
Improved Differential-Linear Attacks with
Applications to ARX Ciphers?

Christof Beierle1, Gregor Leander1, and Yosuke Todo2,1

1 Ruhr University Bochum, Bochum, Germany
{christof.beierle, gregor.leander}@rub.de

2 NTT Secure Platform Laboratories, Tokyo, Japan
yosuke.todo.xt@hco.ntt.co.jp

Abstract. We present several improvements to the framework of diffe-
rential-linear attacks with a special focus on ARX ciphers. As a demon-
stration of their impact, we apply them to Chaskey and ChaCha and we
are able to significantly improve upon the best attacks published so far.

Keywords: Symmetric Cryptanalysis · ARX · Chaskey · ChaCha

1 Introduction

Symmetric cryptographic primitives play major roles in virtually any cryp-
tographic scheme and any security-related application. The main reason for
this massive deployment of symmetric primitives, i.e. (tweakable) block ciphers,
stream ciphers, hash functions, or cryptographic permutations, is their signif-
icant performance advantage. Symmetric primitives usually outperform other
cryptographic schemes by order(s) of magnitude.

One class of design of symmetric primitives that is inherently motivated by
(software) efficiency is an ARX-based design. ARX is short for addition (mod-
ulo a power of two), word-wise rotation and XOR. Indeed, ciphers following
this framework are composed of those operations and avoid the computation of
smaller S-boxes through look-up tables. As most CPUs have hardware support
for all those operations, in particular an addition unit and a barrel shifter imple-
mented directly in hardware, executing them on such CPUs based on a suitable
register size is inherently fast.

The block cipher FEAL [27] was probably the first ARX cipher presented in
the literature and by now there are several state-of-the-art ciphers that follow
this approach. One of the most important (family) of ARX ciphers is certainly
the one formed by Salsa20, ChaCha and their variants (see [7,6]). Designed by
Bernstein, those ciphers are now the default replacement for RC4 in TLS due
to the high efficiency and simplicity of their implementations and are thus one
of the most widely-used ciphers in practice. Besides being used in TLS, ChaCha

? c©IACR 2020. This article is an extended version of the paper to appear at CRYPTO
2020, which was submitted by the authors to the IACR and to Springer Verlag on
June 19, 2020.

mailto:christof.beierle@rub.de
mailto:gregor.leander@rub.de
mailto:yosuke.todo.xt@hco.ntt.co.jp

is also deployed in several other products and in particular used as a building
block in the popular hash functions Blake and Blake2 [2,3].

Clearly, the ARX-based design approach is not restricted to only stream-
ciphers, but also allows the design of efficient block ciphers (e.g., Sparx [15]),
cryptographic permutations (e.g., Sparkle [5]), and message authentication codes
(MACs). For the latter, Chaskey [24] is among the most prominent examples.

Besides the advantage of having efficent implementations, there are also good
reasons for ARX-based designs when it comes to security. The algebraic degree of
ARX ciphers is usually high after only a very few rounds, as the carry bit within
one modular addition already reaches almost maximal degree. Structural attacks
like integral [18] or invariant attacks [28] are less of a concern and rotational
cryptanalysis [17], originally invented for ARX ciphers, is in most cases very
efficiently prevented by the XOR of constants.

When it comes to differential [9] and linear attacks [23], ARX-based designs
often show a peculiar behaviour. For a small number of rounds, i.e., only very
few modular additions, the differential probabilities (resp., absolute linear cor-
relations) are very high. In particular for a single modular addition, those are
equal to 1 due to the linear behaviour of the most and least significant bits.
Moreover, for a single modular addition, the differential probabilities and linear
correlations are well understood and we have at hand nice and efficient formulas
for their computation [21,29]. In the case of (dependent) chains of modular ad-
ditions and XORs, the situation is different and often checking the probabilities
experimentally is the best way to evaluate the behaviour.

Thus, while a few rounds are very weak, for a well-crafted ARX scheme, the
probabilities of differentials and the absolute correlations of linear approxima-
tions decrease very quickly with increasing the number of rounds. Indeed, this
property led to the long-trail strategy for designing ARX-based ciphers [15].

Now, for symmetric primitives, the existence of strong differentials and lin-
ear approximations for a few rounds with a rapid decrease of probabilities (resp.
absolute correlations) is exactly the situation in which considering differential-
linear attacks [19] is promising. In a nutshell, differential-linear attacks combine
a differential with probability p for the first r rounds of the cipher and a linear
approximation with correlation q for the next t rounds into a linear approxima-
tion for r+ t rounds with correlation pq2 that can be turned into an attack with
data complexity of roughly p−2q−4.

Indeed, that said, it is not surprising that the best attacks against many
ARX constructions, including ChaCha and Chaskey, are differential-linear at-
tacks [20,11,14]. Our work builds upon those ideas and improves differential-
linear attacks on ARX ciphers along several dimensions.

1.1 Our Contribution

In this paper we present the best known attacks on ChaCha and Chaskey. Our
improvements over prior work are based on improvements in the differential, as
well as the linear part and the key-recovery part of differential-linear attacks.

2

Table 1. (Partial) Key-Recovery Attacks on Chaskey and ChaCha.

Key size Rounds Time Data Ref.

Chaskey 128 6 228.6 225 [20]

7 267 248 [20]

251.21 240.21 Sect. 5.3

ChaCha 256 6 2139 230 [1]

2136 228 [26]

2116 2116 [11]

277.4 258 Sect. 6.3

7 2248 227 [1]

2246.5 227 [26]

2238.9 296 [22]

2237.7 296 [11]

2235.22 – [14]

2230.86 248.83 Sect. 6.4

Differential Part. For the differential part, our observation is both simple and
effective. Recall that for a differential-linear attack, one needs many (roughly
q−4) pairs to fulfill the difference in the first part of the cipher, that is many
right pairs for the differential. Now, imagine that an attacker could construct
many right pairs with probability (close to) one, given only a single right pair.
This would immediately reduce the data complexity of the attack by a factor
of p−1. As we will see, this situation is rather likely to occur for a few rounds
of many ARX ciphers and in particular occurs for ChaCha and Chaskey. The
details of those improvements are presented in Sect. 3.

Linear Part. For the linear part, our first observation is that often it is beneficial
to not restrict to a single mask but rather consider multiple linear approxima-
tions. As we detail in Sect. 4, this nicely combines with an improved version of
the partitioning technique for ARX ciphers [8,20], that splits the space of cipher-
texts into subsets in order to increase the correlation of linear approximations.
The starting point of our attacks is a new way of partitioning the ciphertexts,
summarized in Lemma 3. Note that, although we use multiple linear masks in
the attack, because of partitioning the ciphertexts, we use only a single linear
mask for each ciphertext. In this way we avoid possible dependencies that would
be hard to analyze otherwise.

Key Recovery. Related to the improvement in the linear part, we present a sig-
nificant speed-up in the key recovery part. Here, the main observation is that
after considering multiple masks and the partitioning technique, several key bits
actually appear only linearly in the approximations. In particular, their value
does not affect the absolute value of the correlation but rather the sign only. This

3

observation allows us to, instead of guessing those keys as done in previous at-
tacks, recover them by applying the Fast Walsh-Hadamard Transform (FWHT).
Similar ideas have already been described in [12]. Details of this approach are
given in Sect. 4.

Putting those improvements into one framework and applying the frame-
work to round-reduced variants of ChaCha and Chaskey results in significantly
reduced attack complexities. Our attacks with the corresponding complexities
are summarized in Table 1, together with a comparison to the best attacks pub-
lished so far.1 In particular for ChaCha it is important to add that, as those
attacks are on round-reduced variants of the ciphers only, they do not pose any
threat on the full-round version of the ciphers. Rather, those attacks strengthen
our trust in the design. We expect that our improvements have applications to
other ciphers as well, especially ARX-based designs.

2 Preliminaries

By ⊕ we denote the XOR operation, i.e., addition in Fn2 and by + we either
denote the addition in Z, or the modular addition mod 2n for elements in Fn2 ,
depending on the context. For x ∈ Fn2 , we denote by x̄ the bitwise complement
of x. Given a set S ⊆ Fn2 and a Boolean function f : Fn2 → F2, we define

Corx∈S [f(x)] :=
1

|S|
∑
x∈S

(−1)f(x) .

We denote the i-th unit vector of a binary vector space by [i] and the sum of
unit vectors [i1] ⊕ [i2] ⊕ · · · ⊕ [it] by [i1, i2, . . . , it]. Given a vector x ∈ Fn2 , x[i]
denotes the i-th bit of x, and x[i1, i2, . . . , it] denotes

⊕t
j=1 x[ij]. For γ, x ∈ Fn2 ,

we define the inner product by 〈γ, x〉 =
⊕n−1

i=0 γ[i]x[i] mod 2. In particular,
x[i1, i2, . . . , it] = 〈x, [i1, i2, . . . , it]〉.

In the remainder of this paper we assume that, when S ⊆ Fn2 is a (sufficiently
large) subset of Fn2 of random samples, Corx∈S [f(x)] is a good approximation
for Corx∈Fn

2
[f(x)]. In other words, we assume that the empirical correlations

obtained by sampling for a sufficiently large number of messages closely match
the actual correlations.

We denote by N (µ, σ2) the normal distribution with mean µ and variance
σ2. By Φ we denote the cumulative distribution function of the standard normal
distribution N (0, 1). Thus if X ∼ N (µ, σ2), it holds that

Pr(X ≤ Θ) = Φ

(
Θ − µ
σ

)
.

4

E1

E2

E1

E2

∆in

∆m

p

q q

Γm Γm

Γout Γout

Fig. 1. The structure of a classical
differential-linear distinguisher.

E1

Em

E1

Em

∆in

∆m

p

E2 E2
q q

r

Γm Γm

Γout Γout

Fig. 2. A differential-linear distinguisher
with experimental evaluation of the corre-
lation r.

2.1 Differential-Linear Attacks

We first recall the basic variant of differential-linear cryptanalysis as introduced
by Langford and Hellman [19]. Fig. 1 shows the overview of the distinguisher. An
entire cipher E is divided into two sub ciphers E1 and E2, such that E = E2◦E1,
and a differential distinguisher and a linear distinguisher are applied to the first
and second parts, respectively.

In particular, assume that the differential ∆in
E1→ ∆m holds with probability

Prx∈Fn
2

[E1(x)⊕ E1(x⊕∆in) = ∆m] = p .

Let us further assume that the linear approximation Γm
E2→ Γout is satisfied

with correlation Corx∈Fn
2

[〈Γm, x〉 ⊕ 〈Γout, E2(x)〉] = q. The differential-linear
distinguisher exploits the fact that, under the assumption that E1(x) and E(x)
are independent random variables, we have

Corx∈Fn
2

[〈Γout, E(x)〉 ⊕ 〈Γout, E(x⊕∆in)〉] = pq2 . (1)

Therefore, by preparing εp−2q−4 pairs of chosen plaintexts (x, x̃), for x̃ = x⊕∆in,
where ε ∈ N is a small constant, one can distinguish the cipher from a PRP.

In practice, there might be a problem with the assumption that E1(x) and
E(x) are independent, resulting in wrong estimates for the correlation. To pro-
vide a better justification of this independence assumption (and in order to

1 After the submission of this paper, the authors of [13] independently found the same
distinguisher without applying the technique for improving over the differential part,
and the presented attack complexities are very close to ours.

