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Abstract—Virtual machine monitors (VMMs, also called hy-
pervisors) represent a very critical part of a modern software
stack: compromising them could allow an attacker to take full
control of the whole cloud infrastructure of any cloud provider.
Hence their security is critical for many applications, especially
in the context of Infrastructure-as-a-Service. In this paper, we
present the design and implementation of HYPER-CUBE, a novel
fuzzer that aims explicitly at testing hypervisors in an efficient,
effective, and precise way. Our approach is based on a custom
operating system that implements a custom bytecode interpreter.
This high-throughput design for long-running, interactive targets
allows us to fuzz a large number of both open source and
proprietary hypervisors. In contrast to one-dimensional fuzzers
such as AFL, HYPER-CUBE can interact with any number of
interfaces in any order. Our evaluation results show that we can
find more bugs (over 2×) and coverage (as much as 2×) than
state-of-the-art hypervisor fuzzers. In most cases, we were even
able to do so using multiple orders of magnitude less time than
comparable fuzzers. HYPER-CUBE was also able to rediscover a
set of well-known hypervisor vulnerabilities, such as VENOM, in
less than five minutes. In total, we found 54 novel bugs, and so far
obtained 43 CVEs. Our evaluation results demonstrate that next-
generation coverage-guided fuzzers should incorporate a higher-
throughput design for long-running targets such as hypervisors.

I. INTRODUCTION

Since several years, cloud-based Infrastructure-as-a-Service
(IaaS) is rapidly expanding in the IT business landscape.
This paradigm is powered by cloud providers using multi-
tenancy and economy of scale to provide computational
resources significantly cheaper than an individual customer
could. While this approach greatly increases cost efficiency,
there are confidentiality, integrity, and availability risks for
customers: lacking proper isolation might allow a malicious
actor to compromise the infrastructure of a given customer,
typically by exploiting a vulnerability in the software stack. To
provide strong isolation between individual virtual machines
(VMs), high-performance, hardware-supported virtual machine
monitors (VMMs, also called hypervisors) are used by all
major cloud providers. These hypervisors are hence part of
an essential, trusted code base which the entire cloud infras-
tructure relies on. As a result, we need efficient and scaleable
techniques to identify potential software vulnerabilities in
hypervisor given their crucial role in modern software stacks.

In the past, fuzz testing (“fuzzing”) has proven to be a
very successful technique for uncovering novel vulnerabilities
in complex applications [11], [17], [38], [40], [45], [53], [54].
Unfortunately, only a limited number of resources on fuzzing
hypervisors is available at the moment. The reason behind this
lack of support for fuzzing this type of software applications
is the fact that there are several additional challenges for
fuzzing this lower-level component: In contrast to current
fuzzers that mostly support interaction with a single interface
(e.g., stdin [54] or syscalls [5]), fuzzing hypervisors requires
to interact with several different devices using a variety of
interfaces and protocols. For example, the guest system can
trigger arbitrary hypercalls, perform arbitrary I/O operations,
and access and modify emulated memory-mapped I/O (MMIO)
regions. Hypervisor fuzzing also introduces additional perfor-
mance issues: Modern feedback-driven fuzzing usually restarts
the target application for each fuzzing iteration. However,
restarting a hypervisor is prohibitively expensive in terms of
run-time. Furthermore, performance-increasing tricks such as
a fork server [54] cannot be applied to hypervisors easily. To
add to this complexity, there are multiple implementations of
different hypervisor, some of which are proprietary and no
source code is available. Therefore, existing methods are not
trivial to adapt for hypervisor fuzzing.

As a consequence, there are few research projects on
fuzzing hypervisors [6], [7], [25], [26], [30], [35], [46]. The
state-of-the-art hypervisor fuzzer is VDF [30]. Based on a
classic fuzzing design, VDF is a fork of the famous AFL
fuzzer [54] that interacts with QEMU device emulators. As
a result of this design, VDF is limited to low-dimensional
fuzzing (i.e., only able to interact with memory and port
mapped I/O). Another example of a hypervisor fuzzer, is
IOFUZZ [35]. IOFUZZ is even more limited and only writes
random values to random I/O ports, without any support for
other common interfaces such as MMIO, DMA, or hypercalls.
A similar tool was developed as part of Intel CHIPSEC
suite [25]. Compared to the state-of-the-art approaches for
fuzzing userspace programs (ring 3) or OS kernels (ring 0),
fuzzing at the VMM level (ring -1) is still lacking.

In this paper, we tackle this challenge and present the de-
sign and implementation of a hypervisor-independent fuzzing
approach based on a custom operating system. Our goal is
to evaluate the security and stability of various open source
and proprietary hypervisors. To this end, we suggest three
goals to improve upon current designs. First, an efficient
hypervisor fuzzer needs to provide a high test case throughput.
Second, an effective hypervisor fuzzer should be able to
simultaneously interact with all available interfaces to enable
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a multi-dimensional fuzzing. Third, a precise fuzzer should
be able to produce a stable and deterministic test cases for
a diverse set of hypervisors. Considering these three goals,
we designed HYPER-CUBE, a novel hypervisor fuzzer based
on a fully custom and minimalist Operating System (OS) that
implements a custom bytecode interpreter. Having a custom
minimal OS allows us to take full control of our environment,
yielding stable and deterministic test cases. Additionally, we
can boot our OS on nearly any hypervisor, which effectively
allows us to evaluate a diverse set of targets. Our custom
bytecode interpreter enables a high test case throughput while
accessing any number of interfaces simultaneously.

As our evaluation results show, this design and our pro-
totype implementation of HYPER-CUBE allows us to achieve
all three goals. Most importantly, we were able to uncover
and report 54 bugs in six different hypervisors such as QE-
MU/KVM, VirtualBox, VMware Fusion, and Intel ACRN. So
far, we obtained 43 CVEs, the remaining bugs are currently
being investigated by the maintainers and CVEs are not yet
assigned. We directly compare our performance on QEMU
device emulators against VDF. HYPER-CUBE is able to find
bugs in eight out of 14 emulators, while VDF only finds
bugs in three. Additionally, HYPER-CUBE produces more test
coverage—in many cases significantly—than VDF. Interest-
ingly, we are orders of magnitudes faster: we were able to
find both the bugs and the coverage in less than ten minutes,
while VDF took nearly 60 days of fuzzing to achieve these
results.

This result is somewhat surprising, since in contrast to
VDF, HYPER-CUBE is not coverage guided. However, using
a higher test case throughput, and a smart bytecode interpreter,
we are able to drastically increase the efficiency of our fuzzer,
while at the same time increasing its flexibility. Finally, in
contrast to existing hypervisor fuzzing approaches that we
are aware of, HYPER-CUBE is not limited to one specific or
open source hypervisors. Because of our generic design, we
can easily target even proprietary hypervisors as long as the
hypervisor is able to boot commercial off-the-shelf (COTS)
OSs. Based on these evaluation results, we conclude that our
design is superior to existing state-of-the-art hypervisor fuzzers
and significantly outperforms them in almost every aspect.

In summary, we make the following three contributions:

• We design a multi-dimensional, platform-independent
fuzzing method that can test different interfaces and
their interactions in an efficient and effective way.

• We describe a highly efficient method to perform fuzz
testing against hypervisors. Our approach is indepen-
dent of the hypervisor that should be tested.

• We implement our techniques in a custom operat-
ing system called HYPER-CUBE. Our experiments
demonstrate that HYPER-CUBE is able to find security
vulnerabilities in many real-world hypervisors.

To foster research on this topic, we release HYPER-CUBE
at https://github.com/RUB-SysSec/hypercube.
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Fig. 1: Device emulation and its trap and emulate handling of privileged
instructions in KVM and QEMU.

II. TECHNICAL BACKGROUND

Before presenting our approach to test hypervisors, we
briefly recap various aspects of x86 virtualization and the way
hypervisors are implemented. As our fuzzer is implemented
using a custom OS, we also describe essential aspects of the
boot process of an OS on the x86 architecture. Finally, we
describe the interfaces that the hypervisor uses to interact
with the OS running as a guest inside of the Virtual Machine
(VM) because they are relevant targets for our fuzz testing.
In principle, most design choices for a hypervisor fuzzer
are independent of the CPU architecture and it is merely an
engineering effort to implement similar approaches for other
architectures. However, given that we implement a custom
OS, we also need to consider several aspects related to the
underlying processor architecture and its quirks. In this paper,
we target hypervisors on Intel x86 CPUs and their back-
ends for devices emulation. Thus, in the following, we focus
on the Intel x86 architecture, which is—to the best of our
knowledge—the most commonly used virtualization platform
in practice.

A. x86 Boot Process

One of the first programs which run on an x86 machine
is the Basic Input/Output System (BIOS) or the more mod-
ern version of it, the Unified Extensible Firmware Interface
(UEFI). In this paper, we call this program firmware. It is the
firmware’s job to test and initialize the hardware such as CPU
and the main memory after turning on the machine. The next
step of the x86 boot process is executing the OS bootloader.
The bootloader is a small piece of code that launches and
prepares everything needed to start the OS. One example
of a well-known OS bootloader is GRUB (GRand Unified
Bootloader). Finally, the bootloader calls the OS kernel code.
The kernel then configures the remaining hardware, such as
interrupt controllers, paging, or PCI devices.
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TABLE I: Overview of hypervisor attack surfaces.

