFFFEFFFFFF
k00 : 0000000000000000
k01 : 0000000000000040
k02 : 0200020460080000
k03 : 8000800 C00008004
k04 : 04008400804484 C0
k05 : 0000 C40000088440
k06 : 0000 C00000000080
k07 : 0000000000000000
k08 : 0000000000000000
k09 : 8000000000000000

in : FFFFFEFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000200000
k02 : 0002 E00400000420
k03 : 66 C406C8C000E008
k04 : 80008024 C004E008
k05 : C800800444000800
k06 : 8400000000008080
k07 : 0000400000400000
k08 : 0000080000006000
k09 : 0000000000000400

in : FEFFFFFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000004100000000
k02 : 8002000000040000
k03 : 04 C06004800C64E0
k04 : 48 C8C00084008E0C
k05 : 8000000400400 C00
k06 : 0000080000008000
k07 : 0000400000400000
k08 : 0000080000004000
k09 : 0000000000000800

in : FEFFFFFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000200000000
k02 : 0000000000200000
k03 : 0000800880008000
k04 : 00200400 C0008000
k05 : 0000400000800000
k06 : 0080000000004000
k07 : 0000 C00000000000
k08 : 0000080000000000
k09 : 0000000000000400

in : FEFFFFFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000000000
k02 : E000000000200000
k03 : 0000000820008000
k04 : 00000000 C0000008
k05 : 0000800000000000
k06 : 0040000000008000
k07 : 0000400000000400
k08 : 0000000000000000
k09 : 0000000000000800

in : FFFFFEFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000800000
k02 : 0800 E00000000024
k03 : 802 C04C000068004
k04 : C0088A04C240CC0C
k05 : 00 C4CC00C8080080
k06 : 0000 C400000CC040
k07 : 0040 C00000000480
k08 : 0040000000000000
k09 : 4000000000000000

in : FFFFFEFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000200000
k02 : 0600 E00400000280
k03 : C0680084C000C001
k04 : E000CC4888A04C0C
k05 : 0400 C400C80C8000
k06 : 00404080000 CC040
k07 : 0000400000000840
k08 : 0000000000000000
k09 : 8000000000000000

in : FFFFFFFFFFFFFEFF
k00 : 0000000000000000
k01 : 0020000000000000
k02 : 000000240008 E008
k03 : C000400880C404C4
k04 : C480C000C008000C
k05 : 04804800 C40C0040
k06 : 0000400000800040
k07 : 0000800000000000
k08 : 0000000000000000
k09 : 0000000000400000

in : FFFFFEFFFFFFFFFF
k00 : 0000000000000000
k01 : 0000000000000000
k02 : 0004400000000084
k03 : 8040088080084008
k04 : 0400840040444000
k05 : 0080808000084080
k06 : 8000 C00000000040
k07 : 0000000000000000
k08 : 0000000000000000
k09 : 0000000000800000

44



D Example Source Code to Verify Our Result for GIFT
using Gurobi C++ API

1 #include"gurobi_c ++.h"
2 #include <vector >
3
4 using namespace std;
5
6 // bit permutation of GIFT
7 vector <int > BP = {
8 0,17,34,51,48,1,18,35,32,49,2,19,16,33,50,3,
9 4,21,38,55,52,5,22,39,36,53,6,23,20,37,54,7,

