
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2020, No. 3, pp. 483–507. DOI:10.13154/tches.v2020.i3.483-507

High-Speed Masking for Polynomial Comparison
in Lattice-based KEMs

Florian Bache1, Clara Paglialonga2, Tobias Oder1, Tobias Schneider3 and
Tim Güneysu1,4

1 Ruhr-Universität Bochum, Germany, {florian.bache,tobias.oder,tim.gueneysu}@rub.de
2 Technische Universität Darmstadt, Germany, clara.paglialonga@tu-darmstadt.de

3 NXP Semiconductors Austria, Gratkorn, Austria†, tobias.schneider-a7a@rub.de
4 Deutsches Forschungszentrum für Künstliche Intelligenz, Germany

Abstract. With the NIST post-quantum standardization competition entering the
second round, the interest in practical implementation results of the remaining NIST
candidates is steadily growing. Especially implementations on embedded devices are
often not protected against side-channel attacks, such as differential power analysis.
In this regard, the application of countermeasures against side-channel attacks to
candidates of the NIST standardization process is still an understudied topic. Our
work aims to contribute to the NIST competition by enabling a more realistic judgment
of the overhead cost introduced by side-channel countermeasures that are applied
to lattice-based KEMs that achieve CCA-security based on the Fujisaki-Okamoto
transform. We present a novel higher-order masking scheme that enables an efficient
comparison of polynomials as previous techniques based on arithmetic-to-Boolean
conversions renders this (generally inexpensive) component extremely expensive in the
masked case. Our approach has linear complexity in the number of shares compared to
quadratic complexity of previous contributions and it applies to lattice based schemes
with prime modulus. It comes with a proof in the probing model and an efficient
implementation on an ARM Cortex-M4F microcontroller which was defined as a
preferred evaluation platform for embedded implementations by NIST. Our algorithm
can be executed in only 1.5-2.2 milliseconds on the target platform (depending on the
masking order) and is therefore well suited even for lightweight applications. While
in previous work, practical side-channel experiments were conducted using only 5,000
- 100,000 power traces, we confirm the absence of first-order leakage in this work by
collecting 1 million power traces and applying the t-test methodology.
Keywords: Ideal Lattices · NewHope · Masking · Implementation · ARM Cortex-
M

1 Introduction
Implementations on embedded devices often have to consider countermeasures against
side-channel attacks such as timing attacks, power analysis, or fault injections. Remedies
against timing attacks are usually simpler to realize, however, there are exceptions, like
Gaussian samplers) [AJS16,SBG+18,KMRV,KRVV19]. A common countermeasure against
power analysis is masking that splits sensitive data into random shares which are assumed
difficult to be accessed given a limited attacker and probing model. Splitting the sensitive
data into more shares means protection against more powerful attackers.

†The majority of the author’s contribution was performed while he was with UC Louvain.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2020-01-15 Accepted: 2019-03-15 Published: 2020-06-19

https://doi.org/10.13154/tches.v2020.i3.483-507
mailto:florian.bache@rub.de,tobias.oder@rub.de,tim.gueneysu@rub.de
mailto:clara.paglialonga@tu-darmstadt.de
mailto:tobias.schneider-a7a@rub.de
http://creativecommons.org/licenses/by/4.0/


484 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

In response to the looming threat of quantum computers rendering most contemporary
public key crypto obsolete, NIST started a standardization competition for post-quantum
cryptography that has entered the second round in early 2019. NIST explicitly mentions
the side-channel security of schemes as one of their evaluation criteria [NIS16]. Among
the remaining 17 encryption schemes and key encapsulation mechanisms (KEMs), there
are 9 lattice-based KEMs, which constitute the largest group of KEMs. Many of these
schemes use the Fujisaki-Okamoto transform [FO99] or a variant [TU16] to achieve
CCA-security. One crucial component of the transform is the comparison of outputs.
The comparison component has been widely disregarded in side-channel analysis of post-
quantum cryptography so far as the performance cost for this component is negligible in the
unmasked case. In this work, we show that when masking is applied using a conventional
approach, the comparison step actually amounts for a sizable number of clock cycles in the
execution of the KEM. We therefore propose a novel and highly efficient higher-order masked
algorithm for the comparison component that solves the aforementioned problem and
works on lattice based schemes with prime modulus. Our solution significantly outperforms
the previous approach by one to two orders of magnitude, depending on the masking order.
Our masking scheme is applicable for the NIST post-quantum standardization candidates
NewHope [ADPS16], Kyber [BDK+18], and LAC [LLZ+].

1.1 Related Work
Applying masking to schemes based on the Ring-Learning with Errors (Ring-LWE) problem
as countermeasure to power analysis has been first analyzed by Reparaz et al. in [RRVV15,
RdCR+16,RRdC+16]. Their masking proposals however only protect schemes providing
security against chosen-plaintext attackers (CPA). In a CPA-secure Ring-LWE-based
scheme, no comparison is required. Previous approaches for masked polynomial comparison
for lattice-based cryptography have been proposed by Oder et al. [OSPG18], Barthe et
al. [BBE+18], and Migliore et al. [MGTF19]. The approach from [OSPG18] also targets
Ring-LWE-based schemes and explicitly takes CCA-security into account, but is optimized
for first-order masking only and cannot be adapted to higher orders. The approaches
from [BBE+18] and [MGTF19] are masking schemes for lattice-based digital signatures.
The comparison algorithms in both works are alike and both are based on conversion
algorithms that transform arithmetic shares to Boolean shares. These transformations
are computationally extremely expensive and have a quadratic complexity regarding the
number of shares [SPOG19]. This makes the polynomial comparison an unnecessary
overhead in masked implementations of lattice-based cryptography. Several contributions
performed practical experiments to verify the side-channel security of their proposals.
However, the extensiveness of these experiments is lower compared to this paper with only
5k traces in [RdCR+16], 10k traces in [MGTF19], and 100k in [OSPG18].

Our approach relies on reducing the comparison of multiple values to one comparison
of a function these values. Similar approaches have been applied in other contexts than
masking, e.g., batch verification of the equality of logarithms [APB+04]. However, to the
best of our knowledge, our approach is the first to utilize this basic principle to speed up
the secure comparison of masked values.

1.2 Contribution
In this work, we present the first higher-order masking algorithm for polynomial comparison
that is specifically optimized for usage in lattice-based KEMs. The contributions of this
paper are as follows:

• We show that the adaption of other approaches (from lattice-based signatures)
introduces a significant computational overhead. That is because the A2B conversions



Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 485

used in this naive approach are expensive and have a quadratic complexity in the
masking order.

• We present a new algorithm that has a simpler structure, better asymptotic run time,
less constant overhead, and is still provable secure for higher masking orders. Our
approach exploits that the comparison steps reduces the entire information contained
in a polynomial to just a single bit.

• A theoretical proof in the t−probing model of the new scheme is provided. In
particular we show that it satisfies the stronger property of t− NI.

• Our developed ARM Cortex-M4F assembly implementation shows the superior
practical performance of our approach as it is able to reduce the computational cost
of the comparison step by a factor of 16 for first-order masking security and even
more for higher orders.

• The side-channel security of our approach is evaluated in practical experiments with
1 million power traces that is significantly more than the number of power traces
used in previous work on power analysis attacks on lattice-based cryptography.

Our algorithm can be applied to multiple lattice-based KEMs that are submitted to the
NIST post-quantum standardization competition and with the publication of this work,
we will make the source code of our microcontroller implementation publicly available.

1.3 Outline
This paper is organized as follows: In Section 2, the necessary theoretical background
that is crucial for the understanding of this paper is introduced. After that, we present
our novel approach for higher-order masked polynomial comparison in Section 3. The
implementation of this algorithm is discussed in Section 4. In Section 5, we present the
results of our evaluation of the algorithm. Finally, we draw a conclusion in Section 6.

2 Preliminaries
In this section, we introduce the necessary theoretical background. This includes a
description of the NewHope KEM, a definition of side-channel security, and the masking
countermeasure.