Interface Component

Port I/O Device Emulator / Core
MMIO Device Emulator / Core
PCI DMA Device Emulator
Hypercall Interfaces Guest Tools Interface / Core
Instructions Instruction Emulator

B. Input/Output on x86

An Intel x86 processor implements multiple mechanism
and instructions to communicate with attached devices. To un-
derstand how the OS interacts with these devices, we provide
in the following a brief overview of the different primitives
of Input/Output (I/O) on x86. An overview of the available
interfaces is presented in Table I.

a) Port I/O: The first mechanism to interface with
external devices is the legacy port I/O address bus: besides
the main memory, on x86, there is a second address space that
can only be accessed using the in and out instructions.

b) Memory-Mapped I/O: The second mechanism to in-
terface with external devices are memory-mapped I/O (MMIO)
regions. Writing or reading these memory regions corresponds
to a direct access to device registers or device memory. In
modern hardware, this mode of communication is preferred
over port I/O as it is more flexible and allows much higher
bandwidths. Additionally, there are well-known ways to enu-
merate most available MMIO regions.

c) Direct Memory Access: The last mechanism to im-
plement communication between the host and its devices is
Direct Memory Access (DMA). PCI/PCI-Express based-DMA
is implemented via bus mastering, which allows the PCI device
to read from and write to the host’s main memory directly.
Note that this effectively swaps the roles that the CPU and the
device play: in contrast to MMIO, the devices decide when
and which memory to read and write. In the context of this
paper, we ignore legacy ISA DMA since it is hardly used these
days in practice.

C. Hypervisor

A hypervisor, also known as Virtual Machine Monitor
(VMM), is a privileged software which provides physical hard-
ware resources, such as memory and virtual CPUs (vCPU), in
a controlled environment to their VMs. Generally speaking, the
VMs have no control or access to physical hardware devices
except for assigned ones. Instead, the hypervisor provides
vCPUs and virtualized physical memory, and it also emulates
all necessary devices such as interrupt controllers. Whenever
the VM needs to perform a privileged operation, such as
accessing the real hardware, it triggers a trap that causes a VM-
exit. A VM-exit transfers the control back to the hypervisor
which emulates the privileged operation on behalf of the VM,
after ensuring that the operation is legitimate. This mechanism
is called trap and emulate. By providing a fully virtualized
environment, the hypervisor allows to simultaneously execute
multiple COTS OSs on the same physical host.

1) CPU and Memory Virtualization: In the past, hypervi-
sors relied on a technique called binary translation to imple-
ment full CPU and memory virtualization [9]. That means all
critical instructions (e.g., memory access or branch instruc-
tions) are translated into another piece of code that enforces
certain policies, while emulating the virtual behavior. For
example, a memory access is replaced by code that emulates
a virtual page table and adheres to the access policies defined
by the hypervisor. By using binary translation, the hypervisor
has complete control over all vCPUs and can emulate high-
privileged instructions such as MOV CR3. Therefore, the hy-
pervisor can ensure that the software is not able to escape
from the virtualized context. The same applies to memory
virtualization and all memory-accessing instruction.

However, implementing virtualization without hardware
support introduces a significant performance overhead and
several other challenges such as interrupt handling need to
be addressed [8]. Therefore, all major CPU manufacturers
such as Intel or AMD introduced hardware extensions that
allow to increase the performance by using so-called hardware
accelerated virtualization. Intel calls its technology “Intel VT-
x”, while AMD’s technology is called “AMD-V”. In the
context of this paper, we only focus on Intel VT-x. However,
it is worth mentioning that while the implementation details
of these extensions vary, the overall idea is the same: a
new execution mode is introduced in the CPU that has even
higher privileges than the OS kernel. A hypervisor running
in this higher privilege level has various methods to intercept
different kinds of events, to restrict the guest’s kernel from
accessing actual hardware, and to provide direct access to
physical memory dedicated to a VM without emulating certain
instructions.

2) Device Emulation: To be able to boot a COTS OS, a
hypervisor has to emulate standard hardware such as an inter-
rupt controller, a timer, and various other peripheral devices.
The two main mechanisms for interaction with hardware are
MMIO and port I/O. To emulate the interaction with hardware,
the hypervisor must first intercept the interaction with the
hardware. It should be noted that in the case of DMA, the
hypervisor does not need to intercept memory accesses, as it
is only used by the emulated hardware rather than the guest
OS. An example of the implementation of device emulation
and its trap and emulate approach is given in Figure 1. In the
following, we will outline the process of emulating a port I/O
instruction based on KVM and QEMU. To capture MMIO or
port I/O interactions, hypervisors typically use two different
techniques. In both techniques, interacting with the emulated
hardware causes a trap and a VM-exit 1©, which the hypervisor
handles by emulating the side effects. No matter what kind of
trap the hypervisor receives, to obtain information on the actual
interaction (such as which value was written), the hypervisor
will typically have to disassemble and emulate the instruction
itself.

In the first case, the hypervisor has to emulate MMIO.
To trap access on MMIO pages, the hypervisor typically
marks the corresponding pages as non-accessible. Accessing
the MMIO page from within the virtual machine triggers a
page fault. The hypervisor installs a handler for these page
faults. Whenever a page fault occurs, the handler then checks
whether the requested page is registered for MMIO by one
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of the emulated devices. Finally, the hypervisor passes the
corresponding memory access to the device emulator. After
the device emulator simulated all relevant side effects of the
MMIO access, the hypervisor passes control back to the VM.

In the second case, the hypervisor has to emulate the port
I/O. To trap on port I/O interactions, the hypervisor limits
the execution of certain instructions such as in and out
using the hardware virtualization extension. Executing such
a restricted instruction will also cause a VM-exit. Similar to
the previous case, the hypervisor passes the interactions to the
corresponding device emulator 2© and returns control back
to the VM 5© after the device emulator finished 4©. If the
corresponding device emulator implements DMA capabilities,
the emulator may read or write data from the guest’s main
memory 3©.

Current hypervisors typically only support a limited set of
standard hardware to be emulated. However, the code base
used in device emulation is rather large, posing a significant
attack surface. For example, QEMU in version 4.0 contains
more than 400k lines of C code used to emulate devices.

3) Para-Virtualization: To reduce the amount of code
needed and to improve the performance significantly, modern
hypervisors implement so-called para-virtualization interfaces.
In a para-virtualized environment, the OS is aware that it is
running inside a VM and it does not try to use actual hardware.
Instead, a specialized driver (typically referred to as VirtIO
driver) uses a custom protocol specific to the hypervisor. Using
a custom protocol increases the performance of the virtual
machine and can reduce the attack surface in the hypervisor, as
legacy corner cases no longer have to be simulated faithfully.

To facilitate the communication between the guest OS and
the hypervisor (e.g., to implement para-virtualization protocol),
modern hardware-accelerated virtualization introduces a new
instruction that performs a so-called hypercall. From a con-
ceptual perspective, hypercalls are closely related to system
calls (syscalls), but instead of jumping from userland to ring
0, they jump directly to the hypervisor by triggering a VM-
exit. To implement hypercalls, Intel VT-x has introduced a
dedicated instruction called vmcall. However, to implement
hypercall interfaces, some hypervisors use other privileged x86
instructions, which always or conditionally result in a VM-exit.
For instance, the VMware hypervisor series uses the in and
out instruction for implementing para-virtualized interfaces,
which are used by their VMware guest tools. The Parallels
hypervisor uses the rdpmc instruction for this purpose. It is
common that upon encountering a hypercall, the hypervisor
directly accesses the memory of the guest and reads data
or provides results by directly writing them into the guest’s
memory. Similar to classic device emulation, this property
makes hypercalls an interesting target for fuzzing.

D. Fuzzing Hypervisor

Fuzzing hypervisors has its own set of challenges. The
higher number of interfaces that can be used interactively
mandates a different setup than for ring 3 file format fuzzing.
The guest system can trigger hypercalls, I/O operations as
well as reading or writing to memory mapped I/O regions.
Likewise, restarting the hypervisor is much more expensive
than restarting an user-space process. Consequently, many

current fuzzers target individual interfaces in isolation and
try to avoid restarting the VMM. At the same time, the
attacker model is very strong: typically the security model
of hypervisors assumes that the whole guest OS is malicious
and any interface available is also part of the attack surface.
Consequently, any kind of memory corruption issues—and
even some denial-of-service bugs—are highly security-relevant
in the context of hypervisors. Especially memory corruptions
might lead to virtual machine escapes, which is the worst-case
scenario for the whole cloud hosting industry that relies on
secure isolation.

So far, most research on the security of hypervisors was
performed in industry [6], [7], [25], [26], [46]. For instance,
Tang et al. [46] implemented an AFL extension with hy-
pervisor fuzzing capabilities. It is implemented as a custom
extension to QEMU’s SeaBIOS. They extended the BIOS with
an ability to consume inputs from the outside of the VM and to
use them to interact with devices provided by the hypervisor.
They also instrumented the code used for device emulation to
provide coverage feedback to AFL. In the academic domain, to
the best of our knowledge, there is only a single project (VDF)
for fuzzing hypervisor related software [30]. The authors of
VDF manually extracted individual devices from the QEMU
codebase and fuzz them in AFL [54]. This approach has a
significant drawback: manual work is needed for each device
emulator and hypervisor to enable fuzzing.