10 8,25,42,59,56,9,26,43,40,57,10,27,24,41,58,11,
11 12,29,46,63,60,13,30,47,44,61,14,31,28,45,62,15
12 };
13
14 // linear inequalities for GIFT Sbox with logic condition.
15 // let (x0,x1 ,x2 ,x3) --> (y0 ,y1 ,y2,y3)
16 // the first one means "x1 + x2 + (1-x3) + y0 + y1 + y2 >= 1"
17 vector <vector <int >> table = {
18 {2,0,0,1,0,0,0,2}, {2,0,1,1,0,0,2,0}, {1,0,2,2,0,1,1,0}, {2,0,1,1,0,1,0,2},
19 {2,0,1,1,1,0,0,2}, {2,1,0,1,1,0,2,0}, {1,1,2,2,1,1,0,0}, {2,1,1,1,1,1,2,0},
20 {0,1,2,2,0,2,0,0}, {0,2,1,2,0,0,0,2}, {1,2,2,0,0,0,2,0}, {1,2,0,0,2,2,1,0},
21 {1,2,0,1,2,2,0,0}, {1,2,1,2,2,0,0,0}, {2,1,1,0,0,0,2,2}, {2,1,1,2,2,0,0,0},
22 {2,2,1,0,0,2,0,1}, {1,1,1,2,0,2,2,0}, {1,1,2,1,2,0,2,0}, {1,1,2,2,2,0,0,1},
23 {1,1,1,1,2,2,0,2}, {1,1,2,1,0,2,2,1}, {2,2,1,1,2,0,1,1}, {0,0,0,2,2,2,1,2},
24 {0,2,0,0,2,1,2,2}, {2,0,0,0,2,2,1,2}, {0,0,2,2,1,1,2,2}, {0,2,0,2,2,1,1,2},
25 {0,2,2,0,1,2,1,2}, {2,0,0,2,1,1,2,2}, {2,2,0,0,1,2,2,1}, {2,2,0,2,2,1,1,1},
26 {0,0,2,2,2,2,2,1}, {0,2,2,0,2,2,2,1}, {0,2,2,2,2,2,1,1}
27 };
28
29 // add linear constraints for Sbox to model
30 void sboxConstr(GRBModel& model , vector <GRBVar > inVar , vector <GRBVar > outVar) {
31
32 for (int i = 0; i < table.size(); i++) {
33 GRBLinExpr tmp = 0;
34 for (int j = 0; j < 4; j++) {
35 if (table[i][j] == 0)
36 tmp += inVar[j];
37 else if (table[i][j] == 1)
38 tmp += (1 - inVar[j]);
39 }
40 for (int j = 0; j < 4; j++) {
41 if (table[i][4 + j] == 0)
42 tmp += outVar[j];
43 else if (table[i][4 + j] == 1)
44 tmp += (1 - outVar[j]);
45 }
46 model.addConstr(tmp >= 1);
47 }
48 }
49
50 // set each pattern
51 void setPattern(GRBModel& model , vector <vector <GRBVar >> var , unsigned long long int v) {
52 for (int i = 0; i < 64; i++) {
53 if (((v >> i) & 1) == 1) {
54 model.addConstr(var[i / 4][i % 4] == 1);
55 }
56 else {
57 model.addConstr(var[i / 4][i % 4] == 0);
58 }
59 }
60 }
61
62 // main function
63 int main(void){
64
65 // rounds that we show the lower bound
66 int rounds = 9;
67
68 // input/key/output pattern
69 unsigned long long int in = 0xFFFFFFFFFFFEFFFF;
70 vector <unsigned long long int > key = {
71 0x0000000000000000 ,
72 0x0000000000000000 ,
73 0x8004000000041000 ,
74 0x9204860410519C00 ,
75 0x060D130120091011 ,
76 0x6004000000000001 ,
77 0x0000000000000000 ,
78 0x0000000000000000
79 };
80 unsigned long long int out = 0x8000000000000000;
81
82 // start gurobi
83 try {
84 // create the environment

45



85 GRBEnv env = GRBEnv ();
86
87 // enumurate solutions up to 2000000000
88 env.set(GRB_IntParam_PoolSearchMode , 2);
89 env.set(GRB_IntParam_PoolSolutions , 2000000000);
90 env.set(GRB_DoubleParam_PoolGap , GRB_INFINITY);
91
92 // create the model
93 GRBModel model = GRBModel(env);
94
95 // create variables
96 vector <vector <vector <GRBVar >>> X(rounds , vector <vector <GRBVar >>(16, vector <GRBVar >(4)));
97 vector <vector <vector <GRBVar >>> Y(rounds , vector <vector <GRBVar >>(16, vector <GRBVar >(4)));
98 vector <vector <vector <GRBVar >>> K(rounds - 1, vector <vector <GRBVar >>(16, vector <GRBVar >(4)));
99 for (int r = 0; r < rounds; r++) {

100 for (int i = 0; i < 16; i++) {
101 for (int j = 0; j < 4; j++) {
102 X[r][i][j] = model.addVar(0, 1, 0, GRB_BINARY);
103 Y[r][i][j] = model.addVar(0, 1, 0, GRB_BINARY);
104 if (r < rounds - 1)
105 K[r][i][j] = model.addVar(0, 1, 0, GRB_BINARY);
106 }
107 }
108 }
109
110 // set pattern
111 setPattern(model , X[0], in);
112 setPattern(model , Y[rounds - 1], out);
113 for (int r = 0; r < rounds - 1; r++)
114 setPattern(model , K[r], key[r]);
115
116 // create constraints
117 for (int r = 0; r < rounds - 1; r++) {
118
119 //sbox
120 for (int i = 0; i < 16; i++)
121 sboxConstr(model , X[r][i], Y[r][i]);
122
123 // key xor and bit perm
124 for (int i = 0; i < 64; i++) {
125 int j = BP[i];
126 model.addConstr(Y[r][i / 4][i % 4] + K[r][j / 4][j % 4] == X[r + 1][j / 4][j % 4]);
127 }
128
129 }
130
131 // last sbox
132 for (int i = 0; i < 16; i++)
133 sboxConstr(model , X[rounds - 1][i], Y[rounds - 1][i]);
134
135 // solve this model
136 model.optimize ();
137
138 int solcount = model.get(GRB_IntAttr_SolCount);
139 cout << "the␣number␣of␣trails␣:␣" << solcount << endl;
140
141 }
142 catch (GRBException e) {
143 cerr << "Error␣code␣=␣" << e.getErrorCode () << endl;
144 cerr << e.getMessage () << endl;
145 }
146 catch (...) {
147 cerr << "Exception␣during␣optimization" << endl;
148 }
149
150 return 0;
151 }

E Propagation Rules

Here we first recall the propagation rules for the three basic operations, namely
XOR, COPY and AND. Note that the proofs of these propagation rules mainly
rely on Proposition 1.