2.1 Notation
In the rest of the paper, we denote with q the modulus in the lattice-based scheme, which
in this work is always a prime number. We will indicate with k the number of coefficients
in a polynomial. Moreover, the lower case will be used for Boolean encoding and the upper
one for arithmetic encoding. To refer to the i-th coefficient of a polynomial A, we will write
Ai, while we write Aj

i to refer to the j-th share of the i-th coefficient of the polynomial.

2.2 The Basic NewHope Scheme
We chose NewHope as case study to evaluate our comparison algorithm. There are two
variants of NewHope, one that is secure against chosen-plaintext attackers (CPA-secure)
and one that is secure against chosen-ciphertext attackers (CCA-secure). Even though
the comparison is only necessary in the CCA-secure scheme, we still review the basic
construction of the CPA-secure NewHope as it is necessary for the understanding of how
our comparison algorithm works. For the sake of simplicity, we omit a lot of details



486 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

concerning efficiency, like the application of the number-theoretic transform or compression
of polynomials, in the description of the key generation, encryption, and decryption in
Algorithms 1,2, and 3. The most important parameters of the scheme are the modulus q,
the lattice dimension k, and the sampling parameter κ.

Algorithm 1 NewHope CPA.Keygen

Input: Public constant polynomial a
Output: Public key pk and secret key sk

1: seed
$← {0, . . . , 255}32

2: r1, r2 ← SampleBinomial(seed)
3: p← r1 + ar2
4: return pk = (a, p), sk = r2

Algorithm 2 NewHope CPA.Encryption

Input: Public key pk, message µ ∈ {0, . . . , 255}32, coin ∈ {0, . . . , 255}32

Output: Ciphertext A = (c1, c2)
1: e1, e2, e3 ← SampleBinomial(coin)
2: c1 ← ae1 + e2
3: c2 ← pe1 + e3 + Encode(µ)
4: return (c1, c2)

Algorithm 3 NewHope CPA.Decryption

Input: Secret key sk = r2, ciphertext A = (c1, c2)
Output: Message µ

1: return Decode(c2 − c1r2)

The algorithm SampleBinomial() uses a PRNG that is seeded by a random bit string.
The PRNG sends two random bit strings of length κ bits to the sampling algorithm. The
sampler then calculates the Hamming weight of both bit strings and subtracts the Hamming
weights. The result is a binomial distributed random number. SampleBinomial() outputs
an entire polynomial with binomially distributed coefficients. The algorithm Encode()
transforms the input message into a polynomial. Each bit of the message is encoded into
four coefficients. This is done by setting these four coefficients to {0, 0, 0, 0} if the message
bit is 0. If the message bit is 1, the respective coefficients are set to {b q

2c, b
q
2c, b

q
2c, b

q
2c}.

Many lattice-based KEMs use a very similar base construction. The main difference
to Kyber is that the security of Kyber is based on the Module-LWE problem while the
security of NewHope is based on the Ring-LWE problem. The security of Frodo is based
on the plain LWE problem. This implies that the parameters of Frodo are much bigger,
but the underlying lattice is actually random and not structured as in the case of the
Ring-LWE and the Module-LWE problem. Saber and Round5 are based on the the (Ring-)
Learning with Rounding (LWR) problem that is related to LWE.

2.3 Fujisaki-Okamoto Transform as Applied to NewHope

As many lattice-based KEMs that base their security on the LWE or LWR problems, the
original NewHope proposal [ADPS16] is only secure against chosen-plaintext attackers. The
Fujisaki-Okamoto transform [FO99] is a standard conversion algorithm that many designers
of post-quantum cryptography use to turn a CPA-secure scheme into a CCA-secure one.
The idea behind the Fujisaki-Okamoto transform is that a re-encryption in the decryption



Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 487

Figure 1: IND-CCA-secure variant of the NewHope KEM. The dashed line highlights the
comparison component that is subject of this work. Bold lines indicate masked data.

detects whether the input ciphertext was valid or not. Therefore the re-encrypted ciphertext
will be compared to the original input and if this comparison fails, a random value will be
output by the algorithm. Figure 1 depicts how the Fujisaki-Okamoto transform is applied
to NewHope in the specification of the NIST post-quantum standardization [AAB+]. The
ciphertext Ã is initially decrypted to µ′ using the secret key sk and then used as input
to the random oracle G. The random oracle outputs a) the seed for the PRNG of the
re-encryption coin”, b) the (symmetric) key material k’, and c) and additional 256-bit value
d’. After the re-encryption of µ′ using the public key and the PRNG seed, the resulting
ciphertext A is compared to the input Ã. Only if this comparison and the comparison of
the bit string d’ with the input d is true, the key material k’ is hashed together with d
and Ã to receive the final symmetric key. Otherwise, k’ is replaced by a random value.

As noted in [OSPG18], all intermediate values depending on the output of the initial
decryption are sensitive and need to be masked as indicated in Figure 1 by bold lines. In
particular, this also includes the output of the re-encryption A which is compared to the
initial ciphertext Ã. This comparison step is linear in the number of coefficients k and
therefore negligible regarding the performance for the unmasked case. When masking is
applied to the comparison of these polynomials, the performance cost gets significantly
larger. Therefore, this work analyzes how an efficient masking scheme can be applied to
this comparison step.

2.4 Security against Side Channel Attacks
In order to secure our scheme against side-channel attacks, we adopt the countermeasure
of masking, which consists in randomizing the computation of the targeted circuit such
that if a bounded amount of information is leaked during the execution, this is statistically
independent of the sensitive variable. To this scope, every sensitive variable S is encoded
into n shares Sj , such that the sum of all of them gives the original masked variable S but
a collection of less than n shares does not allow to reconstruct S. Ishai et al. in [ISW03]
formalized for the first time the concept of masking and introduced the so-called t-probing
model, where an adversary is allowed to access up to t intermediate values in a circuit.

The definition of t−probing security requires the existence of a simulator, which can
simulate the adversary’s view without having access to the sensitive variables, but using
only a subset of cardinality at most t of their shares. The first security definition has been
enriched later on in [BBD+15] in order to additionally guarantee security also when an
algorithm is part of a bigger circuit and ensuing that using the output of a gadget as input
to another one does not add sensitive information to the adversary’s knowledge. The new



488 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

security definitions are called t−non interference (abbreviated with t− NI) and t−strong
non interference (abbreviated with t − SNI). Under some circumstances, t− NI gadgets
and t − SNI ones can be securely composed. Instead, t − SNI gadgets can always be
securely composed with each other. The formal definitions are given below.

Definition 1 (t − NI). A given gadget G is t-Non-Interfering (t − NI), if every set of t
probes on the internal and output values can be simulated by using at most t shares of
each input.

Definition 2 (t − SNI). A given gadget G is t-Strong-Non-Interfering (t − SNI), if every
set of t1 probes on the internal values and t2 probes on the output values, with t1 + t2 ≤ t,
can be simulated by using at most t1 shares of each input.

In particular, the last definition requires that the number of probes on the outputs are
independent from the number of the shares needed by the simulation.

In the rest of the paper, n will always refer to the number of shares and t to the
security order.

2.5 Arithmetic and Boolean Masking
Masking schemes for cryptographic algorithms can apply different forms of masking. When
Boolean masking is applied, the shares have to be combined via the XOR operation to
reconstruct the secret value.

A =
⊕

j

Aj = A1 ⊕A2 ⊕ . . .⊕An

In arithmetic masking, this operation is replaced by modular addition

A =
∑

j

Aj = A1 +A2 + . . .+An mod q

Some components of lattice-based KEMs are more efficient when masked arithmetically,
like polynomial multiplication. Other parts, especially symmetric components as used for
PRNGs and XOFs, are more efficient when using Boolean masking. Therefore, we need to
be able to switch between both forms of masking. Special conversion algorithms have been
developed for Arithmetic-to-boolean (A2B) and Boolean-to-arithmetic (B2A) conversion.
For this work, A2B conversions are especially relevant. We therefore review in Algorithm 4
the A2B conversion algorithm from [SPOG19] that is specifically designed for arbitrary
moduli. The subroutines Expand() and SecAdd() are given in Appendix A.