III. DESIGN

Since hypervisors perform a multitude of complex tasks,
there are many ways one can approach testing the implemen-
tation of a given hypervisor. As a consequence, we begin by
analyzing the challenges one faces when designing a fuzzing
framework for hypervisors. We then formulate the goals that
we want to achieve with our fuzzer. Lastly, we describe our
design choices, which are all tailored towards addressing the
identified challenges and achieving the goals discussed earlier.

A. Threat Model

Throughout the rest of this paper, we assume the following
threat model that is also reflected in the design of our approach.
First, an attacker has full control over the kernel running inside
the virtual machine. Her goal is to either obtain control over
other virtual machines hosted on the same physical machine
or the host itself (i.e., the underlying system). This assumption
is commonly valid in various cloud hosting scenarios, where
many virtual machines with unknown tenants are co-located
on the same server [43]. If an attack can escape her rented
VM at any time, all data that is stored on the same physical
server is at risk. Additionally, with the rise of private clouds,
similar scenarios occur after an attacker compromised one
service and now plans to escalate horizontally. Additionally,
we are interested in Denial-of-Service (DoS) attacks, in which
an attacker might prevent the operator from taking control of its
VM or the attacker can circumvent load limiting mechanisms.

B. Challenges in Fuzzing Hypervisors

Current hypervisors have a large and diverse attack surface.
As described in Section II, there are many ways in which the
guest interacts with the hypervisor. To make matters worse,
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Fig. 2: High-level overview of the system architecture of HYPER-CUBE

testing the various interfaces in isolation is not sufficient to
evaluate the security of modern hypervisors: as our experience
and evaluation results show, a comprehensive evaluation has to
consider all interactions between different interfaces, typically
a sequence of such interactions is needed to uncover a vulnera-
bility. Additionally, it is often non-trivial to find documentation
for different interfaces a given hypervisor exposes. Therefore,
the fuzzer needs to be able to provide meaningful interactions
with undocumented interfaces. As another challenge, we found
that even for well-known interfaces or devices, the normal
start-up routine of COTS OSs such as Linux or Windows
might influence the bug finding process. For example, large
parts of the emulator might be initialized during boot time.
However, given that an attacker can reboot the machine, the
initialization code also needs to be considered when studying
the attack surface. Yet, testing the device from a COTS OS
never exercises this code in an uninitialized state. The same
boot process can also slow down hypervisors during fuzzing—
restarting a hypervisor from scratch (e.g., after finding a crash)
takes a significant amount of time that would slow down the
fuzzing progress substantially. Lastly, depending on the OS
running inside of the hypervisor, the behavior of hardware-
accelerated hypervisors can be rather non-deterministic.

C. Architecture

In the following, we first provide an overview of our design
goals and then present the architecture of our approach. Pri-
marily, our design aims at providing high-performance fuzzing
for a given hypervisor. Besides being as fast as possible, our
approach should be generic and applicable to a wide range
of both open source and proprietary hypervisors. Furthermore,
our approach should have the ability to find bugs resulting
from (complex) interactions between different communication
channels. To this end, we improve upon the idea of two-
dimensional fuzzing, as introduced by Xu et al. [52]. In two-
dimensional fuzzing, two different interfaces are attacked in a
fixed sequence. In our approach, we want to be able to attack
an arbitrary number of interfaces in any order, we therefore aim
at designing a “high-dimensional” fuzzer. Lastly, any fuzzer
is only as good as its ability to reproduce the bugs found.

Therefore, we require a very deterministic setup to obtain good
stability during fuzzing, especially given that we interact with
a low-level component of the software stack. In the following,
we demonstrate how we can achieve these goals by describing
the design of our fuzzer named HYPER-CUBE.

1) High-Level Overview: Our fuzzer consists of three main
components as illustrated in Figure 2.

1) The first component is a specialized OS called
HYPER-CUBE OS which boots inside the target hy-
pervisor and enumerates existing hardware interfaces.
A custom OS enables us full control over the com-
plete process.

2) Afterwards, HYPER-CUBE OS spawns a second com-
ponent and passes the information about available
interfaces to the spawned task. The task runs our byte-
code interpreter named TESSERACT. It can consume
arbitrary byte strings and uses them to actually fuzz
the hypervisor.

3) Additionally, there is a set of external, independent
tools that are able to provide bytecode strings to
the TESSERACT interpreter, decompile executed byte-
code programs, and observe the machine’s behavior
using channels such as a serial interface.

As we explain in the following, this architecture allows us
to achieve our three aforementioned goals.

a) High Performance Fuzzing: Rebooting a COTS OS
such as Linux requires a significant amount of time. If there
are easy-to-find bugs within the hypervisor, the fuzzer spends
a significant portion of its time on rebooting the COTS OS.
Using a small custom OS such as HYPER-CUBE OS can
drastically decrease the boot time of the OS. HYPER-CUBE
OS does not interact with other interrupts, nor does it have any
hardware initialization routine. Additionally, HYPER-CUBE
OS is very small, and uses only an absolute minimum amount
of memory. During fuzzing, this design choice allows us to
rapidly reload the OS after each crash and thus significantly
improve the fuzzing performance.

Additionally, and more importantly, we took measures to
improve the performance of the fuzzing process itself, since
the process of compiling and loading a new program for
each test case can be very time consuming. The ability to
execute as many test cases as possible in any given time
period still remains one of the most important performance
criteria for fuzzers [27]. To increase the test throughput, we
avoid compiling code. Instead, we use our specialized bytecode
interpreter, named TESSERACT, that runs in ring 0 of the
HYPER-CUBE OS.

The embedded interpreter TESSERACT takes any stream of
input bytes and interprets it as a sequence of interactions with
the hypervisor. The custom nature of this interpreter allows us
to design the bytecode in such a way that it is very “fuzzer-
friendly”. All instruction encodings are designed to maximize
the likelihood of producing useful instructions. The encoding is
chosen such that there are no invalid instructions. Additionally,
memory addresses are not encoded as pointers, but as pair
of memory region and an offset. Since TESSERACT is aware
of all interesting memory regions, it can avoid interacting
with addresses that contain no relevant content, even though
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the fuzzer generates random data. To further increase the
probability of producing reasonable opcodes, all arguments
such as region IDs and offsets are interpreted modulo the
available range.

b) Generic High-Dimensional Fuzzing: To the best of
our knowledge, all previous hypervisor fuzzers target either
one or two specific interfaces. For example, VDF is unable
to fuzz interfaces such as DMA, MSRs, or hypercalls, and
only focusses on MMIO. Since we have full control over
the TESSERACT interpreter, we can integrate interactions with
different interfaces. As a result, even a completely random
stream of data produces a large number of valid interactions
with all available interfaces. In particular, complex multi-
channel interactions happen frequently and organically. For
example, we observed that TESSERACT initially wrote data
to a scratch buffer, passed a pointer to this data into an MMIO
region, and finally an emulated device used this pointer in com-
bination with PCI DMA and crashed after reading malformed
data. Such complex sequences enable us to uncover bugs and
we found that especially complex interaction sequences often
trigger relevant behavior.

c) Stable and Deterministic Fuzzing: Previous work on
hypervisor fuzzing usually used some kind of agent running
in a COTS OS [6], [7], [26]. This reduces the determinism,
as the kernel interferes with interrupt handling and introduces
a variety of other tasks. Additionally, COTS kernels are
fragile: re-configuring essential hardware such as the inter-
rupt controller or PCI devices that overwrite memory most
certainly break COTS kernels. Similar issues show up if the
fuzzer interacts with disk interfaces such as IDE/SATA and
corrupts the hard drive. By implementing our own OS HYPER-
CUBE, we can significantly increase both the robustness and
determinism during the testing phase. Most importantly, using
a small OS around a custom interpreter allows us to have
full control over the environment. In contrast to other OSs,
there are no additional tasks that would interfere with our
fuzzer. Also, as the page tables are fully under our control,
we can perform mischievous but very useful operations, such
as mapping fuzzer-controlled memory at address 0. All of
this helps to produce both reliable and reproducible crashes.
In fact, if we fix the payload, the entire interaction with the
hypervisor is deterministic (except for minor variations in the
interrupt timings). As a result, we are able to reproduce all bugs
reliably. The only exception are some issues that only appear
due randomization taking place in the hypervisor itself, which
we cannot fully control.

In the following, we describe the design of each of the
three components in detail.

2) HYPER-CUBE OS: The core of our fuzzer is our
custom operating system HYPER-CUBE OS. It implements
the multiboot 2 specification and therefore can be booted
by common bootloaders such as GRUB. HYPER-CUBE OS,
besides providing a general platform for our fuzzer, has two
primary tasks: memory management and device enumeration.

