
Evaluating Explanation Methods
for Deep Learning in Security

Alexander Warnecke∗, Daniel Arp∗, Christian Wressnegger† and Konrad Rieck∗

∗ Technische Universität Braunschweig, Germany
† Karlsruhe Institute of Technology, Germany

Abstract—Deep learning is increasingly used as a building
block of security systems. Unfortunately, neural networks
are hard to interpret and typically opaque to the practitioner.
The machine learning community has started to address this
problem by developing methods for explaining the predic-
tions of neural networks. While several of these approaches
have been successfully applied in the area of computer vision,
their application in security has received little attention so
far. It is an open question which explanation methods are
appropriate for computer security and what requirements
they need to satisfy. In this paper, we introduce criteria
for comparing and evaluating explanation methods in the
context of computer security. These cover general properties,
such as the accuracy of explanations, as well as security-
focused aspects, such as the completeness, efficiency, and
robustness. Based on our criteria, we investigate six popular
explanation methods and assess their utility in security
systems for malware detection and vulnerability discovery.
We observe significant differences between the methods and
build on these to derive general recommendations for select-
ing and applying explanation methods in computer security.

1. Introduction

Over the last years, deep learning has been increasingly
recognized as an effective tool for computer security.
Different types of neural networks have been integrated
into security systems, for example, for malware detec-
tion [20, 23, 33], binary analysis [10, 41, 53], and vul-
nerability discovery [30]. Deep learning, however, suffers
from a severe drawback: Neural networks are hard to
interpret and their decisions are opaque to practitioners.
Even simple tasks, such as determining which features
of an input contribute to a prediction, are challenging to
solve on neural networks. This lack of transparency is a
considerable problem in security, as black-box learning
systems are hard to audit and protect from attacks [7, 35].

The machine learning community has started to de-
velop methods for interpreting deep learning in computer
vision [e.g., 5, 43, 54]. These methods enable tracing back
the predictions of neural networks to individual regions
in images and thereby help to understand the decision
process. These approaches have been further extended to
also explain predictions on text and sequences [4, 21].
Surprisingly, this work has received little attention in
security and there exists only a single technique that has
been investigated so far [21].

In contrast to other application domains of deep
learning, computer security poses particular challenges
for the use of explanation methods. First, security tasks,
such as malware detection and binary code analysis,
require complex neural network architectures that are
challenging to investigate. Second, explanation methods in
security do not only need to be accurate but also satisfy
security-specific requirements, such as complete and robust
explanations. As a result of these challenges, it is an
unanswered question which of the available explanation
methods can be applied in security and what properties
they need to possess for providing reliable results.

In this paper, we address this problem and develop
evaluation criteria for assessing and comparing explanation
methods in security. Our work provides a bridge between
deep learning in security and explanation methods devel-
oped for other application domains of machine learning.
Consequently, our criteria for judging explanations cover
general properties of deep learning as well as aspects that
are especially relevant to the domain of security.

General evaluation criteria. As general criteria, we con-
sider the descriptive accuracy and sparsity of explanations.
These properties reflect how accurate and concise an ex-
planation method captures relevant features of a prediction.
While accuracy is an evident criterion for obtaining reliable
results, sparsity is another crucial constraint in security. In
contrast to computer vision, where an analyst can examine
an entire image, a security practitioner cannot investigate
large sets of features at once, and thus sparsity becomes
an essential property when non-graphic data is analyzed.

Security evaluation criteria. We define the completeness,
stability, robustness, and efficiency of explanations as
security criteria. These properties ensure that reliable
explanations are available to a practitioner in all cases and
in reasonable time—requirements that are less important
in other areas of deep learning. For example, an attacker
may expose pathologic inputs to a security system that
mislead, corrupt, or slow down the computation of
explanations. Note that the robustness of explanation
methods to adversarial examples is not well understood
yet, and thus we base our analysis on the recent work by
Zhang et al. [55] and Dombrowski et al. [14].

With the help of these criteria, we analyze six recent
explanation methods and assess their performance in
different security tasks. To this end, we implement four
security systems from the literature that make use of deep
learning and enable detecting Android malware [20, 33],
malicious PDF files [50], and security vulnerabilities [30],

respectively. When explaining the decisions of these
systems, we observe significant differences between the
methods in all criteria. Some methods are not capable
of providing sparse results, whereas others struggle with
structured security data or suffer from unstable outputs.
While the importance of the individual criteria depends
on the particular task, we find that the methods IG [47]
and LRP [5] comply best with all criteria and resemble
general-purpose techniques for security systems.

To demonstrate the utility of explainable learning,
we also qualitatively examine the generated explanations.
As an example for this investigation, Figure 1 shows
three explanations for the system VulDeePecker [30] that
identifies vulnerabilities in source code. While the first
explanation method provides a nuanced representation
of the relevant features, the second method generates an
unsharp explanation due to a lack of sparsity. The third
approach provides an explanation that even contradicts the
first one. Note that the variables VAR2 and VAR3 receive a
positive relevance (blue) in the first case and a negative
relevance (orange) in the third.

1 c = split(arg[i],"=",&n);
2 block_flgs = strcpy((xmalloc(strlen(c[1]) + 1)),c[1]);

1 VAR0 = FUN0 (VAR1 [VAR2] , STR0 , & VAR3) ;
2 VAR0 = strcpy ((FUN0 (strlen (VAR1 [INT0]) +

INT0)) , VAR1 [INT0]) ;

1 VAR0 = FUN0 (VAR1 [VAR2] , STR0 , & VAR3) ;
2 VAR0 = strcpy ((FUN0 (strlen (VAR1 [INT0]) +

INT0)) , VAR1 [INT0]) ;

1 VAR0 = FUN0 (VAR1 [VAR2] , STR0 , & VAR3) ;
2 VAR0 = strcpy ((FUN0 (strlen (VAR1 [INT0]) +

INT0)) , VAR1 [INT0]) ;

Figure 1: Explanations for the prediction of the security
system VulDeePecker on a code snippet from the original
dataset. From top to bottom: Original code, LRP, LEMNA,
and LIME.

Our evaluation highlights the need for comparing
explanation methods and determining the best fit for a
given security task. Furthermore, it also unveils a notable
number of artifacts in the underlying datasets. For all of the
four security tasks, we identify features that are unrelated
to security but strongly contribute to the predictions. As a
consequence, we argue that explanation methods need
to become an integral part of learning-based security
systems—first, for understanding the decision process of
deep learning and, second, for eliminating artifacts in the
training datasets.

The rest of this paper is organized as follows: We briefly
review the technical background of explainable learning in
Section 2. The explanation methods and security systems
under test are described in Section 3. We introduce our
criteria for comparing explanation methods in Section 4
and evaluate them in Section 5. Our qualitative analysis is
presented in Section 6 and Section 7 concludes the paper.

2. Explainable Deep Learning

Neural networks have been used in artificial intelli-
gence for over 50 years, yet concepts for explaining their
decisions have just recently started to be explored. This
development has been driven by the remarkable progress
of deep learning in several areas, such as image recogni-
tion [28] and machine translation [48]. To embed our work
in this context, we briefly review two aspects of explainable
learning that are crucial for its application in security: the
type of neural network and the explanation strategy.

2.1. Neural Network Architectures

Different architectures can be used for constructing a
neural network, ranging from general-purpose networks to
highly specific architectures. In the area of security, three
of these architectures are prevalent: multilayer perceptrons,
convolutional neural networks, and recurrent neural net-
works (see Figure 2). Consequently, we focus our study
on these network types and refer the reader to the books
by Rojas [37] and Goodfellow et al. [19] for a detailed
description of network architectures in general.

(a) MLP layer (b) CNN layer (c) RNN layer

Figure 2: Overview of network architectures in security:
Multilayer perceptrons (MLP), convolutional neural net-
works (CNN), and recurrent neural networks (RNN).

Multilayer Perceptrons (MLPs). Multilayer perceptrons,
also referred to as feedforward networks, are a classic and
general-purpose network architecture [38]. The network is
composed of multiple fully connected layers of neurons,
where the first and last layer correspond to the input
and output of the network, respectively. MLPs have been
successfully applied to a variety of security problems,
such as intrusion and malware detection [20, 23]. While
MLP architectures are not necessarily complex, explaining
the contribution of individual features is still difficult, as
several neurons impact the decision when passing through
the network layers.

Convolutional Neural Networks (CNNs). These net-
works share a similar architecture with MLPs, yet they
differ in the concept of convolution and pooling [29]. The
neurons in convolutional layers receive input only from
a local neighborhood of the previous layer. These neigh-
borhoods overlap and create receptive fields that provide
a powerful primitive for identifying spatial structure in
data. CNNs have thus been successfully used for detecting
malicious patterns in the bytecode of Android applications
[33]. Due to the convolution and pooling layers, however,
it is hard to explain the decisions of a CNN, as its output
needs to be “unfolded” and “unpooled” for analysis.

Recurrent Neural Networks (RNNs). Recurrent net-
works, such as LSTM and GRU networks [9, 22], are
characterized by a recurrent structure, that is, some neurons
are connected in a loop. This structure enables memorizing
information and allows RNNs to operate on sequences
of data [16]. As a result, RNNs have been successfully
applied in security tasks involving sequential data, such as
the recognition of functions in native code [10, 41] or the
discovery of vulnerabilities in software [30]. Interpreting
the prediction of an RNN is also difficult, as the relevance
of an input feature depends on the sequence of previously
processed features.

2.2. Explanation Strategies

Given the different architectures and the complexity
of many neural networks, decoding the entire decision
process is a challenging task that currently cannot be solved
adequately. However, there exist several recent methods
that enable explaining individual predictions of a neural
network instead of the complete decision process [e.g.,
5, 21, 36, 47, 54]. We focus on this form of explainable
learning that can be formally defined as follows:

Definition 1. Given an input vector x = (x1, . . . , xd),
a neural network N , and a prediction fN (x) = y, an
explanation method determines why the label y has been
selected by N . This explanation is given by a vector r =
(r1, . . . , rd) that describes the relevance of the dimensions
of x for fN (x).