3 Higher-Order Masking of Comparison of Polynomials
In this section, we first explain why previous approaches from lattice-based signature
schemes are not suitable for application in lattice-based KEMs. Then, we present a more
efficient solution and provide a security proof for the side-channel security of our algorithm.

3.1 Evaluation of Previous Approaches
In [OSPG18], Oder et al. explain why it is necessary to apply masking to the comparison
step. In short, a CCA-attacker is able to make predictions about the input to the comparison



Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 489

Algorithm 4 ConvertA2B [CGV14]
Input: (Ai)1≤i≤n ∈ Fq such that

∑
i A

i = A mod q
Output: (zi)1≤i≤n ∈ F2 such that

⊕
i z

i = A
1: if n=1 then return A1
2: end if
3: (xi)1≤i≤n/2 ← ConvertA2B((Ai)1≤i≤n/2)
4: (x′i)1≤i≤n/2 ← Expand((xi)1≤i≤n/2)
5: (yi)1≤i≤n/2 ← ConvertA2B((Ai)n/2+1≤i≤n)
6: (y′i)1≤i≤n/2 ← Expand((yi)1≤i≤n/2)
7: (zi)1≤i≤n ← SecAdd((x′i)1≤i≤n, (y′i)1≤i≤n)
8: return (zi)1≤i≤n

and by applying masking to the comparison we prevent the attacker from verifying these
predictions. The approach for the comparison of arithmetically masked polynomials
from [OSPG18] however only works for first-order masking schemes and is not adaptable to
higher-order masking. In [OSPG18] the reported cycle counts also do not explicitly mention
the cost of the comparison. The approaches from [BBE+18] and [MGTF19] rely on A2B
conversions. They have been proposed for application in lattice-based signature schemes,
but an adaptation to lattice-based KEMs is possible and trivial to realize. Due to costly
conversions, these comparisons can become a major slow-down factor in implementations
of higher-order masked lattice-based schemes [SPOG19]. Therefore, we first analyze the
impact that a comparison algorithm based on A2B conversions on the overall performance
would have. We give a lower bound for the cost in terms of cycle counts on Cortex-M4
by measuring the necessary cycle counts of an A2B conversion as the most expensive
component of the algorithm. Due to the lack of code availability for the implementation
described in [BBE+18] and [MGTF19], we developed an A2B implementation ourselves.
For our assembly-optimized implementation, we follow the quadratic A2B approach
from [SPOG19] that improves upon the cubic A2B algorithm from [BBE+18]. Adjusting
the algorithms from [BBE+18] and [MGTF19] to the specific NewHope parameters (n = 1024
and q = 12289), we measure 4,031 cycles for one first-order masked A2B conversion. In one
execution of the CCA-secure NewHope decapsulation, 2048 A2B conversions are necessary
for the comparison of both ciphertext polynomials. These 2048 conversions therefore take
8.3 million cycles and would introduce a significant performance overhead. For reference,
in [OSPG18] a first-order-only masked implementation of NewHope takes 25.3 million cycles
in total. This means that using A2B conversions for a higher-order masked comparison
would introduce an unexpected performance overhead. In the following section, we describe
a more efficient way that significantly reduces this overhead.

3.2 Our Proposal
The inputs to the new comparison algorithm are one unshared polynomial Ã ∈ Fq[X], that
is also the input to the CCA.Decryption algorithm, and one shared polynomial A ∈ Fq[X]
that is the result from the re-encryption in CPA.Encrypt. For k coefficients and n shares
we have

0 ≤ i < k : Ai =
n∑

j=1
Aj

i mod q.

The core idea of our efficient algorithm is to perform the comparison directly on a large
set of the coefficients of the two polynomials, instead on each of them individually as in



490 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

previous schemes. The set of coefficients is chosen in such a way that an attacker could
pass the comparison step using a malformed ciphertext only with negligible probability.
The k coefficients are distributed into x sets of cardinality l = k

x using index sets Im (for
the sake of simplicity, we assume that x|k). The sets Im are constructed in the following
way:

0 ≤ m < x : Im := {m · k
x
, . . . , (m+ 1) · k

x
− 1}.

After the construction of the sets Im the following x shared sums Bj
m over subsets of

coefficients are calculated (all operations are mod q and performed share-wise):

0 ≤ j < n, 0 ≤ m < x : Bj
m =

∑
i∈Im

(
Aj

i + r1,i

)
r2,i

with r1,i and r2,i being uniformly random numbers ∈r Fq. Then each of the shares is
summed up:

Bm =
n−1∑
j=0

Bj
m

By computing the sum we get

Bm =
n−1∑
j=0

(∑
i∈Im

(
(Aj

i + r1,i)r2,i

))

=
∑

i∈Im

n−1∑
j=0

Aj
i + n · r1,i

 r2,i


=

∑
i∈Im

((Ai + n · r1,i) r2,i) .

Therefore we can now calculate the sums B̃m of the coefficients of the same index sets
of the unshared polynomial Ã

∀m ∈ [0, x− 1] : B̃m =
∑

i∈Im

((
Ãi + n · r1,i

)
r2,i

)

and compare it to the sums Bm. This comparison is performed unmasked using any
method, e.g., subtracting the Bm from B̃m and checking the zero-Bit.

The comparison returns success if B̃m = Bm for every m ∈ [0, x−1] and fails otherwise.
This approach needs 2k q-sized words randomness and the performance is linear in k and
n. Algorithm 5 shows how to compute the masked sums Bm and B̃m. In the following,
our analysis will focus on this algorithm.



Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 491

Algorithm 5 MaskedSum of m-th set

Input: A1, . . . ,Al ∈ Fn
q such that

∑
j A

j
i = Ai mod q, Ã1, . . . , Ãl ∈ Fq

Output: Bm, B̃m ∈ Fq

1: (Bi
m)1≤i≤n ← 0

2: Bm ← 0
3: B̃m ← 0
4: for i = 1 to l do
5: R1

$← Fq

6: R2
$← Fq

7: for j = 1 to n do
8: Bj

m ← Bj
m + (Aj

i +R1) ·R2 mod q
9: end for

10: B̃m ← B̃m + (Ãi + n ·R1) ·R2 mod q
11: end for
12: for j = 1 to n do
13: Bm ← Bm +Bj

m mod q
14: end for

3.2.1 Correctness

The correctness of the algorithm is given if a valid ciphertext input successfully passes
the comparison and the probability that a malformed ciphertext successfully passes the
comparison is negligible. It is trivial to see that the first condition is fulfilled. For the
second condition, we analyze the upper bound Y for the probability that an attacker can
create a collision, indicated with Pcoll, i.e., that all m masked sums Bm and B̃m are equal
even though A 6= Ã.

Pcoll = P (compare(A, Ã) = true |∃i : Ai 6= Ãi) ≤ Y

In order to determine Pcoll, we point out that

Pcoll = (Psingle−coll)x

where Psingle−coll is the probability that one pair of masked sums Bm and B̃m is equal



492 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

when A 6= Ã. Assuming random input A, Psingle−coll is given by:

Psingle−coll = P (Bm = B̃m)− P (∀i ∈ Im : Ai = Ãi)

= P

(
l∑

i=1

(
Ai − Ãi

)
· r2,i = 0

)
− q−l

= P
(
(Al − Ãl) · r2,l = 0

)
· P

(
l−1∑
i=1

(Ai − Ãi) · r2,i = 0
)

+
q−1∑
c=1

(
P ((Al − Ãl) · r2,l = c) · P

(
l−1∑
i=1

(Ai − Ãi) · r2,i = q − c

))
− q−l

=
(

1−
(
q − 1
q

)2
)
· P

(
l−1∑
i=1

(Ai − Ãi) · r2,i = 0
)

+
q−1∑
c=1

((
q − 1
q2

)
· P

(
l−1∑
i=1

(Ai − Ãi) · r2,i = q − c

))
− q−l

= 1− q−l

q
≈ 1
q
.