5

improve attack complexities) , adding a middle part is a simple solution and
usually done in recent attacks (as well as in ours). Here, the cipher E is divided
into three sub ciphers E1, Em and E2 such that E = E2◦Em◦E1 and the middle
part Em is experimentally evaluated. In particular, let

r = Corx∈S [〈Γm, Em(x)〉 ⊕ 〈Γm, Em(x⊕∆m)〉] ,

where S denotes the set of samples over which the correlation is computed.
Then, the total correlation in Equation 1 can be estimated as prq2. Recently,
as a theoretical support for this approach the Differential-Linear Connectivity
Table (DLCT) [4] has been introduced. The overall attack framework is depicted
in Fig. 2 and we will use this description in the remainder of the paper.

2.2 Partitioning Technique for ARX-based Designs

Partitioning allows to increase the correlation of the differential-linear distin-
guisher by deriving linear equations that hold conditioned on ciphertext and key
bits. We first recall the partitioning technique as used in [20]. Let a, b ∈ Fm2
and let s = a + b. When i = 0 (lsb), the modular addition for bit i becomes
linear, i.e., s[0] = a[0]⊕ b[0]. Of course, for i > 0, computing the i-th output bit
of modular addition is not linear. Still, by restricting (a, b) to be in a specific
subset, we might obtain other linear relations. In previous work, the following
formula on s[i] was derived.

Lemma 1 ([20]). Let a, b ∈ Fm2 and s = a+ b. For i ≥ 2, we have

s[i] =

{
a[i]⊕ b[i]⊕ a[i− 1] if a[i− 1] = b[i− 1]

a[i]⊕ b[i]⊕ a[i− 2] if a[i− 1] 6= b[i− 1] and a[i− 2] = b[i− 2] .

Let us now consider two m-bit words z0 and z1 and a modular addition
operation

F : F2m
2 → F2m

2 , (z1, z0) 7→ (y1, y0) = (z1, z0 + z1) ,

as depicted in Fig. 5. F might correspond to a single branch of a wider ARX-
based design. In the attacks we present later, we are interested in the value z0[i].
For this, we cannot apply Lemma 1 directly since z0[i] is obtained by modular
subtraction. However, for that case the following formula can be derived.

Lemma 2. Let i ≥ 2 and let S1 := {(x1, x0) ∈ F2m
2 | x0[i− 1] 6= x1[i− 1]} and

S2 := {(x1, x0) ∈ F2m
2 | x0[i− 1] = x1[i− 1] and x0[i− 2] 6= x1[i− 2]}. Then,

z0[i] =

{
y0[i]⊕ y1[i]⊕ y0[i− 1]⊕ 1 if (y1, y0) ∈ S1 ,
y0[i]⊕ y1[i]⊕ y0[i− 2]⊕ 1 if (y1, y0) ∈ S2 .

(2)

Clearly, S1 and S2 are disjoint sets. Note that Equation 2 only holds for 3
4 of

the data, since |S1| = 2−122m and |S2| = 2−222m.

6

[i]

[] [][i]

[i]

[i]

Fig. 3. Two linear trails with correlation 2−1.

Due to the propagation rules for linear trails over modular addition, we may
end up with multiple linear trails that are closely related to each other. As an
example, Fig. 3 shows two possible trails, where [i] and [i − 1, i] denote the
corresponding linear masks. The partitioning technique described above evalu-
ates z0[i], but we can expect that there is a highly-biased linear trail in which
z0[i− 1]⊕ z0[i] needs to be evaluated instead of z0[i]. In the trivial method, we
apply the partitioning technique of Lemma 2 for z0[i] and z0[i − 1] separately,
which requires the knowledge of 3 bits of information from y in total. Our new
partitioning method allows us to determine the partition only by knowing the
same 2 bits of information as needed for evaluating the case of z0[i], namely
(y0[i − 1] ⊕ y1[i − 1]) and (y0[i − 2] ⊕ y1[i − 2]). This is especially helpful if y
consists of the ciphertext XORed with the key, so we need to guess less key bits
to evaluate the partition. In particular, the following relation holds, which is
straightforward to proof. The intuition is that z0[i− 1] corresponds to the carry
bit c[i−1] in the case of (y1, y0) ∈ S3 and (y1[i−2], y1[i−1]) = (c[i−2], c[i−1]) for
(y1, y0) ∈ S4. For completeness, the proof is given in Supplementary Material A.

Lemma 3. Let i ≥ 2 and let S3 = {(x1, x0) ∈ F2m
2 | x0[i − 1] = x1[i − 1]} and

S4 = {(x1, x0) ∈ F2m
2 | x0[i− 1] 6= x1[i− 1] and x0[i− 2] 6= x1[i− 2]}. Then,

z0[i]⊕ z0[i− 1] =

{
y0[i]⊕ y1[i] if (y1, y0) ∈ S3 ,
y0[i]⊕ y1[i]⊕ y0[i− 1]⊕ y0[i− 2]⊕ 1 if (y1, y0) ∈ S4 .

Again, S3 and S4 are disjoint and the equation above holds for 3
4 of the data.

3 The Differential Part – Finding Many Right Pairs

Let us be given a permutation E1 : Fn2 → Fn2 and a differential ∆in
E1→ ∆m that

holds with probability p. In other words,

|{x ∈ Fn2 | E1(x)⊕ E1(x⊕∆in) = ∆m}| = p · 2n .

In a usual differential-linear attack on a permutation E = E2 ◦ Em ◦ E1 as ex-
plained in Sect. 2.1, the internal structure of E1 could be in general arbitrary

7

and we would consider randomly chosen x ∈ Fn2 to observe the ciphertexts of
the plaintext pairs (x, x ⊕ ∆in). For each of those pairs, the differential over
E1 is fulfilled with probability p, which results in a data complexity of roughly
εp−2r−2q−4 for the differential-linear attack. In other words, we did not exploit
the particular structure of E1. In particular, it would be helpful to know some-
thing about the distribution of right pairs (x, x⊕∆in) ∈ Fn2 × Fn2 that fulfill the
above differential.

Let us denote by X the set of all values that define right pairs for the differ-
ential, i.e.,

X = {x ∈ Fn2 | E1(x)⊕ E1(x⊕∆in) = ∆m} .
To amplify the correlation of a differential-linear distinguisher, instead of

choosing random plaintexts from Fn2 , we would consider only those that are in
X . In particular, we have2

Corx∈X [〈Γout, E(x)〉 ⊕ 〈Γout, E(x⊕∆in)〉] = rq2 .

Since the set X might have a rather complicated structure, and is moreover
key-dependent, we cannot use this directly for an arbitrary permutation E1.
However, if X employs a special structure such that, given one element x ∈ X ,
we can generate many other elements in X for free,3 independently of the secret
key, we can use this to reduce the data complexity in a differential-linear attack.
For example, if X contains a large affine subspace A = U ⊕ a, given x ∈ A,
we can generate (roughly) 2| dimU| elements in X for free, namely all elements
x ⊕ u, for u ∈ U . In order to obtain an effective distinguisher, we must be able
to generate enough plaintext pairs to observe the correlation of the differential-
linear approximation. In particular, we need to require |U| > εr−2q−4.

This will be exactly the situation we find in ChaCha. Here the number of
rounds covered in the differential part is so small that it can be described by the
independent application of two functions (see Sect. 3.1).

If |U| is smaller than the threshold of εr−2q−4, we can’t generate enough
right pairs for free to obtain a distinguisher by this method and we might use a
probabilistic approach, see Sect. 3.2.

3.1 Fully Independent Parts

Let E1 : Fn2 → Fn2 with n = 2m be a parallel application of two block ciphers

E
(i)
1 : Fm2 → Fm2 , i ∈ {0, 1} (for a fixed key), i.e.,

E1 : (x(1), x(0)) 7→ (E
(1)
1 (x(1)), E

(0)
1 (x(0))) .

Suppose that, E
(0)
1 employs a differential α

E
(0)
1→ β with probability p. We consider

the differential ∆in
E1→ ∆m with ∆in = (0, α) and ∆m = (0, β), which also holds

2 under the assumption that the sets {〈Γout, E(x)〉 ⊕ 〈Γout, E(x⊕∆in)〉 | x ∈ X} and
{〈Γout, E(x)〉 ⊕ 〈Γout, E(x⊕∆in)〉 | x ∈ S} are indistinguishable, where S denotes a
set of uniformly chosen samples of the same size as X .

3 Or at least with a cost much lower than p−1, see Sect. 3.2.

8

with probability p. Given one element (x(1), x(0)) ∈ X , any (x(1) ⊕ u, x(0)) for
u ∈ Fm2 is also contained in X , thus we can generate 2m right pairs for free.

If 2m > εr−2q−4, a differential-linear distinguisher on E = E2 ◦ Em ◦ E1

would work as follows:

1. Choose a = (a(1), a(0)) ∈ Fn2 uniformly at random.

2. Empirically compute

Corx∈a⊕(Fm
2 ×{0}) [〈Γout, E(x)〉 ⊕ 〈Γout, E(x⊕∆in)〉] .

3. If we observe a correlation of rq2 using εr−2q−4 many x, the distinguisher
succeeded. If not, start over with Step 1.

With probability p, we choose an element a ∈ X in Step 1. In that case, the
distinguisher succeeds in Step 3. Therefore, the data complexity of the distin-
guisher is εp−1r−2q−4, compared to εp−2r−2q−4 as in the classical differential-
linear attack.

3.2 Probabilistic Independent Parts

We are also interested in the situations in which the differential part cannot be
simply written as the parallel application of two functions. Again, the goal is,
given one element x ∈ X , to be able to generate εr−2q−4 other elements in X ,
each one with a much lower cost than p−1. Suppose that U ⊆ Fn2 is a subspace
with |U| > εr−2q−4 and suppose that Pru∈U (x⊕ u ∈ X | x ∈ X) = p1, where p1
is much larger than p. The data complexity of the improved differential-linear
distinguisher would then be εp−1p−21 r−2q−4. Note that the probability p1 also
depend on x. In particular, there might be x ∈ X ′ ⊆ X for which p1 is (almost)
1, but the probability to draw such an initial element x from Fn2 is p′, which
is smaller than p. Then, the data complexity would be εp′−1p−21 r−2q−4. For
instance, this will be the case for the attack on Chaskey (Sect. 5), where we
have p1 ≈ 1 and p′ = p× 222/256.

In such situations, we propose an algorithmic way to experimentally detect
suitable structures in the set of right pairs. This idea of the algorithm, see Al-
gorithm 1 for the pseudo code, is to detect canonical basis vectors within the
subspace U . Running this algorithm for enough samples will return estimates of
the probability γj that a right pair x ∈ X stays a right pair when the j-th bit is
flipped, i.e.,

γi = Pr (x⊕ [i] ∈ X | x ∈ X) .

When applied to a few rounds of ARX ciphers it can be expected that there
are some bits that will always turn a right pair into a right pair, i.e. γi = 1.
Moreover, due to the property of the modular addition that the influence of bits
on distant bits degrades quickly, high values of γj 6= 1 can also be expected. As
we will detail in Sect. 5 this will be the case for the application to Chaskey.