The computed relevance values r are typically real
numbers and can be overlayed with the input in form
of a heatmap, such that relevant features are visually
highlighted. An example of this visualization is depicted
in Figure 1. Positive relevance values are shown in blue
and indicate importance towards the prediction fN (x),
whereas negative values are given in orange and indicate
importance against the prediction. We will use this color
scheme throughout the paper1.

Despite the variety of approaches for computing a
relevance vector for a given neural network and an input, all
approaches can be broadly categorized into two explanation
strategies: black-box and white-box explanations.

Black-box Explanations. These methods operate under a
black-box setting that assumes no knowledge about the
neural network and its parameters. Black-box methods
are an effective tool if no access to the neural network
is available, for example, when a learning service is
audited remotely. Technically, black-box methods rest on an
approximation of the function fN , which enables them to
estimate how the dimensions of x contribute to a prediction.
Although black-box methods are a promising approach
for explaining deep learning, they can be impaired by the
black-box setting and omit valuable information provided
through the network architecture and parameters.

White-box Explanations. These approaches operate under
the assumption that all parameters of a neural network are
known and can be used for determining an explanation.
As a result, these methods do not rely on approximations

1. We use the blue-orange color scheme instead of the typical green-red
scheme to make our paper better accessible to color-blind readers.

and can directly compute explanations for the function fN
on the structure of the network. In practice, predictions
and explanations are often computed from within the same
system, such that the neural network is readily available
for generating explanations. This is usually the case for
stand-alone systems for malware detection, binary analysis,
and vulnerability discovery. However, several white-box
methods are designed for specific network layouts from
computer vision and not applicable to all considered
architectures [e.g., 43, 46, 54].

Black-box and white-box explanation methods often
share similarities with concepts of adversarial learning
and feature selection, as these also aim at identifying
features related to the prediction of a classifier. However,
adversarial learning and feature selection pursue funda-
mentally different goals and cannot be directly applied for
explaining neural networks. We discuss the differences to
these approaches for the interested reader in Appendix A.

3. Methods and Systems under Test

Before presenting our criteria for evaluating explanation
methods, we first introduce the methods and systems under
test. In particular, we cover six methods for explaining
predictions in Section 3.1 and present four security systems
based on deep learning in Section 3.2. For more informa-
tion about explanation methods we do not evaluate in the
paper [e.g., 12, 17] we refer the reader to the Appendix B.

3.1. Explanation Methods

Table 1 provides an overview of popular explanation
methods along with their support for the different network
architectures. As we are interested in explaining predictions
of security systems, we select those methods for our
study that are applicable to all common architectures. In
the following, we briefly sketch the main idea of these
approaches for computing relevance vectors, illustrating
the technical diversity of explanation methods.

Gradients and IG. One of the first white-box methods
to compute explanations for neural networks has been
introduced by Simonyan et al. [43] and is based on
simple gradients. The output of the method is given by
ri = ∂y/∂xi, which the authors call a saliency map.
Here ri measures how much y changes with respect to xi.
Sundararajan et al. [47] extend this approach and propose
Integrated Gradients (IG) that use a baseline x′, for instance
a vector of zeros, and calculate the shortest path from x′

TABLE 1: Popular explanation methods. The support for
different neural network architectures is indicated by 3.
Methods evaluated in this paper are indicated by *.

Explanation methods MLP CNN RNN

Gradients* [43], IG* [47] 3 3 3
LRP* [5], DeepLift [42] 3 3 3
PatternNet, PatternAttribution [24] 3 3 –
DeConvNet [54], GuidedBP [46] 3 3 –
CAM [56], GradCAM [8, 39] 3 3 –
RTIS [11], MASK [17] 3 3 –
LIME* [36], SHAP* [31], QII [12] 3 3 3
LEMNA* [21] 3 3 3

to x, given by x−x′. To compute the relevance of xi, the
gradients with respect to xi are cumulated along this path
yielding

ri = (xi − x′i)
∫ 1

0

∂fN (x′ + α(x− x′))
∂xi

dα.

Both gradient-based methods can be applied to all relevant
network architectures and thus are considered in our
comparative evaluation of explanation methods.

LRP and DeepLift. These popular white-box methods
determine the relevance of a prediction by performing a
backward pass through the neural network, starting at
the output layer and performing calculations until the
input layer is reached [5]. The central idea of layer-wise
relevance propagation (LRP) is the use of a conservation
property that needs to hold true during the backward pass.
If rli is the relevance of the unit i in layer l of the neural
network then∑

i

r1i =
∑
i

r2i = · · · =
∑
i

rLi

needs to hold true for all L layers. Similarly, DeepLift
performs a backward pass but takes a reference activation
y′ = fN (x′) of a reference input x′ into account. The
method enforces the conservation law,∑

i

ri = y − y′ = ∆y ,

that is, the relevance assigned to the features must sum
up to the difference between the outcome of x and x′.
Both approaches support explaining the decisions of feed-
forward, convolutional and recurrent neural networks [see
4]. However, as DeepLift and IG are closely related [2],
we focus our study on the method ε-LRP.

LIME and SHAP. Ribeiro et al. [36] introduce one of
the first black-box methods for explaining neural networks
that is further extended by Lundberg and Lee [31]. Both
methods aim at approximating the decision function fN
by creating a series of l perturbations of x, denoted as
x̃1, . . . , x̃l by setting entries in the vector x to 0 randomly.
The methods then proceed by predicting a label fN (x̃i) =
ỹi for each x̃i of the l perturbations. This sampling strategy
enables the methods to approximate the local neighborhood
of fN at the point fN (x). LIME [36] approximates the
decision boundary by a weighted linear regression model,

arg min
g∈G

l∑
i=1

πx(x̃i)
(
fN (x̃i)− g(x̃i)

)2
,

where G is the set of all linear functions and πx is a
function indicating the difference between the input x and
a perturbation x̃. SHAP [31] follows the same approach
but uses the SHAP kernel as weighting function πx, which
is shown to create Shapley Values [40] when solving the
regression. Shapley Values are a concept from game theory
where the features act as players under the objective of
finding a fair contribution of the features to the payout—in
this case the prediction of the model. As both approaches
can be applied to any learning model, we study them in
our empirical evaluation.

LEMNA. As last explanation method, we consider
LEMNA, a black-box method specifically designed for
security applications [21]. It uses a mixture regression
model for approximation, that is, a weighted sum of K
linear models:

f(x) =

K∑
j=1

πj(βj · x+ εj).

The parameter K specifies the number of models, the
random variables ε = (ε1, . . . , εK) originate from a normal
distribution εi ∼ N(0, σ) and π = (π1, . . . , πK) holds the
weights for each model. The variables β1, . . . , βK are the
regression coefficients and can be interpreted as K linear
approximations of the decision boundary near fN (x).

3.2. Security Systems

As field of application for the six explanation methods,
we consider four recent security systems that employ deep
learning (see Table 2). The systems cover the three major
architectures/types introduced in Section 2.1 and comprise
between 4 to 6 layers of different types.

TABLE 2: Overview of the considered security systems.

System Publication Type # Layers

Drebin+ ESORICS’17 [20] MLP 4
Mimicus+ CCS’18 [21] MLP 4
DAMD CODASPY’17 [33] CNN 6
VulDeePecker NDSS’18 [30] RNN 5

Drebin+. The first system uses an MLP for identifying
Android malware. The system has been proposed by Grosse
et al. [20] and builds on features originally developed by
Arp et al. [3]. The network consists of two hidden layers,
each comprising 200 neurons. The input features are stati-
cally extracted from Android applications and cover data
from the application’s manifest, such as hardware details
and requested permissions, as well as information based
on the application’s code, such as suspicious API calls
and network addresses. To verify the correctness of our
implementation, we train the system on the original Drebin
dataset [3], where we use 75 % of the 129,013 Android
application for training and 25 % for testing. Table 3 shows
the results of this experiment, which are in line with the
performance published by Grosse et al. [20].

Mimicus+. The second system also uses an MLP but
is designed to detect malicious PDF documents. The
system is re-implemented based on the work of Guo
et al. [21] and builds on features originally introduced
by Smutz and Stavrou [45]. Our implementation uses
two hidden layers with 200 nodes each and is trained
with 135 features extracted from PDF documents. These
features cover properties about the document structure,
such as the number of sections and fonts in the document,
and are mapped to binary values as described by Guo et al.
[21]. For a full list of features, we refer the reader to the
implementation by Šrndić and Laskov [50]. For verifying
our implementation, we make use of the original dataset
that contains 5,000 benign and 5,000 malicious PDF files
and again split the dataset into 75 % for training and 25 %

TABLE 3: Performance of the re-implemented security
systems on the original datasets.

System Accuracy Precision Recall F1-Score

Drebin+ 0.980 0.926 0.924 0.925
Mimicus+ 0.994 0.991 0.998 0.994
DAMD 0.949 0.967 0.924 0.953
VulDeePecker 0.908 0.837 0.802 0.819

for testing. Our results are shown in Table 3 and come
close to a perfect detection.

DAMD. The third security system studied in our evaluation
uses a CNN for identifying malicious Android applica-
tions [33]. The system processes the raw Dalvik bytecode
of Android applications and its neural network is comprised
of six layers for embedding, convolution, and max-pooling
of the extracted instructions. As the system processes
entire applications, the number of features depends on
the size of the applications. For a detailed description of
this process, we refer the reader to the publication by
McLaughlin et al. [33]. To replicate the original results,
we apply the system to data from the Malware Genome
Project [57]. This dataset consists of 2,123 applications in
total, with 863 benign and 1,260 malicious samples. We
again split the dataset into 75 % of training and 25 % of
testing data and obtain results similar to those presented
in the original publication.

VulDeePecker. The fourth system uses an RNN for
discovering vulnerabilities in source code [30]. The RNN
consists of five layers, uses 300 LSTM cells [22], and
applies a word2vec embedding [34] with 200 dimensions
for analyzing C/C++ code. As a preprocessing step, the
source code is sliced into code gadgets that comprise short
snippets of tokens. The gadgets are truncated or padded
to a length of 50 tokens. For verifying the correctness of
our implementation, we use the CWE-119 dataset, which
consists of 39,757 code gadgets, with 10,444 gadgets corre-
sponding to vulnerabilities. In line with the original study,
we split the dataset into 80 % training and 20 % testing
data, and attain a comparable accuracy.

