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Abstract

Secure communication in a potentially malicious environment becomes more and more important. The Arbitrarily

Varying Wiretap Channel (AVWC) provides information theoretical bounds on how much information can be

exchanged even in the presence of an active attacker. If the active attacker has non-causal side information, situations

in which a legitimate communication system has been hacked, can be modeled.

We investigate the AVWC with non-causal side information at the jammer for the case that there exists a best

channel to the eavesdropper. Non-causal side information means that the transmitted codeword is known to an active

adversary before it is transmitted. By considering the maximum error criterion, we allow also messages to be known

at the jammer before the corresponding codeword is transmitted. A single letter formula for the Common Randomness

(CR) secrecy capacity is derived. Additionally, we provide a single letter formula for the CR secrecy capacity, for

the cases that the channel to the eavesdropper is strongly degraded, strongly noisier, or strongly less capable with

respect to the main channel. Furthermore, we compare our results to the random code secrecy capacity for the cases

of maximum error criterion but without non-causal side information at the jammer, maximum error criterion with

non-causal side information of the messages at the jammer, and the case of average error criterion without non-causal

side information at the jammer.

Index Terms

Active Eavesdroppers, AVWC, Non-causal side information at the Jammer, Maximum Error Probability, Physical

Layer Secrecy.
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I. INTRODUCTION

Secrecy in an adversarial environment is an essential requirement in modern communication systems. It was

Wyner, [1], who considered secure communications over noisy channels and introduced the Wiretap Channel

(WTC). Later, his work was extended by [2] to the broadcast channel with confidential messages, and in [3] to

the Gaussian WTC. In [4], Ozarow et. al introduced the wiretap channel of type II 1. The secrecy metrics in the

aforementioned works are considered "weak". There exist other secrecy metrics, such as strong secrecy, or semantic

secrecy. In [5], the authors investigated wiretap channels of type I and type II. They provided achievable semantic

secrecy rates for the WTC of type I, and gave a single letter formula for the semantic secrecy capacity for the WTC

of type II. In [6], the authors presented a generalized WTC model. This model consists of a mixture of the WTC

of type I and II. During one fraction of the transmission of one codeword, the eavesdropping channel behaves like

a WTC of type I, in the remaining time instances it behaves like a WTC of type II. For this model, [6] contributed

a single letter secrecy capacity formula under the strong secrecy criterion. The previous works combat a passive

eavesdropper by cleverly taking the physical properties of the transmit medium into account and come up with a

coding strategy which can guarantee information theoretic security, confidentiality, and reliable communication at

the same time.

A. Arbitrarily Varying Channels (AVCs)

By introducing channel states, active adversaries who can arbitrarily modify the channel state can be modeled

by the Arbitrarily Varying Channel (AVC). For the AVC, different code concepts are introduced in [7]. In [8], the

existence of "weak" capacities for AVCs is investigated. A channel capacity is called a weak capacity, if the channel

coding theorem contains a weak converse 2. The existence of a weak capacity for the deterministic code capacity

under the maximum error for an AVC is connected to Shannon’s zero error capacity for an Discrete Memoryless

Channel (DMC), [9]. In [10], the AVC with a noiseless feedback channel is considered. Using a method from a

coding theorem for the DMC with feedback, [11], which is not based on random coding or maximal coding ideas, a

coding theorem for the AVC with feedback and a strong converse is presented. As an additional result, the zero error

capacity formula for the DMC with feedback is provided. In [12], the discussion of [7] is extended for different

error criteria. It can be shown that the random code capacity of an AVC under the average error criterion equals

its random code capacity under the maximum error criterion. Even though [12] provides a necessary and sufficient

condition for the deterministic code capacity under the maximum error criterion to be positive, the question about

the exact formula remains an open problem. In [13], the discussion on the maximum error criterion for AVCs is

extended. A deterministic code capacity formula for a class of AVCs for which an additional type property holds

is presented. In [14], the deterministic code capacity region of the Arbitrarily Varying Multiple Access Channel

1Essentially, the eavesdropper is able to perfectly receive a fraction of the transmitted codeword. In contrast to a "random" erasure channel,

here the eavesdropper can choose the exact symbols he wants to obtain.