If this assumption holds, the overall collision probability is then

Pcoll ≈ 1
qx
.

As shown in Fig 1, the attacker has full control over Ã, but cannot directly influence A. In
the following, we want to show that for some input Ã the resulting A is indistinguishable
from a deterministic but random vector and therefore the equation above holds. As
Figure 1 shows, A is the output of the CPA.Encryption and as such also depends on the
output of the CPA.Decryption that in turn depends on the secret key. With his choice
of the Ã, the attacker can single out single coefficients of the secret key and therefore
minimize the influence of the secret key. By doing so, the number of possible outputs of the
CPA.Decryption is q. The output of the CPA.Decryption is also the input to the random
oracle G, which outputs the seed for the PRNG that is used in the CPA.Encryption. The
PRNG is then used to generate the noise polynomials in the CPA.Encryption. This means
that, while the attacker can reduce his uncertainty about the output of the CPA.Decryption
to a single coefficient, this uncertainty will spread through the PRNG and influence all
other coefficients in the output of the CPA.Encryption. Therefore A will look random
and our equation for Pcoll holds.

The number of sets is therefore calculated as x = d− logq Y e. For q = 12289 and
Y < 2−128, we have x = 10. In our implementation, we will set x = 16 since 16|(k = 1024)
and there is no difference in performance. The only downside of increasing the number of
sets is that the maximum masking order is reduced. But for x = 16 sets and k = 1024
coefficients, the possible number of shares is still n ≤ l = 64, which should be much more
than needed in practice. For x = 16, the collision probability is Pcoll ≈ 2−217.

3.2.2 Probing Security Proof

In this section we provide the formal proof that our comparison algorithm is t probing
secure, with t ≤ min(n− 1, l), with probability 1− q−l. We proceed by first showing, in
the following proposition, that the algorithm MaskedSum is t− NI.



Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 493

Proposition 1. Algorithm 5 is t − NI at any order t ≤ min(n − 1, l), unless ∀i ∈ Im :
Ai = Ãi.

Proof. Let P = (I,O) be the set of t adversarial probes on Algorithm 5, with I the
ones on the internals and O on the output. The elements of I belong to the following
possible groups:

(0) Aj
i

(1) R(i)
1 , R

(i)
2 , the values of R1 and R2 at the ith iteration of the loop at line 4

(2) Aj
i +R

(i)
1

(3) (Aj
i +R

(i)
1 ) ·R(i)

2

(4) (Aj
1 +R

(1)
1 ) ·R(1)

2 + · · ·+ (Aj
k +R

(k)
1 ) ·R(k)

2 with k ≤ l, for j = 1, . . . , n

(5) B1
m + · · ·+Bh

m with h < n

(6) Ãi

(7) (Ãi + n ·R(i)
1 ) ·R(i)

2

(8)
∑k

i=1(Ãi + n ·R(i)
1 ) ·R(i)

2 with k < l

with, where not differently stated, i = 1, . . . , l and j = 1, . . . , n. The set O, instead, is
constituted by Bm and B̃m.

We start by constructing l sets of indexes I(1), . . . , I(l) in the following way: for each
probe in group (0), (2) or (3) add the index j to the set I(i) and for each probe in group
(4) add the index j to each I(i) with i ≤ k. Since for each adversarial observation at most
one index is added to the I(1), . . . , I(l) and no index is added when there is a probe on the
output, then each of the sets has cardinality at most |P|.

We now simulate the set of probes P by using only the Aj
i with j ∈ I(i). Since the Ãi

are already public, group (6) does not need to be simulated.

Step 1 For each element in group (0), by construction j ∈ I(i) and therefore the element
can be simulated as in the real algorithm.

Step 2 Each element in group (1) is simulated uniformly at random, i.e., by picking R(i)
1 ∈

Fq and R(i)
2 ∈ Fq.

Step 3 For each element in group (2), we distinguish two cases. If R(i)
1 was already

observed, we take the value simulated in the previous step. Otherwise we pick R(i)
1

uniformly at random from Fq. In both cases, since j ∈ I(i) we can simulate Aj
i as in

the real algorithm.

Step 4 For each element in group (3), we distinguish the following cases. If (Aj
i +R

(i)
1 )

was probed, we take the already simulated value, otherwise we simulate it according
to the previous step. Additionally, we simulate the value R(i)

2 with his value from
Step 2, if it was previously observed, and by picking it uniformly at random from Fq

otherwise. We finally calculate the product (Aj
i +R

(i)
1 ) ·R(i)

2 .

Step 5 For each element in group (4), we distinguish the following cases. For any sum∑h
i=1(Aj

i + n ·R(i)
1 ) ·R(i)

2 with h < k that has already been probed, use the probed
value for its simulation. For the rest of the addends, if one of the sums (Aj

i +R(i)
1 )·R(i)

2
was probed, we take the simulated value, otherwise we simulate it as in the previous



494 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

step. We finally calculate the sum of the values as in the real algorithm. Note that
by construction, even if all the random bits are probed, the simulation needs at most
one share Aj

i of each input.

Step 6 If the probe is in group (5), we point out that, due to the common random bits
among the addends, the sum can be rewritten as

∑l
i=1(A1

i + · · ·+Ah
i + hR

(i)
1 )R(i)

2 .
Despite the simplification, since t ≤ l, then there exists at least one pair R(̂i)

1 and R(̂i)
2

that has not been probed. We pick such R(̂i)
1 and R(̂i)

2 uniformly at random from Fq,
and therefore there exists at least one of the sums that will be simulated at random,
and as a consequence the entire sum is simulated randomly and independently from
each Ai.

Step 7 In the case the probe is in group (7), if R(i)
1 (resp. R(i)

2 ) has not already been
simulated during one of the steps above, pick uniformly at random R

(i)
1 ∈ Fq (resp.

R
(i)
2 ∈ Fq), otherwise take the value already assigned and in both cases compute the

probe as in the algorithm, using the public value Ãi.

Step 8 In the case the probe is in group (8), for any sum
∑h

i=1(Ãi + n ·R(i)
1 ) ·R(i)

2 with
h < k that has already been probed, use the probed value for its simulation. For
the rest of the sums, for each (Ãi + n ·R(i)

1 ) ·R(i)
2 already observed, take the value

already simulated. For the remaining addends, simulate them as in Step 7. Finally
sum up the (Ãi + n ·R(i)

1 ) ·R(i)
2 as in the real algorithm.

Step 9 For the output Bm = B1
m + · · ·+Bn

m, since this corresponds to an element in group
(5) with h = n, the simulations follows the same procedure as Step 6. This time the
sum reduces to

∑l
i=1(Ai + nR

(i)
1 )R(i)

2 . We point out again that, since t ≤ l, then
there exists at least one pair of elements R(i)

1 and R(i)
2 that has not been probed.

Step 10 Finally, for the simulation of the output B̃m, i.e.,
∑l

i=1(Ãi + n · R(i)
1 ) · R(i)

2
we notice that since t ≤ l, there exists at least one pair R(i)

1 and R
(i)
2 that has

not been probed, and therefore there exists at least one of the sums that will be
simulated at random, and as a consequence the entire sum is simulated randomly
and independently from Ã. If ∀i ∈ Im : Ai = Ãi, this simulation is not consistent
because B̃m must be equal to Bm in this case and it therefore depends on the Ai.

From the simulation above and Definition 1 we can conclude that Algorithm 5 is t− NI,
unless ∀i ∈ Im : Ai = Ãi.

In the following we show, that the probabilistic nature of our security proof is of no
consequence and the comparison is secure when using practical parameters.
Note that Proposition 1 implies that the outputs Bm and B̃m of Alg. 5 and, by extension,
the result of the comparison of these values can be simulated without knowledge of any
coefficient Ai unless ∀i ∈ Im : Ai = Ãi. In this case the proof fails which results in possible
leakage of the Ai. This type of collision can happen in one of the following two cases:

(1) ∀m, ∀i ∈ Im : Ai = Ãi, i.e., all coefficients are equal.