The four selected security systems provide a diverse
view on the current use of deep learning in security.
Drebin+ and Mimicus+ are examples of systems that make
use of MLPs for detecting malware. However, they differ in
the dimensionality of the input: While Mimicus+ works on
a small set of engineered features, Drebin+ analyzes inputs
with thousands of dimensions. DAMD is an example of a
system using a CNN in security and capable of learning
from large inputs, whereas VulDeePecker makes use of an
RNN, similar to other learning-based approaches analyzing
program code [e.g., 10, 41, 53].

4. Evaluation Criteria

In light of the broad range of available explanation
methods, the practitioner is in need of criteria for selecting
the best method for a security task at hand. In this section,
we develop these criteria and demonstrate their utility in
different examples. Before doing so, however, we address
another important question: Do the considered explanation
methods provide different results? If the methods generated

Grad
ien

t IG LR
P
SH

AP
Lem

na LIM
E

Gradient
IG

LRP
SHAP

Lemna
LIME

Mimicus+

Grad
ien

t IG LR
P
SH

AP
Lem

na LIM
E

Gradient
IG

LRP
SHAP

Lemna
LIME

Drebin+

Grad
ien

t IG LR
P
SH

AP
Lem

na LIM
E

Gradient
IG

LRP
SHAP

Lemna
LIME

VulDeePecker

Grad
ien

t IG LR
P
SH

AP
Lem

na LIM
E

Gradient
IG

LRP
SHAP

Lemna
LIME

DAMD

0.2

0.4

0.6

0.8

1.0

Figure 3: Comparison of the top-10 features for the
different explanation methods. An average value of 1
indicates identical top-10 features and a value of 0 indicates
no overlap.

similar explanations, criteria for their comparison would
be less important and any suitable method could be
chosen in practice.

To answer this question, we investigate the top-k
features of the six explanation methods when explaining
predictions of the security systems. That is, we compare
the set Ti of the k features with the highest relevance from
method i with the set Tj of the k features with the highest
relevance from method j. In particular, we compute the
intersection size

IS(i, j) =
|Ti ∩ Tj |

k
, (1)

as a measure of similarity between the two methods. The
intersection size lies between 0 and 1, where 0 indicates
no overlap and 1 corresponds to identical top-k features.

A visualization of the intersection size averaged over
the samples of the four datasets is shown in Figure 3.
We choose k = 10 according to a typical use case of
explainable learning: An expert investigates the top-10
features to gain insights on a prediction. For DAMD,
we use k = 50, as the dataset is comprised of long
opcode sequences. We observe that the top features of the
explanation methods differ considerably. For example, in
the case of VulDeePecker, all methods determine different
top-10 features. While we notice some similarity between
the methods, it becomes clear that the methods cannot be
simply interchanged, and there is a need for measurable
evaluation criteria.

4.1. General Criteria: Descriptive Accuracy

As the first evaluation criteria, we introduce the de-
scriptive accuracy. This criterion reflects how accurate
an explanation method captures relevant features of a
prediction. As it is difficult to assess the relation between
features and a prediction directly, we follow an indirect

1 data = NULL;
2 data = new wchar_t[50];
3 data[0] = L’\\0’;
4 wchar_t source[100];
5 wmemset(source, L’C’, 100-1);
6 source[100-1] = L’\\0’;
7 memmove(data, source, 100*sizeof(wchar_t));

(a) Original code
1 INT0] ;
2 VAR0 [INT0] = STR0 ;
3 wchar_t VAR0 [INT0] ;
4 wmemset (VAR0 , STR0 , INT0 - INT1) ;
5 VAR0 [INT0 - INT1] = STR0 ;
6 memmove (VAR0 , VAR1 , INT0 * sizeof (wchar_t)) ;

(b) Integrated Gradients
1 INT0] ;
2 VAR0 [INT0] = STR0 ;
3 wchar_t VAR0 [INT0] ;
4 wmemset (VAR0 , STR0 , INT0 - INT1) ;
5 VAR0 [INT0 - INT1] = STR0 ;
6 memmove (VAR0 , VAR1 , INT0 * sizeof (wchar_t)) ;

(c) LIME

Figure 4: Explanations for a program slice from the
VulDeePecker dataset using (b) Integrated Gradients and
(c) LIME.

strategy and measure how removing the most relevant
features changes the prediction of the neural network.

Definition 2. Given a sample x, the descriptive accuracy
(DA) is calculated by removing the k most relevant features
x1, . . . , xk from the sample, computing the new prediction
using fN and measuring the score of the original prediction
class c without the k features,

DAk

(
x, fN

)
= fN

(
x |x1 = 0, . . . , xk = 0

)
c
.

If we remove relevant features from a sample, the
accuracy should decrease, as the neural network has less
information for making a correct prediction. The better
the explanation, the quicker the accuracy will drop, as the
removed features capture more context of the predictions.
Consequently, explanation methods with a steep decline of
the descriptive accuracy provide better explanations than
methods with a gradual decrease.

To demonstrate the utility of the descriptive accuracy,
we consider a sample from the VulDeePecker dataset,
which is shown in Figure 4(a). The sample corresponds
to a program slice and is passed to the neural network as
a sequence of tokens. Figures 4(b) and 4(c) depict these
tokens overlayed with the explanations of the methods
Integrated Gradients (IG) and LIME, respectively. Note
that the VulDeePecker system truncates all code snippets
to a length of 50 tokens before processing them through
the neural network [30].

The example shows a simple buffer overflow which
originates from an incorrect calculation of the buffer
size in line 7. The two explanation methods significantly
differ when explaining the detection of this vulnerability.
While IG highlights the wmemset call as important, LIME
highlights the call to memmove and even marks wmemset
as speaking against the detection. Measuring the descrip-
tive accuracy can help to determine which of the two
explanations reflects the prediction of the system better.

TABLE 4: Explanations of LRP and LEMNA for a sample
of the GoldDream family from the DAMD dataset.

Id LRP LEMNA

0 invoke-virtual invoke-virtual

1 move-result-object move-result-object

2 if-eqz if-eqz

3 const-string const-string

4 invoke-virtual invoke-virtual

5 move-result-object move-result-object

6 check-cast check-cast

7 array-length array-length

8 new-array new-array

9 const/4 const/4

10 array-length array-length

11 if-ge if-ge

12 aget-object aget-object

4.2. General Criteria: Descriptive Sparsity

Assigning high relevance to features which impact a
prediction is a necessary prerequisite for good explanations.
However, a human analyst can only process a limited
number of these features, and thus we define the descriptive
sparsity as a further criterion for comparing explanations
methods as follows:

Definition 3. The descriptive sparsity is measured by
scaling the relevance values to the range [−1, 1], computing
a normalized histogram h of them and calculating the mass
around zero (MAZ) defined by

MAZ(r) =

∫ r

−r
h(x)dx for r ∈ [0, 1].

The MAZ can be thought of as a window which starts
at 0 and grows uniformly into the positive and negative
direction of the x axis. For each window, the fraction
of relevance values that lies in the window is evaluated.
Sparse explanations have a steep rise in MAZ close to
0 and are flat around 1, as most of the features are not
marked as relevant. By contrast, dense explanations have
a notable smaller slope close to 0, indicating a larger set
of relevant features. Consequently, explanation methods
with a MAZ distribution peaking at 0 should be preferred
over methods with less pronounced distributions.

As an example of a sparse and dense explanation,
we consider two explanations generated for a malicious
Android application of the DAMD dataset. Table 4 shows
a snapshot of these explanations, covering opcodes of the
onReceive method. LRP provides a crisp representation in
this setting, whereas LEMNA marks the entire snapshot as
relevant. If we normalize the relevance vectors to [−1, 1]
and focus on features above 0.2, LRP returns only 14
relevant features for investigation, whereas LEMNA returns
2,048 features, rendering a manual examination tedious.

It is important to note that the descriptive accuracy and
the descriptive sparsity are not correlated and must both
be satisfied by an effective explanation method. A method
marking all features as relevant while highlighting a few
ones can be accurate but is clearly not sparse. Vice versa, a
method assigning high relevance to very few meaningless
features is sparse but not accurate.

TABLE 5: Explanations for the Android malware FakeInstaller generated for Drebin+ using Gradients and SHAP.

Id Gradients SHAP

0 feature::android.hardware.touchscreen feature::android.hardware.touchscreen

1 intent::android.intent.category.LAUNCHER intent::android.intent.category.LAUNCHER

2 real_permission::android.permission.INTERNET real_permission::android.permission.INTERNET

3 api_call::android/webkit/WebView api_call::android/webkit/WebView

4 intent::android.intent.action.MAIN intent::android.intent.action.MAIN

5 url::translator.worldclockr.com url::translator.worldclockr.com

6 url::translator.worldclockr.com/android.html url::translator.worldclockr.com/android.html

7 permission::android.permission.INTERNET permission::android.permission.INTERNET

8 activity::.Main activity::.Main

4.3. Security Criteria: Completeness

After introducing two generic evaluation criteria, we
start focusing on aspects that are especially important for
the area of security. In a security system, an explanation
method must be capable of creating proper results in all
possible situations. If some inputs, such as pathological
data or corner cases, cannot be processed by an expla-
nation method, an adversary may trick the method into
producing degenerated results. Consequently, we propose
completeness as the first security-specific criterion.

Definition 4. An explanation method is complete, if it
can generate non-degenerated explanations for all possible
input vectors of the prediction function fN .

Several white-box methods are complete by definition,
as they calculate relevance vectors directly from the
weights of the neural network. For black-box methods, how-
ever, the situation is different: If a method approximates
the prediction function fN using random perturbations,
it may fail to derive a valid estimate of fN and return
degenerated explanations. We investigate this phenomenon
in more detail in Section 5.4.