HYPER-CUBE OS requires memory management for de-
vice enumeration and spawning TESSERACT. There are two
different kinds of memory which need to be managed. First,
operations such as device enumeration and spawning TESSER-
ACT require to allocate memory. Second, certain interactions

with available interfaces require access to physical memory.
Our memory manager contains a simple heap that can be used
to allocate memory when required. Overall, running HYPER-
CUBE OS and TESSERACT only requires a very small amount
of memory. Therefore, it is possible to use a simplistic imple-
mentation of a heap manager. To provide access to the physical
memory, HYPER-CUBE OS creates multiple linear one-to-one
mappings that make relevant physical address ranges available
within the virtual address space.

The largest part of HYPER-CUBE OS is concerned with
the enumerating the different interfaces that are available for
fuzzing (see Figure 2). This requires to enumerate address
ranges used for MMIO or port I/O. In addition, it also requires
to interact with basic hardware such as the PIC or APIC.
Enumerating these devices is performed using a variety of
techniques. Some information (such as the set of reserved
memory regions that are used for MMIO) is passed on from the
BIOS/UEFI by the bootloader, while other information, such as
the set of I/O ports or PCI devices, are manually enumerated.

3) TESSERACT: After HYPER-CUBE OS was successfully
booted, it calls into its only functionality: performing random
interactions with the hypervisor. We use a custom bytecode in-
terpreter (TESSERACT) to describe those interactions. TESSER-
ACT is a relatively straightforward, yet complex instruction set
interpreter. The bytecode is either given from the outside of
the VM or produced by a pseudo random number generator
inside of the interpreter. This design allows us to interleave
a variety of different types of operations to perform multi-
dimensional fuzzing. The bytecode is designed in such a way
that any arbitrary byte string is also a valid program.

First, we decode the instruction at the current instruction
pointer. All values are interpreted modulo the sensible range
of values. For example, we use the extensive scanning, which
HYPER-CUBE OS performs during boot, to identify the set of
MMIO regions. Writing to MMIO is then performed by writing
to a (region-id,offset) pair. Both the region-id and
the offset are computed modulo the available length.

After decoding the instruction, we call the corresponding
opcode handler function. Since we use handler functions for
each opcode, we can perform rather complicated operations in
a single step. For example, this can be used to implement
opcodes that overwrite a given range with an increasing
sequence of bytes or repeatedly write increasing values to the
same address. Both the complex instruction set and the liberal
instruction decoding allow the interpreter to be very effective,
even if a random program is provided.

The interpreter also maintains a set of scratch region. Each
scratch region is a single 4KB page and is regularly overwritten
with random data. The interpreter can write pointers to offsets
within the scratch region to I/O ports or MMIO regions. This
allows TESSERACT to create custom data structures and pass
pointers to them to the hypervisor.

4) External Tools: The last component of our fuzzer is
a set of three independent helper tools running on the host.
These tools are mainly used after the fuzzing process. The
same interfaces could also be used to implement more ad-
vanced fuzzers with coverage feedback or symbolic execution
capabilities. The following three components are available:
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1) During fuzzing, the logger intercepts serial commu-
nication performed by the virtual machine and stores
it for later analysis.

2) To perform initial fuzzing, we generate a random byte
stream from a given seed using the internal pseudo
random number generator. However, we often execute
millions of TESSERACT instructions before we find
a bug. Therefore, after finding the bug, we need to
trim the stream of inputs to a more manageable size.
To minimize the crashing programs found, we regen-
erate the instruction stream from the same seed. Then
the minimization tool iteratively removes a random
segment from the stream and observes whether the
resulting program still crashes. After a convergence of
this algorithm, we typically obtain programs contain-
ing in the order of tens of instructions. For debugging
purposes, it is also possible to run TESSERACT as a
standalone ring 3 application.

3) To understand the resulting bytecode and to analyze
the bugs found, we designed a decompiler that turns
the given (minimized) bytecode into an equivalent C
program. This C program could be compiled into a
module for HYPER-CUBE OS, inserted into a kernel
driver for any COTS OS for debugging purposes, or
inspected manually to understand the behavior of the
input.

IV. IMPLEMENTATION DETAILS

We implemented HYPER-CUBE OS in C and x86 assem-
bly. The bytecode interpreter TESSERACT was implemented in
such a way that it is easy to embed in HYPER-CUBE and to
test as a standalone application. In this section, we describe
the implementation details related to HYPER-CUBE OS and
TESSERACT as well as the external tools used in our fuzzer.

A. HYPER-CUBE OS

To understand how and which information HYPER-CUBE
OS gathers and provides to TESSERACT, we have to describe
the boot process and memory management of our OS.

1) Boot Process: During early boot time, the firmware
loads programs from different peripherals (which are called
Option ROMs) for basic I/O initialization. The firmware then
runs Option ROMs belonging to detected hardware and gen-
erates x86 specific data structures such as an e820 memory
map. These data structures provide a way for the OS kernel,
or any other code running afterwards, to interact with the
detected peripherals or the firmware itself. The layout of these
data structures depends on whether the computer is using a
BIOS or a UEFI firmware. After preparing the relevant data
structures and initializing basic devices, the firmware launches
the bootloader.

Different OS bootloaders use different routines to load an
OS kernel. To standardize this process, Ford et al. introduced
the multiboot specification [19]. To add support for UEFI, the
multiboot specification was later extended to version 2 [20].
Using a multiboot 2 compliant bootloader allows developers to
ignore almost all differences between BIOS and UEFI. Note
that different bootloaders require different binary formats for
loading the OS kernel. However, by adhering to the multiboot 2
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Fig. 3: Virtual memory layout of HYPER-CUBE

specification, the developers can build the kernel as an ELF
file using existing tool support. The initial boot interface of
HYPER-CUBE OS is based on the multiboot 2 specification
and we use the GRUB 2 bootloader. GRUB can be used
to boot HYPER-CUBE OS via both legacy BIOS or a UEFI
firmware. An additional benefit of this design is that the
GRUB bootloader enters the entry point of our kernel in 32-
bit protected mode, which is the primary operating mode of
HYPER-CUBE OS. This way, we do not have to implement a
routine to mode switch from real to protected mode.

a) Initializing Interrupts: To synchronize interaction
with external hardware, the Programmable Interrupt Controller
(PIC) and its successors, the Advanced Programmable Inter-
rupt Controller (APIC), are used. The PIC is configured via
port IO and relies on the Interrupt Descriptor Table (IDT). The
interrupt table contains a list of function pointers to functions
that are called when an interrupt or exception occurs. Inter-
rupts are triggered by external hardware, whereas exceptions
are generated by the CPU itself. During the startup routine,
HYPER-CUBE OS configures either the PIC or the APIC and
installs all essential interrupt and exception handlers. To ensure
that the fuzzing process will not be interrupted by external
interrupts initiated by the hypervisor at any point during the
fuzzing processes, HYPER-CUBE OS prevents the delivery of
all external interrupts by masking all interrupt registers within
the OS. Note that the interrupts are still produced by the
emulators.

2) Memory Management: Our custom OS requires a cus-
tom memory management. In particular, various tasks need to
allocate memory and access physical memory (such as MMIO
regions), even when paging is enabled. We implemented a
custom heap allocator, which allows tasks to allocate a whole
page at a time. This simple design drastically reduces the
implementation effort and the amount of fragile metadata
stored on the heap. Additionally, it increases the robustness
of the OS against failures introduced by memory corruptions
resulting from abusing devices that directly write to memory
using DMA. On the other hand, if many small allocations
are required, it drastically increases the memory overhead.
HYPER-CUBE OS uses only a very small number of al-
locations during device enumeration and for its interpreter
TESSERACT. Therefore, this additional memory overhead is
negligible for our use case. We typically observed fewer than
150 allocations during a typical fuzzing campaign. However,
the precise number depends on the number of emulated devices
provided by the hypervisor.

Usually, an OS enables paging to manage its memory
in a virtual address space. If paging is enabled, the CPU
performs a lookup to map virtual pages to physical page
frames using the current page table. This allows a much more
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flexible handling of memory including access permissions
and remapping fragmented memory ranges into continuous
regions. However, some tasks still need access to physical
addresses. For example, the page table itself needs to be
described in terms of physical memory. To enable access to
various MMIO regions and the page tables, which reside in
physical memory, our OS maintains some regions in which
the virtual addresses map directly to physical addresses. In
the lowest megabyte of memory (addresses 0x0 to 0x100000),
we create such a 1-to-1 mapping of the physical memory
to the virtual memory. This region contains the code, the
kernel stack, and additional scratch memory that HYPER-
CUBE OS provides to TESSERACT for internal use. During
boot time, the BIOS/UEFI provides GRUB a memory map that
contains available and reserved ranges in physical memory.
This memory map is later passed to HYPER-CUBE OS. It
uses the available memory to create a kernel heap that is
maintained by the allocator mentioned previously. The kernel
heap makes full use of the virtual address lookup and can
contain any number of physical pages in any order. Above
the remapped area, HYPER-CUBE OS creates a region in
which all of the available memory is used to create a heap.
Lastly, in the uppermost regions, we create another remap that
contains various kinds of MMIO regions, as detected by the
enumeration procedure. For example, memory ranges marked
as reserved by the BIOS or UEFI firmware mostly contain
MMIO regions of emulated devices and are remapped to this
area during device enumeration. A visualization of the memory
layout is given in Figure 3.