2All converses based on Fano’s inequality are weak. The weak converse states that when using transmission rates above the channel capacity,

the error probability is bounded away from 0. In contrast to that, the strong converse states that, when using transmission rates above the channel

capacity, the error probability approaches 1 (exponentially fast).

April 15, 2022 DRAFT



3

(AVMAC) is derived under the condition that the interior of that region is non-empty. Both the average and the

maximum error criteria are considered. Furthermore, the achievable rate regions for deterministic codes for the

general and the degraded Arbitrarily Varying Broadcast Channels (AVBCs) are provided under the conditions that

these regions have non-empty interior. In [14], the author pointed out, that the problem to determine whether those

capacity regions possess empty interiors was still open at that point. It is solved later by [15]. Further, an achievable

rate region for the general broadcast channel is provided. In [16], random codes for the AVC with limited amount of

CR are studied. The author limited the amount of CR to increase only exponentially with respect to the block length.

Furthermore, an exponential error bound is considered. Additionally, the author provided a sufficient condition for

when the deterministic code capacity is zero. This condition is called symmetrizability. The author proved that if

the symmetrizability condition is fulfilled, the (average) error probability is bounded away from zero, and is lower

bounded by 1
4 . In [15], the AVMAC is investigated. Specifically, the author considered deterministic codes and

extended the symmetrizability condition to the multi user scenario. Based on this multi user symmetrizability, a

condition is derived, for when the deterministic code capacity region of the AVMAC has a non-empty interior, such

that both transmitters can communicate reliably. In doing so, the author solved one open problem of [14], which

had left the question whether those capacity regions possess empty interiors unanswered. In [17], it is proved that

for an AVC every rate below the random code capacity is achievable with deterministic list codes of constant list

size, if the average error criterion is used. The authors presented two different proofs, one based on the Elimination

Technique (ET), the other based on an adaptation of the Robustification Technique (RT). In [18], the deterministic

list code capacity of an AVC is studied. The author presented a bound, called symmetrizability ([18, Definition

3]), on the smallest list size, for which the deterministic list code capacity equals the random code capacity. Below

this bound the deterministic list code capacity equals zero. In [19], upper bounds on the admissible source region

of the general AVBC with arbitrarily correlated sources are investigated, using CR assisted codes and the average

error criterion. The capacity region of the general AVBC relates to the admissible source region in the way that it

is a set of rates for which an admissible source (messages) exists 3. When specializing to the case of independent

sources and no channel variation it is shown that the presented outer bound is included in the outer bound of [20].

In [21], random and deterministic coding strategies for a bidirectional Arbitrarily Varying Relay Channel (AVRC),

consisting of an AVMAC and bidirectional AVBC phase, are investigated . For the multiple access and the broadcast

phases, the authors gave descriptions of the random and deterministic code capacity (if the interiors are non-empty).

Their proof is based on the RT and ET by Ahlswede. In [22], the same set of authors extended their work in [21],

to derive necessary conditions for which the interior of the deterministic code capacity region of the bidirectional

AVBC is non-empty. In [23], the deterministic code capacity region of an AVMAC under list decoding is considered

and the results of [14], using a similar approach as in [15], adapted to list decoding, are extended. The author was

able to show that the capacity region using list codes with list sizes L equals the random code capacity region if the

3The term admissible source region might be confusing at first, but it is nothing else, than computing the maximum rate at which the error

probability vanishes. The connection gets clearer when remembering the connection |J | = exp{⌊nR⌋}. Hence, when |J | ≤ exp{⌊nC⌋}, the

source is called admissible.
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interior of the capacity region using list codes is non-empty. He then proved list size symmetrizability conditions

for when the capacity region using list codes for the AVMAC is empty, and for when the capacity region using

list codes equals the random code capacity region. In [24], the bidirectional AVBC is investigated and the question

how much randomness is sufficient and how much coordination between nodes is necessary to guaranty reliable

communication is considered. Also weaker forms of CR are considered, specifically correlated randomness, causal

correlated randomness and no randomness at all. It is shown that the capacity regions of the investigated cases for the

bidirectional AVBC are subsets of each other, and derived symmetrizability conditions, for when the deterministic

code capacity region equals the random code capacity region and for when the deterministic code capacity region

has an empty interior, respectively. Furthermore, it is shown that as long as the correlated randomness at the relay

and the other nodes is indeed correlated (and the nodes do not obtain independent observations), the correlated

code capacity region equals the random code capacity region. In [25], the continuity behavior of the randomness

assisted and deterministic code capacities for Arbitrarily Varying Quantum Channels (AVQCs) is studied. While

the randomness assisted code capacity is indeed continuous, the deterministic code capacity exhibits discontinuities.