As an example of this problem, Table 5 shows expla-
nations generated by the methods Gradients and SHAP
for a benign Android application of the Drebin dataset.
The Gradients explanation finds the touchscreen feature in
combination with the launcher category and the internet
permission as an explanation for the benign classification.
SHAP, however, creates an explanation of zeros which
provides no insights. The reason for this degenerated
explanation is rooted in the random perturbations used by
SHAP. By flipping the value of features, these perturbations
aim at changing the class label of the input. As there exist
far more benign features than malicious ones in the case
of Drebin+, the perturbations can fail to switch the label
and prevent the linear regression to work resulting in a
degenerated explanation.

4.4. Security Criteria: Stability

In addition to complete results, the explanations gen-
erated in a security system need to be reliable. That is,
relevant features must not be affected by fluctuations and
need to remain stable over time in order to be useful for
an expert. As a consequence, we define stability as another
security-specific evaluation criterion.

Definition 5. An explanation methods is stable, if the
generated explanations do not vary between multiple runs.

TABLE 6: Two explanations from LEMNA for the same
sample computed in different runs.

Id LEMNA (Run 1) LEMNA (Run 2)

0 pos_page_min pos_page_min

1 count_js count_js

2 count_javascript count_javascript

3 pos_acroform_min pos_acroform_min

4 ratio_size_page ratio_size_page

5 pos_image_min pos_image_min

6 count_obj count_obj

... ...

27 pos_image_max pos_image_max

28 count_page count_page

29 len_stream_avg len_stream_avg

30 pos_page_avg pos_page_avg

31 count_stream count_stream

32 moddate_tz moddate_tz

33 len_stream_max len_stream_max

34 count_endstream count_endstream

That is, for any run i and j of the method, the intersection
size of the top features Ti and Tj should be close to 1,
that is, IS(i, j) > 1− ε for some small threshold ε.

The stability of an explanation method can be empiri-
cally determined by running the methods multiple times
and computing the average intersection size, as explained
in the beginning of this section. White-box methods are
deterministic by construction since they perform a fixed
sequence of computations for generating an explanation.
Most black-box methods, however, require random pertur-
bations to compute their output which can lead to different
results for the same input. Table 6, for instance, shows the
output of LEMNA for a PDF document from the Mimicus+
dataset over two runs. Some of the most relevant features
from the first run receive very little relevance in the second
run and vice versa, rendering the explanations unstable.
We analyze these instabilities of the explanation methods
in Section 5.5.

4.5. Security Criteria: Efficiency

When operating a security system in practice, expla-
nations need to be available in reasonable time. While
low run-time is not a strict requirement in general, time
differences between minutes and milliseconds are still
significant. For example, when dealing with large amounts
of data, it might be desirable for the analyst to create

explanations for every sample of an entire class. We thus
define efficiency as a further criterion for explanation
methods in security applications.

Definition 6. We consider a method efficient if it enables
providing explanations without delaying the typical work-
flow of an expert.

As the workflow depends on the particular security
task, we do not define concrete run-time numbers, yet we
provide a negative example as an illustration. The run-
time of the method LEMNA depends on the size of the
inputs. For the largest sample of the DAMD dataset with
530,000 features, it requires about one hour for computing
an explanation, which obstructs the workflow of inspecting
Android malware severely.

4.6. Security Criteria: Robustness

As the last criterion, we consider the robustness of ex-
planation methods to attacks. Recently, several attacks [e.g.,
14, 44, 55] have shown that explanation methods may
suffer from adversarial perturbations and can be tricked
into returning incorrect relevance vectors, similarly to
adversarial examples [7]. The objective of these attacks
is to disconnect the explanation from the underlying
prediction, such that arbitrary relevance values can be
generated that do not explain the behavior of the model.

Definition 7. An explanation method is robust if the
computed relevance vector cannot be decoupled from the
prediction by an adversarial perturbation.

Unfortunately, the robustness of explanation methods
is still not well understood and, similarly to adversarial
examples, guarantees and strong defenses have not been
established yet. To this end, we assess the robustness of
the explanation methods based on the existing literature.

5. Evaluation

Equipped with evaluation criteria for comparing ex-
planation methods, we proceed to empirically investigate
these in different security tasks. To this end, we implement
a comparison framework that integrates the six selected
explanation methods and four security systems.

5.1. Experimental Setup

White-box Explanations. For our comparison frame-
work, we make use of the iNNvestigate toolbox by
Alber et al. [1] that provides efficient implementations for
LRP, Gradients, and IG. For the security system VulDeeP-
ecker, we use our own LRP implementation [51] based on
the publication by Arras et al. [4]. In all experiments, we
set ε = 10−3 for LRP and use N = 64 steps for IG. Due
to the high dimensional embedding space of VulDeePecker,
we choose a step count of N = 256 in the corresponding
experiments.

Black-box Explanations. We re-implement LEMNA in
accordance to Guo et al. [21] and use the Python package
cvxpy [13] to solve the linear regression problem with
Fused Lasso restriction [52]. We set the number of mixture
models to K = 3 and the number of perturbations to

l = 500. The parameter S is set to 104 for Drebin+ and
Mimicus+, as the underlying features are not sequential and
to 10−3 for the sequences of DAMD and VulDeePecker [see
21]. Furthermore, we implement LIME with l = 500 per-
turbations, use the cosine similarity as proximity measure,
and employ the regression solver from the scipy package
using L1 regularization. For SHAP we make use of the
open-source implementation by Lundberg and Lee [31]
including the KernelSHAP solver.

TABLE 7: Descriptive accuracy (DA) and sparsity (MAZ)
for the different explanation methods.

Method Drebin+ Mimicus+ DAMD VulDeePecker

LIME 0.580 0.257 0.919 0.571
LEMNA 0.656 0.405 0.983 0.764
SHAP 0.891 0.565 0.966 0.869
Gradients 0.472 0.213 0.858 0.856
IG 0.446 0.206 0.499 0.574
LRP 0.474 0.213 0.504 0.625

(a) Area under the DA curves from Figure 5.

Method Drebin+ Mimicus+ DAMD VulDeePecker

LIME 0.757 0.752 0.833 0.745
LEMNA 0.681 0.727 0.625 0.416
SHAP 0.783 0.716 0.713 0.813
Gradients 0.846 0.856 0.949 0.816
IG 0.847 0.858 0.999 0.839
LRP 0.846 0.856 0.964 0.827

(b) Area under MAZ curves from Figure 5.

5.2. Descriptive Accuracy

We start our evaluation by measuring the descriptive
accuracy (DA) of the explanation methods as defined in
Section 4.1. In particular, we successively remove the
most relevant features from the samples of the datasets
and measure the decrease in the classification score. For
Drebin+ and Mimicus+, we remove features by setting the
corresponding dimensions to 0. For DAMD, we replace
the most relevant instructions with the no-op opcode, and
for VulDeePecker we substitute the selected tokens with
an embedding-vector of zeros.

The top row in Figure 5 shows the results of this
experiment. As the first observation, we find that the
DA curves vary significantly between the explanation
methods and security systems. However, the methods
IG and LRP consistently obtain strong results in all
settings and show steep declines of the descriptive accuracy.
Only on the VulDeePecker dataset, the black-box method
LIME can provide explanations with comparable accuracy.
Notably, for the DAMD dataset, IG and LRP are the only
methods to generate real impact on the outcome of the
classifier. For Mimicus+, IG, LRP and Gradients achieve a
perfect accuracy decline after only 25 features and thus the
white-box explanation methods outperform the black-box
methods in this experiment.

Table 7(a) shows the area under curve (AUC) for the
descriptive accuracy curves from Figure 5. We observe
that IG is the best method over all datasets—lower values
indicate better explanations—followed by LRP. In compar-
ison to other methods it is up to 48 % better on average.

0 10 20 30 40
Removed features

0.0

0.2

0.4

0.6

0.8

1.0

AD
A

Drebin+

0 10 20 30 40
Removed features

0.0

0.2

0.4

0.6

0.8

1.0

AD
A

Mimicus+

0 10 20 30 40
Removed features

0.0

0.2

0.4

0.6

0.8

1.0

AD
A

VulDeePecker

0 100 200 300 400
Removed features

0.0

0.2

0.4

0.6

0.8

1.0

AD
A

DAMD

0.00 0.25 0.50 0.75 1.00
Interval size

0.0

0.2

0.4

0.6

0.8

1.0

M
AZ

0.00 0.25 0.50 0.75 1.00
Interval size

0.0

0.2

0.4

0.6

0.8

1.0

M
AZ

0.00 0.25 0.50 0.75 1.00
Interval size

0.0

0.2

0.4

0.6

0.8

1.0

M
AZ

0.00 0.25 0.50 0.75 1.00
Interval size

0.0

0.2

0.4

0.6

0.8

1.0

M
AZ

LRP IG Gradient LIME LEMNA KernelSHAP

Figure 5: Descriptive accuracy and sparsity for the considered explanation methods. Top row: Average descriptive
accuracy (ADA); bottom row: sparsity measured as mass around zero (MAZ).

Intuitively, this considerable difference between the white-
box and black-box methods makes sense, as white-box
approaches can utilize internal information of the neural
networks that are not available to black-box methods.

5.3. Descriptive Sparsity

We proceed by investigating the sparsity of the gen-
erated explanations with the MAZ score defined in Sec-
tion 4.2. The second row in Figure 5 shows the result of
this experiment for all datasets and methods. We observe
that the methods IG, LRP, and Gradients show the steepest
slopes and assign the majority of features little relevance,
which indicates a sparse distribution. By contrast, the other
explanation methods provide flat slopes of the MAZ close
to 0, as they generate relevance values with a broader
range and thus are less sparse.

For Drebin+ and Mimicus+, we observe an almost
identical level of sparsity for LRP, IG and Gradients
supporting the findings from Figure 3. Interestingly, for
VulDeePecker, the MAZ curve of LEMNA shows a strong
increase close to 1, indicating that it assigns high relevance
to a lot of tokens. While this generally is undesirable,
in case of LEMNA, this is founded in the basic design
and the use of the Fused Lasso constraint. In case of
DAMD, we see a massive peak at 0 for IG, showing that
it marks almost all features as irrelevant. According to the
previous experiment, however, it simultaneously provides
a very good accuracy on this data. The resulting sparse
and accurate explanations are particularly advantageous for
a human analyst since the DAMD dataset contains samples
with up to 520,000 features. The explanations from IG
provide a compressed yet accurate representation of the
sequences which can be inspected easily.