(2) ∃m, ∀i ∈ Im : Ai = Ãi and ∃m,∃i ∈ Im : Ai 6= Ãi, i.e, only the coefficients used in
some sums are equal.

In case (1) the Ai are not sensitive as they are already known by the attacker.
As noted in Sect. 3.2.1 any change in a coefficient of Ã is propagated to all coefficients of
A through the random oracle G. Therefore, if the output coin′′ of G is collision free, the
probability of case (2) is PB−coll = q−l. When using practical values for q and l, PB−coll



Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 495

is always smaller than the collision probability of G1 and the algorithm is secure against
t-order attackers. For example, with our parameter choice for NewHope (q = 12289, l = 64)
PB−coll < 2−869.

3.3 Application to NewHope and Other Schemes
While our masking scheme is relevant for a large variety of schemes, we specifically pick
NewHope [ADPS16] as case study to be consistent with previous work [RRVV15,RdCR+16,
RRdC+16,OSPG18, SPOG19]. The relevant parameters of the scheme are the lattice
dimension (i.e., the number of coefficients in the polynomials) of k = 1024 and the modulus
q = 12289. We expect similar results when our algorithm is applied to other schemes.
Generally, higher-order masked lattice-based KEM implementations that rely on the
Fujisaki-Okamoto transform to achieve CCA security can benefit from our comparison
approach as long as the parameters are compatible to the requirements described in
Sect. 3.2. For example, in Kyber [BDK+18] the lattice dimension is only k = 256, but
depending on the parameters set there are more (up to four) polynomials in the ciphertext.
As the CCA security of Kyber depends on the Fujisaki-Okamoto transform and as shown
in Alg. 9 in the Kyber specification [SAB+19], the comparison is the same as in NewHope.
Consequentially, the input to the comparison in line 6 also depends on the output of a
random oracle G, therefore our proof in Sect. 3.2.2 holds. The modulus of LAC [LLZ+] is
only q = 251. This modulus would lead to reduced memory requirements as each coefficient
can be stored in a single byte.

4 Microcontroller Implementation
In this section, we discuss our microcontroller implementation in detail and the methodology
for our side-channel measurements.

4.1 Microcontroller Implementation
Our evaluation platform is the STM32F4-DISCOVERY board that is based on the
STM32F407VGT6 ARM Cortex-M4F microcontroller. NIST recommends to use the
Cortex-M4F as target platform for microcontroller evaluations of post-quantum standard-
ization candidates [Moo19]. Furthermore, the concrete processor and board we used in our
performance and side-channel evaluation was suggested as a reference platform for PQC
algorithms in [KRSS19]. It runs with a clock frequency of up to 168 MHz. The board offers
192 kB of RAM as well as 1 MB of flash memory. Furthermore, it features a true random
number generator (TRNG) based on analog circuitry and a floating-point unit (FPU).
The Cortex-M4F has 13 general purpose registers and (R0 −R12), one register reserved
for the stack pointer, a link register, one register reserved for the program counter, and
special-purpose program status registers. When mixing C with assembly it is important to
note that the calling convention requires parameters to be in R0 −R3 and the result to
be in R0 − R1. The link register can be used as general purpose register as well, if the
assembly function does not call any other function and its original value is restored before
leaving the function.

To prevent timing leakages, implementations of cryptographic schemes are usually
expected to be protected against timing attacks, this is usually referred to as constant-time
property of implementations. However, we need to distinguish between two different
notions of constant-time. In the following, we will use the expression constant-time in case
the execution time of an implementation is actually constant. Furthermore, we will refer

1More precisely, the relevant metric is second-preimage resistance. In the case of NewHope coin′′ is
∈ {0, ..., 255}32.



496 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

to an implementation as timing-independent if the implementation has a non-constant
execution time but is still protected against timing side channels because the execution is
independent from the input data.

The implementation of our comparison algorithm requires the generation of random
numbers in [0, q − 1], where q is an arbitrary integer and in many cases (like NewHope)
a prime. To ensure a uniform distribution of these numbers, we apply the rejection
sampling method from [SPOG19] that takes as input random bit vectors from the on-board
TRNG and only accepts the input if the value is in [0, q − 1] and rejects otherwise. As
this method works with rejections, it is timing-independent, but not constant-time. We
therefore implemented two variants of the algorithm - one constant-time implementation
that is suitable for side-channel evaluation and one performance-optimized variant for
practical use. The main difference between these two implementations is that the side-
channel measurement-friendly variant first fills a buffer with random values in [0, q − 1].
The implementation of the actual comparison then just accesses this buffer to load the
necessary random numbers. By doing so, side-channel measurements can be triggered
after the (non-constant-time) generation of random numbers is completed avoiding the
necessity of trace alignment in the side-channel experiments. However, as the on-board
TRNG needs to sample sufficient thermal noise in the background, requesting random
numbers from the TRNG in rapid succession is quite slow as the program will be halted
until the TRNG is ready. In our second performance-optimized approach, we therefore
spread out the TRNG calls throughout the algorithm to minimize the TRNG waiting time.

1 MOV TMP ,#0 x3001
2 ADD INPUT_A , INPUT_B
3 SUB INPUT_A , TMP
4 SXTB TMP2 , INPUT_A , ROR #24
5 AND TMP , TMP2
6 ADD INPUT_A , TMP

Listing 1: Combined modular addition
and subtraction in assembly.

For the modular reduction, we use the constant-time Barrett reduction from [OSPG18]
that uses the floating point unit of the Cortex-M4F. We furthermore use a special method
to combine the addition and modular reduction of two values mod q as shown in Listing
1. The idea is to perform a conditional subtraction of the modulus in constant-time. We
first load the modulus into a temporary registers tmp1. Then we add the two inputs and
subtract the modulus from the sum. With the help of the SXTB instruction and the internal
barrel shifter of the Cortex-M4F we create a bit mask that is either 1...12 in case the result
of the subtraction was negative or 0...02 if the result was positive and store the bit mask
in tmp2. We then compute the AND of tmp1 and tmp2. The register tmp1 now contains
either the modulus if the result of the subtraction was negative or 0...02 if the result was
positive. Finally, tmp1 is added to the result of the subtraction to receive the output. This
approach takes only six cycles for combined addition and modular reduction and needs
two temporary registers for intermediate results.

We try to minimize the load and store memory accesses by efficiently using the available
registers of the Cortex-M4F. While doing so, it is important to keep in mind that we first
sum up all coefficients within a set of a share and then sum up the sums of each share. It
might be tempting to switch the order of these summation because it would save a big
number of loads and stores of the random r values. However, this would also introduce a
side-channel leakage as the secret shares would be combined without sufficient randomness.
Apart from the r values, no value is loaded twice and no store instruction is used. We
therefore argue that our memory access scheme is optimal.



Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 497

4.2 Side-channel Measurements
In order to practically evaluate the resistance of the proposed comparison algorithm
against side-channel attacks, we performed a Test Vector Leakage Assessment [GJJR11]
of the constant-time implementation described in Section 4.1. With the goal of reducing
the computational complexity of the evaluation, we set the number of coefficients in the
measured implementation to four and only considered k = 1 sets. Note, that this does
not weaken the evaluation results due to the construction of our algorithm. By using
the non-specific fixed-versus-random t-test, the analysis can show possible leakage points
independent of specific sensitive variables. In this evaluation methodology, the target
device is supplied with either a fixed or random input in a random order. During the
computation of the target, the side channel (e.g. power consumption or EM emanation) is
measured on which the test metric is applied to decide if the consumption is distinguishable
depending on the input. For the first-order univariate case, the test statistic to evaluate if
the mean of a sample point of the two sets of traces F and R is different can be computed as

tF,R = F̄ − R̄
sn

with

sn =

√
s2

F

nF
+ s2

R

nR

where nX , X̄, and s2
X are the number of collected samples, the estimated means and

the estimated variance of the respective point. The magnitude of this test-statistic can then
be compared to a threshold which is required to be reached to confirm an input-dependent
mean of the analyzed sample point. For the evaluation of complete power- or EM-traces,
the statistic can be computed point-wise. As pointed out in [DZD+17], this simultaneous
application of multiple tests can artificially skew the outcome towards a positive result. In
order to obtain a result with a given confidence, the detection threshold must therefore be
adjusted depending on the number of samples in a trace. We use the Šidák Correction as
suggested in [BPG18] to calculate the threshold for a confidence level of α given a trace
length L and n measurements:

tth = Qt(1− L
√

1− α, v),

where Qt(·) is the quantile-function of the t-distribution and v ≈ n/2 the degree of freedom.
Therefore a threshold for multivariate leakage (with L ∗ L points) is always higher when
compared to the univariate case. As our experiment targets a software implementation
where different shares of a sensitive variable are manipulated at different points in time, a
multivariate analysis is necessary for achieving a meaningful evaluation of higher-order
leakage. We restricted the experiments to first- and second-order analysis of the two- and
three-share variants of the comparison algorithm, as higher-order multivariate leakage
assessment is computationally prohibitive. This is because the effort for the required
sample-point combination is proportional to n · LE where E is the evaluation order.
The evaluation of second-order multivariate leakage was performed following [SM15] by
combining all pairs of points in a trace using the optimal centered product according
to [SVO+10].