3) Device Enumeration: Hardware devices, such as PCI de-
vices or core components like the APIC or the High Precision
Event Timer (HPET), can map internal registers to physical
memory. Accessing these MMIO regions allows to directly
influence the state of the device. After booting, a major task of
HYPER-CUBE OS is to enumerate the different interfaces that
are available for fuzzing. As mentioned earlier, this requires
to enumerate all MMIO and port I/O address ranges used by
emulated devices and peripherals.

a) Core Components: The MMIO regions provided by
core components such as the APIC or the HPET are described
by so called Advanced Configuration and Power Interface
(ACPI) tables. The base addresses of HPET and APIC MMIO
regions are stored in their corresponding ACPI tables. To
enumerate those components, HYPER-CUBE OS parses all
relevant ACPI tables. A pointer to the array of ACPI tables is
provided by the multiboot bootloader. Pointers to both APIC
and I/O APIC MMIO regions are located in the APIC ACPI
table. Lastly, if an HPET is present, the base address of
the HPET can be found in the HPET ACPI table. All base
pointers stored in the ACPI tables are registered in TESSERACT
as potential fuzz target areas for later use. In addition, the
base pointers of the APIC and I/O APIC are required for the
configuration of all interrupts. The HPET pointer is not used
further except for fuzzing.

b) PCI-/PCIe-Enumeration: To find all emulated PCI
and PCI-Express devices, HYPER-CUBE OS either relies on
the legacy PCI configuration I/O ports or more modern PCI
configuration spaces based on the MMIO region located at
the Enhanced Configuration Mechanism (ECAM) base pointer.
Similar to the base pointers of HPET and ACPI, the base

pointer of the ECAM area is located in an ACPI table named
MCFG. Either way, HYPER-CUBE OS scans all PCI buses
for devices. Once a PCI or PCI-Express device is found,
all Base Address Registers (BARs) are parsed, and the port
I/O or MMIO regions are registered as fuzzing target areas
in the TESSERACT interpreter. To enable DMA for all PCI
devices, HYPER-CUBE OS sets the PCI bus mastering bit
in the command register of each PCI device. This way, PCI
devices are allowed to read and write the guest’s physical
memory. HYPER-CUBE OS enumerates all MMIO regions
provided by the hypervisor. Theoretically, a hypervisor could
create regions that are not registered in the ACPI table, but
they would be invisible to a COTS OS without hypervisor-
specific drivers. We did not encounter this in practice during
our evaluation.

c) ISA-Enumeration / I/O Port Probing: Various other
devices use the legacy port I/O address bus to expose internal
registers to the host. This includes old ISA devices such
as VGA graphic cards, sound devices, or core components
like the PIC. While there is a list of well-known I/O ports
used for common devices, unfortunately, there is no proper,
systematic way of enumerating and detecting certain emulated
ISA devices. To enumerate available emulated devices, we
perform an active scan of all 216 possible I/O ports. To find
devices, we try to read from and write to all ports. If, after
writing, the value in the I/O port changes, we consider the
port as a possible interface to an emulated device. Unfortu-
nately, this technique does not work for all emulated devices
because not all I/O ports are writable. Using this method,
we create a dictionary of interesting I/O ports that is later
used more often during the fuzzing run. Our evaluation shows
that this method—in combination with a small list of well
known ports—is typically able to find more than 90% of
all provided device I/O ports. The list of well-known ports
contains 11 ranges, containing ports of emulated devices such
as the legacy interrupt-controller, serial, and VGA. Another
uncommon method to enumerate ISA devices is described in
different legacy ISA Plug & Play specifications. Unfortunately,
to the best of our knowledge, no x86 hypervisor provides
support for this enumeration method.

B. TESSERACT

TESSERACT is a complex instruction set interpreter. We
implemented specific opcodes targeting common interactions
with hypervisors. Most opcodes are available in multiple
variants: opcodes such as read and write are implemented
for each interface. Additionally, there are variants using user-
provided dictionaries of data values and offsets. We also im-
plemented opcodes, which use “repeat string operation”-prefix
based instruction such as REP/REPE/REPZ/REPNE/REPNZ
to improve performance by limiting the number of emulated
instructions and the coverage by using additional x86 opcodes.
This also includes instructions accessing MMIO as well as port
I/O regions. Overall, TESSERACT implements the following
opcode handler:

• write mmio(region id, offset, data) writes a
single word data to the address given by
region_id+offset. Available for 8, 16 and
32-bit words.
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Fig. 4: TESSERACT consuming a byte string provided either by a PRNG or an embedded payload. Upon receiving the byte string, TESSERACT
decodes it into opcodes such as 1© and 2©. It then calls the handler that actually performs I/O operations.

• read mmio(region id, offset) reads a single word
from the address given by region_id+offset.
Available for 8, 16 and 32-bit words.

• xor mmio(region id, offset, mask) reads a single
word from the given address, and writes it back after
applying the given XOR mask. Available for 8, 16 and
32-bit words.

• bruteforce mmio(region id, offset, data, num)
writes num consecutive data words to the given
address. Available for 8, 16 and 32-bit words.

• memset mmio(region id, offset, data, num) writes
the word data to num consecutive addresses, begin-
ning at the given address. Available for 8, 16 and 32-
bit words.

• writes mmio(region id, offset, data, num) same
as memset mmio, however it uses a rep prefixed
instruction to perform the task, testing instruction
emulation.

• reads mmio(region id, offset, num) same as
writes mmio, but instead of writing data, it reads it.

• mmio write scratch ptr(region id, offset, scratch-
id, scratch-offset) writes a pointer to the given offset
in the scratch area to the address in the given MMIO
region.

• * io() all opcodes accessing MMIO regions are im-
plemented for I/O ports as well.

• write msr(msr num, mask) writes to a Machine
Specific Registers (MSR). This operation is limited to
a list of ≈ 240 well-known MSRs. The mask is xored
into the selected MSR.

• hypercall(eax, ebx, ecx, edx, esi) executes arbitrary
hypercalls using the given registers as arguments. This
instruction is specific to KVM.

• vmport(ecx, ebx) executes arbitrary vmport hyper-
calls with the registers set to the arguments to the
hypervisor. This instruction is specific to VMware
and other hypervisors which implement this hypercall
interface.

The TESSERACT interpreter uses a textbook-style bytecode
interpreter design that we briefly describe in the following. The
bytecode stream is interpreted in a loop. In each iteration, the
current bytecode instruction is decoded. The first byte encodes
the opcode. Once the interpreter knows the opcode type, the
corresponding handler is called. The opcode handler parses
the arguments for this opcode as described above. Then, the
handler performs the basic operation (such as accessing a given
address). Lastly, the instruction pointer is increased by the size
of the current opcode and the next iteration of the interpreter
loop is executed.

There are two ways to provide bytecode instructions to
our fuzzer. If no bytecode string is supplied from the outside,
TESSERACT uses a Pseudorandom Number Generator (PRNG)
to generate random instructions. We use a fast and small
non-cryptographic PRNG with a large average cycle length
(> 2126) called jsf32 [1]. Since our fuzzer uses the PRNG
as the source of an infinite stream of instructions, changing
the initial state of the PRNG allows us to run different
deterministic fuzzing campaigns. An illustration of this process
is given in Figure 4. The alternative way is to embed a fixed
bytecode string into the OS image. This mechanism is used
by the minimization script and can be used to generate proof-
of-concept images of HYPER-CUBE to reproduce findings.

Using the ability to inject a static bytestring into the fuzzing
image, we build a test case minimization script. After the
fuzzer found an initial PRNG state that leads to a crash,
we regenerate the same bytestring using the same state. This
bytestring is often very large (millions to tens of millions
of instructions). The minimization script removes a random
subslice of instructions with a length up to 50% of the
input. The resulting bytestring is embedded into an HYPER-
CUBE OS image, and the image is booted in the VM. If
the resulting image still produces a crash, the script repeats
this process, otherwise the modification is reverted, and the
process is repeated. After obtaining a minimal bytestring, the
decompiler can be used to translate it into a human readable
form. The decompiler is implemented as a modified version
of the interpreter, that emits C code for each opcode handler
call.
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V. EVALUATION

We use our prototype implementation of HYPER-CUBE to
evaluate the results of our design choices. In particular, we
aim to answer the following four research questions:

• RQ 1. Are we able to uncover new bugs and vulnera-
bilities in different hypervisors using HYPER-CUBE?

• RQ 2. Are we able to rediscover previously known
vulnerabilities, such as the QEMU vulnerability
VENOM (CVE-2015-3456) or vulnerabilities found
by other hypervisor fuzzers?

• RQ 3. How does HYPER-CUBE perform in terms of
test coverage compared to other hypervisor fuzzing
approaches?

• RQ 4. What is the performance impact of our design
choice compared to other hypervisor fuzzing setups?

To test whether HYPER-CUBE is able to uncover new bugs
and to answer RQ 1., we used HYPER-CUBE to evaluate six
different open and closed source hypervisor implementations.
We found bugs in all of them. In total, HYPER-CUBE found
over 50 bugs that we all manually analyzed. At the time of
submission, we reported and got confirmation for 49 bugs,
report and confirmation are still in process for the remaining
5 bugs. Until now, 43 CVEs were assigned.