The authors considered furthermore the effect of limited CR and finite block lengths with respect to the decoding

error. In [26], bipartite graphs are used to prove necessary and sufficient conditions for the AVMAC list code

capacity to have a non-empty interior. Further, the auhtor extended the work of [23], and proved that the minimum

list size is finite if and only if the correlated code capacity region has a non-empty interior.

B. Arbitrarily Varying Channels (AVCs) with Side Information

In the literature, also different cases of side information at the transmitter and/or the jammer have been considered.

In the following we want to provide a short overview. In [27], deterministic codes for the AVC under different

Channel State Information (CSI) cases are investigated. Necessary and sufficient conditions are provided for positive

deterministic code transmission rate for cases of no CSI, CSIR, CSIT, and perfect CSI. Additionally, the authors

determined for the latter case the deterministic code capacity. In [28], different code classes and average and

maximum error criteria for different CSIT/CSIR and side information at the jammer for the AVC are considered.

The authors showed the equivalence of certain cases, where the jammer randomizes (arbitrary or in an independent

and identically distributed (i.i.d.) manner) over the state space or uses a deterministic jamming strategy, and where

the communication partners possess different CSI. Furthermore, the random code capacity of the AVC is provided

and the authors showed that for different CSI and error cases the capacity equals the random code capacity. In [29],

the deterministic code capacity of the AVC, where the channel output alphabet is binary, is determined. Additionally,

the cases of CSIT and CSIR are investigated and the capacities for these cases are provided as well.

In [30], the deterministic code capacities under both the average and the maximum error criterion are derived,

under the condition that the entire state sequence is non-causally known at the transmitter, while the jammer and the

receiver have no further side information. The author used the RT and ET to derive the deterministic code capacity.

This means, he started by proving a coding theorem for the Compound Channel (CC). Hence, there exist codes

for the CC with exponentially vanishing error probability. Then, via permutations (RT) on the code for the CC, he

obtained a random code for the AVC with slightly higher error probability, which is still exponentially vanishing.
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From this random code, he chose a subset of codes (ET). For this subset of codes the error probability vanishes

linearly, instead of exponentially. If the deterministic code capacity is greater than zero, a prefix code can be

concatenated with the smaller random code, to indicate which codebook realization is used during the transmission.

If the amount of messages for this prefix code grows subexponentially (e.g. n2), then the length of this prefix

code grows sublinearly. Hence, the amount of codeword symbols of the prefix code in the concatenated code

vanishes and the deterministic code capacity equals the random code capacity. In [31], the AVC theory is applied

to computer memory and capacity formulas for different CSI cases are derived. In [32], the deterministic code

capacity region under the average error criterion for cooperating transmitters in an AVMAC is described . Further,

the authors provided a condition, when the achievable rate region has a non-empty interior. In [33], the degraded

AVBC with non-causal CSIT, full CSIR at the stronger receiver, and statistical CSIR at the weaker receiver is

studied. The authors presented three main results: First, the single user deterministic code capacity under maximum

error criterion of the degraded user is greater than zero if and only if the separation lemma in [12] holds with respect

to the channel to the degraded receiver. Second, the deterministic code capacity region under the maximum error

criterion equals the intersection of all capacity regions with respect to the jamming distributions if the single user

deterministic code capacity under maximum error criterion of the degraded user is greater than zero. Otherwise it

corresponds to the single user rate of the stronger receiver. Third, the capacity regions using deterministic, random or

correlated codes under the average or maximums error criteria are equivalent. In [34], an AVC is considered, where

the jammer has non-causal access to the channel input and the message. Since the message is known non-causally at

the jammer, the considered error probability has to be the maximum error probability. The authors used a list-code