We sent a fixed or random challenge to the target microcontroller in a random order. The
power consumption was measured while the microcontroller was evaluating the comparison
algorithm on either a fixed or a random input. The device generated a trigger pulse for
optimal trace alignment and performed the comparison algorithm on the provided input
and a fixed set of coefficients stored at compile-time. When generating the random input,
we rejected values that were equal to the reference coefficients to avoid producing high
false-positive (non-exploitable) t-test results in the evaluation.



498 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

The measurements were conducted on the same ARM Cortex-M4F board that was
used for the performance evaluation.

In order to show the side-channel resistance of our implementation in a worst-case
scenario, we increased the signal-to-noise ratio as much as possible by modifying the
PCB as well as adapting the firmware accordingly. For data transfer between a host
computer and the target board, we made use of a UART-core of the microcontroller which
eliminates noise introduced by the on-board USB interface. In addition to disabling data
and instruction caches available in the STM32F407VG, the SysTick-timer and all interrupt
source in the controller were disabled to ensure constant-time behavior of the measured
code. For further noise reduction in the measurement system, all non-essential clock
paths in the target controller were disabled. In an effort to reduce other noise sources as
much as possible, all non-essential peripheral devices on the board, such as the MEMS
accelerometer and the audio DAC, were de-soldered.

As power measurements appeared to not contain a sufficient signal-to-noise ratio for a
successful evaluation on our microcontroller board, we collected EM traces with a near-field
probe and amplified them before feeding them into an oscilloscope. The EM traces were
acquired with a sample rate of 156.25 MS/s at 8 bit resolution using a 50 MHz-bandwidth
H-field probe. We kept the position of the probe relative to the microcontroller fixed
between measurements in order to produce comparable results.

The findings of the practical SCA-evaluation are provided in Sect. 5.3.

5 Results
In this section, we present the results of our practical evaluations. This includes perfor-
mances evaluations as well as side-channel evaluations.

5.1 Performance Evaluation
We evaluated our work by using the OpenSTM32 System Workbench (version 2.6), which
is based on the development environment Eclipse and has specifically been designed to
support the development for ARM-based STM32 boards. The IDE uses the GNU ARM
Embedded Toolchain (version 7.2) and we set the optimization level to -O3. Determining the
performance of our implementation was done by using the cycle count register DWT_CYCCNT
of the Data Watchpoint and Trace unit that the Cortex-M4F offers. We set the clock
frequency of the microcontroller to 24 MHz to avoid any wait cycles at the memory. All
cycles counts were obtained by measuring our performance-optimized implementation.
With the publication of this work, we will make our implementation publicly available to
allow independent verification of our results.

In Table 1, we show the cycle counts for the comparison algorithm of one polynomial
with k = 1024 coefficients. We compare our approach with the cost of 1024 A2B conversions
as explained in Section 3.1. Both implementations benefit from assembly optimization.
The direct comparison of both approaches shows that for two shares already, our approach
is at least 14 times faster than an A2B-based approach. It is also obvious from the table
that our algorithm has a better asymptotic complexity as it is only linear in the number
of shares while A2B conversions are at best quadratic. Therefore the speed-up factor gets
even bigger when the number of shares is increased which makes our algorithm two orders
of magnitude faster for five shares already. Extrapolating these numbers we expect the
cycle counts for higher orders to be around 165, 000 + 41, 000 · n, where n is the number
of shares.

At our measurement frequency of 24 MHz, 250,991 cycles are executed in 10 milliseconds.
However, the maximum clock frequency of the microcontroller is 168 MHz. For reference,
we also measured our implementation at 168 MHz, to get a realistic impression of the



Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 499

Table 1: Clock cycle counts for our ARM implementations of the masked comparison at
24 MHz for k = 1024 including randomness generation. All results are averaged over 100
runs.

Shares 2 3 4 5
Comparison in [OSPG18] 480,227 - - -
NewHope CCA-DEC [OSPG18] 25,334,493 - - -
1024 A2B conversions 4,127,744 11,875,328 21,027,840 35,353,600
Our comparison algorithm 250,991 284,989 329,053 373,860
Speed-up factor x16 x42 x64 x95

time needed to execute the algorithm. We observe only a minor increase in the number
of cycles at 168 MHz, namely to 258,695 cycles. Since the algorithm does not load any
constants values from flash memory, we assume that this difference is mainly caused by
the variable timing behavior of our implementation (see Section 4.1 for a discussion about
why our implementation is secure against timing attacks). We therefore conclude that the
cycle counts obtained at 24 MHz also give a realistic impression of the performance of
the implementation at 168 MHz. Therefore, at 168 MHz, the masked comparison of one
polynomial takes 1.5 ms for two shares, 1.7 ms for three shares, 2.0 ms for four shares,
and 2.2 ms for five shares. This makes our approach a low-overhead component for the
construction of higher-order masking schemes lattice-based cryptography.

For polynomials with k = 1024, the maximum masking order that our implementation
supports is 64 as we decided to implement 16 subsets of coefficients. We expect this to be
sufficient for practical uses in the foreseeable future. One downside of our approach is the
relatively high dynamic memory consumption as we need to store 2k random values mod
q. This is equal to the memory consumption of two polynomials. However, embedded into
a lattice-based KEM, we do not expect our algorithm to increase the dynamic memory
consumption at all as the peak memory usage is expected to be in the CPA.Encryption or
CPA.Decryption and the comparison algorithm is executed after these two components.
The static Flash memory consumption of our algorithm is also very low as it needs only
about 200 lines of assembly code.

To our knowledge, currently there exists no higher-order CCA-secure implementation
of any lattice-based KEM. However, we also implemented the approach from [OSPG18],
even though this algorithm is only first-order secure and cannot be extended to higher
orders. Table 1 includes the cycle count for the complete CCA2-secure decryption as well
as for only the comparison step. The board used to measure these performance values was
identical to the one we used in our evaluation. The idea from [OSPG18] is to subtract
Ã from one share of A, individually hash the result of this subtraction and the other
share and compare the outputs of the hash calls. Our implementation achieves similar
performance even though our source code can generically support higher orders too and
the implementation from [OSPG18] is optimized for the first-order case.

Table 2: Clock cycle counts for our ARM implementations of the masked comparison
at 24 MHz for different parameter sets including randomness generation. All results are
averaged over 100 runs.