Similarly, to answer RQ 2., we picked a set of previously
known, critical security vulnerabilities in QEMU and tested
if HYPER-CUBE is able to rediscover them in a reasonable
time frame. Specifically, we picked four well-known CVEs,
and we also reproduced the experiments performed by the
authors of VDF. Overall, we show that HYPER-CUBE is able
to rediscover all bugs and even finds bugs that VDF missed.

We also measure the code coverage achieved by HYPER-
CUBE when fuzzing various QEMU modules (RQ 3.). We
compare our measurements with the results reported by the
authors of VDF. We are able to produce more code coverage
on nearly all devices. Additionally, we achieve this code
coverage in significantly less time. More specifically, our
experiment only took ten minutes to outperform VDF in terms
of bug finding capability as well as code coverage. In contrast,
VDF used 60 days of computation for their experiments.

To measure the performance impact of our individual
design choices and to answer RQ 4., we perform three different
experiments. First, we analyze the throughput of TESSERACT
when compared to compiler-based approaches. Second, we
compared the time it takes to re-initiate the fuzzing process
after a crash of the targeted hypervisor. This time is especially
relevant in case of successful bug discovery or when side
effects might corrupt essential data structures resulting in full
system reboots. Last, we measure the memory usage of our
implementation.

A. Evaluation Setup

All experiments were performed on desktop machines
with an Intel i7-6700 processor (4 cores) and 24 GB of
RAM. Unless stated otherwise, all experiments were per-
formed on host systems running Ubuntu 16-04 LTS. No
seed inputs were used in any experiment, as our fuzzer

generates the stream of bytecode instructions using a PRNG.
Since our design is independent of the hypervisor under
test, we can test a wide variety of different hypervisor im-
plementations. In particular, we evaluated against the fol-
lowing six hypervisors: QEMU/KVM (4.0.1-rc4), Bhyve
(12.0-RELEASE), ACRN (29360 Build), VirtualBox
(5.1.37_Ubuntu r122592), VMware Fusion (11.0.3)
and Parallels Desktop (14.1.3).

While the design of HYPER-CUBE is quite flexible, it still
has some limitations in the implementation. We require 32-
bit UEFI or GRUB assisted booting. Since Hyper-V and its
type 2 virtual machines require a 64-bit UEFI bootloader, we
do not support this hypervisor in our current implementation.
This could be changed by extending the bootloader or the OS
boot routine. Additionally, we have limited support for para-
virtualized virtual devices and therefore we excluded para-
virtualization hypervisors such as Xen, VMware ESXi and
Hyper-V from our evaluation set. Note that this does not pose
a limitation to the techniques presented: support for para-
virtualization could be added by extending the boot procedure
and the instruction set in TESSERACT.

B. Finding New Vulnerabilities

To demonstrate that HYPER-CUBE is versatile and effec-
tively able to uncover bugs in different hypervisors, we tested
current versions of different hypervisor implementations. As
noted earlier, we were able to find bugs in all tested hypervisors
and obtained 43 CVEs so far. An overview of all bugs found
is given in Table II. Overall, we reported 54 bugs, a more
specific breakdown is as follows: in total, we found eight
memory corruption bugs. Additionally, in one case, we were
able to crash the entire host kernel (Bhyve - the standard
hypervisor used in FreeBSD). Three of the bugs caused a
deadlock of the hypervisor itself, effectively making it useless.
The remaining bugs cause different kinds of crashes in the
hypervisor. Notably, 26 bugs were triggering assertion failures.
While these bugs crashed the VMM and CVEs were assigned
by MITRE, Red Hat Product Security does not consider these
as security issues. In total, 12 of the 43 CVEs assigned are
due to such assertion failures.

The high number of bugs found in all tested hypervisors
demonstrates that HYPER-CUBE is able to uncover large
quantities of novel bugs (RQ 1.). To better understand the
kind of bugs HYPER-CUBE is able to uncover, we provide
more detailed descriptions for three of them.

1) Case Study: Bhyve rep movs emulation failure:
HYPER-CUBE found a bug in the instruction emulator of
Bhyve and the way some instructions are handled if the devices
emulation is performed by the hypervisor. During fuzzing,
TESSERACT executed a rep movs instruction, which was
targeting the APIC MMIO region. Unlike all other MMIO
regions, Bhyve failed to emulate the rep movs instruction,
which targets the APIC controller. These instructions were
emulated in the host kernel instead of the ring 3 emulator.
This bug can be exploited to crash the host kernel.

2) Case Study: QEMU qxl arbitrary read access:
HYPER-CUBE uncovered a vulnerability in the qxl VGA
emulation, which leads to control of a pointer to the VGA
mode array and to an arbitrary out-of-bounds read access. To
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TABLE II: Reported bugs found by HYPER-CUBE.

Hypervisor Asserts Null-Pointer FP Exception Memory Corruptions Deadlocks Kernel DoS Othera Total / CVEs

QEMU / KVM 12 4 - 5 2 - - 23 / 23
Bhyve 6 4 1 - 1 1 - 13 / 13
VirtualBox 3 1 4 3 - - - 11 / 5
VMware Fusion 3 - - - - - 1 4 / -
Parallels Desktop 1 1 - - - - - 2 / 1
ACRN 1 - - - - - - 1 / 1
Total 26 10 5 8 3 1 1 54 / 43

a Not yet classified.

trigger this bug, it is necessary to use two different interfaces.
qxl provides a PIO write region to select a VGA mode within
the VGA modes array. The VGA modes array is stored in
a presumably read-only PCI-MMIO area named QXL_ROM
region. However, due to an implementation mistake, this area
is mapped writable to the guest. This allows us to control the
metadata. Finally, when the window is resized, the size is read
from a pointer in the modes array. By changing it, we can
control the size of the buffer. This vulnerability allows an out-
of-bounds read access in a 4GB + 8KB range relative to the
allocation.

3) Case Study: VirtualBox intel-hda heap corruption:
In the intel-hda sound card emulator implementation of
Virtualbox, HYPER-CUBE uncovered a heap corruption issue.
The command output ring buffer (CORB) size can
be set to either two entries (8 bytes), 16 entries (64 bytes)
or 256 entries (1KiB, default) with an MMIO write to the
CORBSIZE register. The CORBSIZE MMIO write handler
sets the selected size and allocates a buffer with the given
size. The intel-hda device can then be reset by an MMIO
write to the global control (GCTL) register. This handler
resets the buffer size to the default of 256 entries (1KiB) and
clears the buffer with a memset of size 1KiB. Clearing the
buffer can lead to a heap out-of-bound write of up to 1016
bytes when the CORB size was previously set to 2 entries,
and the buffer only has a size of 8 bytes. The vulnerability
was present in the Ubuntu version of VirtualBox and has now
been fixed.

C. Rediscovering Known Vulnerabilities

It is a well-known fact that fuzzers are typically able to
find bugs in poorly tested software. We therefore ensure that
our fuzzer is also able to find bugs previously found by other
methods.

1) Old CVEs: Since there is very limited related work on
hypervisor fuzzing, we picked some well-known CVEs for this
experiment. In a first set, we chose some high-impact bugs
with a CVSS > 7.0. Additionally, we tried to rediscover all
bugs found by VDF. In total we analyzed four known bugs,
displayed in Table III. We were able to find all bugs in a matter
of seconds. Since all the bugs are inside of QEMU device
emulators, we evaluated our fuzzer both with QEMU running
TCG mode as well as KVM based virtualization. Even though
TCG is typically considered slower at emulation than hardware
supported virtualization techniques such as KVM, fuzzing
QEMU TCG was drastically faster. This is due to the fact
that we produce a workload that mostly consists of interactions

with the hardware. In KVM, each interaction requires multiple
expensive context switches, while no such context switch takes
place in QEMU TCG mode.

Unfortunately, most fuzzers developed by practitioners in
the industry are neither released nor properly evaluated by the
scientific community. However, Tang et al. explicitly mention
that they needed one and a half hours to rediscover the
VENOM vulnerability [46]. HYPER-CUBE typically requires
less than ten seconds to discover it (as illustrated in Table III).

2) HYPER-CUBE vs VDF: In addition to reproducing well-
known CVEs, we compare HYPER-CUBE against VDF by
reproducing the results reported in their paper. Unfortunately,
the authors of VDF did not provide detailed descriptions of the
crashes found and we were not able to obtain a copy of VDF.
However, we used the same version of QEMU and performed
similar experiments (displayed in Table IV). It should be noted
that we excluded their experiment against the Trusted Platform
Module (TPM), as it was manually added and is not part of
the default configuration of QEMU. Furthermore, VDF uses
extensive traces obtained from real OS boot processes, while
we did not provide any seed inputs or dictionaries to HYPER-
CUBE. Similar to the authors of VDF, in this experiment
we limited fuzzing to the target device by ignoring all other
devices during device enumeration. We compare our results
with the values reported by the authors of VDF. We were
able to find crashes in all three devices VDF crashed. Beyond
merely reproducing all of the bugs found by VDF, we even
managed to find crashes in five additional devices that VDF
missed.