9

Algorithm 1 Computing probabilistic independent bits

Require: Number of samples T , input difference ∆in, output difference ∆m

Ensure: Probabilities γ0, γ1, . . . , γn−1

1: Let s = 0 and cj = 0 for j ∈ {0, . . . , n− 1}.
2: for i = 1 to T do
3: Pick a random X and compute E1(X) and E1(X ⊕∆in)
4: if E1(X)⊕ E1(X ⊕∆in) = ∆m then
5: Increment s
6: for j ∈ {0, . . . , n− 1} do
7: Prepare X̂ where the j-th bit of X is flipped.
8: if E1(X̂)⊕ E1(X̂ ⊕∆in) = ∆m then
9: Increment cj

10: end if
11: end for
12: end if
13: end for
14: for j ∈ {0, . . . , n− 1} do
15: γj = cj/s
16: end for

4 The Linear Part – Advanced Partitioning and
WHT-based Key-Recovery

In this section, we describe our improvements over the linear part of the attack
which consists in exploiting multiple linear approximations and an advanced
key-recovery technique using the partitioning technique and the fast Walsh-
Hadamard transform. The overall structure of the advanced differential-linear
attack is depicted in Fig. 4. Here F corresponds to the part of the cipher that
we are going to cover using our improved key-guessing. Our aim is to recover
parts of the last whitening key k by using a differential-linear distinguisher given

by s (multiple) linear approximations 〈Γ (pi)
out , z〉 ⊕ 〈Γ

(pj)
out , z̃〉. In the following, we

assume that the ciphertext space Fn2 is split into a direct sum P ⊕ R with
nP := dimP and nR := dimR = n−nP . Therefore, we can uniquely express in-
termediate states z as zP⊕zR, where zP ∈ P and zR ∈ R. The precise definition
of P and R depends on the particular application of the attack.

4.1 Multiple Linear Approximations and Partitioning

The idea is to identify several tuples (Tpi , Γ (pi)
out , γ

(pi)), i ∈ {1, . . . , s}, where

Tpi = R⊕ pi is a coset of R ⊆ Fn2 , Γ
(pi)
out ∈ Fn2 and γ(pi) ∈ R, for which we can

observe a high absolute correlation

εi := Cory∈Tpi

[
〈Γ (pi)

out , z〉 ⊕ 〈γ(pi), y〉
]
.

In the simplest case, we would have εi = 1, i.e.,

y ∈ Tpi ⇒
(
〈Γ (pi)

out , z〉 = 〈γ(pi), y〉 = 〈γ(pi), c〉 ⊕ 〈γ(pi), k〉
)
.

10

x x̃

z = zP ⊕ zR z̃ = z̃P ⊕ z̃R

y = yP ⊕ yR ỹ = ỹP ⊕ ỹR

c = cP ⊕ cR c̃ = c̃P ⊕ c̃R

∆in

∆m

Γm Γm

Γ
(p1)
out Γ

(p2)
out

. . . Γ
(ps)
out Γ

(p1)
out Γ

(p2)
out

. . . Γ
(ps)
out

γ(p1)γ(p2) . . . γ(ps) γ(p1)γ(p2) . . . γ(ps)

.

E1 E1

Em Em

E2 E2

F F

exp. exp.

k = kP ⊕ kR k = kP ⊕ kR

kin kin

Fig. 4. The general structure of the attack.

In other words, by considering only a specific subset of the ciphertexts (defined
by Tpi) we obtain linear relations in the key with a high correlation.

Note that y ∈ Tpi ⇔ c ∈ Tpi ⊕ kP , so we need to guess nP bits of k to
partition the ciphertexts into the corresponding Tpi . Note that there might be
ciphertexts that are discarded,4 i.e., there might be y which do not belong to
any Tpi , for i ∈ {1, . . . , s}. Note also that, since we require γ(pi) ∈ R, we obtain
linear relations only on kR.

By defining5

qi,j := Cor x∈X such that
(c,c̃)∈Tpi×Tpj⊕(kP ,kP)

[
〈Γ (pi)

out , z〉 ⊕ 〈Γ
(pj)
out , z̃〉

]
,

4 Of course, the discarded data has to be considered in the data complexity of the
attack.

5 If |qi,j | is not too small and if the number s of approximations is not too
huge, we can empirically compute qi,j for all i, j. In other cases, we estimate

qi,j = Corx∈X
[
〈Γ (pi)

out , z〉 ⊕ 〈Γ
(pj)
out , z̃〉

]
by assuming indistinguishability of the sets

{〈Γ (pi)
out , z〉 ⊕ 〈Γ

(pj)
out , z̃〉 | x ∈ X s.t. (y, ỹ) ∈ Tpi × Tpj} and {〈Γ (pi)

out , z〉 ⊕ 〈Γ
(pj)
out , z̃〉 |

x ∈ S}, where S is a set of uniformly random samples of X of suitable size.

11

we obtain

Cor x∈X such that
(c,c̃)∈Tpi×Tpj⊕(kP ,kP)

[
〈γ(pi), c〉 ⊕ 〈γ(pj), c̃〉 ⊕ 〈γ(pi) ⊕ γ(pj), k〉

]
= Cor x∈X such that

(c,c̃)∈Tpi×Tpj⊕(kP ,kP)

[
〈γ(pi), y〉 ⊕ 〈γ(pj), ỹ〉

]
= εiεjqi,j .

For r ∈ R, let us define sgn(r) =

{
0 if r ≥ 0

1 if r < 0
. If we define

hi,j := (−1)sgn(εiεjqi,j)Cor x∈X such that
(c,c̃)∈Tpi×Tpj⊕(kP ,kP)

[
〈γ(pi), c〉 ⊕ 〈γ(pj), c̃〉

]
,

we have hi,j = (−1)〈γ
(pi)⊕γ(pj),k〉|εiεjqi,j | . Let us further assume that

{x ∈ X | (c, c̃) ∈ Tpi × Tpj ⊕ (kP , kP)}

is of equal size σ for all (i, j) and consider the scaled version of hi,j , i.e.,

αi,j := σ · hi,j = (−1)sgn(εiεjqi,j)
∑

x∈X such that
(c,c̃)∈Tpi×Tpj⊕(kP ,kP)

(−1)〈γ
(pi),c〉⊕〈γ(pj),c̃〉 .

For each γ ∈W := Span{γ(pi) ⊕ γ(pj) | i, j ∈ {1, . . . , s}}, we define

β(γ) :=
∑

(i,j) such that

γ(pi)⊕γ(pj)=γ

αi,j .

This function β now allows to efficiently recover dimW bits of information on
kR. In other words, kR can be uniquely expressed as kL ⊕ kR′ , where kL is the
part of the key that can be obtained from β. Finally, using the Fast Walsh-
Hadamard transform on β, we compute for each tuple (kP , kL) a cumulative
counter

C(kP , kL) :=
∑
γ∈W

(−1)〈γ,kL〉β(γ) .

Whenever this counter C is larger than some threshold Θ, we store the tuple
(kP , kL) in the list of key candidates. Note that the idea of applying the Fast
Walsh-Hadamard transform to gain a speed-up in the key-recovery phase of
linear cryptanalysis has already been used before, see [12].

The attack is presented in Algorithm 2. Note that the actual correlations are
approximated by sampling over N pairs of plaintexts, resp., ciphertexts.

A note on the Walsh-Hadamard transform. Given a real-valued function f : Fn2 →
R, the Walsh-Hadamard transform evaluates the function

f̂ : Fn2 → R, α 7→
∑
y∈Fn

2

(−1)〈α,y〉f(y) .

12

Algorithm 2 Key-recovery

Require: Cipher E, sample size N , threshold Θ.
Ensure: List of key candidates (k′P , kL) for nP + dimW bit of information on k.
1: for (i, j) ∈ {1, . . . , s} × {1, . . . , s} do
2: for k′P ∈ P do

3: α
(k′P)

i,j ← 0
4: end for
5: end for
6: Choose a

$← Fn2
7: for ` ∈ {1, . . . , N} do
8: x

$← U ⊕ a
9: (c, c̃)← (E(x), E(x⊕∆in))

10: for k′P ∈ P do
11: Identify Ti × Tj for (c⊕ k′P , c̃⊕ k′P) and get corresponding γ(pi) and γ(pj)

12: α
(k′P)

i,j ← α
(k′P)

i,j + (−1)〈γ
(pi),c〉⊕〈γ(pj),c̃〉 (where i, j are computed in line 11)

13: end for
14: end for
15: for k′P ∈ P do
16: Compute C(k′P , kL) using the Fast Walsh-Hadamard Transform
17: if C(k′P , kL) > Θ then
18: Save (k′P , kL) as a key candidate
19: end if
20: end for

A naive computation needs O(22n) steps (additions and evaluations of f), i.e.,
for each α ∈ Fn2 , we compute (−1)〈α,y〉f(y) for each y ∈ Fn2 . The Fast Walsh-
Hadamard transform is a well-known recursive divide-and-conquer algorithm
that evaluates the Walsh-Hadamard transform in O(n2n) steps. We refer to
e.g., [10, Section 2.2] for the details.

Running time and data complexity of Algorithm 2. Clearly, Algorithm 2 needs
2N queries to E as the data complexity. For the running time, the dominant
part is the loop over the key guesses for kP , the collection of N data samples,
and the Walsh-Hadamard transform. The overall running time can be estimated
as 2nP (2N + dimW · 2dimW).

Success probability of Algorithm 2. Two questions remain to be discussed here:
(i) what is the probability that the right key is among the candidates and (ii)
what is the expected size of the list of candidates? To answer those questions,
we have to first establish a statistical model for the counter values C(kP , kL).

For a key guess k′L, we first note that

C(kP , k′L) =
∑
γ∈W

(−1)〈γ,k
′
L〉β(γ)

13

=
∑
γ∈W

∑
(i,j) s. t.

γ(pi)⊕γ(pj)=γ

(−1)〈γ,k
′
L〉(−1)sgn(εiεjqi,j)

∑
x∈X such that

(c,c̃)∈Tpi×Tpj⊕(kP ,kP)

(−1)〈γ
(pi),c〉⊕〈γ(pj),c̃〉

=
∑
γ∈W

∑
(i,j) s. t.

γ(pi)⊕γ(pj)=γ

(−1)〈γ,k
′
L〉(−1)sgn(εiεjqi,j)

∑
x∈X such that

(c,c̃)∈Tpi×Tpj⊕(kP ,kP)

(−1)〈γ
(pi),y⊕kR〉⊕〈γ(pj),ỹ⊕kR〉

=
∑
γ∈W

∑
(i,j) s. t.

γ(pi)⊕γ(pj)=γ

(−1)〈γ,kL⊕k
′
L〉(−1)sgn(εiεjqi,j)

∑
x∈X such that

(c,c̃)∈Tpi×Tpj⊕(kP ,kP)

(−1)〈γ
(pi),y〉⊕〈γ(pj),ỹ〉

=
∑
γ∈W

∑
(i,j) s. t.

γ(pi)⊕γ(pj)=γ

(−1)〈γ,kL⊕k
′
L〉|εiεjqi,j | · σ,

which implies that if k′L = kL the partial counters add up, while if kL 6= k′L, the
partial counters can be expected to cancel each other partially.