Proposition 4 (XOR Propagation). Let F : Fn2 → F2 be defined as

F (x1, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn.

46



For a ∈ Fn2 and b ∈ F2, it holds that a F→ b if and only if

b = a1 + a2 + · · ·+ an,

that is, at most one ai can be equal to 1, which leads to b = 1 in that case, or
ai = 0,∀i ∈ {1, . . . , n}, which leads to b = 0.

Proof. By denoting y = F (x), if b = 0, then a F→ b if and only if yb = y0 = 1
contains the monomial xa, thus leading to only one possible trail with a =
(0, . . . , 0) and it satisfies the relation above. On the other hand if b = 1, then
a
F→ b if and only if yb = y1 = x1 ⊕ · · · ⊕ xn contains the monomial xa. As y1

contains each monomial of degree 1, the possible trails are a F→ b where wt(a) = 1,
which also satisfies the relation above. ut

Proposition 5 (XOR with a Constant Propagation). Let F : F2 → F2 be
defined as

F (x) = x⊕ 1.

For a, b ∈ F2, it holds that a F→ b if and only if{
b ∈ {0, 1} if a = 0

b = 1 if a = 1

Proof. By denoting y = F (x), if b = 0, then yb = y0 = 1 and thus the only
possible trail is 0 F→ 0. Otherwise if b = 1, then yb = y1 = x⊕ 1 contains both x1

and x0, thus the valid trails are 0
F→ 1 and 1

F→ 1. ut

Proposition 6 (COPY Propagation). Let F : F2 → Fn2 be defined as

F (x) = (x, x, . . . , x).

For a ∈ F2 and b ∈ Fn2 , it holds that a F→ b if and only if

a = b1 ∨ b2 ∨ · · · ∨ bn,

that is, a = 0 leads to bi = 0,∀i ∈ {1, . . . , n}, otherwise there is at least one
i ∈ {1, . . . , n} such that bi = 1.

Proof. By denoting y = F (x), if a = 0, then we need to know which b ∈ Fn2 lead
to yb contains a0 = 1, and we can easily see that the only solution is b = (0 . . . , 0),
which fits the relation above. Note that for any b ∈ Fn2 such that wt(b) ≥ 1, we
have yb = x as x2 = x, and thus yb for such a b always contains the monomial
x1 = x. Hence all trails 1

F→ b with wt(b) ≥ 1 are valid and fits the above
relation. ut

47



Proposition 7 (AND Propagation). Let F : Fn2 → F2 be defined as

F (x1, . . . , xn) = x1x2 . . . xn.

For a ∈ Fn2 and b ∈ F2, it holds that a F→ b if and only if

b = ai,∀i ∈ {1, . . . , n}.

Proof. By denoting y = F (x), if b = 0 then again, yb = 1 and thus the only
valid trail in that case is a F→ 0 with a = (0, . . . , 0), thus we have b = ai for all
i ∈ {1, . . . , n}. If b = 1, then y1 only contains the monomial x1x2 . . . xn, thus
the only possible trail is a F→ 0 with a = (1, . . . , 1), and again b = ai for all
i ∈ {1, . . . , n}. ut

Finally, we also give the propagation rules for the SPLIT and CONCATE-
NATE operations. These do not really need a modelization in either MILP or
SAT, but rather show that we can modelize independent operations in parallel,
much like how we can apply e.g., S-boxes in parallel over the state of a block
cipher.

Proposition 8 (SPLIT Propagation). Let Fn+m2 → F : Fn2 × Fm2 be defined
as

F (x) = (y, z) = ((x1, . . . , xn), (xn+1, . . . , xn+m))

For a ∈ Fn+m2 , b ∈ Fn2 and c ∈ Fm2 , it holds that a F→ (b, c) if and only if

a = (b1, . . . , bn, c1, . . . , cm).

Proposition 9 (CONCATENATE Propagation). Let F : Fn2×Fm2 → Fn+m2

be defined as
F (x, y) = x||y = (x1, . . . , xn, y1, . . . , ym)

For a ∈ Fn2 , b ∈ Fm2 and c ∈ Fn+m2 , it holds that (a, b) F→ c if and only if

c = (a1, . . . , an, b1, . . . , bm).