We summarize the performance on the MAZ metric
by calculating the area under curve and report it in
Table 7(b). A high AUC indicates that more features have

been assigned a relevance close to 0, that is, the explanation
is more sparse. We find that the best methods again are
white-box approaches, providing explanations that are up
to 50 % sparser compared to the other methods in this
experiment.

5.4. Completeness of Explanations

We further examine the completeness of the explana-
tions. As shown in Section 4.3, some explanation methods
can not calculate meaningful relevance values for all inputs.
In particular, perturbation-based methods suffer from this
problem, since they determine a regression with labels
derived from random perturbations. To investigate this
problem, we monitor the creation of perturbations and
their labels for the different datasets.

When creating perturbations for some sample x it is
essential for black-box methods that a fraction p of them
is classified as belonging to the opposite class of x. In an
optimal case one can achieve p ≈ 0.5, however during our
experiments we find that 5 % can be sufficient to calculate
a non-degenerated explanation in some cases. Figure 6
shows for each value of p and all datasets the fraction
of samples remaining when enforcing a percentage p of
perturbations from the opposite class.

In general, we observe that creating malicious perturba-
tions from benign samples is a hard problem, especially for
Drebin+ and DAMD. For example, in the Drebin+ dataset
only 31 % of the benign samples can obtain a p value
of 5 % which means that more than 65 % of the whole
dataset suffer from degenerated explanations. A detailed
calculation for all datasets with a p value of 5 % can be
found in Table 12 in the Appendix C.

The problem of incomplete explanations is rooted in the
imbalance of features characterizing malicious and benign
data in the datasets. While only few features make a sample
malicious, there exists a large variety of features turning

0.0 0.2 0.4 0.6 0.8 1.0
Perturbations from Class+

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
es

 re
m

ai
ni

ng
Class-

0.0 0.2 0.4 0.6 0.8 1.0
Perturbations from Class-

0.0

0.2

0.4

0.6

0.8

1.0

Sa
m

pl
es

 re
m

ai
ni

ng

Class+

Drebin+ Mimicus+ VulDeePecker DAMD

Figure 6: Perturbation label statistics of the datasets. For
each percentage of perturbations from the other class the
percentage of samples achieving this number is shown.

a sample benign. As a consequence, randomly setting
malicious features to zero leads to a benign classification,
while setting benign features to zero usually does not
impact the prediction. As a consequence, it is often not
possible to explain predictions for benign applications and
the analyst is stuck with an empty explanation.

In summary, we argue that perturbation-based expla-
nation methods should only be used in security settings
where incomplete explanations can be compensated by
other means. In all other cases, one should refrain from
using these black-box methods in the context of security.

5.5. Stability of Explanations

We proceed to evaluate the stability of the explanation
methods when processing inputs from the four security
systems. To this end, we apply the explanations to the
same samples over multiple runs and measure the average
intersection size between the runs.

Table 8 shows the average intersection size between
the top k features for three runs of the methods as defined
in Equation 1. We use k = 10 for all datasets except
for DAMD where we use k = 50 due to the larger input
space. Since the outputs of Gradients, IG, and LRP are
deterministic, they reach the perfect score of 1.0 in all
settings and thus do not suffer from limitations concerning
stability.

For the perturbation-based methods, however, stability
poses a severe problem since none of those methods obtains
a intersection size of more than 0.5. This indicates that
on average half of the top features do not overlap when
computing explanations on the same input. Furthermore,
we see that the assumption of locality of the perturbation-
based methods does not apply for all models under test,
since the output is highly dependent on the perturbations
used to approximate the decision boundary. Therefore, the
best methods for the stability criterion beat the perturbation-
based methods by a factor of at least 2.5 on all datasets.

5.6. Efficiency of Explanations

We finally examine the efficiency of the different
explanation methods. Our experiments are performed on
a regular server system with an Intel Xeon E5 v3 CPU
at 2.6 GHz. It is noteworthy that the methods Gradients,

TABLE 8: Average intersection size between top features
for multiple runs. Values close to one indicate greater
stability.

Method Drebin+ Mimicus+ DAMD VulDeePecker

LIME 0.480 0.446 0.040 0.446
LEMNA 0.4205 0.304 0.016 0.416
SHAP 0.257 0.411 0.007 0.440
Gradients 1.000 1.000 1.000 1.000
IG 1.000 1.000 1.000 1.000
LRP 1.000 1.000 1.000 1.000

IG and LRP can benefit from computations on a graphical
processing unit (GPU), therefore we report both results
but use only the CPU results to achieve a fair comparison
with the black-box methods.

Table 9 shows the average run-time per input for all
explanations methods and security systems. We observe
that Gradients and LRP achieve the highest throughput in
general beating the other methods by orders of magnitude.
This advantage arises from the fact that data can be
processed batch-wise for methods like Gradients, IG, and
LRP, that is, explanations can be calculated for a set
of samples at the same time. The Mimicus+ dataset, for
example, can be processed in one batch resulting in a
speed-up factor of more than 16,000× over the fastest
black-box method. In general we note that the white-box
methods Gradients and LRP achieve the fastest run-time
since they require a single backwards-pass through the
network. Moreover, computing these methods on a GPU
results in additional speedups of a factor up to three.

TABLE 9: Run-time per sample in seconds. Note the range
of the different times from microseconds to minutes.

Method Drebin+ Mimicus+ DAMD VulDeePecker

LIME 3.1× 10−2 2.8× 10−2 7.4× 10−1 3.0× 10−2

LEMNA 4.6 2.6 6.9× 102 6.1
SHAP 9.1 4.3× 10−1 4.5 5.0
Gradients 8.1× 10−3 7.8× 10−6 1.1× 10−2 7.6× 10−4

IG 1.1× 10−1 5.4× 10−5 6.9× 10−1 4.0× 10−1

LRP 8.4× 10−3 1.7× 10−6 1.3× 10−2 2.9× 10−2

GPU Drebin+ Mimicus+ DAMD VulDeePecker

Gradients 7.4× 10−3 3.9× 10−6 3.5× 10−3 3.0× 10−4

IG 1.5× 10−2 3.9× 10−5 3.0× 10−1 1.3× 10−1

LRP 7.3× 10−3 1.6× 10−6 7.8× 10−3 1.1× 10−2

The run-time of the black-box methods increases for
high dimensional datasets, especially DAMD, since the
regression problems need to be solved in higher dimensions.
While the speed-up factors are already enormous, we have
not even included the creation of perturbations and their
classification, which consume additional run-time as well.

5.7. Robustness of Explanations

Recently, multiple authors have shown that adversarial
perturbations are also applicable against explanation meth-
ods and can manipulate the generated relevance values.
Given a classification function f , an input x and a target
class ct the goal of an adversarial perturbation is to find
x̃ = x + δ such that δ is minimal but at the same time
f(x̃) = ct 6= f(x).

TABLE 10: Results of the evaluated explanation methods. The last column summarizes these metrics in a rating
comprising three levels: strong(), medium (), and weak (#).

Explanation Method Accuracy Sparsity Completeness Stability Efficiency Robustness Overall Rating

LIME 0.582 0.772 – 0.353 2.1 × 10−1 s # # # #
LEMNA 0.702 0.612 – 0.289 1.8 × 102 s # # # # # # #
SHAP 0.823 0.757 – 0.279 4.8 s # # # # # #
Gradients 0.600 0.867 3 1.000 5.0 × 10−3 s # #
IG 0.431 0.886 3 1.000 3.0 × 10−1 s # #
LRP 0.454 0.873 3 1.000 5.0 × 10−2 s # #

For an explanation method gf (x) Zhang et al. [55]
propose to solve

min
δ
dp
(
f(x̃), ct

)
+ λde

(
gf (x̃), gf (x)

)
, (2)

where dp and de are distance measures for classes and
explanations of f . The crafted input x̃ is misclassified by
the network but keeps an explanation very close to the one
of x. Dombrowski et al. [14] show that many white-box
methods can be tricked to produce an arbitrary explanation
et without changing the classification by solving

min
δ
de
(
gf (x̃), et

)
+ γdp

(
f(x̃), f(x)

)
. (3)

While the aforementioned attacks are constructed for
white-box methods, Slack et al. [44] have recently pro-
posed an attack against LIME and SHAP. They show
that the perturbations, which have to be classified to
create explanations, deviate strongly from the original
data distribution and hence are easily distinguishable from
original data samples. With this knowledge an adversary
can use a different model f̃ to classify the perturbations
and create arbitrary explanations to hide potential biases
of the original model. Although LEMNA is not considered
by Slack et al. [44], it can be attacked likewise since it
relies on perturbation labels as well.

The white-box attacks by Zhang et al. [55] and Dom-
browski et al. [14] require access to the model parameters
which is a technical hurdle in practice. Similarly, however,
the black-box attack by Slack et al. [44] needs to bypass the
classification process of the perturbations to create arbitrary
explanations which is equally difficult. A further problem
of all attacks in the security domain are the discrete
input features: For images, an adversarial perturbation δ is
typically small and imperceptible, while binary features,
as in the Drebin+ dataset, require larger changes with
|δ| ≥ 1. Similarly, for VulDeePecker and DAMD, a
direct application of existing attacks will likely result in
broken code or invalid behavior. Adapting these attacks
seems possible but requires further research on adversarial
learning in structured domains.

Based on this analysis, we conclude that explanation
methods are not robust and vulnerable to different attacks.
Still, these attacks require access to specific parts of the
victim system as well as further extenions to work in
discrete domains. As a consequence, the robustness of the
methods is difficult to assess and further work is needed
to establish a better understanding of this threat.