In the following, we assume that the distributions involved can be well esti-
mated by normal approximations. This significantly simplifies the analysis. Note
that we opted for a rather simple statistical model ignoring in particular the
effect of the wrong key distribution and the way we sample our plain-texts (i.e.
known vs. chosen vs. distinct plaintext). Those effects might have major impact
on the performance of attacks when the data complexity is close to the full code-
book and the success probability and the gain are limited. However, none of this
is the case for our parameters. In our concrete applications, we have verified the
behaviour experimentally wherever possible.

For the statistical model for the right key, this implies that the counter can
be expected to approximately follow a normal distribution with parameters

C(kP , kL) ∼ N (N∗h,N∗)

where

h =
1

s2

∑
i,j

hi,j

is the average correlation over all partitions and N∗ is the effective data complex-
ity, i.e. the data complexity N reduced by the invalid partitions. The wrong key
counters (under the simple randomization hypothesis) is approximately normal
distributed with parameters

C(k′P , k′L) ∼ N (0, N∗) .

With this we can deduce the following proposition.

Proposition 1. After running Algorithm 2 for p−1-times, the probability that
the correct key is among the key candidates is

psuccess ≥
1

2
Pr(C(kP , kL) ≥ Θ) =

1

2

(
1− Φ

(
Θ −N∗h√

N∗

))
.

The expected number of wrong keys is 2n

p ×
(

1− Φ
(

Θ√
N∗

))
.

14

k0k1

c0c1

z0z1

y0y1

F

Fig. 5. A simple toy example.

a

b

c2 c0c1

z2 z0z1

k2 k0k1

y1y2 y0

Fig. 6. A consecutive case.

4.2 A Simple Toy Example

We transfer the above terminology on the simple toy example given in Fig. 5 and
already discussed earlier in Sect. 2.2. In this example, for a fixed i ≥ 2, we want
to evaluate z0[i] or z0[i] ⊕ z0[i − 1] by using the partitioning rules as expressed
in Lemma 2 and Lemma 3. For this, we say that (z0[i], z0[i]⊕ z0[i− 1]) defines
a partition point ζ. This partition point gives rise to a 2-dimensional subspace
P which can be defined by two parity check equations, i.e., P is a complement
space of the space

R = {(x1, x0) ∈ F2m
2 | x0[i− 1]⊕ x1[i− 1] = 0 and x0[i− 2]⊕ x1[i− 2] = 0} .

For example, P can be chosen as {([], []), ([i− 1], []), ([i− 2], []), ([i− 2, i− 1], [])}.
To demonstrate the attack from the previous section, we split F2m

2 into the
direct sum P ⊕R. By the isomorphism between P and F2

2, we can identify the
elements p ∈ P by two-bit values p ∼= b0b1, where b0 indicates the parity of
x̄0[i− 1]⊕ x1[i− 1] and b1 indicates the parity of x̄0[i− 2]⊕ x1[i− 2]. We then

consider the following four tuples (Tb0b1 , Γ (b0b1)
out , γ(b0b1)) and corresponding εb0b1 ,

whose definition come from the properties presented in Lemma 2 and Lemma 3:

T00 = R⊕ 00 = S4 Γ
(00)
out = ([], [i, i− 1]) γ(00) = ([i], [i, i− 1, i− 2]) ε00 = −1

T01 = R⊕ 01 = S1 \ S4 Γ
(01)
out = ([], [i]) γ(01) = ([i], [i, i− 1]) ε01 = −1

T10 = R⊕ 10 = S2 Γ
(10)
out = ([], [i]) γ(10) = ([i], [i, i− 2]) ε10 = −1

T11 = R⊕ 11 = S3 \ S2 Γ
(11)
out = ([], [i, i− 1]) γ(11) = ([i], [i]) ε11 = 1 .

15

For example, to give an intuition for the choice of the first tuple,6 when

(y1, y0) ∈ S4, Lemma 3 tells us that 〈Γ (00)
out , (z1, z0)〉 = 〈γ(00), (y1, y0)〉 ⊕ 1, i.e.,

ε00 = Cory∈T00

[
〈Γ (00)

out , z〉 ⊕ 〈γ(00), y〉
]

= −1.

We further have

W=Span{γ(a)⊕ γ(b) |a, b ∈ F2
2}={([], []), ([], [i− 1]), ([], [i− 2]), ([], [i− 1, i− 2])}

and we could recover the two bits k0[i − 1] and k0[i − 2] by the last step using
the fast Walsh-Hadamard transform.

4.3 Another Toy Example using Multiple Partition Points

Let us now look at another example which consists of two branches of the struc-
ture depiced in Fig. 5 in parallel, i.e., (y3, y2, y1, y0) = (F (z3, z2), F (z1, z0)) and
ci = yi⊕ki. By using a single partition point as done in the above example, we can
only evaluate the parity of at most two (consecutive) bits of z = (z3, z2, z1, z0).
Instead of just one single partition point, we can also consider multiple par-
tition points. For example, if we want to evaluate the parity involving three
non-consecutive bits of z = (z3, z2, z1, z0), we can use three partition points, i.e.

ζ1 = (z0[i], z0[i]⊕ z0[i− 1]) ,

ζ2 = (z0[j], z0[j]⊕ z0[j − 1]) ,

ζ3 = (z2[`], z2[`]⊕ z2[`− 1]) ,

where i, j, ` ≥ 2. In a specific attack, the choice of the partition points depends
on the definition of the linear trail. Those partition points give rise to three
subspaces P1, P2, and P3, defined by two parity-check equations each, i.e., Pi is
a complement space of Ri, where

R1={(x3, x2, x1, x0) ∈ F4m
2 |x0[i− 1]⊕ x1[i− 1] = 0, x0[i− 2]⊕ x1[i− 2] = 0}

R2={(x3, x2, x1, x0) ∈ F4m
2 |x0[j − 1]⊕ x1[j − 1] = 0, x0[j − 2]⊕ x1[j − 2] = 0}

R3={(x3, x2, x1, x0) ∈ F4m
2 |x2[`− 1]⊕ x3[`− 1] = 0, x2[`− 2]⊕ x3[`− 2] = 0}.

By defining7 P = P1 ⊕P2 ⊕P3 and R to be a complement space of P, we split
F4m
2 into the direct sum P ⊕R.

We can identify the elements p ∈ P by nP -bit values p ∼= b0b1 . . . bnP−1. We
can then again define tuples

(Tb0b1...bnP−1 , Γ
(b0b1...bnP−1)
out , γ(b0b1...bnP−1)) (3)

6 Note that we might choose different (Γ
(b0b1)
out , γ(b0b1)) for Tb0b1 . For example, for

T00 = S4, we might alternatively choose

Γ
(00)
out = ([], [i]) γ(00) = ([i], [i, i− 1]) ε00 = −1 ,

which is obtained from Lemma 2. To verify, note that S4 ⊆ S1.
7 Note that P is not necessarily a direct sum of P1, P2, and P3. In other words, the

dimension of P might be smaller than 6, for instance if i = j, i.e., ζ1 = ζ2.

16

by using the properties presented in Lemma 2 and Lemma 3. For example, if
nP = 6, we can define

T010101 = {(x3, x2, x1, x0) ∈ F4m
2 |x0[i− 1] 6= x1[i− 1], x0[i− 2] = x1[i− 2],

x0[j − 1] 6= x1[j − 1], x0[j − 2] = x1[j − 2],

x2[`− 1] 6= x3[`− 1], x2[`− 2] = x3[`− 2]} ,

Γ
(010101)
out = ([], [`], [], [i, j]), γ(010101) = ([`], [`− 1, `], [i, j], [i− 1, i, j − 1, j]), and
ε010101 = −1 by using the first case of Lemma 2.

We can also use the three partition points to compute the parity of more
than three bits of z. For example, if nP = 6, by using Lemma 2 and 3, we can
define

T001011 = {(x3, x2, x1, x0) ∈ F4m
2 |x0[i− 1] 6= x1[i− 1], x0[i− 2] 6= x1[i− 2],

x0[j − 1] = x1[j − 1], x0[j − 2] 6= x1[j − 2],

x2[`− 1] = x3[`− 1], x2[`− 2] = x3[`− 2]} ,

and

Γ
(001011)
out = ([], [`− 1, `], [], [i− 1, i, j])

γ(001011) = ([`], [`], [i, j], [i− 2, i− 1, i, j − 2, j]) , ε001011 = 1 ,

which evaluates the parity of five bits of z. Again, several choices for the definition
of the tuples in Equation 3 are possible.

4.4 Analysis for Two Consecutive Modular Additions

To avoid the usage of long linear trails and to reduce the data complexity, we may
use the partition technique for the more complicated structure of two consecutive
modular additions. Inspired by the round function of Chaskey, we consider the
case depicted in Fig. 6.

Suppose that we have the partition point ζ = (z1[i], z1[i] ⊕ z1[i − 1]), i.e.,
we want to compute the parity z1[i] and z1[i, i − 1] from c2, c1, and c0 (see
Fig. 6). This partition point gives rise to a 5-dimensional subspace P which can
be defined by five parity check equations, i.e., P is a complement space of the
space

R = {(x2, x1, x0) ∈ F3m
2 |x2[ia − 1]⊕ x1[ib − 2]⊕ x1[ic − 2] = 0,

x0[ib − 1]⊕ x1[ib − 1] = 0, x0[ib − 2]⊕ x1[ib − 2] = 0,

x0[ic − 1]⊕ x1[ic − 1] = 0, x0[ic − 2]⊕ x1[ic − 2] = 0},

where ia = i+ a, ib = i+ b, and ic = i+ a+ b. Then, if nP = 5, we can identify
the elements pi ∈ P by five-bit values pi ∼= b0b1b2b3b4, where (b0b1b2b3b4) =
(y2[ia − 1] ⊕ y1[ib − 2] ⊕ y1[ic − 2], s[ib − 1], s[ib − 2], s[ic − 1], s[ic − 2]) with
s = ȳ0 ⊕ y1. The whole F3m

2 is partitioned into 25 cosets Tpi = R⊕ pi and these

17

vr3

vr0

vr1

vr2

5

16

8

7

16

13

wr
0

wr
1

wr
3

wr
2 vr+1

0

vr+1
1

vr+1
3

vr+1
2

Fig. 7. The round function of Chaskey.

partitions can be constructed by guessing 5 bit of key information. The tuples

as in Equation 3 can be defined by Γ
(pi)
out ∈ {([], [i], []), ([], [i, i − 1], [])}, and the

corresponding linear mask γ(pi) involves the bits

y2[ia], y0[ib], y1[ib], y1[ib − 1], y1[ib − 2], y0[ic], y1[ic], y1[ic − 1], y1[ic − 2] .

When ia − 2, ib − 2, and ic − 2 is not extremely close to 0, for each possible
choice of Γ ∈ {([], [i], []), ([], [i, i − 1], [])}, we have 4 tuples corresponding to
correlation ε = ±1, 8 tuples corresponding to correlation ε = ±2−1, and 12
tuples corresponding to correlation ε = ±2−0.263. In other words, a fraction
of 24/32 = 3/4 tuples with non-zero correlation is available, and the average
absolute correlation is (4×1)+(8×2−1)+(12×2−0.263) ≈ 2−0.415. The choice of
the tuples with the corresponding correlations is summarized in Supplementary
Matrial B and was obtained experimentally.