About the propagation through an S-box Note that CDP and BDP needed
to consider the S-box as a whole (instead of its computational circuit) as they
both lose information over time during the propagation, and thus considering the
S-box as a table allowed to propagates more precisely. However in our case, we
do not lose any information we propagating vectors. As such, we could in theory
only use the above-mentioned operations to describe the propagation through an
S-box. As we describe in Supplementary Material F, it is however much more
efficient to propagate through an S-box with a table, i.e., using Proposition 1, as
it lead to a much simpler MILP/SAT model and less trails as it avoid the use of
the COPY operation.

48



F Modelization of the Propagation Rules in MILP and
SAT

We will describe here how to modelize the different propagation rules using
either MILP or SAT. Note that the only rules that are not explicitely modelized
here are the SPLIT and CONCATENATE rules, as they essentially just means
that we can modelize independent operations in parallel. Moreover, most MILP
modelizations are rather intuitive to get from the propagation rules and as such
we omit their proof. Let us start with the most straightforward ones, namely
AND, COPY and XOR with a constant.

Proposition 10 (Modelization for AND). Let F : Fn2 → F2 be defined as

F (x1, . . . , xn) = x1x2 . . . xn.

To modelize a trail (a1, . . . , an)
F→ b in MILP, we can use the following constraints{

a1, a2, . . . , an, b are binary variables
ai = b, ∀i ∈ {1, . . . , n}

To modelize such a trail in SAT, we can use the following clauses{
b ∨ ¬ai, ∀i ∈ {1, . . . , n}
¬b ∨ ai, ∀i ∈ {1, . . . , n}

Proof. We need to modelize b = ai, ∀i ∈ {1, . . . , n} using a CNF formula and it
is well known that the translation of the propositional formula b ↔ ai can be
expressed in CNF as

(a ∨ ¬b) ∧ (¬a ∨ b).
ut

Proposition 11 (Modelization for COPY). Let F : Fn2 → F2 be defined as

F (x) = (x, x, . . . , x).

To modelize a trail a F→ (b1, . . . , bn), we can use the following constraints
a, b1, b2, . . . , bn are binary variables
b1 + b2 + · · ·+ bn ≥ a
a ≥ bi, ∀i ∈ {1, . . . , n}

If the MILP solver support directly the use of the OR operation, e.g., Gurobi, we
can directly use the constraint

a = b1 ∨ · · · ∨ bn.

To modelize such a trail in SAT, we can use the following clauses{
¬a ∨ b1 ∨ b2 ∨ · · · ∨ bn
a ∨ ¬bi, ∀i ∈ {1, . . . , n}

49



Proof. We essentially need to express the propositional formula a↔ b1 ∨ · · · ∨ bn
into CNF. As in the previous proposition, this can be first translated into the
formula

(¬a ∨ (b1 ∨ b2 ∨ · · · ∨ bn)) ∧ (a ∨ ¬(b1 ∨ b2 ∨ · · · ∨ bn))

Using the De Morgan’s and distribution laws, this is then translated into the
CNF

(¬a ∨ b1 ∨ b2 ∨ · · · ∨ bn) ∧ (a ∨ ¬b1) ∧ (a ∨ ¬b2) ∧ · · · ∧ (a ∨ ¬bn).

ut

Proposition 12 (Modelization for XOR with a Constant). Let F : F2 →
F2 be defined as

F (x) = x⊕ 1.

To modelize a trail a F→ b, we can use the following constraints{
a, b are binary variables
a ≤ b

To modelize such a trail in SAT, we can use the following clause

¬a ∨ b

Proof. As the only impossible trail is 1
F→ 0, we only need to add a clause to

remove this trail from the set of possible solutions. ut

F.1 Modelization of S-boxes

As explained before, modelizing an S-box directly using its propagation table is
more efficient than modelizing its computational circuit. We first describe how to
modelize such a table in MILP, through an example, using the method proposed
in [26]. We then describe the modelization technique used for SAT, which can
also be used in MILP.

Example for MILP modelization for S-boxes We consider the following
3-bit S-box

S = [1, 3, 6, 5, 2, 4, 7, 0],

whose ANF is

y1 = x1x2 + x2 + x3 + 1

y2 = x1 + x2x3 + x2 + x3

y3 = x1x3 + x2

50



By computing each product yb for all b ∈ F3
2 as described in Proposition 1, we

get the following propagation table

000
S→ {000, 100}

100
S→ {010, 110}

010
S→ {100, 010, 001, 011}

001
S→ {100, 010}

110
S→ {100, 110, 101, 011}

101
S→ {001, 110}

011
S→ {010, 110, 101, 111}

111
S→ {111}

Thus, the set of vector over F6
2 that we need to modelize is exactly

S = {000000, 000100, 100010, 100110, 010001, 010010, 010011, 010100, 001010, 001100,
110011, 110100, 110101, 110110, 101001, 101110, 011010, 011101, 011110, 011111, 111111}.