Shares 2 3 4 5

KYBER-768
A2B conversions 3,095,040 8,906,496 15,770,880 26,515,968
Our algorithm 185,338 216,945 248,455 279,973

Speed-up factor x17 x41 x63 x95

LAC-192
A2B conversions 2,267,136 6,360,064 11,131,904 18,551,808
Our algorithm 230,432 272,489 314,558 356,621

Speed-up factor x10 x23 x35 x52



500 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

In Table 2 we also exemplarily evaluated the performance of our implementation for
the parameter sets of KYBER-768 and LAC-192 to show the impact of the choice of n on
the performance of the comparison. KYBER-768 uses k = 768 coefficients and a modulus
q = 3329. In this case, we observe very similar speed-up factors in comparison with an
A2B approach. This is expected since both approaches are linear in k. Therefore the
cycle counts for k = 768 are also roughly equal to three quarters of the cycle counts for
k = 1024. In this scenario the cycle count for higher orders can be expected to be around
122, 000 + 32, 000 · n with n shares.
While LAC-192 operates on the same number of k = 1024 coefficients as NewHope the
modulus is q = 251 in this case. This results in lower randomness requirements of our
algorithm and therefore slightly increased performance when compared to NewHope. As the
A2B-based approach benefits even more from this, the speed-up gained by our approach
is lower. For LAC-192, the cycle count for higher orders can be expected to be around
145, 000 + 42, 000 · n with n shares.

As stated before, complete higher-order masked lattice-based KEMs are currently
not available for comparison. However, we can roughly estimate the impact of our
comparison algorithm at higher orders. For obvious reasons, the cycle count of any masked
implementation must be at least linear in the number of shares n.2 As our algorithm has
linear complexity in n the relative overhead of the algorithm does not (asymptotically)
grow with increasing n.

5.2 Randomness Consumption
In this section, we analyze how much randomness our implementation needs for the masking
scheme. For our specific choice of q = 12289, the rejection-based sampling of uniform
random numbers mod q has an acceptance rate of 75% since the acceptance rate ar is
calculated as ar = 12289

214 . For efficiency reasons, we use chunks of 16 bits of randomness for
one sampling attempt of which two bits are simply ignored. On our evaluation platform
the randomness can be efficiently generated by the on-board TRNG. On platforms with
lower randomness generation capabilities the randomness requirements can be reduced to
87.5% of the values below by using 14- instead of 16-bit chunks. This approach requires
more memory to store the randomness and more processor cycles to extract it. As we need
2k random numbers mod q, the expected number of required random bits for our approach
is

rbits = 2k 16 bits
ar

= 2 · 1024 · 16 bits
0.75 = 43, 688 bits

This calculation is valid for any number of shares n < 64. This theoretical amount
of randomness is confirmed by our practical experiments. We compare the randomness
consumption of our approach to the A2B-based approach in Table 3 as measured by
our implementation. The first-order only approach from [OSPG18] does not need any
additional randomness. While our algorithm needs less randomness than the A2B-based
approach even for low masking orders this advantage increases for higher orders because
the randomness requirement is independent of the masking order.

5.3 Leakage Evaluation
This section details the results of our experimental side-channel evaluation. We used a
significance level of α = 0.01 for all assessments in this section. For reference, Figure 2a

2Otherwise it could just use less shares.



Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 501

Table 3: Random bit consumption for our ARM implementations of the masked comparison
for different parameter sets. All results are averaged over 100 runs.

Shares 2 3 4 5

NewHope
A2B conversions 655,360 2,392,064 4,653,056 8,519,680
Our algorithm 43,648 43,680 43,584 43,712

Improvement factor x15 x55 x107 x195

KYBER-768
A2B conversions 491,520 1,794,048 3,489,792 6,389,760
Our algorithm 30,240 30,208 30,176 30,272

Improvement factor x16 x59 x116 x211

LAC-192
A2B conversions 393,216 1,343,488 2,555,904 4,587,520
Our algorithm 16,704 16,711 16,706 16,705

Improvement factor x24 x80 x153 x275

shows an example trace of the measured EM-emanation. When the masking countermeasure
is deactivated by setting the masks to zero, large first-order leakage can be observed as
shown in Figure 2b even using only 5000 traces. This behavior is expected as the algorithm
operates on unmasked values in this case.

0 1000 2000 3000 4000 5000
Sample

20

0

20

40

LS
B

(a) Example trace of two-share version with
four coefficients.

0 1000 2000 3000 4000 5000
Sample

20

0

20

40

60

t

(b) First-order leakage for two-share version
with four coefficients (masks disabled, 5 k mea-
surements, tth = 4.77).

Figure 2: Sample trace and reference measurement.

When random masks are used, an evaluation using 1 million traces does not show
detectable first-order leakage (Fig. 3a). The two-dimensional plot resulting from the
bivariate TVLA is shown in Figure 4. Each pixel is colored according to the absolute t-
value present in the respective combinations of points in time. In order to ensure readability
of Figures 4 and 5 we binned the sample points into a 100 times 100 pixel-grid and plotted
the maximum t-value of each bin. The multivariate analysis of the second-order leakage
allows to clearly identify points at which different shares of coefficients are handled, as the
2-share implementation only protects against first-order attacks.

Figure 3b shows the result of a first-order evaluation on traces collected from the
three-share implementation with four coefficients and activated masking after 1 million
measurements. As expected, no first-order leakage can be detected. The results of the
second-order multivariate t-test is shown in Fig. 5. The leakage detection threshold of
tth = 6.36 is not reached at any point in time.

In summary, we were not able to detect first-order leakage in the two-share constant-time
implementation or second-order multivariate leakage in the three-share implementation
even using 1 million measurements.



502 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

0 1000 2000 3000 4000 5000
Sample

5

0

5

t

(a) First-order leakage for two-share version
with four coefficients (masks enabled, 1 M mea-
surements, tth = 4.77).

0 1000 2000 3000 4000 5000 6000 7000
Sample

5

0

5

t

(b) First-order leakage for three-share version
with four coefficients (masks enabled, 1 M mea-
surements, tth = 4.82).

Figure 3: First-order SCA analysis of 2- and 3-share implementation.

0 1000 2000 3000 4000 5000

Sample

0

1000

2000

3000

4000

5000

S
am

pl
e

5

10

15

20

25

30

35

40

t-
va

lu
e

Figure 4: Second-order leakage for two-share version with four coefficients (masks enabled,
1 M measurements, tth = 6.28). Points with t-values above the threshold are highlighted red.



Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 503

0 1000 2000 3000 4000 5000 6000 7000

Sample

0

1000

2000

3000

4000

5000

6000

7000

S
am

pl
e

3

3.5

4

4.5

5

5.5

t-
va

lu
e

Figure 5: Second-order leakage for three-share version with four coefficients (masks enabled,
1 M measurements, tth = 6.36). Points with t-values above the threshold are highlighted
red (none present).

6 Conclusions

In this work, we identify the comparison step of the Fujisaki-Okamoto transform as, a
so far overlooked, bottleneck in higher-order masking of lattice-based cryptography. We
present a novel higher-order masking scheme for the comparison, that outperforms the
naive approach by at least one order of magnitude and it is applicable to constructions
with prime modulus. The naive approach based on A2B conversions has a complexity of
O(n2k), while the asymptotic complexity of our algorithm is only O(nk), i.e., it is linear
in the number of shares and in the number of coefficients of the polynomial. Furthermore,
the probability for an attacker to forge an invalid ciphertext that is still accepted by
our comparison is negligible (2−217). We give a theoretical proof of the side-channel
security of our algorithm and confirm with practical measurements that our highly efficient
microcontroller implementation does not show side-channel leakage, even for significantly
more power traces than in previous work on masking for lattice-based cryptography. In
the ongoing NIST post-quantum standardization, our work is an important step towards
understanding the overhead cost of side-channel countermeasures applied to the NIST
candidates.

6.1 Future Work

As future work, we advise extending the comparison algorithm to work for power of two
moduli, which at the moment are not considered in our scheme. Furthermore it would be
interesting to see how our masking countermeasure can be combined with countermeasures
against other attacks, like fault injection attacks, since it was already analyzed in [OSPG18]
that the comparison step could be a primary target for fault attacks.



504 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

Acknowledgment
The research in this work was supported in part by the German Research Foundation
(DFG) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972, the Federal
Ministry of Education and Research of Germany through the QuantumRISC project
(16KIS1038) and VeriSec project (16KIS0603), by the European Unions Horizon 2020
program under project number 780701 PROMETHEUS and the ERC Project 724725
(SWORD). We would also like to thank the anonymous reviewers for their very valuable
and helpful feedback.