5.8. Summary

A strong explanation method is expected to achieve
good results for each criterion and on each dataset. For
example, we have seen that the Gradients method computes
sparse results in a decent amount of time. The features,
however, are not accurate on the DAMD and VulDeePecker
dataset. Equally, the relevance values of SHAP for the
Drebin+ dataset are sparser than those from LEMNA but
suffer from instability. To provide an overview, we average
the performance of all methods over the four datasets and
summarize the results in Table 10.

For each of the six evaluation criteria, we assign each
method one of the following three categories: , , and #.
The category is given to the best explanation method and
other methods with a similar performance. The # category
is assigned to the worst method and methods performing
equally bad. Finally, the category is given to methods
that lie between the best and worst methods.

Based on Table 10, we can see that white-box expla-
nation methods achieve a better ranking than black-box
methods in all evaluation criteria. Due to the direct access
to the parameters of the neural network, these methods
can better analyze the prediction function and are able
to identify relevant features. In particular, IG and LRP
are the best methods overall regarding our evaluation
criteria. They compute results in less than 50 ms in our
benchmark, mark only few features as relevant, and the
selected features have great impact on the decision of
the classifier. These methods also provide deterministic
results and do not suffer from incompleteness. As a result,
we recommend to use these methods for explaining deep
learning in security. However, if white-box access is not
available, we recommend the black-box method LIME as
it shows the best performance in our experiments or to
apply model stealing as shown in the following Section 5.9
to enable the use of white-box methods.

In general, whether white-box or black-box methods
are applicable also depends on who is generating the
explanations: If the developer of a security system wants
to investigate its prediction, direct access to all model
parameters is typically available and white-box methods
can be applied easily. Similarly, if the learning models
are shared between practitioners, white-box approaches
are also the method of choice. If the learning model,
however, is trained by a remote party, such as a machine-
learning-as-a-service providers, only black-box methods
are applicable. Likewise, if an auditor or security tester
inspects a proprietary system, black-box methods also
become handy, as they do not require reverse-engineering
and extracting model parameters.

Orig
ina

l

1-l
ay

er

2-l
ay

ers

3-l
ay

ers

Original

1-layer

2-layers

3-layers

Top-10-Drebin+

Orig
ina

l

1-l
ay

er

2-l
ay

ers

3-l
ay

ers

Original

1-layer

2-layers

3-layers

Top-10-Mimicus+

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Intersection size of the Top-10 features of
explanations obtained from models that were stolen from
the original model of the Drebin+ and Mimicus+ dataset.

5.9. Model Stealing for White-Box Explanations

Our experiments show that practitioners from the
security domain should favor white-box methods over
black-box methods when aiming to explain neural networks.
However, there are cases when access to the parameters of
the system is not available and white-box methods can not
be used. Instead of using black-box methods one could
also use model stealing to obtain an approximation of
the original network[49]. This approach assumes that the
user can predict an unlimited number of samples with the
model to be explained. The obtained predictions can then
be used to train a surrogate model which might have a
different architecture but a similar behavior.

To evaluate the differences between the explanations
of surrogate models to the original ones we conduct an
experiment on the Drebin+ and Mimicus+ datasets as
follows: We use the predictions of the original model
from Grosse et al. [20] which has two dense layers with
200 units each and use these predictions to train three
surrogate models. The number of layers is varied to be
[1, 2, 3] and the number of units in each layer is always
200 resulting in models with higher, lower and the original
complexity. For each model we calculate explanations via
LRP and compute the intersection size given by Equation 1
for k = 10.

The results in Figure 7 show that the models de-
liver similar explanations to the original model (IS≈0.7)
although having different architectures for the Drebin+
dataset. However, the similarity between the stolen models
is clearly higher (IS≈0.85). For the Mimicus+ dataset,
we observe a general stability of the learned features at
a lower level (IS≈0.55). These results indicate that the
explanations of the stolen models are better than those
obtained from black-box methods (see Figure 3) but still
deviate from the original model, i.e., there is no global
transferability between the explanations. At all, model
stealing can be considered a good alternative to the usage
of black-box explanation methods.

6. Insights on the Datasets

During the experiments for this paper, we have ana-
lyzed various explanations of security systems—not only
quantitatively as discussed in Section 5 but also qual-
itatively from the perspective of a security analyst. In
this section, we summarize our observations and discuss
insights related to the role of deep learning in security.

TABLE 11: Top-5 features for the Mimicus+ dataset
determined using IG. The right columns show the frequency
in benign and malicious PDF documents, respectively.

Class Top 5 Feature Benign Malicious

– count_font 98.4 % 20.8 %
– producer_mismatch 97.5 % 16.6 %
– title_num 68.6 % 4.8 %
– pdfid1_num 81.5 % 2.8 %
– title_uc 68.6 % 4.8 %
– pos_eof_min 100.0 % 93.4 %

+ count_javascript 6.0 % 88.0 %
+ count_js 5.2 % 83.4 %
+ count_trailer 89.3 % 97.7 %
+ pos_page_avg 100.0 % 100.0 %
+ count_endobj 100.0 % 99.6 %
+ createdate_tz 85.5 % 99.9 %
+ count_action 16.4 % 73.8 %

Moreover, we publish the generated explanations from all
datasets and methods on the project’s website2 in order to
foster future research.

6.1. Insights on Mimicus+

When inspecting explanations for the Mimicus+ system,
we observe that the features for detecting malware are
dominated by count_javascript and count_js, which
both stand for the number of JavaScript elements in
the document. The strong impact of these elements is
meaningful, as JavaScript is frequently used in malicious
PDF documents [27]. However, we also identify features
in the explanations that are non-intuitive. For example,
features like count_trailer that measures the number of
trailer sections in the document or count_box_letter that
counts the number of US letter sized boxes can hardly
be related to security and rather constitute artifacts in the
dataset captured by the learning process.

To further investigate the impact of JavaScript features
on the neural network, we determine the distribution of
the top 5 features from the method IG for each class in
the entire dataset. It turns out that JavaScript appears in
88 % of the malicious documents, whereas only about 6 %
of the benign samples make use of it (see Table 11).
This makes JavaScript an extremely discriminating feature
for the dataset. From a security perspective, this is an
unsatisfying result, as the neural network of Mimicus+
relies on a few indicators for detecting the malicious code
in the documents. An attacker could potentially evade
Mimicus+ by not using JavaScript or obfuscating the
JavaScript elements in the document.

6.2. Insights on Drebin+

During the analysis of the Drebin+ dataset, we notice
that several benign applications are characterized by the
hardware feature touchscreen, the intent filter launcher,
and the permission INTERNET. These features frequently
occur in benign and malicious applications in the Drebin+
dataset and are not particularly descriptive for benignity.
Note that the interpretation of features speaking for benign

2. http://explain-mlsec.org

applications is challenging due to the broader scope and
the difficulty in defining benignity. We conclude that the
three features together form an artifact in the dataset that
provides an indicator for detecting benign applications.

For malicious Android applications, the situation is
different: The explanation methods return highly relevant
features that can be linked to the functionality of the
malware. For instance, the requested permission SEND_SMS
or features related to accessing sensitive information, such
as the permission READ_PHONE_STATE and the API call
getSimCountryIso, receive consistently high scores in our
investigartion. These features are well in line with common
malware for Android, such as the FakeInstaller family [32],
which is known to obtain money from victims by secretly
sending text messages (SMS) to premium services. Our
analysis shows that the MLP network employed in Drebin+
has captured indicative features directly related to the
underlying malicious activities.

6.3. Insights on VulDeePecker

In contrast to the datasets considered before, the fea-
tures processed by VulDeePecker resemble lexical tokens
and are strongly interconnected on a syntactical level.
This becomes apparent in the explanations of the method
Integrated Gradients in Figure 4, where adjacent tokens
have mostly equal colors. Moreover, orange and blue
colored features in the explanation are often separated
by tokens with no color, indicating a gradual separation
of positive and negative relevance values.

During our analysis, we notice that it is still difficult
for a human analyst to benefit from the highlighted tokens.
First, an analyst interprets the source code rather than the
extracted tokens and thus maintains a different view on
the data. In Figure 4, for example, the interpretation of the
highlighted INT0 and INT1 tokens as buffer sizes of 50 and
100 wide characters is misleading, since the neural net-
work is not aware of this relation. Second, VulDeePecker
truncates essential parts of the code. In Figure 4, during
the initialization of the destination buffer, for instance,
only the size remains as part of the input. Third, the large
amount of highlighted tokens like semicolons, brackets,
and equality signs seems to indicate that VulDeePecker
overfits to the training data at hand.

Given the truncated program slices and the seemingly
unrelated tokens marked as relevant, we conclude that
the VulDeePecker system might benefit from extending
the learning strategy to longer sequences and cleansing
the training data to remove artifacts that are irrelevant for
vulnerability discovery.

6.4. Insights on DAMD

Finally, we consider Android applications from the
DAMD dataset. Due to the difficulty of analyzing raw
Dalvik bytecode, we guide our analysis of the dataset by in-
specting malicious applications from three popular Android
malware families: GoldDream [26], DroidKungFu [25],
and DroidDream [18]. These families exfiltrate sensitive
data and run exploits to take full control of the device.

In our analysis of the Dalvik bytecode, we benefit
from the sparsity of the explanations from LRP and IG as
explained in Section 5.3. Analyzing all relevant features

becomes tractable with moderate effort using these methods
and we are able to investigate the opcodes with the highest
relevance in detail. We observe that the relevant opcode
sequences are linked to the malicious functionality.

As an example, Table 4 depicts the opcode sequence,
that is found in all samples of the GoldDream family.Taking
a closer look, this sequence occurs in the onReceive
method of the com.GoldDream.zj.zjReceiver class. In
this function, the malware intercepts incoming SMS and
phone calls and stores the information in local files before
sending them to an external server. Similarly, we can
interpret the explanations of the other two malware fami-
lies, where functionality related to exploits and persistent
installation is highlighted in the Dalvik opcode sequences.

For all members of each malware family, the opcode
sequences identified using the explanation methods LRP
and IG are identical, which demonstrates that the CNN in
the DAMD system has learned an discriminative pattern
from the underlying opcode representation.