The resulting H-representation of this set contains 49 linear constraints. However,
using the greedy algorithm from [26], we can reduce this number to only 8
constraints, which are the following :

a1, a2, a3, b1, b2, b3 are binary variables
a1 + a2 + a3 − b1 − b2 − b3 ≥ 0

−2a1 − a2 − a3 + b1 + b3 + 2 ≥ 0

−a2 − a3 + b1 + 2b2 + b3 ≥ 0

−a1 − a3 − b1 + b2 + 2 ≥ 0

−a1 − a2 + b2 − b3 + 2 ≥ 0

−a3 + b1 − b2 − b3 + 2 ≥ 0

−a2 − b1 − b2 + b3 + 2 ≥ 0

−a1 − a3 + b1 + b2 + 2b3 ≥ 0

Thus in the end, for this specific S-box, we know that we have the trail (a1, a2, a3)
S→

(b1, b2, b3) if and only if (a1, a2, a3, b1, b2, b3) satisfy all the above constraints.

SAT Modelization for S-boxes To modelize an S-box in SAT, we essentially
use the same technique as in [1]. Namely, contrary to the MILP case where we

51



would generate the set of valid transitions, now we first generate the set S∗ of
invalid transitions, that is

S∗ = {(a1, . . . , an, b1, . . . , bn) s.t. (a1, . . . , an)
S

6→ (b1, . . . , bn), ai, bi ∈ F2}

For each element in S∗, we then generate a clause removing this element from
the possible solutions, which is built as follow. To remove a vector (x1, . . . , xn)
from the possible solutions, we use a clause built as∨

xi=0

xi ∨
∨
xi=1

¬xi.

As the size of S∗ can be quite large, this results in a high number of clauses.
However, as in [1], we can use a boolean function minimization algorithm to
reduce the number of clauses while still having the same set of feasible solution.
The two main algorithms to do this are the Quine-McCluskey algorithm [18,19,20]
which gives the minimal representation of such a set of clauses but has a high
complexity, or the heuristic Espresso [9] which has a much lower complexity but
does not necessarily gives the smallest representation. In practice, we use the
Quine-McCluskey algorithm for 4-bit (or lower) S-boxes, and Espresso for bigger
S-boxes.

F.2 Modelization of XOR

The modelization of XOR in MILP is rather straightforward and is given in the
following proposition. However in SAT, it is a bit more intricate and as such we
describe it separately afterward.

Proposition 13 (MILP Modelization for XOR). Let F : Fn2 → F2 be de-
fined as

F (x1, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn.

To modelize a trail (a1, . . . , an)
F→ b, we can use the following constraints{

a1, a2, . . . , an, b are binary variables
a1 + a2 + · · ·+ an = b

SAT Modelization for XOR with a Small Number of Variables. To
modelize a trail (a1, . . . , an)

F→ b where F (x1, . . . , xn) = x1 ⊕ · · · ⊕ xn, we can
first notice that the following conditions are sufficient to respect the propagation
rules given in Proposition 4 :

– If ai = 0 for all i ∈ {1, . . . , n}, then b = 0
– If any ai is equal to 1, i ∈ {1, . . . , n}, then b = 1
– At most one ai is equal to 1, i ∈ {1, . . . , n}

52



We thus need to encode these conditions into a CNF formula. Using the usual
encoding of x⇒ y into ¬x ∨ y, the first condition can easily be encoded with a
single clause

a1 ∨ · · · ∨ an ∨ ¬b.
In the same way, the second condition is encoded with a set of clauses

¬ai ∨ b, ∀i ∈ {1, . . . , n}.

Finally, the last condition is a very well known constraint in SAT encoding known
as a At Most One (AMO) constraint. There are multiple ways of encoding such
a relation, see e.g., [14], each of them being a trade-off between the number
of clauses and additional variables (if any), as well as its efficiency when using
different SAT solving techniques. In our implementation, we used the most widely
known encoding (and also the simplest one) as it turned out to be efficient enough.
This encoding is called pairwise encoding and works as follows. The goal is to
encode that as soon as one variable is set to 1, then all the others must be set to
0, i.e., no pair of variables can be set to 1 at the same time. Thus, it leads to the
following CNF formula

n−1∧
i=1

n∧
j=i+1

¬ai ∨ ¬aj

Overall, this way of encoding the XOR propagation requires
– One clause for the first condition
– n clauses for the second condition
–
(
n
2

)
clauses for the third condition

As
(
n
2

)
∼ O

(
n2
)
, this means that the number of clauses is quadratic in the

number of variables involved in the XOR, and can thus scale up quickly. Not
that for our experiments, we did not need to modelize an XOR with more than
3 variables, and thus only used this encoding We will still give another way to
encode the XOR propagation rule when the number of clauses generated by the
pairwise encoding is prohibitive, at the cost of adding new variables.