References
[AAB+] Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra,

Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila. NewHope
Algorithm Specifications and Supporting Documentation. https://
newhopecrypto.org/data/NewHope_2018_12_02.pdf.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In 25th USENIX Security Symposium,
pages 327–343, 2016.

[AJS16] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. Newhope on ARM
Cortex-M. In Security, Privacy, and Applied Cryptography Engineering - 6th
International Conference, SPACE, pages 332–349, 2016.

[APB+04] Riza Aditya, Kun Peng, Colin Boyd, Ed Dawson, and Byoungcheon Lee.
Batch verification for equality of discrete logarithms and threshold decryp-
tions. In Markus Jakobsson, Moti Yung, and Jianying Zhou, editors, Applied
Cryptography and Network Security, Second International Conference, ACNS
2004, Yellow Mountain, China, June 8-11, 2004, Proceedings, volume 3089 of
Lecture Notes in Computer Science, pages 494–508. Springer, 2004.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, and
Benjamin Grégoire. Compositional verification of higher-order masking: Ap-
plication to a verifying masking compiler. IACR Cryptology ePrint Archive,
2015.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based
signature scheme at any order. In Advances in Cryptology - EUROCRYPT,
pages 354–384, 2018.

[BDK+18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYS-
TALS - Kyber: A CCA-secure module-lattice-based KEM. In IEEE European
Symposium on Security and Privacy, EuroS&P, pages 353–367, 2018.

[BPG18] Florian Bache, Christina Plump, and Tim Güneysu. Confident leakage
assessment - A side-channel evaluation framework based on confidence intervals.
In DATE, pages 1117–1122. IEEE, 2018.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure conversion between boolean and arithmetic masking of any order. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 188–205. Springer, 2014.

https://newhopecrypto.org/data/NewHope_2018_12_02.pdf
https://newhopecrypto.org/data/NewHope_2018_12_02.pdf


Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 505

[DZD+17] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert,
and Yunsi Fei. Towards sound and optimal leakage detection procedure. In
CARDIS, volume 10728 of Lecture Notes in Computer Science, pages 105–122.
Springer, 2017.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of
public-key encryption at minimum cost. In Hideki Imai and Yuliang Zheng,
editors, Public Key Cryptography, volume 1560 of Lecture Notes in Computer
Science, pages 53–68. Springer, 1999.

[GJJR11] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side
channel resistance validation. In NIST non-invasive attack testing workshop,
2011.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Advances in Cryptology - CRYPTO
2003, pages 463–481, 2003.

[KMRV] Angshuman Karmakar, Jose M. Bermudo Mera, Sujoy Sinha Roy, and Ingrid
Verbauwhede. Saber on ARM CCA-secure module lattice-based key encapsula-
tion on ARM. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):243–266.

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking NIST PQC on ARM cortex-m4. IACR
Cryptology ePrint Archive, 2019:844, 2019.

[KRVV19] Angshuman Karmakar, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid
Verbauwhede. Pushing the speed limit of constant-time discrete gaussian
sampling. A case study on the falcon signature scheme. In Proceedings of the
56th Annual Design Automation Conference, DAC, pages 88:1–88:6, 2019.

[LLZ+] Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan
He, and Bao Li. LAC: practical ring-LWE based public-key encryption with
byte-level modulus. IACR Cryptology ePrint Archive, 2018:1009.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking dilithium - efficient implementation and side-channel evaluation. In
Applied Cryptography and Network Security, ACNS, pages 344–362, 2019.

[Moo19] Dustin Moody. Round 2 of NIST PQC competition. Talk at PQCrypto 2019,
Chongqing, China, 2019, 2019.

[NIS16] NIST. Submission requirements and evaluation criteria for the
post-quantum cryptography standardization process. National In-
stitute of Standards and Technology, December 2016. See https:
//csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/
documents/call-for-proposals-final-dec-2016.pdf.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure and masked Ring-LWE implementation. IACR Trans.
Cryptogr. Hardw. Embed. Syst., (1):142–174, 2018.

[RdCR+16] Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren,
and Ingrid Verbauwhede. Additively homomorphic ring-LWE masking. In
Post-Quantum Cryptography - PQCrypto, pages 233–244, 2016.

https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf


506 High-Speed Masking for Polynomial Comparison in Lattice-based KEMs

[RRdC+16] Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren,
and Ingrid Verbauwhede. Masking ring-LWE. J. Cryptographic Engineering,
6(2):139–153, 2016.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A masked ring-LWE implementation. In Cryptographic Hardware
and Embedded Systems - CHES, pages 683–702, 2015.

[SAB+19] P Schwabe, R Avanzi, J Bos, L Ducas, E Kiltz, T Lepoint, V Lyubashevsky,
JM Schanck, G Seiler, and D Stehle. Crystals-kyber–algorithm specifications
and supporting documentation. NIST Technical Report, 2019.

[SBG+18] Markku-Juhani O. Saarinen, Sauvik Bhattacharya, Óscar García-Morchón,
Ronald Rietman, Ludo Tolhuizen, and Zhenfei Zhang. Shorter messages and
faster post-quantum encryption with Round5 on Cortex M. In Smart Card
Research and Advanced Applications, CARDIS, pages 95–110, 2018.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A
clear roadmap for side-channel evaluations. In Cryptographic Hardware and
Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, pages 495–513, 2015.

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Effi-
ciently masking binomial sampling at arbitrary orders for lattice-based crypto.
In Public-Key Cryptography - PKC, pages 534–564, 2019.

[SVO+10] François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald,
Benedikt Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard.
The world is not enough: Another look on second-order DPA. In Advances
in Cryptology - ASIACRYPT 2010 - 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, pages 112–129, 2010.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the
Fujisaki-Okamoto and OAEP transforms. In Theory of Cryptography - TCC,
pages 192–216, 2016.



Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider and Tim Güneysu 507

A Subroutines of A2B Conversion
For more details on the algorithms and a definition of the subroutines, we refer to the
original publications [CGV14] and [BBE+18].

Algorithm 6 Expand [CGV14]
Input: (xi)1≤i≤n ∈ F2
Output: (yi)1≤i≤2n ∈ F2 such that

⊕2n
i=1 yi =

⊕n
i=1 xi

1: (ri)1≤i≤n
$← F2

2: (yi)1≤i≤n ← (xi ⊕ ri)1≤i≤n

3: (y2i+1)1≤i≤n ← (ri)1≤i≤n return (yi)1≤i≤2n

Algorithm 7 SecAdd [BBE+18]
Input: x = (xi)1≤i≤n ∈ F2k , y = (yi)1≤i≤n ∈ F2k such that

⊕
i xi = x,

⊕
i yi = y

Output: z = (zi)1≤i≤n ∈ F2k such that
⊕

i zi = x+ y mod 2k

1: p← x⊕ y
2: g← SecAnd(x,y)
3: for j = 1 to W = dlog2(k − 1)e − 1 do
4: pow← 2j−1

5: a← g << (pow)
6: a← SecAnd(a,p)
7: g← g⊕ a
8: a′ ← p << (pow)
9: a′ ← RefreshXOR(a′, k)

10: p← SecAnd(p,a′)
11: end for
12: a← g << (2W )
13: a← SecAnd(a,p)
14: g← g⊕ a
15: z← x⊕ y⊕ (g << 1)


	Introduction
	Related Work
	Contribution
	Outline

	Preliminaries
	Notation
	The Basic NewHope Scheme
	Fujisaki-Okamoto Transform as Applied to NewHope
	Security against Side Channel Attacks
	Arithmetic and Boolean Masking

	Higher-Order Masking of Comparison of Polynomials
	Evaluation of Previous Approaches
	Our Proposal
	Application to NewHope and Other Schemes

	Microcontroller Implementation
	Microcontroller Implementation
	Side-channel Measurements

	Results
	Performance Evaluation
	Randomness Consumption
	Leakage Evaluation

	Conclusions
	Future Work

	Subroutines of A2B Conversion