7. Conclusion

The increasing application of deep learning in security
renders means for explaining their decisions vitally impor-
tant. While there exist a wide range of explanation methods
from the area of computer vision and machine learning,
it has been unclear which of these methods are suitable
for security systems. We have addressed this problem and
propose evaluation criteria that enable a practitioner to
compare and select explanation methods in the context of
security. While the importance of these criteria depends
on the particular security task, we find that the methods
Integrated Gradients and LRP comply best with all require-
ments. Hence, we generally recommend these methods for
explaining predictions in security systems.

Aside from our evaluation of explanation methods,
we reveal problems in the general application of deep
learning in security. For all considered systems under test,
we identify artifacts that substantially contribute to the
overall prediction, but are unrelated to the security task.
Several of these artifacts are rooted in peculiarities of the
data. It is likely that the employed neural networks overfit
the data rather than solving the underlying task. We thus
conclude that explanations need to become an integral
part of any deep learning system to identify artifacts in
the training data and to keep the learning focused on the
targeted security problem.

Our study is a first step for integrating explainable
learning in security systems. We hope to foster a series of
research that applies and extends explanation methods, such
that deep learning becomes more transparent in computer
security. To support this development, we make all our
implementations and datasets publicly available.

Acknowledgements

The authors gratefully acknowledge funding from the
German Federal Ministry of Education and Research
(BMBF) under the projects VAMOS (FKZ 16KIS0534)
and BIFOLD (FKZ 01IS18025B). Furthermore, the authors
acknowledge funding by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy EXC 2092 CASA-390781972.

References

[1] M. Alber, S. Lapuschkin, P. Seegerer, M. Hägele,
K. T. Schütt, G. Montavon, W. Samek, K.-R. Müller,
S. Dähne, and P.-J. Kindermans. iNNvestigate neural
networks! Technical Report abs/1808.04260, Com-
puting Research Repository (CoRR), 2018.

[2] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross.
Towards better understanding of gradient-based at-
tribution methods for deep neural networks. In In-
ternational Conference on Learning Representations,
ICLR, 2018.

[3] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon,
and K. Rieck. Drebin: Efficient and explainable
detection of Android malware in your pocket. In
Proc. of the Network and Distributed System Security
Symposium (NDSS), Feb. 2014.

[4] L. Arras, F. Horn, G. Montavon, K.-R. Müller, and
W. Samek. "what is relevant in a text document?":
An interpretable machine learning approach. PLoS
ONE, 12(8), Aug. 2017.

[5] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R.
Müller, and W. Samek. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance
propagation. PLoS ONE, 10(7), July 2015.

[6] N. Carlini. Is AmI (attacks meet interpretability)
robust to adversarial examples? Technical Report
abs/1902.02322, Computing Research Repository
(CoRR), 2019.

[7] N. Carlini and D. A. Wagner. Towards evaluating the
robustness of neural networks. In Proc. of the IEEE
Symposium on Security and Privacy, pages 39–57,
2017.

[8] A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N.
Balasubramanian. Grad-cam++: Generalized gradient-
based visual explanations for deep convolutional
networks. In 2018 IEEE Winter Conference on
Applications of Computer Vision, WACV 2018, Lake
Tahoe, NV, USA, March 12-15, 2018, pages 839–847,
2018.

[9] K. Cho, B. van Merrienboer, Ç. Gülçehre,
F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. Technical Report
abs/1606.04435, Computing Research Repository
(CoRR), 2014.

[10] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang. Neural
nets can learn function type signatures from binaries.
In Proc. of the USENIX Security Symposium, pages
99–116, 2017.

[11] P. Dabkowski and Y. Gal. Real time image saliency
for black box classifiers. In Advances in Neural
Information Proccessing Systems (NIPS), pages 6967–
6976. 2017.

[12] A. Datta, S. Sen, and Y. Zick. Algorithmic trans-
parency via quantitative input influence: Theory and
experiments with learning systems. In 2016 IEEE
Symposium on Security and Privacy, pages 598–617,
2016.

[13] S. Diamond and S. Boyd. CVXPY: A Python-
embedded modeling language for convex optimiza-
tion. Journal of Machine Learning Research, 2016.

[14] A.-K. Dombrowski, M. Alber, C. J. Anders, M. Ack-

ermann, K.-R. Müller, and P. Kessel. Explanations
can be manipulated and geometry is to blame. In
Advances in Neural Information Proccessing Systems
(NIPS), 2019.

[15] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
classification. John Wiley & Sons, second edition,
2000.

[16] J. L. Elman. Finding structure in time. Cognitive
Science, 14(2):179–211, 1990.

[17] R. C. Fong and A. Vedaldi. Interpretable explanations
of black boxes by meaningful perturbation. In IEEE
International Conference on Computer Vision, pages
3449–3457, 2017.

[18] J. Foremost. DroidDream mobile malware.
https://www.virusbulletin.com/virusbulletin/2012/
03/droiddream-mobile-malware, 2012. (Online;
accessed 14-February-2019).

[19] I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016.

[20] K. Grosse, N. Papernot, P. Manoharan, M. Backes,
and P. D. McDaniel. Adversarial examples for mal-
ware detection. In Proc. of the European Symposium
on Research in Computer Security (ESORICS), pages
62–79, 2017.

[21] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing.
LEMNA: Explaining deep learning based security
applications. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), pages
364–379, 2018.

[22] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9:1735–1780, 1997.

[23] W. Huang and J. W. Stokes. MtNet: A multi-task
neural network for dynamic malware classification.
In Proc. of the Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA),
pages 399–418, 2016.

[24] P. jan Kindermans, K. T. Schütt, M. Alber, K.-R.
Müller, D. Erhan, B. Kim, and S. Dähne. Learning
how to explain neural networks: Patternnet and patter-
nattribution. In Proc. of the International Conference
on Learning Representations (ICLR), 2018.

[25] X. Jiang. Security Alert: New sophisticated Android
malware DroidKungFu found in alternative chinese
App markets. https://www.csc2.ncsu.edu/faculty/
xjiang4/DroidKungFu.html, 2011. (Online; accessed
14-February-2019).

[26] X. Jiang. Security Alert: New Android mal-
ware GoldDream found in alternative app mar-
kets. https://www.csc2.ncsu.edu/faculty/xjiang4/
GoldDream/, 2011. (Online; accessed 14-February-
2019).

[27] A. Kapravelos, Y. Shoshitaishvili, M. Cova,
C. Kruegel, and G. Vigna. Revolver: An automated
approach to the detection of evasive web-based mal-
ware. In Proc. of the USENIX Security Symposium,
pages 637–651, Aug. 2013.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neu-
ral networks. In Advances in Neural Information
Proccessing Systems (NIPS). Curran Associates, Inc.,
2012.

[29] Y. LeCun and Y. Bengio. Convolutional networks for
images, speech, and time-series. In The Handbook

https://www.virusbulletin.com/virusbulletin/2012/03/droiddream-mobile-malware
https://www.virusbulletin.com/virusbulletin/2012/03/droiddream-mobile-malware
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu.html
https://www.csc2.ncsu.edu/faculty/xjiang4/DroidKungFu.html
https://www.csc2.ncsu.edu/faculty/xjiang4/GoldDream/
https://www.csc2.ncsu.edu/faculty/xjiang4/GoldDream/

of Brain Theory and Neural Networks. MIT, 1995.
[30] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,

and Y. Zhong. Vuldeepecker: A deep learning-based
system for vulnerability detection. In Proc. of the
Network and Distributed System Security Symposium
(NDSS), 2018.

[31] S. M. Lundberg and S.-I. Lee. A unified approach to
interpreting model predictions. In Advances in Neural
Information Proccessing Systems (NIPS), pages 4765–
4774. 2017.

[32] McAfee. Android/FakeInstaller.L. https://home.
mcafee.com/virusinfo/, 2012. (Online; accessed 1-
August-2018).

[33] N. McLaughlin, J. M. del RincÃşn, B. Kang, S. Y.
Yerima, P. C. Miller, S. Sezer, Y. Safaei, E. Trickel,
Z. Zhao, A. DoupÃl’, and G.-J. Ahn. Deep android
malware detection. In Proc. of the ACM Confer-
ence on Data and Application Security and Privacy
(CODASPY), pages 301–308, 2017.

[34] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. In Proc. of the International Conference on
Learning Representations (ICLR Workshop), 2013.

[35] N. Papernot, P. D. McDaniel, A. Sinha, and M. P.
Wellman. Sok: Security and privacy in machine
learning. In Proc. of the IEEE European Symposium
on Security and Privacy (EuroS&P), pages 399–414,
2018.

[36] M. T. Ribeiro, S. Singh, and C. Guestrin. "why
should i trust you?": Explaining the predictions
of any classifier. In Proc. of the ACM SIGKDD
International Conference On Knowledge Discovery
and Data Mining (KDD), 2016.

[37] R. Rojas. Neural Networks: A Systematic Approach.
Springer-Verlag, Berlin, Deutschland, 1996. ISBN
3-450-60505-3.

[38] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propagation.
Parallel distributed processing: Explorations in the
microstructure of cognition, 1(Foundation), 1986.

[39] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedan-
tam, D. Parikh, and D. Batra. Grad-cam: Visual
explanations from deep networks via gradient-based
localization. In The IEEE International Conference
on Computer Vision (ICCV), pages 618–626, Oct
2017.

[40] L. Shapley. A value for n-person games. 1953.
[41] E. C. R. Shin, D. Song, and R. Moazzezi. Recog-

nizing functions in binaries with neural networks.
In Proc. of the USENIX Security Symposium, pages
611–626, 2015.

[42] A. Shrikumar, P. Greenside, and A. Kundaje. Learn-
ing important features through propagating activation
differences. In Proc. of the International Conference
on Machine Learning (ICML), pages 3145–3153,
2017.

[43] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep
inside convolutional networks: Visualising image
classification models and saliency maps. In Proc.
of the International Conference on Learning Repre-
sentations (ICLR), 2014.