SAT Modelization for XOR with a Large Number of Variables. If the
previous method leads to too many clauses, we give the following way to reduce
the number of clauses to 4(n− 1), at the cost of adding n− 1 variables. The idea
is simply to consider an XOR with n variables as n− 1 successive XOR, adding a
variable for each intermediate result. We would thus need to encode the following
sequence of operations

t1 = a1 ⊕ a2
ti+1 = ti ⊕ ai+2, i ∈ {1, . . . , n− 3}
b = tn−2 ⊕ an

Using the encoding described in the previous section, we then encode each XOR
z = x⊕ y with the following CNF formula

(x ∨ y ∨ ¬z) ∧ (¬x ∨ z) ∧ (¬y ∨ z) ∧ (¬x ∨ ¬y)

53



G Propagations Tables

G.1 SKINNY64

Table 13. Propagation table for the S-box
of SKINNY

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 x x x x
1 x x x x
2 x x x x
4 x x x x
8 x x x x x x
3 x x x x x
5 x x x x
6 x x x x
9 x x x x
A x x x x x x
C x x x x
7 x x x x x
B x x x
D x x
E x x x x x x
F x

Table 14. Propagation table for the L-box
of SKINNY

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 x
1 x x x x x x x
2 x
4 x x x x x x x
8 x
3 x x x x x x x
5 x x x x x x x
6 x x x
9 x x x
A x
C x x x
7 x x x
B x x x
D x x x
E x
F x

G.2 PRESENT

Table 15. Propagation table for the S-box
of PRESENT

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 x x x x
1 x x x x
2 x x x x
4 x x x x
8 x x x x x x
3 x x x x x x x x
5 x x x
6 x x x x x x
9 x x x x x x
A x x x x x x x x x x
C x x x x
7 x x x x x x x
B x x x x x x x x x x
D x x x x x x x
E x x x x x x
F x

Table 16. Propagation table for the S-box
S′

0 1 2 4 8 3 5 6 9 A C 7 B D E F

0 x x x x
1 x x x x
2 x x x x
4 x x x x
8 x x x x x x
3 x x x x x x x x
5 x x x
6 x x x x
9 x x x x x x
A x x x x x x x x x x
C x x x x
7 x x x x x x x
B x x x x x x
D x x x x x
E x x x x x x x x
F x

54



H Removing a binary solution for an MILP model

For a given MILP model, let x = (x1, . . . , xn) be some binary variables in this
model and x = (x1, . . . , xn) ∈ Fn2 be a possible solution for these variables. Note
that the variables xi can be a subset of all binary variables of the model. We can
remove all solutions where xi = xi from the set of feasible solutions of the model
with the single constraint

∑
xi=0

xi +
∑
xi=1

(1− xi) ≥ 1.

The idea of this constraint is simply to say that any feasible solution must be
at Hamming distance at least 1 from x, e.g., for a new solution x′, there must
exists at least one index i such that x′i 6= xi. Indeed, for a given solution x′, it is
easy to verify that the following holds

– If x′ = x, then evaluating the constraint results in 0 ≥ 1, which is a violated
constraint, thus we cannot get the solution x again.

– If there is at least one index i such that xi = 0 and x′i = 1, then the term
xi will be evaluated to 1 for x′, and as we sum only positive integer, the
left-hand side of the constraint will be at least 1.

– Conversely, if there is at least one index i such that xi = 1 and x′i = 0, the
term (1− xi) will be evaluated to 1 for x′, and again, the left-hand side of
the constraint will thus be at least 1.

I Linear Inequalities to Modelize GIFT S-box

The GIFT S-box is defined as follow

S = [1, a, 4, c, 6, f, 3, 9, 2, d, b, 7, 5, 0, 8, e]

To modelize all valid propagations (x0, x1, x2, x3)
S→ (y0, y1, y2, y3) where x0

(resp. y0) is the LSB of the input (resp. output), one can use the following linear

55



inequalities :