5 Application to Chaskey

Chaskey [24] is a lightweight MAC algorithm whose underlying primitive is an
ARX-based permutation in an Even-Mansour construction, i.e., Chaskey-EM.
The permutation operates on four 32-bit words and employs 12 rounds of the
form as depicted in Fig. 7. The designers’ claim security up to 280 computations
as long as the data is limited to 248 blocks.

5.1 Overview of Our Attack

We first show the high-level overview of our attack. Similarly to the previous
differential-linear attack from [20], we first divide the cipher into three sub ci-
phers, i.e, E1 covering 1.5 rounds, Em covering 4 rounds, and E2 covering 0.5
rounds. The key-recovery is done over 1 round, thus the function F is cov-
ering 1 round to attack 7 rounds in total. The differential characteristic and
the linear trail are applied to E1 and E2, respectively, while the experimen-
tal differential-linear distinguisher is applied to the middle part Em. Note that,
since the differential-linear distinguisher over Em is constructed experimentally,
its correlation must be high enough to be detectable by using a relatively small

18

sampling space. Moreover, since it is practically infeasible to check all input
difference and all output linear mask, we restricted ourselves to the case of an
input difference of Hamming weight 1 and linear masks of the form [i] or [i, i+1],
i.e., 1-bit or consecutive 2-bit linear masks. As a result, when there is a non-zero
difference only in the 31st bit (msb) of w1

0, i.e.,

∆m = (([]), ([]), ([31]), ([])),

we observed the following two differential-linear distinguishers with correlations
2−5.1:

Corw1∈S
[
w5

2[20]⊕ w̃5
2[20]

]
≈ 2−5.1 , (4)

Corw1∈S
[
w5

2[20]⊕ w5
2[19]⊕ w̃5

2[20]⊕ w̃5
2[19]

]
≈ 2−5.1 . (5)

These correlations8 are estimated using a set S consisting of 226 random samples
of w1. This is significant enough since the standard deviation assuming a normal
distribution is 213. For simplicity, only the first differential-linear distinguisher
is exploited in our 7-round attack. That is

Γm = (([]), ([20]), ([]), ([])) .

Note that we do not focus on the theoretical justification of this 4-round exper-
imental differential-linear distinguisher in this paper and we start the analysis
for E1 and E2 from the following subsection.

5.2 Differential Part

We need to construct a differential distinguisher ∆in → ∆m over E1, where
the output difference is equal to the 1-bit difference ∆m = (([]), ([]), ([31]), ([])).
We have 1.5-round differential characteristic of highest probability under this
restriction and its probability is 2−17, where

∆in =
(
([8, 13, 21, 26, 30]), ([8, 18, 21, 30]), ([3, 21, 26]), ([21, 26, 27])

)
.

If this differential characteristic is directly used in the differential-linear attack,
the impact on the data complexity is p−2 = 234, which is quite huge given
the restriction on the data complexity for Chaskey. In order to reduce the data
complexity, we employ the new technique described in Sect. 3. Note that the pre-
vious analysis shown in [20] also employs the same differential characteristic, but
the technique for reducing the data complexity is completely different. We will
compare our technique to the previous technique at the end of this subsection.

8 The first case is the exactly same as the one shown in [20], but its correlation was
reported as 2−6.1. We are not sure the reason of this gap, but we think that 2−6.1

refers to the bias instead of the correlation.

19

0 32 64 96 128
0

0.25

0.5

0.75

1

index of flipped bits j
p
ro

b
a
b
il
it

y
probability bit index number of indices

γj = 1
v2 : 16,17,18,19,20,22,23,24,25,30,31

18
v3 : 16,17,18,19,20,22,23

0.95 ≤ γj < 1
v0 : 19,20,31 v3 : 24,25

7
v1 : 19,20

Fig. 8. Probability that flipping v0j/32[j mod 32] affects the output difference.

Detecting an Appropriate Subspace U . As described in Sect. 3, we want to
detect a subspace U of the input space such that E1(v0⊕u)⊕E1(v0⊕u⊕∆in) =
∆m for all u ∈ U if E1(v0) ⊕ E1(v0 ⊕ ∆in) = ∆m. Then, for our attack to
be effective, the condition is that 2| dimU| > εr−2q−4, where r and q denote
the correlation of the differential-linear distinguisher over Em and the linear
distinguisher over E2, respectively. If this condition is satisfied, we can reduce
the total data complexity from εp−2r−2q−4 to εp−1r−2q−4.

Since the four branches are properly mixed with each other within 1.5 rounds,
there is no trivial subspace as in the simple example in Sect. 3.1. However, the
diffusion obtained by the modular addition, XOR and rotation is heavily biased.
For example, let us focus on v02 [31]. This bit is independent of the 1.5-round
differential trail. Thus, we will experimentally detect bits that do not, or only
very rarely, effect the differential trail, as explained in Sect. 3 in Algorithm 1. We
used this algorithm with a sampling parameter T = 232. Due to the differential
probability of 2−17, we find on average 232 × 2−17 = 215 values of X such that
E1(X)⊕ E1(X ⊕∆in) = ∆m.

Fig. 8 summarizes the result of the search. When the basis of the linear sub-
space U is chosen from the 18 indices i corresponding to a probability γi = 1,
we are exactly in the setting as explained in Sect. 3 and the factor on the data
complexity corresponding to the differential part would be p−1. Unfortunately,
18 indices are not always sufficient to attack 7-round Chaskey. Therefore, we ad-
ditionally add 7 indices, i.e., v0[19], v0[20], v0[31], v1[19], v1[20], v3[24], and v3[25]
to define the basis of U . We then randomly picked 256 pairs (X,X ⊕∆in) that
result in the output difference ∆m after E1 and checked for how many of those
pairs, the equation E1(X⊕u)⊕E1(X⊕u⊕∆in) = ∆m is satisfied for all u ∈ U .
As a result, this holds for 222 out of 256 pairs (X,X ⊕∆in). In other words, we
can estimate the factor on the data complexity corresponding to the differential
part to be (p× 222/256)−1.

20

Comparison with the Technique of Leurent. In [20], Leurent applied the
partitioning technique to the same 1.5-round differential characteristic. For ap-
plying the partitioning technique, 14 bit of key information need to be guessed
and the impact on the data complexity from the differential part was estimated

as
(
17496
223 × 210 × 2−2×11)

)−1 ≈ 220.9 in [20]. In contrast, our technique does
not need to guess any key bit and the impact on the data complexity from the
differential part is estimated as (p× 222

256)−1 ≈ 217.2 when the size of U is 225.

5.3 Linear Part

5

16

8

7

16

13

w5
0w5

1 w5
3w5

2

c2c1 c3c0

k2k1 k3k0

[20]

[11,4,3][27] [][]

[16][0]

5

16

8

7

16

13

w5
0w5

1 w5
3w5

2

c2c1 c3c0

k2k1 k3k0

[20]

[11,10,4][27,26] [][]

[16,15][31,0]

v 0v 1 v 3v 2v 0v 1 v 3v 2

ψ(1) ψ(0)

E2

F

choice : (w6
0[16], w6

0[16, 15])
ζ1 P1 3 pi ∼= (sR[15], sR[14])

linear : v3[16], v0[16], v0[15], v0[14]

choice : (v62 [11], v62 [11, 10])
P2 3 pi ∼= (v3[18]⊕ v2[9, 17],

ζ2 sL[10], sL[9], sL[18], sL[17])
linear : v3[19], v1[11], v2[11], v2[10],
v2[9], v1[19], v2[19], v2[18], v2[17]

choice : (v62 [4], v62 [4, 3])
P3 3 pi ∼= (v3[11]⊕ v2[2, 10],

ζ3 sL[3], sL[2], sL[11], sL[10])
linear : v3[12], v1[4], v2[4], v2[3],
v2[2], v1[12], v2[12], v2[11], v2[10]

Fig. 9. Two 0.5-round linear trails and corresponding partition points.

In order to attack 7-round Chaskey, we consider as E2 0.5-rounds of Chaskey
and as F 1.5-rounds of Chaskey. For E2 we consider two trails for the mask
Γm = (([]), ([20]), ([]), ([])), namely

ψ(1) = v62 [11, 10, 4]⊕ w6
1[31, 0]⊕ w6

0[16, 15],

ψ(0) = v62 [11, 4, 3]⊕ w6
1[0]⊕ w6

0[16] .

That is computing 〈Γ piout, z〉 corresponds to either ψ(1) or ψ(0)

Similarly, we denote by ψ̃(1) and ψ̃(0) the corresponding parity bits for c̃. As
discussed in Sect. 4, our attack uses only one of them (with highest absolute
correlation) for each partition. For example, let us assume that ψ(1) is preferable
for the partition belonging to c and ψ(0) is preferable for the partition belonging
to c̃. Then, we compute ψ(1) and ψ̃(0) from c and c̃, respectively, and evaluate the
probability satisfying ψ(1) = ψ̃(0). We experimentally evaluated the correlations

21

of any combination, i.e., the correlation of 2×2 differential-linear distinguishers.
Similarly to the experiments in Sect. 5.1, we computed those correlations over a
set S consisting of random samples of w1, but the size of S had to be increased
to 228 because of the lower correlation. As a result, these empirical correlations
are ≈ ±2−6.4.

For Chaskey, we use three partition points as shown in the right table of
Fig. 9. The dimension of W for the FWHT is increased by 1 but it does not
affect the size of partitions. As already presented in Sect. 4 and also summarized
in Supplementary Material B, the corresponding subspaces P1 can be defined by
the bits summarized in Fig. 9, where sL := v̄1 ⊕ v2 and sR := v̄3 ⊕ v0. The same
table also summarizes the linear bits that can be involved to a linear combination
in the corresponding γ(p1).

For ζ2 and ζ3, the situation is different since we have to evaluate two con-
secutive modular additions instead of just one. Partitioning rules for that case
are summarized in Supplementary Material B. The major difference is that the
corresponding subspace is now of dimension 5, i.e., the condition is defined by a
5-bit value. Further, the corresponding εi are not always ±1.

Note that because there is a 1-bit interception in the defining bits for P2 and
P3, we have nP = dimP = dim(P1 ⊕ P2 ⊕ P3) = 2 + 5 + 5− 1 = 11. Namely,
the index pi of the partition Tpi is defined by the 11-bit value

(sR[15], sR[14], v3[18]⊕ v2[9, 17], sL[10], sL[9], sL[18], sL[17],

v3[11]⊕ v2[2, 10], sL[3], sL[2], sL[11]) .

It is difficult to evaluate the actual correlations of all qi,j , i, j ∈ {1, . . . , 211}
experimentally with a high significance. Therefore, we simply assume that these
correlations are common for each partition, i.e., qi,j = 2−6.4 for all i and j.

Since we have two choices ψ(0) or ψ(1) for the linear mask Γ
(pi)
out that we

use in each partition, we evaluated every correlation of possible Γ
(pi)
out and took

the one with the highest absolute correlation. More precisely, we evaluated each
subspace Pi step by step. We start our analysis from P1. For this, the condition
is based on sR[15] and sR[14] and the available linear masks can be immediately
determined as follows.