[44] D. Slack, S. Hilgard, E. Jia, S. Singh, and
H. Lakkaraju. Fooling lime and shap: Adversarial at-

tacks on post hoc explanation methods. In AAAI/ACM
Conference on Artificial Intelligence , Ethics, and
Society (AIES), 2019.

[45] C. Smutz and A. Stavrou. Malicious PDF detection
using metadata and structural features. In Proc. of the
Annual Computer Security Applications Conference
(ACSAC), pages 239–248, 2012.

[46] J. Springenberg, A. Dosovitskiy, T. Brox, and
M. Riedmiller. Striving for simplicity: The all
convolutional net. In ICLR (workshop track), 2015.

[47] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic
attribution for deep networks. In Proceedings of the
34th International Conference on Machine Learning,
pages 3319–3328, 2017.

[48] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. In Advances
in Neural Information Proccessing Systems (NIPS),
pages 3104–3112, 2014.

[49] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter,
and T. Ristenpart. Stealing machine learning
models via prediction apis. In 25th USENIX
Security Symposium (USENIX Security 16), pages
601–618, Austin, TX, Aug. 2016. USENIX
Association. ISBN 978-1-931971-32-4. URL
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/tramer.

[50] N. Šrndić and P. Laskov. Practical evasion of a
learning-based classifier: A case study. In Proc. of
the IEEE Symposium on Security and Privacy, pages
197–211, 2014.

[51] A. Warnecke. Layerwise Relevance Propaga-
tion for LSTMs. https://github.com/alewarne/
Layerwise-Relevance-Propagation-for-LSTMs, .

[52] A. Warnecke. Explain Security DNNs. https://github.
com/alewarne/ExplainSecurityDNNs, .

[53] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and
D. Song. Neural network-based graph embedding
for cross-platform binary code similarity detection.
In Proc. of the ACM Conference on Computer and
Communications Security (CCS), pages 363–376,
2017.

[54] M. D. Zeiler and R. Fergus. Visualizing and under-
standing convolutional networks. In Computer Vision
– ECCV 2014, pages 818–833. Springer International
Publishing, 2014.

[55] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and
T. Wang. Interpretable deep learning under fire. In
Proc. of USENIX Security Symposium, 2019.

[56] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and
A. Torralba. Learning deep features for discriminative
localization. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2921–2929,
2016.

[57] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Proc. of the IEEE
Symposium on Security and Privacy, pages 95–109,
2012.

https://home.mcafee.com/virusinfo/
https://home.mcafee.com/virusinfo/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/tramer
https://github.com/alewarne/Layerwise-Relevance-Propagation-for-LSTMs
https://github.com/alewarne/Layerwise-Relevance-Propagation-for-LSTMs
https://github.com/alewarne/ExplainSecurityDNNs
https://github.com/alewarne/ExplainSecurityDNNs

Appendix

1. Related Concepts

Some of the considered explanations methods share
similarities with techniques of adversarial examples and
feature selection. While these similarities result from an
analogous analysis of the prediction function fN , the
underlying objectives are fundamentally different from
explainable learning and cannot be transferred easily. In the
following, we briefly highlight these different objectives:

Adversarial examples. Adversarial examples are con-
structed by determining a minimal perturbation δ such
that fN (x + δ) 6= fN (x) for a given neural network
N and an input vector x [7, 35]. The perturbation δ
encodes which features need to be modified to change
the prediction. However, the perturbation does not explain
why x was given the label y by the neural network.
The Gradients explanation method described in Section 3
shares similarities with some attacks generating adversarial
examples, as the gradient ∂fN/∂xi is used to quantify
the difference of fN when changing a feature xi slightly.
Still, algorithms for determining adversarial examples are
insufficient for computing reasonable explanations.

Note that we deliberately do not study adversarial
examples in this paper. Techniques for attacking and
defending learning algorithms are orthogonal to our work.
These techniques can be augmented using explanations,
yet it is completely open how this can be done in a secure
manner. Recent defenses for adversarial examples based
on explanations have proven to be totally ineffective [6].

Feature selection. This concept aims at reducing the
dimensionality of a learning problem by selecting a subset
of discriminative features [15]. At a first glance, features
determined through feature selection seem like a good fit
for explanation. While the selected features can be investi-
gated and often capture characteristics of the underlying
data, they are determined independent from a particular
learning model. As a result, feature selection methods
cannot be direclty applied for explaining the decision of a
neural network.

2. Incompatible Explanation Methods

Several explanation methods are not suitable for general
application in security, as they do not support common
architectures of neural networks used in this area (see Ta-
ble 1). We do not consider these methods in our evaluation,
yet for completeness we provide a short overview of these
methods in the following.

PatternNet and PatternAttribution. These white-box
methods are inspired by the explanation of linear models.
While PatternNet determines gradients and replaces neural
network weights by so-called informative directions, Patter-
nAttribution builds on the LRP framework and computes
explanations relative to so-called root points whose output
are 0. Both approaches are restricted to feed-forward and
convolutional networks. Recurrent neural networks are not
supported.

DeConvNet and GuidedBackProp. These methods aim at
reconstructing an input x given output y, that is, mapping y
back to the input space. To this end, the authors present
an approach to revert the computations of a convolutional
layer followed by a rectified linear unit (ReLu) and max-
pooling, which is the essential sequence of layers in neural
networks for image classification. Similar to LRP and
DeepLift, both methods perform a backwards pass through
the network. The major drawback of these methods is
again the restriction to convolutional neural networks.

CAM, GradCAM, and GradCAM++. These three white-
box methods compute relevance scores by accessing the
output of the last convolutional layer in a CNN and
performing global average pooling. Given the activations
aki of the k-th channel at unit i, GradCam learn weights
wk such that

y ≈
∑
i

∑
k

wkaki.

That is, the classification is modeled as a linear combination
of the activations of the last layer of all channels and finally
ri =

∑
k wkaki. GradCam and GradCam++ extend this

approach by including specific gradients in this calculation.
All three methods are only applicable if the neural network
uses a convolutional layer as the final layer. While this
setting is common in image recognition, it is rarely used
in security applications and thus we do not analyze these
methods.

RTIS and MASK. These methods compute relevance
scores by solving an optimization problem for a mask m.
A mask m is applied to x as m ◦ x in order to affect x,
for example by setting features to zero. To this end, Fong
and Vedaldi [17] propose the optimization problem

m∗ = arg min
m∈[0,1]d

λ‖1−m‖1 + fN (m ◦ x),

which determines a sparse mask, that identifies relevant
features of x. This can be solved using gradient descent,
which thus makes these white-box approaches. However,
solving the equation above often leads to noisy results
which is why RTIS and MASK add additional terms to
achieve smooth solutions using regularization and blurring.
These concepts, however, are only applicable for images
and cannot be transferred to other types of features.

Quantitative Input Influence. This method is another
black-box approach which calculates relevances by chang-
ing input features and calculating the difference between
the outcomes. Let X−iUi be the random variable with
the ith input of X being replaced by a random value
that is drawn from the distribution of feature xi. Then
the relevance of feature i for a classification to class c is
given by

ri = E
[
fN (X−iUi) 6= c|X = x

]
.

However, when the features of X are binary like in some
of our datasets this equation becomes

ri =

{
1 fN (x¬i) 6= c

0 else

As noted by Datta et al. [12] this results in many
features receiving a relevance of zero which has no
meaning. We notice that even the extension to sets proposed
by Datta et al. [12] does not solve this problem since it is
highly related to degenerated explanations as discussed in
Section 5.4.

3. Completeness of Datasets: Example calculation

In Section 5.4 we discussed the problem of incomplete
or degenerated explanations from black-box methods that
can occur when there are not enough labels from the
opposite class in the perturbations. Here we give an
concrete example when enforcing 5 % of the labels to
be from the opposite class.

Table 12 shows the results of this experiment. On
average, 29 % of the samples cannot be explained well,
as the computed perturbations contain too few instances
from the opposite class. In particular, we observe that
creating malicious perturbations from benign samples is a
hard problem in the case of Drebin+ and DAMD, where
only 32.6 % and 2.8 % of the benign samples achieve
sufficient perturbations from the opposite class.

TABLE 12: Incomplete explanations of black-box methods.
First two columns: Samples remaining when enforcing at
least 5 % perturbations of opposite class.

System Class- Class+ Incomplete

Drebin+ 24.2 % 97.1 % 66.3 %
Mimicus+ 73.5 % 98.9 % 14.2 %
VulDeePecker 90.5 % 99.8 % 7.1 %
DAMD 5.9 % 94.8 % 44.9 %

Average 48.3 % 97.7 % 33.15 %

	Introduction
	Explainable Deep Learning
	Neural Network Architectures
	Multilayer Perceptrons (MLPs)
	Convolutional Neural Networks (CNNs)
	Recurrent Neural Networks (RNNs)

	Explanation Strategies
	Black-box Explanations
	White-box Explanations

	Methods and Systems under Test
	Explanation Methods
	Gradients and IG
	LRP and DeepLift
	LIME and SHAP
	LEMNA

	Security Systems
	Drebin+
	Mimicus+
	Damd
	VulDeePecker

	Evaluation Criteria
	General Criteria: Descriptive Accuracy
	General Criteria: Descriptive Sparsity
	Security Criteria: Completeness
	Security Criteria: Stability
	Security Criteria: Efficiency
	Security Criteria: Robustness

	Evaluation
	Experimental Setup
	White-box Explanations
	Black-box Explanations

	Descriptive Accuracy
	Descriptive Sparsity
	Completeness of Explanations
	Stability of Explanations
	Efficiency of Explanations
	Robustness of Explanations
	Summary
	Model Stealing for White-Box Explanations

	Insights on the Datasets
	Insights on Mimicus+
	Insights on Drebin+
	Insights on VulDeePecker
	Insights on Damd

	Conclusion
	Appendix
	Related Concepts
	Adversarial examples
	Feature selection

	Incompatible Explanation Methods
	PatternNet and PatternAttribution
	DeConvNet and GuidedBackProp
	CAM, GradCAM, and GradCAM++
	RTIS and MASK
	Quantitative Input Influence

	Completeness of Datasets: Example calculation