3 + 5x0 + 4x1 + 10x2 + 4x3 − 3y0 − 6y1 − 7y2 − 2y3 ≥ 0

8− 4x0 − 5x1 − 3x2 − 3x3 + y0 + y1 + 3y2 + 2y3 ≥ 0

2x0 + x1 + x2 + x3 − y2 − 2y3 ≥ 0

−2x0 − x1 − x2 − 3x3 + 3y0 + 3y1 + 5y2 + 6y3 ≥ 0

5 + 4x0 + 3x2 + 2x3 − 5y0 − y1 − 5y2 − y3 ≥ 0

−x1 − x2 + x3 + y0 + y1 + y2 ≥ 0

2 + 2x0 + x1 − x2 − x3 + y0 + y1 − y2 − 2y3 ≥ 0

1− x0 + x3 + y0 − y2 + y3 ≥ 0

23x2 + 2x3 − 2y0 − y1 − y2 − y3 ≥ 0

1 + x0 + x1 − y0 − y1 ≥ 0

3− x1 − x3 + y0 − y2 − y3 ≥ 0

7− 3x0 − 2x1 − 3x2 − 2x3 + 2y0 − y1 + y2 + y3 ≥ 0

4− x0 − x2 − x3 − y0 + y1 − y3 ≥ 0

1 + x1 + x2 − y0 − y1 ≥ 0

4− 2x0 − 2x1 − x2 − 2x3 + y1 + y2 + y3 ≥ 0

1 + x0 + 2x2 + 2x3 − y0 − 2y1 − y2 ≥ 0

4− 2x0 − x1 − 3x2 − x3 − y0 + 3y1 + 3y2 + 2y3 ≥ 0

1− x2 + x3 + y0 + y2 − y3 ≥ 0

x0 + x1 + x2 − y2 ≥ 0

x1 + x2 − x3 + y0 + y1 + y2 ≥ 0

1 + 2x0 + x3 − y0 − y2 − y3 ≥ 0

J Deterministic Trail Extension for the Minimum Degree
in PRESENT.

As mentioned in Section 5.3, we were able to speed up the search to prove full
minimum degree for PRESENT by using a linearly equivalent S-box for the last
round. Indeed, by looking at the propagation table for the PRESENT S-box (see
Table 15), it is natural to think that the computation for the minimum degree
can be hard, as a lot of high degree monomials appear in multiple coordinate
functions. We now give more details about this observation and then how we
managed it.

Let us take a look at the propagation table for the PRESENT S-box, and
especially, we are interested in three columns : 0x2, 0x4 and 0x8. These three
columns essentially corresponds to the monomials appearing in, respectively, the

56



ANF of the second, third and fourth output bit of the S-box. As described in
Section 3.1, to prove the minimum degree for the output bits of a given S-box,
we need to find some input/key patterns such that the resulting matrix has full
rank. With this idea in mind, consider now the last S-box layer, and without
loss of generality, let us focus on the minimum degree of the first four bits (i.e.,
first S-box). Say we found an input and key pattern such that the number of
trails to the fourth output bit of this S-box is odd, i.e., when the output value
of this S-box is 0x8. Then according to our algorithm, and by examining the
propagation table, it is very likely that the corresponding value at the input of
this S-box is either 0x7, 0xB or 0xD as they have high weight. Now to build the
matrix as in Section 3.1, we also need to count the number of trails using the
same input pattern and key pattern for the other output bits of this S-box, and
especially we need to do so for the second output bit (i.e., the output value is
now 0x2). However, one can notice that 0x7, 0xB and 0xD are also valid input
values for this output. Hence, the number of trails for the second output bit will
likely be the same as for the fourth output bit since they have the same possible
high weight inputs. Moreover, the same can happen for the third output bit (i.e.,
output value 0x4) as the input can be either 0xB or 0xD. Thus, it is very likely
that any time we have an odd number of trails for one of the second, third or
fourth output bits, we also have an odd number of trails for the other two output
bits. This means that the matrix will be very likely to have a lot of columns as
(∗, 1, 1, 1)T or (∗, 1, 0, 1)T and thus it could take a long time to reach full rank.

According to the previous observations, we decided to replace the S-box
in the last S-box layer by a linearly equivalent one. Namely, if we denote by
S(x0, x1, x2, x3) = (y0, y1, y2, y3), were y0 is the LSB of the output of the S-box,
then we use the S-box S′ defined as S′(x0, x1, x2, x3) = (y0, y0 + y1 + y3, y2, y0 +
y2 + y3) for the last S-box layer. By doing so, the propagation table becomes the
one depicted in Supplementary Material G.2 Table 16, and the linear inequalities
used to modelized this modified S-box are given in Supplementary Material L.
Especially, it allows to get rid of the degree 3 monomials in the second output
bit (column 0x2), and all but one degree 3 monomial in the fourth output bit
(column 0x8). As we are considering the minimum degree (i.e., minimum degree
for any linear combination), using this S-box does not change our results. This
change alone allows to reduce the chances that the phenomenon described above
happens during the search. To actually ensure that it does not happen, we apply
the deterministic trail extension, which is introduced in SKINNY64, to the last
S-box layer.

Namely for the MSB, we restrict the sub-trail as 0x7 S−→ 0x8 during the trail
extension. As now only the fourth output bit contains the monomial given by
0x7, the above phenomenon should not happen and the resulting number of trails
for the other output bits should be 0. Similarly for the other output bits, we
restrict the sub-trail as 0xB S−→ 0x4 or 0xD S−→ 0x4 for the 2nd MSB, 0xC S−→ 0x2
for the 2nd LSB and 0x6 S−→ 0x1 for the LSB.

57



Using this linearly equivalent S-box as well as the deterministic trail extension
we just described has proven to be a very efficient trikc and allowed us to get the
results presented in Section 5.3.