ψ(1), ψ(0) if (sR[15], sR[14]) = (0, 0) ,

ψ(0) if (sR[15], sR[14]) = (0, 1) ,

ψ(1), ψ(0) if (sR[15], sR[14]) = (1, 0) ,

ψ(1), if (sR[15], sR[14]) = (1, 1) .

In other words, the number of available linear masks decreases from 2 to 1 for
210 partitions, and the number is preserved for the other 210 partitions. We
next focus on P2, but it is more complicated because the index bit sL[10] also
appears in the index for P3. Since dim(P2⊕P3) = 9 is not large, we exhaustively
evaluated the correlation of each partition. As a result, 1472 out of 211 partitions
show a significant correlation and the average of the absolute value of those

22

correlations is 2−0.779. In the differential-linear attack, this partition analysis
must be executed for both texts in each pair. Thus, when N pairs are used, the
number of available pairs is N∗ = N × (1472

2048)2 ≈ N ×2−0.953 and the correlation
is h = 2−6.4−0.779×2 = 2−7.958.

We also need to evaluate the dimension of W := Span{γ(pi) ⊕ γ(pj) | i, j ∈
{1, . . . , s}} to evaluate the time complexity for the FWHT. Note that γ ∈W is
always generated by XORing two linear masks. Therefore, bits that are always
set to 1 in the linear masks γ(pi) and γ(pj) do not increase the dimension of
W . For example, since both ψ(1) and ψ(0) involves v1[0], it does not increase
the dimension of W . On the other hand, since v1[31] is involved only in ψ(1), it
increases the dimension of W by 1. The same analysis can be applied to each
partition point. For example, partition point ζ1 involves four bits v3[16], v0[16],
v0[15], and v0[14] in the key mask γ(pi), but both v3[16] and v0[16] are always
involved. As a result, the 10 bits

v1[31], v0[15], v0[14], v2[10], v2[9], v2[18], v2[17], v2[3], v2[2], v2[11]

are enough to construct any γ ∈W , i.e., dim(W) ≤ 10.

Experimental Reports. To verify our technique, we implemented the attack
and estimated the experimental correlation if the linear masks are appropri-
ately chosen for each partition. Then, for a right pair (X,X ⊕ ∆in), we used
228 pairs (X ⊕ u,X ⊕ u ⊕∆in) for u ∈ U . As a result, the number of available
pairs is 227.047, and the number well fits our theoretical estimation. On the other
hand, there is a small (but important) gap between our theoretical analysis and
experimental analysis. While this correlation was estimated as 2−7.958 in our
theoretical analysis, the experimental correlation is 2−7.37, which is much higher
than our theoretical estimation. We expect that this gap comes from linear-hull
effect between qi,j and (εi, εj). The linear masks λ(0) and λ(1) are fixed in our
theoretical estimation, but it allows to use multiple linear masks similarly to
the conventional linear-hull effect. Moreover, as a consecutive modular addition
causes much higher absolute correlation, we expect that our case also causes
much higher absolute correlation. However, its detailed theoretical understand-
ing is left as a open question in this paper.

Data and Time Complexities and Success Probability. We use the for-
mula in Proposition 1 to estimate the data complexity and corresponding success
probability. To find a right pair, we repeat Algorithm 2 for (p × 222/256)−1 =
217.206 times, and we expect to find a right pair with probability 1/2. For each
iteration of Algorithm 2, we use N = 222 pairs, and N∗ = 221.047. By using the

threshold Θ =
√
N∗ × Φ−1(1 − p×222/256

2n), the expected number of wrong keys
is 1, while9 psuccess = 0.489, where correlation 2−7.37 is used in this estimation.
On this success probability, the data complexity is 21+22+17.206 = 240.206 and
the time complexity is 217.206 × 211 × (2× 222 + 10× 210) ≈ 251.208.

9 It means that the success probability is 0.489× 2 = 0.978 under the condition that
the right pair is successfully obtained during 217.206 iterations.

23

16

12

8

7

a b c d

QR(a, b, c, d)

half round

half round

(vr+1
0 , vr+1

4 , vr+1
8 , vr+1

12) = QR(vr0 , v
r
4 , v

r
8 , v

r
12)

(vr+1
1 , vr+1

5 , vr+1
9 , vr+1

13) = QR(vr1 , v
r
5 , v

r
9 , v

r
13)

(vr+1
2 , vr+1

6 , vr+1
10 , vr+1

14) = QR(vr2 , v
r
6 , v

r
10, v

r
14)

(vr+1
3 , vr+1

7 , vr+1
11 , vr+1

15) = QR(vr3 , v
r
7 , v

r
11, v

r
15)

(vr+2
0 , vr+2

5 , vr+2
10 , vr+2

15) = QR(vr+1
0 , vr+1

5 , vr+1
10 , vr+1

15)

(vr+2
1 , vr+2

6 , vr+2
11 , vr+2

12) = QR(vr+1
1 , vr+1

6 , vr+1
11 , vr+1

12)

(vr+2
2 , vr+2

7 , vr+2
8 , vr+2

13) = QR(vr+1
2 , vr+1

7 , vr+1
8 , vr+1

13)

(vr+2
3 , vr+2

4 , vr+2
9 , vr+2

14) = QR(vr+1
3 , vr+1

4 , vr+1
9 , vr+1

14)

Fig. 10. The odd and even round functions of ChaCha.

6 Application to ChaCha

The internal state of ChaCha is represented by a 4 × 4 matrix whose elements
are 32-bit vectors. In this section, the input state for the r-th round function is
represented as

vr0 vr1 vr2 vr3
vr4 vr5 vr6 vr7
vr8 vr9 vr10 v

r
11

vr12 v
r
13 v

r
14 v

r
15

 .

In odd and even rounds, the QR function is applied on every column and di-
agonal, respectively. We also introduce the notion of a half round, in which the
QR function is divided into two sub function depicted in Fig. 10. Let wr be the
internal state after the application of a half round on vr. Moreover, we use the
term branches for a, b, c and d, as shown in Fig. 10.

In the initial state of ChaCha, a 128-bit constant is loaded into the first row,
a 128- or 256-bit secret key is loaded into the second and third rows, and a 64-bit
counter and 64-bit nonce are loaded into the fourth row. In other words, the first
three rows in v0 are fixed. For r-round ChaCha, the odd and even round functions
are iteratively applied, and the feed-forward values v0i � v

r
i is given as the key

stream for all i. Note that we can compute vri for i ∈ {0, 1, 2, 3, 12, 13, 14, 15}
because corresponding v0i is known.

6.1 Overview of Our Attack

We use the same attack strategy as for Chaskey. The cipher is divided into
the sub ciphers E1 covering 1 round, Em covering 2.5 rounds, and E2 covering
1.5 (resp. 2.5) rounds to attack 6 (resp., 7) rounds, and F the key recovery is
applied to the last one round. One difference to Chaskey is the domain space

24

that can be controlled by the attacker. In particular, we cannot control branches
a, b, and c because fixed constants and the fixed secret key is loaded into these
states. Thus, only branch d can be varied. It implies that active bit positions
for input differences are limited to branch d and a difference ∆m after E1 with
Hamming weight is 1 will not be available due to the property of the round
function. Therefore, we first need to generate consistent ∆m whose Hamming
weight is minimized. The following shows such differential characteristics over
one QR function.

∆in = (([]), ([]), ([]), ([i])) → ∆m = (([i+ 28]), ([i+ 31, i+ 23, i+ 11, i+ 3]),

([i+ 24, i+ 16, i+ 4]), ([i+ 24, i+ 4])) .

The probability that pairs with input difference ∆in satisfy this characteristic
is 2−5 on average. We discuss the properties of this differential characteristic in
Sect. 6.2 in more detail.

We next evaluate an experimental differential-linear distinguisher for the
middle part Em. When the Hamming weight of Γm is 1 and the active bit is
in the lsb, it allows the correlation of linear trails for E2 to be lower. For i = 6,
i.e., ∆m = (([2]), ([5, 29, 17, 9]), ([30, 22, 10]), ([30, 10])), we find the following four
differential-linear distinguishers.

∆(v1j , v
1
j+4, v

1
j+8, v

1
j+12) = ∆m → Cor[w3

(j+1) mod 4[0]⊕ w̃3
(j+1) mod 4[0]] = 2−8.3 ,

for j ∈ {0, 1, 2, 3}. When this experimental distinguisher is combined with the
differential characteristic for E1, it covers 3.5 rounds with a 1-bit output linear
mask Γm. This differential-linear distinguisher is improved by 0.5 rounds from
the previous distinguisher with 1-bit output linear mask (see [1,11]).

6.2 Differential Part

The QR function is independently applied to each column in the first round.
Therefore, when the output difference of one QR function is restricted by ∆m,
the input of other three QR functions are trivially independent of the output
difference. It implies that we have 96 independent bits, and we can easily am-
plify the probability of the differential-linear distinguisher. On the other hand,
we face a different problem, namely that the probability of the differential char-
acteristic (∆in, ∆m) highly depends on the value of the secret key. For example,
for ∆v012[6] = 1, we expect that there is a pair (v012, v

0
12⊕0x00000020) satisfying

∆(v10 , v
1
4 , v

1
8 , v

1
12) = ∆m, but it depends on the constant v00 and the key values

v04 and v08 . In our experiments, we cannot find such a pair for 292 out of 1024
randomly generated keys. On the other hand, when we can find it, i.e., on 732
out of 1024 keys, the average probability satisfying ∆(v10 , v

1
4 , v

1
8 , v

1
12) = ∆m is

2−4.5. This experiment implies the existence of “strong keys” against our attack.
However, note that we can vary the columns in which we put a difference, which
involve different key values. Since the fraction of “strong keys” is not so high, i.e.,
292/1024, we can assume that there is at least one column in which no “strong
key” is chosen with very high probability.

25

[0] [0][0] [12][26][19,7][19,7]

[19,7,6]

[7,6]

[7]

[0][8,0]

[0] [0][0] [12][26][19,7] [0][8,0]

16

12

8

16

12

8

16

12

8

16

12

8

v5
0 v5

5 v5
10 v5

15 v5
1 v5

6 v5
11 v5

12 v5
2 v5

7 v5
8 v5

13 v5
3 v5

4 v5
9 v5

14

v0 v5 v10 v15 v1 v6 v11 v12 v2 v7 v8 v13 v3 v4 v9 v14

t0

t10
t11

t3

c0 c5 c10 c15 c1 c6 c11 c12 c2 c7 c8 c13 c3 c4 c9 c14

k5 k10 k11 k7k6 k8 k4 k9

ψ(1)

ψ(0)

7 7 7 7

[24][16,0] [0][7][12,6,0][19,13,7] [8]

[24][16,0] [0][7]

[24,0][24,16,0] [31,19,0][26,7,6]

[24,0][24,16,0] [31,19,0][26,7,6] [12,6,0][19,13,7] [8]

[23,22,0] [12][19,7] [31,30,0]

[23,0] [12][19,7] [31,0]

[26]

[26]

[7,6]

[7]
[8]

[8] [19,7]

[19,7]

Fig. 11. Key recovery for 6-round ChaCha.