The fact that we managed to find bugs in all the devices that
VDF broke is surprising, since VDF uses coverage feedback
and is able to improve the performance drastically by targeting
individual components in isolation. On the other hand, our
approach has to deal with the whole system and is unable to
make use of coverage feedback.

Note that we achieved these results after testing the same
targets for only 10 minutes, while VDF fuzzed the same
targets for 60 days. Like the authors of VDF, we limited
the fuzzer to test only the port I/O and MMIO areas related
to the targeted emulator in this experiment. We have three
observations on why we are able to outperform VDF with
such a margin. First of all, VDF only interacts with MMIO
and port I/O to test the target hypervisor. Our approach is able
to trigger more code by other means such as DMA. Second,
VDF has to reset the device state after each test case to obtain
coverage measurements that are undisturbed by previous tests.
This has two downsides: (i) resetting the state of the target
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TABLE III: Previously known vulnerabilities in QEMU / KVM found by
HYPER-CUBE (average time in seconds over 20 runs each ± standard
deviation).

CVE (Bug) CVSS TCG (sec) KVM (sec)

2015-3456 (VENOM) 7.7 5.8 ± 6.8 49.7 ± 50, 6
2017-2615 (Cirrus VGA) 9.1 5.1 ± 3.0 86.7 ± 70.4
2017-2620 (Cirrus VGA) 9.9 19.6 ± 14.9 331.32 ± 303.06
2015-8743 (NE2000) 7.1 47.7 ± 42.0 203.5 ± 341.7

is a slow process itself, and (ii) most inputs produced by
VDF are small. For example, the crashes found are only 2500
bytes large on average. As a consequence, VDF incurs an
expensive reset after every few hundred operations. HYPER-
CUBE, on the other hand, is able to perform many billions of
operations without such overhead. We assume that HYPER-
CUBE is able to execute orders of magnitude more operations
per second compared to VDF. However, a precise comparison
is not possible, since the authors of VDF did not report
any numbers. More importantly, VDF also replays slightly
mutated versions of the same test cases over and over again,
reducing the variance in test scenarios. Normally, feedback-
driven fuzzers are expected to use this as an advantage to
learn what test cases provide novel behavior and which ones
do not. However, due to the fact that TESSERACT already
encodes a significant amount of prior information and is able
to guess interesting inputs with high probability, it seems that
in this case the performance losses do not make up for the
incremental learning. Last, VDF fuzzes emulated devices in
isolation, depriving them from a set of real-world interactions
such as interrupts. Our approach attacks the target device in a
full environment featuring all interactions.

As a consequence of both experiments, we conclude that
HYPER-CUBE is able to significantly outperform state-of-the
art fuzzers (RQ 2.). This also demonstrates the advantage that a
custom interpreter provides by focusing on useful interactions.
This finding is inline with recent research on grammar-based
fuzzing [10], [12], [29], [36], [39].

D. Performance

After demonstrating HYPER-CUBE’s ability to find novel
and well-known bugs, we also evaluate other aspects of its
performance. Besides the crashes found, the authors of VDF
also reported branch coverage achieved on various devices.
Similarly, we measure the coverage that was achieved and
compare it against the values reported by VDF. To give a
general feeling for the performance criteria, we also evaluate
metrics such as throughput, boot time, and memory usage.

1) Coverage: To estimate the quality of our test results
and to compare it against VDF, we measured the coverage
produced by our approach. As mentioned earlier, we were not
able to obtain a copy of VDF and thus can only compare our
results with the numbers published by the authors of VDF.
It should be noted that the authors of VDF chose to perform
their experiments on 6 cores for a total of roughly 60 days
each. We choose to run our experiments on a single core
while the gcov profiler was actively measuring the coverage
produced in the device emulator. Overall, we tested each device
for ten minutes. Measuring the coverage introduces a rather
heavy performance penalty, however we err on the side of

TABLE IV: Branch coverage and bugs found by HYPER-CUBE and VDF

VDF HYPER-CUBE
Device Cov Bug Time Cov Bug Time

AC97 53.0% 59 days 80.75% 10 min
CS4231a 56.0% 65 days 76,95% 10 min
ES1370 72.7% 69 days 94,77% 10 min

Intel-HDA a 58.6% 59 days 66.37% 10 min
SoundBlaster 81.0% 58 days 85.89% 10 min

Floppy 70.5% 57 days 83.38% 10 min
Parallel 42.9% 25 days 38.61% 10 min

Serial 44.6% 62 days 79.90% 10 min
IDE Core 27.5% 65 days 68.81% 10 min
EEPro100 75.4% 62 days 83.94% 10 min

E1000 b 81.6% 61 days 81,69% 10 min
NE2000 (PCI) 71.7% 58 days 72.78% 10 min
PCNET (PCI) 36.1% 58 days 83,08% 10 min

RTL8139 63.0% 58 days 73.73% 10 min
SDHCI c 90.5% 62 days 77.04% 10 min

a We fixed a bug in this device emulator to perform this experiment
properly. Otherwise, HYPER-CUBE will find this crash within seconds.
b Due to a deadlock, which was found by HYPER-CUBE within sec-
onds, this experiment was performed on the latest version of QEMU
(4.0.1-rc1) instead. Even in this version, HYPER-CUBE was able to
uncover a new deadlock bug within minutes.
c Due to the high amount of memory corruption bugs and deadlocks,
which were found by HYPER-CUBE within seconds, we launched QEMU
multiple times to perform a proper coverage measurement.

caution by ignoring this fact and thus underestimating the
performance of HYPER-CUBE. Additionally, the authors of
VDF created seed traces for all MMIO interactions from real
OS interactions or test cases that already provide some good
initial coverage. In contrast to VDF, we have no tracing utility
and therefore started with a blank state without any seed files.
Even though we start from this disadvantaged situation, we
drastically outperform VDF in all but one case. Unfortunately,
we are unaware of the exact reasons why we are able to
outperform VDF with such a margin.

However, we investigated the coverage that we found, and
noticed that many interactions require that we provide the
device with a pointer to our memory that contains certain
data, or perform interactions with interrupts neither of which is
done by VDF. Using our multi-dimensional fuzzing approach,
we can interleave these operations easily. Together with the
observations on performance made in Section V-C2, this might
explain the significant difference in coverage.

2) Interpreter Throughput: To further substantiate the per-
formance impact of our design, we compare our interpreter-
based approach against a compiler based approach using
GCC. Similar compiler-based approaches are used by multiple
system-level fuzzers such as CFAFT [18].

For this comparison we measure the time that GCC uses to
compile C code equivalent to 16MB of opcodes. We generate
this C code via our own opcode decompiler. Since fuzzers like
CFAFT usually use smaller test cases, and to prevent GCC
from using all memory available (since the 16MB opcode yield
to a significantly large chunk of C code, around 1.8 million
lines of code), we generate separate C code files from every
ten thousands of opcodes and measure the overall time for
compiling these files. We omitted to include the time it takes
to actually load the resulting kernel module and to execute
it, as the minimal Linux image does not contain a compiler
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TABLE V: Throughput of TESSERACT vs. GCC (with -O0)

Approach Runtime

TESSERACT 0.028 sec
GCC each slice (10k) 0.356 sec
GCC Total (1.8 million) 64.522 sec

TABLE VI: Boot time comparison using QEMU 4.0.1-rc4 ASAN (average
over 20 runs each ± standard deviation).

Mode Linux-4.15 HYPER-CUBE Probing HYPER-CUBE

TCG 5.856± 0.027 sec 0.487± 0.038 sec 0.401± 0.007 sec
KVM 2.337± 0.053 sec 0.785± 0.079 sec 0.219± 0.011 sec

environment. We therefore overestimate the throughput of
compiler-based approaches - a conservative choice. We then
measure the time it takes for our HYPER-CUBE to generate,
load and execute the same 16MB of opcode. The results are
displayed in Table V. Note that the overall time for compiling
1.8 million lines of code for GCC is measured by the sum
of the time it takes for every ten thousands opcodes C file to
be compiled. Overall, our approach has a throughput that is
roughly 2,300 times higher than compiler-based approaches. It
should be noted that this number is calculated conservatively,
as it does not yet contain the cost for generating large amounts
of C code, nor for actually loading or executing the compiled
executable.

E. Restart After Crash

Another important performance metric for fuzzer is how
fast they can recover from crashes. Since we use a very
lightweight custom OS, we can boot a lot faster than COTS
OSs. This offers a significant advantage over other designs
where the fuzzer runs in a kernel module or driver as part
of a COTS OS. We compared the boot time of HYPER-
CUBE against a minimal Linux BusyBox image. We booted 20
times, and measured the average time until the fuzzer started.
HYPER-CUBE OS can be used in two modes: in an initial boot
process, HYPER-CUBE OS uses its I/O enumeration abilities
to generate a map of available ranges. After this first boot
process, future reboots can reuse this mapping to save time.
The results are displayed in Table VI. Overall it took Linux an
average of 2.3 seconds to boot, while HYPER-CUBE OS is able
to boot in only 0.22 seconds, resulting in a 10 times speedup.
Depending on the fuzzing workload, the actual performance
gains might be much lower, particularly in cases where the
fuzzer does not find many crashes and therefore reboots are
very uncommon events.