under the maximum error criterion approach to prove the random code capacity for this model. In [35], the authors

investigated the AVC with non-causal side information at the jammer. Furthermore, the authors imposed peak input

and state constraints and derived the CR assisted code capacity under the average and the maximum error criteria

and compared these results. They limited the amount of CR, that is needed to achieve the capacity, and stated

that non-causal knowledge of the channel input at the jammer is leads to lower secrecy capacity than non-causal

knowledge of the messages. In [36], the situation of "nosy noise" where the channel input is perfectly known at

the jammer, [34], is generalized to a "myopic adversary", where a jammer has a noisy version of the channel input

as side information. Furthermore, a random code capacity formula under the maximum error criterion is derived.

In [37], the random and deterministic code capacity regions for the AVMAC with cooperating encoders is derived.

Furthermore, the authors provide symmetrizability conditions for when the deterministic code capacity region for

the AVMAC with collaborating encoders has non-empty interior. In [38], a variation of the AVC is investigated. In

this model, the attacker has causal knowledge of the channel input and can change a fraction of the codeword. The

authors provided upper and lower bounds on the deterministic code capacity under the average and the maximum

error criteria. In [39], the AVMAC with cooperating encoders is studied, and the work of [37] extended. In contrast

to [37], here list codes are used and the deterministic list code capacity region is derived, which equals its random

code capacity region if it is the channel is not list-symmetrizable. Otherwise the deterministic list code capacity

region has empty interior. In [40], the deterministic and random code capacity regions under the average error

criterion for the AVBC with side information at the receiver are derived . Additionally (and as a counterpart to [39]
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and as an extension of [24]), the authors considered the deterministic list code capacity and were able to prove a

similar behavior as for deterministic list codes for the AVC or the AVMAC: the deterministic list code capacity

either equals the random code capacity or has an empty interior if list size symmetrizability conditions are not

fulfilled. In [41], the degraded AVBC with causal CSIT is investigated. For the random and deterministic code

capacity regions, lower and upper bounds are derived, and the capacity regions for a class of channels, fulfilling the

condition that there exists a jamming strategy which minimizes the mutual information terms between transmitter

and the two receivers simultaneously, is derived. Here, the authors explicitly did not consider independent states for

the individual channels. Furthermore, they provided the example of a binary symmetric AVBC and presented for

this example the capacity region. In [42], a version of the AVC is considered, where the jammer and the transmitter

have non-causal knowledge about the messages and the channel state (here not controlled by the jammer). Based

on this knowledge the jammer can adopt its jamming signal, while the transmitter uses Gel’fand Pinsker or dirty

paper coding to optimize the random code capacity under the maximum error criterion. For the dirty paper AVC it

was shown, that a memoryless Gaussian jamming strategy is the jammer’s optimal choice. In [43], an Arbitrarily

Varying Classical-Quantum Channel (AVCQC) is investigated, where the jammer has side information about the

channel input or both the channel input and the message. The authors determined the random code capacity for

both average and maximum error criteria, and established a strong converse. Furthermore, all derived capacities are

equal, the additional knowledge of the message does not decrease the capacity further. In [44], the authentication

problem in the presence of an myopic adversary is considered. Equivalent to the symmetrizability condition for

deterministic code for message transmission, the authors introduced the U-overwritability, and have shown that the

authentication capacity either equals the authentication capacity without adversary, or equals zero if the channel is

U-overwritable.

C. Arbitrarily Varying Channels (AVCs) with Constraints

Various works have considered input and state constraints. We would like to give a brief overview. In [45],

the existence of channel capacities for the Gaussian AVC(GAVC) is proved. The author considered amplitude and

average power constraints, as well as feedback, and provided explicit formulas for the capacities. In [46], a GAVC

under peak and average power constraints is considered . The authors were able to derive a random code capacity

formula for the case of peak input and peak state constraints. In the cases of average constraints (on either input or

states), the authors derived ǫ-capacities for random codes. In [47], the AVC with peak and average constraints on the

channel input and the channel states is investigated. The authors have shown that for peak constraints the random

code capacity exists. On the other hand, for any case of average constraints, only ǫ-capacities have been proven

to exist. In [48], the AVC with peak constraints is considered. The authors introduced a "cost"-function and have