To determine the factor p, for 1024 randomly generated keys, we evaluated
p−1 randomly chosen iv and counter, where the branch that we induce the dif-
ference is also randomly chosen. As a result, we can find a right pair on 587 keys
with p−1 = 25 iterations. Therefore, with p = 2−5, we assume that we can find
a right pair with probability 1/2 in this stage of the attack.

In the following, we explain our attack for the case that v012 is active and
∆(v10 , v

1
4 , v

1
8 , v

1
12) = ∆m. Note that the analysis for the other three cases follows

the same argument.

6.3 Linear Part for 6-Round Attack

To attack 6-round ChaCha, we first construct a 5-round differential-linear dis-
tinguisher, where 1.5-round linear trails are appended (i.e. the E2 part) to the
3.5-round experimental differential-linear distinguisher from the previous sec-
tion. We have two 1.5-round linear trails given by

Cor[w3
1[0]⊕ ψ(1)] = 2−1 , Cor[w3

1[0]⊕ ψ(0)] = −2−1 ,

where ψ(1) = ψ ⊕ v510[6] and ψ(0) = ψ ⊕ v514[6], and

ψ = (v55 [19, 7]⊕ v510[19, 7]⊕ v515[8, 0])⊕ (v51 [0]⊕ v56 [26]⊕ v511[0])

⊕ (v513[0])⊕ (v53 [0]⊕ v59 [12]⊕ v514[7]) .

Figure 14 shows the two 1.5-round linear trails. Since their correlations are ±2−1,
we have 2 × 2 differential-linear distinguishers on 5 rounds whose correlations

26

are ±2−10.3. Note that the sign of each correlation is deterministic according to
the output linear mask.

Our 6-round attack uses these 5-round differential-linear distinguishers, and
the 1-round key recovery is shown in Fig. 11. Let c = (c0, . . . , c15) be the corre-
sponding output, and let v = (v0, . . . , v15) be the sixteen 32-bit values before the
secret key is added. Note that the secret key is only added with half of the state
and public values are added with the other state. Therefore, we simply regard
vi = ci for i ∈ {0, 15, 1, 12, 2, 13, 3, 14}.

First, we partially extend two linear masks for the last round so that it can
be linearly computed. Fig. 11 summarizes the extended linear masks, where we
need to compute the bits labeled by a red color. Moreover, for simplicity, we
introduce t0, t10, t11, and t3 as depicted in Fig. 11.

Each bit in v in which the secret key is not added can be computed for free.
For the other bits, we need to guess some key bits first. We first explain the
simple case, i.e., we compute vi[j] from ci. As an example, we focus on v7[7],
which involves k7 nonlinearly. We apply the partition technique to compute this
bit, where (3/4) data is available by guessing k7[6] and k7[5] (remember that
k7[7] cancels out in the differential-linear approximation). Since vi[0] is linearly
computed by ci[0], there are 13 simple partition points in which we need to guess
key bits. In total, we need to guess a 26-bit key and (3/4)13 data is available.

Computing bits in v5 and t is a bit more complicated than the simple case
above. For example, let us consider v59 [12], and this bit can be computed as

v59 [12] = (c9 � k9 � c14 � (c3 ⊕ (v14≫ 8)))[12]

= ((c9 � c14 � (c3 ⊕ (v14≫ 8)))� k9)[12].

Since we can compute (c9�c14�(c3⊕(v14≫ 8))) for free, this case is equivalent
to the simple case. We also use this equivalent transformation for t10, t11, and
v10[19]. In total, we have 6 such partition points, and some partition points
can share the same key, e.g., 2-bit key k10[18] and k10[17] is already guessed to
compute v10[19]. Guessing 4 bits of additional key is enough to compute each bit.
Since we have two linear masks ψ(0) and ψ(1), the number of available partitions
does not decrease for v510[7]/v510[7, 6]. Therefore, (3/4)5 data is available.

We cannot use the equivalent transformation to compute bits in t0 and t3.
Then, we further extend this linear mask with correlation 2−1. For example, we
have the following approximations

t0[8] ≈ v0[8, 7]⊕ v5[15]⊕ v10[8]⊕ 1, t0[8] ≈ v0[8]⊕ v5[15, 14]⊕ v10[8, 7],

for t0[8] with correlation 2−1, and we can use preferable approximations de-
pending on the data. Namely, we first guess k10[7] and determine which linear
approximations are available. Then, we guess k5[14] and k5[13] and compute
v5[15] (resp. v5[15, 14]) with the fraction of available partitions 3/4. In order
words, we guess 3-bit key and 3/4 data is available. We also use the same tech-
nique for t0[7]/t0[7, 6]. Therefore, 6-bit additional key is required, (3/4)2 data is
available, but the correlation is ±2−10.3−2×2 = ±2−14.3.

27

In summary, the fraction of available partitions is (3/4)13+5+2 ≈ 2−8.3. We
need to guess 36-bit key in total.

We finally estimate the data and time complexities. When we use N pairs,
the number of available pairs is N∗ = N × 22×−8.3 ≈ N2−16.6, and the average
correlation is ±2−14.3. Note that unlike Chaskey, once these key bits are cor-
rectly guessed, all linearly involved bits are either determined or cancelled out
by XORing another text. It implies dim(W) = 0 and we do not need to proceed
with the FWHT.

Data and Time Complexities and Success Probability. We use the for-
mula in Proposition 1 to estimate the data complexity and corresponding success
probability. To find a right pair, we repeat Algorithm 2 for 25 times. For each
pair, we use N = 252 pairs, and N∗ = 235.4. For the threshold Θ =

√
N∗ ×

Φ−1(1 − 2−5

236), the expected number of wrong keys is 1, but10 psuccess = 0.499.
For this success probability, the data complexity is 21+52+5 = 258.

If we guess 236 keys for each texts, the required time complexity is 258+36 =
294. However, note that once we get a pair, we can immediately compute those
kP values that correspond to valid partitions. Consequently, we only iterate
through those kP values for every pair. The time complexity is estimated as
1/p× (2N + 2N∗ × 2nP) ≈ 277.4.

6.4 The 7-Round Attack

Unfortunately, 7-round ChaCha is too complicated to apply our technique for
the linear part. On the other hand, thanks to our other contribution for the dif-
ferential part, we find a new differential-linear distinguisher which is improved
by 0.5 rounds. Therefore, to confirm the effect of our contribution for the differ-
ential part, we use the known technique, i.e., the probabilistic neutral bits (PNB)
approach, for the key-recovery attack against 7-round ChaCha. The PNB-based
key recovery is a fully experimental approach. We refer to [1] for the details and
simply summarize the technique as follows:

– Let the correlation in the forward direction (a.k.a, differential-linear distin-
guisher) after r rounds be εd.

– Let n be the number of PNBs given by a correlation γ. Namely, even if we
flip one bit in PNBs, we still observe correlation γ.

– Let the correlation in the backward direction, where all PNB bits are fixed
to 0 and non-PNB bits are fixed to the correct ones, is εa.

Then, the time complexity of the attack is estimated as 2256−nN+2256−α, where
the data complexity N is given as

N =

(√
α log(4) + 3

√
1− ε2aε2d

εaεd

)2

,

10 Note that it means that the success probability is 0.499 × 2 = 0.999 under the
condition that the right pair is successfully obtained during 27 iterations.

28

where α is a parameter that the attacker can choose.
In our case, we use a 4-round differential-linear distinguisher with correlation

εd = 2−8.3. Under pairs generated by the technique shown in 6.2, we experimen-
tally estimated the PNBs. With γ = 0.35, we found 74 PNBs, and its correlation
εa = 2−10.6769. Then, with α = 36, we have N = 243.83 and the time complexity
is 2225.86. Again, since we need to repeat this procedure p−1 times, the data and
time complexity is 248.83 and 2230.86, respectively.

7 Conclusion and Future Work

We presented new ideas for differential-linear attacks and in particular the best
attacks on ChaCha, one of the most important ciphers in practice. We hope
that our framework finds more applications. In particular, we think that it is
a promising future work to investigate other ARX designs with respect to our
ideas.

Besides the plain application of our framework to more primitives, our work
raises several more fundamental questions. As explained in the experimental
verification, we sometimes observe absolute correlations that are higher than ex-
pected, which in turn make the attacks more efficient than estimated. Explaining
those deviations from theory, likely to be caused by linear-hull effects, is an in-
teresting question to tackle. Related to this, we feel that – despite interesting
results initiated by [25] – the impact of dependent chains of modular additions
on the correlations is not understood sufficiently well and requires further study.

Finally, we see some possible improvements to our framework. First, it might
be beneficial to use multiple linear mask per partition, while we used only one in
our applications. This of course rises the question of independence, but maybe a
multidimensional approach along the lines of [16] might be possible. Second, one
might improve the results further if the estimated values for β(γ) are replaced by
a weighted sum, where partitions and masks with higher correlations are given
more weight than partitions and masks with a comparable low correlation.

Acknowledgments. We thank the anonymous reviewers for their detailed and
helpful comments. We further thank Lukas Stennes for checking the application
of our framework to ChaCha in a first version of this paper. This work was funded
by Deutsche Forschungsgemeinschaft (DFG), project number 411879806 and by
DFG under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

References

1. Aumasson, J., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features
of latin dances: Analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE
2008, Revised Selected Papers. LNCS, vol. 5086, pp. 470–488. Springer (2008)

2. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal Blake.
Submission to NIST (2008)

29

3. Aumasson, J., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. In: Jr., M.J.J., Locasto, M.E., Mohassel, P., Safavi-Naini, R.
(eds.) ACNS 2013, Proceedings. LNCS, vol. 7954, pp. 119–135. Springer (2013)

4. Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: A new tool for
differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019, Proceedings, Part I. LNCS, vol. 11476, pp. 313–342. Springer (2019)

5. Beierle, C., Biryukov, A., dos Santos, L.C., Großschädl, J., Perrin, L., Udovenko,
A., Velichkov, V., Wang, Q.: Schwaemm and Esch: Lightweight authenticated en-
cryption and hashing using the Sparkle permutation family. Submission to NIST
Lightweight Cryptography Standardization Process, Round 2 Candidate (2019)

6. Bernstein, D.J.: ChaCha, a variant of Salsa20 (2008), http://cr.yp.to/chacha.
html

7. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M.J.B., Billet,
O. (eds.) New Stream Cipher Designs - The eSTREAM Finalists, LNCS, vol. 4986,
pp. 84–97. Springer (2008)

8. Biham, E., Carmeli, Y.: An improvement of linear cryptanalysis with addition
operations with applications to FEAL-8X. In: Joux, A., Youssef, A.M. (eds.) SAC
2014, Revised Selected Papers. LNCS, vol. 8781, pp. 59–76. Springer (2014)

9. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO ’90, Proceedings. LNCS, vol. 537,
pp. 2–21. Springer (1990)

10. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. In:
Crama, Y., Hammer, P. (eds.) Boolean Methods and Models. Cambridge University
Press (2007)

11. Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials for re-
duced round Salsa and ChaCha. IACR Trans. Symmetric Cryptol. 2016(2), 261–
287 (2016)

12. Collard, B., Standaert, F., Quisquater, J.: Improving the time complexity of mat-
sui’s linear cryptanalysis. In: Nam, K., Rhee, G. (eds.) ICISC 2007, Proceedings.
LNCS, vol. 4817, pp. 77–88. Springer (2007)