K Linear Inequalities to Modelize PRESENT S-box

The PRESENT S-box is defined as follow

S = [c, 5, 6, b, 9, 0, a, d, 3, e, f, 8, 4, 7, 1, 2]

To modelize all valid propagations (x0, x1, x2, x3)
S→ (y0, y1, y2, y3) where x0

(resp. y0) is the LSB of the input (resp. output), one can use the following linear
inequalities :

6 + 3x0 + 6x1 + x2 + 7x3 − 5y0 − 8y1 − 4y2 − 2y3 ≥ 0

−2x0 − x1 − x2 − 2x3 + 2y0 + 5y1 + 5y2 + 5y3 ≥ 0

11− 2x0 − 5x1 − 5x2 − 5x3 + 2y0 + y1 + 2y2 + y3 ≥ 0

4 + 3x1 + x2 − 3y0 − y1 − y2 − 2y3 ≥ 0

3 + 2x0 + x2 + 4x3 − 3y0 − y1 − 2y2 − y3 ≥ 0

−2x0 + x1 + x2 + x3 + 2y0 + y2 + 2y3 ≥ 0

2 + 2x0 + 2x1 + x3 − 3y1 − y2 − y3 ≥ 0

4− x0 − 2x1 − 3x2 + x3 + y0 + 3y1 − y2 + 2y3 ≥ 0

2 + x0 + 2x1 − x2 − x3 − y0 + y1 − y2 + y3 ≥ 0

7− 2x0 − 2x1 − x2 + 2y0 − y1 − y2 − 2y3 ≥ 0

x1 − x2 + x3 + y0 + y2 ≥ 0

4− x0 − x1 − x3 − y0 + y2 − y3 ≥ 0

3− x0 + x1 − x3 + y1 − y2 − y3 ≥ 0

1 + x0 − x2 + x3 − y1 + y2 + y3 ≥ 0

x0 − x1 + x2 + x3 + y1 + y3 ≥ 0

4 + x0 − x2 − 2x3 + 2y0 − y1 − 2y2 + 2y3 ≥ 0

x0 − x1 − x2 − 2x3 + 2y0 + 3y1 + 3y2 + 2y3 ≥ 0

4− x0 − x2 − x3 − y0 − y1 + y2 ≥ 0

4− 2x0 − x1 − x2 − x3 − y0 + y1 + y3 ≥ 0

−x0 − x1 + x2 + x3 + y0 + y1 + 2y2 + y3 ≥ 0

3 + 2x0 + 3x1 + x2 + 2x3 − y0 − 4y1 − 3y3 ≥ 0

2− x0 + x1 + x2 − x3 + y1 − y3 ≥ 0

1 + x0 − x1 + x2 − y0 + y2 + y3 ≥ 0

x0 + x2 + x3 − y0 ≥ 0

2 + x0 − x1 − x3 + y0 + y1 − y3 ≥ 0

58



L Linear Inequalities to Modelize the Modified PRESENT
S-box S′

The modified PRESENT S-box S′ is defined as follow

S′ = [6, 7, e, 3, 1, 0, 8, d, 9, 4, f, a, c, 5, b, 2]

To modelize all valid propagations (x0, x1, x2, x3)
S′→ (y0, y1, y2, y3) where x0

(resp. y0) is the LSB of the input (resp. output), one can use the following linear
inequalities :

3 + 2x1 + x3 − y0 − y1 − y2 − 3y3 ≥ 0

−2x0 − x1 − x2 − 2x3 + 2y0 + 3y1 + 5y2 + 4y3 ≥ 0

1 + x0 + x2 + 2x3 − 2y0 − y3 ≥ 0

11− 4x0 − 5x1 − 5x2 − 4x3 + y0 + y1 + 2y2 + 3y3 ≥ 0

−x0 + x1 + x3 + y0 ≥ 0

4 + x0 + x2 − 2x3 + 2y0 − y1 − y2 − 2y3 ≥ 0

x0 − 2x1 − x2 + x3 + 3y0 + y1 + y2 + 2y3 ≥ 0

1 + x0 + x1 − y0 − y2 ≥ 0

6− 2x0 − x1 − 2x3 + y0 − 2y1 − y2 + y3 ≥ 0

2 + x0 + 2x3 − 2y0 − y1 − y3 ≥ 0

x0 − 2x2 − x3 + 2y0 + 3y1 + 2y2 + y3 ≥ 0

4− 2x0 − x1 − x2 − x3 − y0 + y1 + y3 ≥ 0

1 + x1 − y1 − y3 ≥ 0

9− 3x0 − 3x1 − x2 − 2x3 + 2y0 + y1 − y2 − 2y3 ≥ 0

2− x0 − 2x1 + x2 − x3 − y0 + 3y1 + 2y2 + y3 ≥ 0

−x0 − x1 + x3 + y0 + 2y2 + 2y3 ≥ 0

2 + x0 − x2 − y0 − y1 + y2 ≥ 0

1 + x0 − x1 + x3 − y2 + y3 ≥ 0

x1 + x3 − y3 ≥ 0

1 + x1 + x2 − y2 − y3 ≥ 0

1 + x0 + x1 − y0 − y1 ≥ 0

59