F. Memory Usage

Given that typically fuzzing is performed in parallel, the
memory footprint of the target is rather important. However, a
barebone Linux only uses some 30-50 MB of memory, much
less than a typical hypervisor. HYPER-CUBE OS requires even
less memory (around 10MB). However, since neither 10MB
nor 50MB contributes significantly to the overall memory
usage, the effect of saving memory on the fuzzing performance
is negligible.

TABLE VII: Automatic emulator detection rate of HYPER-CUBE. #scanning
indicates the number of interfaces identified by our scanning. #well-known
denotes the number of ports that the scanning did not find, but were contained
in our list of well-known ports. #baseline is the number of interfaces, as
reported by the hypervisor.

Hypervisor #scanning #well-known #baseline %found

VirtualBox MMIO Scan 12 0 12 100.00%
QEMU / KVM MMIO Scan 5 0 5 100.00%
VirtualBox Port I/O Scan 185 29 203 91.13%
QEMU / KVM Port I/O Scan 352 7 357 98.60%

Total 97.43%

G. Emulator Detection

During the device enumeration process, HYPER-CUBE can
enumerate all present PCI and PCI-Express devices as well
as their I/O ports and MMIO regions. Unfortunately, there is
no such mechanism to systematically enumerate ISA devices.
HYPER-CUBE contains an approximate solution to find inter-
esting I/O ports. We were able to obtain the ground truth by
using internal tools for both QEMU and VirtualBox. Using this
ground truth, we were able to measure the effective detection
rate of our approach. As it is illustrated in Table VII, our
method is highly effective at uncovering relevant I/O addresses.
As expected, all MMIO regions were correctly identified. It
should be noted that HYPER-CUBE also offers the ability to
add additional ranges to the target list if a manual check or
documentation indicates the need.

Based on the performance evaluation, we can say that
HYPER-CUBE drastically outperforms existing, state-of-the-
art fuzzers such as VDF and the fuzzer designed by Tang
et al. [46] (RQ 3.). Our design based on a custom operating
system and a custom bytecode interpreter providing multi-
dimensional fuzzing and a high throughput interpreter are the
main reason for this. The boot time and memory overhead
are far less impactful on our performance gains. This answers
research question RQ 4..

VI. RELATED WORK

In the last five years, fuzzing has been a very active field of
research. Triggered by the publication and widespread success
of AFL, a myriad of research projects aimed to strengthen
the bug finding ability of fuzzers in various scenarios. In most
cases, the algorithms used for scheduling [13]–[15], [41], [49],
feedback [2], [21], [31], [33], and mutations [10], [11], [29],
[36], [39] were improved. In other projects, techniques based
on concolic execution [22]–[24], [28], [34], [45], [48], [53],
[55] or taint tracking [17], [40] were combined with fuzzing
to solve ”fuzzing roadblocks” such as magic bytes. Lastly, the
primitives used to run the fuzzer such as the mechanism of
spawning processes [51] or obtaining coverage [4], [44] were
redesigned to provide more performance. Additionally, fuzzing
was adopted to a wide range of targets: while AFL only targets
ring 3 applications, researchers quickly adapted the design to
kernel fuzzing [3], [5], [44], hypervisor fuzzing [30] and even
used fuzzing to test neural networks [37], [50].

A custom OS was used to test hypervisors by previous
projects. For example CrashOS [32] is a suite of handwritten
test cases used to find regressions and well-known bugs,
running as an operating system. As it does not provide any
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way to uncover new bugs, it is orthogonal to our work.
Intel CHIPSEC suite provides different components to fuzz
emulated devices [25]. Similarly, Ormandy created a fuzzer to
create random I/O accesses within different hypervisors [35].
Henderson et al. [30] introduced an approach to fuzz specific
device emulators by modifying an open source hypervisor and
providing AFL support. Tang et al. [46] introduced a similar
approach to provide interoperability between AFL and QEMU
by implementing an interfaces on top of QEMU’s SeaBIOS.
Finally, Amardeep Chana from MWR Labs and Microsoft
Security Research and Defense, introduced fuzzers for fuzzing
the Hyper-V hypercall interface (VMBus) [16], [42].

VII. DISCUSSION

In this paper, we introduced an architecture for a non-
coverage-guided hypervisor fuzzer. Surprisingly, we found
that even though our approach makes far fewer assumptions
than state-of-the-art coverage-guided fuzzers, it is still able
to outperform them in all relevant metrics (coverage found,
bugs found, coverage found per time, and bugs found per
time). This goes to show that for smaller codebases such as
individual device emulators, a very high fuzzing throughput
and a reasonable choice of input format, are still the most
important properties of a fuzzer. Yet, on the other hand, our
evaluation (Table IV) also shows that for one of the most
complex devices (QEMU’s sdhci emulator) with deeply
nested conditions, coverage guidance was actually improving
the coverage.

A. Coverage-Guided Hypervisor Fuzzing

It would be very interesting to see how a combination of
HYPER-CUBE and coverage-guided fuzzing would perform.
In particular, it might be relevant to try to combine the
high-throughput fuzzing of our current approach with the
incremental learning provided by coverage-guided fuzzing. We
believe that the basic problem with VDF is that it introduces a
very high overhead to try a single new operation. To uncover
new coverage or new interesting behavior, the state in the
hypervisor needs to be constructed one operation at a time.
Since the space of possible operations is very large, it seems
that letting the state grow until something interesting (in this
case, a crash) happens drastically increases the throughput. We
can execute thousands of opcodes on the current state in the
time it takes to reset the device state once. As a consequence,
the probability of finding an operation that triggers new
behavior in any given time frame increases drastically.

B. Hyper-V

Recently, much focus was put on fuzzing Hyper-V and
its VMBus as well as all synthetic devices [47]. Currently,
HYPER-CUBE cannot boot in a Hyper-V generation 2 virtual
machine because it does not support 64-bit UEFI mode.
Unfortunately, to get access to fuzz the implementation of
synthetic devices, Hyper-V requires the OS to boot in this
mode. This is by no means a limitation of the design, but
merely of the implementation. Currently, HYPER-CUBE has
only limited support for para-virtualization: while HYPER-
CUBE is able to access all interface used in para-virtualization,
it is not very efficient at doing so. As each hypervisor imple-
ments its own specific communication channel, we currently

only implement generic operations that will be unlikely to
trigger interesting coverage on their own. Both feedback-driven
fuzzing or specific opcodes would greatly increase the ability
to deal with that kind of situation.

VIII. CONCLUSION

In this paper, we presented a generic and comprehensive
technique to find bugs in hypervisors and device emulators.
HYPER-CUBE discovered 54 different bugs in proprietary and
open source hypervisors. However, the most notable result
from this paper is not that fuzzers are able to discover bugs
in hypervisors. Instead, we found it more interesting that our
black-box design is able to outperform at least two coverage-
guided hypervisor fuzzers. We believe that our results indicate
that in situations where the target consumes a continuous
stream of inputs, the high-throughput design outweighs the
precision offered by a coverage-guidance. Future fuzzer de-
signs should incorporate this insight to create more efficient
coverage-guided fuzzers.
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[14] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. In ACM Conference on
Computer and Communications Security (CCS), 2016.

[15] Sang Kil Cha, Maverick Woo, and David Brumley. Program-adaptive
mutational fuzzing. In IEEE Symposium on Security and Privacy, 2015.

[16] Amardeep Chana. Mwr-labs: Ventures into hyper-v - fuzzing hypercalls.
https://labs.mwrinfosecurity.com/blog/ventures-
into-hyper-v-part-1-fuzzing-hypercalls/. Accessed:
January 20, 2020.

[17] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled
search. In IEEE Symposium on Security and Privacy, 2018.

[18] YoungHan Choi, HyoungChun Kim, HyungGeun Oh, and Dohoon Lee.
Call-flow aware api fuzz testing for security of windows systems.
In 2008 International Conference on Computational Sciences and Its
Applications, 2008.

[19] Bryan Ford and Erich Stefan Boleyn. Multiboot specifi-
cation. https://www.gnu.org/software/grub/manual/
multiboot/multiboot.html, 1995.

[20] Bryan Ford and Erich Stefan Boleyn. Multiboot specification ver-
sion 2.0. https://www.gnu.org/software/grub/manual/
multiboot2/multiboot.html, 2016.

[21] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. Collafl: Path sensitive fuzzing. In IEEE
Symposium on Security and Privacy, 2018.

[22] Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-
based whitebox fuzzing. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2008.

[23] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed
Automated Random Testing. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), 2005.

[24] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated
whitebox fuzz testing. In Symposium on Network and Distributed
System Security (NDSS), 2008.

[25] Mikhail Gorobets, Oleksandr Bazhaniuk, Alex Matrosov, Andrew Fur-
tak, and Yuriy Bulygin. Attacking hypervisors via firmware and
hardware. Black Hat USA, 2015.

[26] Mikhail Gorobets, Oleksandr Bazhaniuk, Alex Matrosov, Andrew Fur-
tak, and Yuriy Bulygin. Attacking hypervisors via firmware and
hardware. Black Hat USA, 2015.
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