13. Coutinho, M., Neto, T.C.S.: New multi-bit differentials to improve attacks against
chacha. IACR Cryptol. ePrint Arch. 2020, 350 (2020), https://eprint.iacr.
org/2020/350

14. Dey, S., Sarkar, S.: Improved analysis for reduced round Salsa and Chacha. Discrete
Applied Mathematics 227, 58–69 (2017)

15. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016, Proceedings, Part I. LNCS, vol. 10031, pp.
484–513 (2016)

16. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis. J.
Cryptology 32(1), 1–34 (2019)

17. Khovratovich, D., Nikolic, I.: Rotational cryptanalysis of ARX. In: Hong, S.,
Iwata, T. (eds.) FSE 2010, Revised Selected Papers. LNCS, vol. 6147, pp. 333–
346. Springer (2010)

18. Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002, Revised Papers. LNCS, vol. 2365, pp. 112–127. Springer (2002)

19. Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In: Desmedt, Y.
(ed.) CRYPTO ’94, Proceedings. LNCS, vol. 839, pp. 17–25. Springer (1994)

20. Leurent, G.: Improved differential-linear cryptanalysis of 7-round chaskey with
partitioning. In: Fischlin, M., Coron, J. (eds.) EUROCRYPT 2016, Proceedings,
Part I. LNCS, vol. 9665, pp. 344–371. Springer (2016)

30

http://cr.yp.to/chacha.html
http://cr.yp.to/chacha.html
https://eprint.iacr.org/2020/350
https://eprint.iacr.org/2020/350

21. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties
of addition. In: Matsui, M. (ed.) FSE 2001, Revised Papers. LNCS, vol. 2355, pp.
336–350. Springer (2001)

22. Maitra, S.: Chosen IV cryptanalysis on reduced round chacha and salsa. Discrete
Applied Mathematics 208, 88–97 (2016)

23. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT ’93, Proceedings. LNCS, vol. 765, pp. 386–397. Springer (1993)

24. Mouha, N., Mennink, B., Herrewege, A.V., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: An efficient MAC algorithm for 32-bit microcontrollers.
In: Joux, A., Youssef, A.M. (eds.) SAC 2014, Revised Selected Papers. LNCS,
vol. 8781, pp. 306–323. Springer (2014)

25. Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Robshaw,
M.J.B. (ed.) FSE 2006, Revised Selected Papers. LNCS, vol. 4047, pp. 144–162.
Springer (2006)

26. Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved key recovery attacks on reduced-
round Salsa20 and ChaCha. In: Kwon, T., Lee, M., Kwon, D. (eds.) ICISC 2012,
Revised Selected Papers. LNCS, vol. 7839, pp. 337–351. Springer (2012)

27. Shimizu, A., Miyaguchi, S.: Fast data encipherment algorithm FEAL. In: Chaum,
D., Price, W.L. (eds.) EUROCRYPT ’87, Proceedings. LNCS, vol. 304, pp. 267–
278. Springer (1987)

28. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack - practical attack
on full SCREAM, iSCREAM, and Midori64. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016, Proceedings, Part II. LNCS, vol. 10032, pp. 3–33 (2016)

29. Wallén, J.: Linear approximations of addition modulo 2n. In: Johansson, T. (ed.)
FSE 2003, Revised Papers. LNCS, vol. 2887, pp. 261–273. Springer (2003)

31

Supplementary Material

A Proof of Lemma

Below, we restate Lemma 3 and provide the proof for completeness.

Lemma 3. Let i ≥ 2 and let S3 = {(x1, x0) ∈ F2m
2 | x0[i − 1] = x1[i − 1]} and

S4 = {(x1, x0) ∈ F2m
2 | x0[i− 1] 6= x1[i− 1] and x0[i− 2] 6= x1[i− 2]}. Then,

z0[i]⊕ z0[i− 1] =

{
y0[i]⊕ y1[i] if (y1, y0) ∈ S3 ,
y0[i]⊕ y1[i]⊕ y0[i− 1]⊕ y0[i− 2]⊕ 1 if (y1, y0) ∈ S4 .

Proof. By evaluating the modular addition y0 = z0 + y1, we have

z0[i]⊕ z0[i− 1] = y0[i]⊕ y1[i]⊕ y0[i− 1]⊕ y1[i− 1]⊕ c[i− 1]⊕ c[i− 2] ,

where c[i − 1], resp., c[i − 2] denotes the carry occurring at bit position i − 1,
resp. i− 2. Let us first assume that (y1, y0) ∈ S3, i.e., y0[i− 1] = y1[i− 1]. Then,
clearly

z0[i]⊕ z0[i− 1] = y0[i]⊕ y1[i]⊕ c[i− 1]⊕ c[i− 2] .

From y0[i− 1] = y1[i− 1] it futher follows that c[i− 1] = c[i− 2] and we obtain
the first equality. Let us now assume that y0[i− 1] 6= y1[i− 1]. Then,

z0[i]⊕ z0[i− 1] = y0[i]⊕ y1[i]⊕ 1⊕ c[i− 1]⊕ c[i− 2] .

For the carry bit at position i − 1 it holds that c[i − 1] = y1[i − 1] because of
the condition y0[i− 1] 6= y1[i− 1]. If we further assume y0[i− 2] 6= y1[i− 2], we
similarly obtain c[i− 2] = y1[i− 2]. Thus, we finally obtain

z0[i]⊕ z0[i− 1] = y0[i]⊕ y1[i]⊕ 1⊕ y1[i− 1]⊕ y1[i− 2]

= y0[i]⊕ y1[i]⊕ 1⊕ y0[i− 1]⊕ 1⊕ y0[i− 2]⊕ 1

= y0[i]⊕ y1[i]⊕ y0[i− 1]⊕ y0[i− 2]⊕ 1 .

ut

32

B Summary of Partitioning

We summarize various partition rules for modular addition. Note that we can
verify the correlation of each case experimentally because they have very high
correlation.

B.1 Single Modular Addition

k0k1

c0c1

z0z1

y0y1

F

p
z0[i] z0[i, i− 1]

mask γ correlation ε mask γ correlation ε

00 1110 -1 1111 -1
01 1110 -1 - 0
10 1101 -1 1100 1
11 - 0 1100 1

Fig. 12. Partitions for a single modular addition.

Let us consider the most simple case of a single modular addition. We want
to compute the parity z0[i] and z0[i, i− 1] from c0 and c1 (see Fig. 12). Then, we
can identify the elements pi ∈ P by two-bit values pi ∼= b0b1, and the whole set
is divided into 4 subset as

Tpi = {(y1, y0) ∈ (Fn2)2 | pi ∼= s[i− 1]‖s[i− 2]},

where s = ȳ1⊕y0. In other words, these partition can be constructed by guessing
two bit of key information, i.e., (k̄1⊕k0)[i− 1] and (k̄1⊕k0)[i− 2]. Finally, both
parities can be computed as

z0[i] ≈ 〈γ, y1[i]‖y0[i]‖y0[i− 1]‖y0[i− 2]〉,
z0[i]⊕ z0[i− 1] ≈ 〈γ, y1[i]‖y0[i]‖y0[i− 1]‖y0[i− 2]〉,

where γ and the corresponding correlations are summarized in Fig. 12.

B.2 Two Consecutive Modular Additions

We want to compute the parity z1[i] and z1[i, i − 1] from c2, c1, and c0 (see
Fig. 13). Then, we can identify the elements pi ∈ P by five-bit values pi ∼=
b0b1b2b3b4, and the whole set is partitioned into 25 cosets as

Tpi = {(y2, y1, y0) ∈ (Fn2)3 | pi ∼=(y2[ia − 1]⊕ y1[ib − 2]⊕ y1[ic − 2])‖
s[ib − 1]‖s[ib − 2]‖s[ic − 1]‖s[ic − 2]} ,

33

where s = ȳ0 ⊕ y1 and ia = i + a, ib = i + b, and ic = i + a + b. Both parities
can be computed as

z1[i] ≈
〈γ, y2[ia]‖y0[ib]‖y1[ib]‖y1[ib − 1]‖y1[ib − 2]‖y0[ic]‖y1[ic]‖y1[ic − 1]‖y1[ic − 2]〉 ,
z1[i]⊕ z1[i− 1] ≈
〈γ, y2[ia]‖y0[ib]‖y1[ib]‖y1[ib − 1]‖y1[ib − 2]‖y0[ic]‖y1[ic]‖y1[ic − 1]‖y1[ic − 2]〉 ,

where γ and the corresponding correlations are summarized in Fig. 13.

34

a

b

c2 c0c1

z2 z0z1

k2 k0k1

y1y2 y0

p
z1[i] z1[i, i− 1]

mask γ correlation ε mask γ correlation ε

00000 - 0 111101110 1
00001 111111110 −2−1 111101110 2−1

00010 111111101 −1 - 0
00011 111111101 −2−1 111101101 −2−1

00100 111111110 2−0.263 111101110 2−0.263

00101 - 0 111101110 2−0.263

00110 111111101 −2−0.263 111101101 2−0.263

00111 111111101 −2−0.263 - 0
01000 111001110 1 - 0
01001 111001110 2−1 111011110 2−1

01010 - 0 111011101 1
01011 111001101 −2−1 111011101 2−1

01100 111001110 2−0.263 111011110 −2−0.263

01101 111001110 2−0.263 - 0
01110 111001101 2−0.263 111011101 2−0.263

01111 - 0 111011101 2−0.263

10000 111111110 −1 - 0
10001 111111110 −2−1 111101110 2−1

10010 - 0 111101101 1
10011 111111101 2−1 111101101 2−1

10100 111111110 −2−0.263 111101110 2−0.263

10101 - 0 111101110 2−0.263

10110 111111101 2−0.263 111101101 2−0.263

10111 111111101 2−0.263 - 0
11000 - 0 111011110 1
11001 111001110 2−1 111011110 2−1

11010 111001101 1 - 0
11011 111001101 2−1 111011101 −2−1

11100 111001110 2−0.263 111011110 2−0.263

11101 111001110 2−0.263 - 0
11110 111001101 2−0.263 111011101 −2−0.263

11111 - 0 111011101 −2−0.263

Fig. 13. Partition for two consecutive modular addition.

35

C Figures of Linear Trails for ChaCha

C.1 Two Linear Trails for 1.5-Round ChaCha

8

7

8

7

8

7

8

7

[0]

[0]

[0]

[7] [0]

[0][0] [12][26][19,7][19,7]

[19,7,6]

[7,6]

[7]

[0][8,0]

[0] [0][0] [12][26][19,7] [0][8,0]

16

12

8

7

16

12

8

7

16

12

8

7

16

12

8

7

w3
0 w3

5 w3
10 w3

15 w3
1 w3

6 w3
11 w3

12 w3
2 w3

7 w3
8 w3

13 w3
3 w3

4 w3
9 w3

14

v5
0 v5

5 v5
10 v5

15 v5
1 v5

6 v5
11 v5

12 v5
2 v5

7 v5
8 v5

13 v5
3 v5

4 v5
9 v5

14

Fig. 14. Two linear trails for 1.5-round ChaCha.

36

	Improved Differential-Linear Attacks with Applications to ARX Ciphers