shown that if the jammer is not able to symmetrize the channel because of his state peak constraint, the deterministic

code capacity might be positive, but less than the random code capacity. Furthermore, the authors proved that the

symmetrizability condition from [16], is not only sufficient but also necessary for the deterministic code capacity

of an AVC to be zero. In [49], a Gaussian AVC is investigated. The authors proved a deterministic code capacity

for the case of peak input and peak jamming power constraints. In the case, where the peak input constraint is
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more stringent than the peak jamming constraint, the deterministic code capacity equals zero. This behavior is

equivalent to the symmetrizability condition for finite AVCs. In [50], a discrete AVMAC with state constraints is

studied . In case of state constraints, the deterministic code capacity region might possess a non-empty interior,

even if the channel is symmetrizable. Furthermore, the author provided a new weak converse under state constraints.

In [51], the deterministic code capacity region for an additive AVMAC under state constraint is provides. In this

scenario, the capacity region is a 45 degree triangle and can be described by single letter expressions. In [52],

convexity properties of the AVMAC with constraints are considered. The authors showed that the capacity region

of independent stochastic encoders is not convex, in general. In [53], the single user Poisson AVC and the two user

Poisson AVMAC, both under peak and average input and state constraints are studied. For both scenarios the authors

derived the deterministic code capacity/capacity region under the average error criterion. They explicitly specified

the decoders for each model, attaining the capacity/capacity region. In [54], the discrete two user general AVBC is

studied. Based on [16], the authors defined symmterizability conditions for the two user general AVBC for when the

interior of the deterministic code achievable rate region with and without state and input constraints is non-empty.

They further considered achievable rate regions for degraded message sets. In [55], a bidirectional AVBC with peak

input and state constraints is investigated. For this model, the authors derived the random and deterministic code

capacity regions, and provided a symmetrizability and cost condition for the deterministic code capacity to have

empty interior, based on [48]. In [56], list decoding for AVCs under state constraints is considered . The authors

have shown that rates (up to ǫ close) for random codes for the AVCs with informed jammer can be achieved with

small list size (of order O(1
ǫ
)). Furthermore, upper and lower bounds on the list-code capacity under the average

error criterion with lists of size L are provided. In [57], the author extended his work, [34], [36], to the Gaussian

case. Here, the jammer obtains a noisy version of the channel input and can choose his jamming signal, based on

what he observed. Meanwhile, the transmitter and the jammer have peak power constraints. In [58], two different

attack strategies for the AVC, while imposing a distortion constraint at the jammer, are studied. For the first attack

strategy (memoryless), the authors derived a single letter capacity. For the second (foreseer), where the adversary

has non-causal knowledge of the codeword, the authors differentiated between erasing and substituting attacks. For

both, the authors gave lower and upper bounds on the capacity. In [59], an AVC with myopic adversary, who is

subject to a quadratic state constraint is considered. For a specific range of noise-to-signal-ratios (NSR), the authors

were able to characterize the deterministic code capacity. For the remaining region, they limited the amount of CR.

Furthermore, they introduced two new proof techniques, a myopic list-decoding result for the achievability, and a

Plotkin-type push attack for the converse. In [60], the Gaussian AVC under peak constraints using list decoding is

investigated. The authors presented a single letter formula for the deterministic list code capacity and showed that

if the list size is smaller than the ratio of the transmit and jamming power, the capacity equals zero. In [61], the

AVC under peak and average input and state constraint with causal and non-causal CSIT is studied. For the causal

CSIT case, the authors derived a lower bound on the deterministic code capacity for an message average input

constraint, an lower and upper bounds on the random code capacity, which match if there are only constraints on

the states but not on the input. For the latter case, the authors provided a generalized symmetrizability condition

for which the deterministic code capacity equals the random code capacity. For non-causal CSIT, the random code
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capacity with constraints imposed on the states was derived, and again a condition was provided under which the

deterministic code capacity equals the random code capacity.

D. Arbitrarily Varying Wiretap Channels (AVWCs)

If confidentiality requirements are combined with active attacks on communication systems, the AVWC is the

correct channel model. In the case where the channel state is determined by nature and there are secrecy requirements,

the Compound Wiretap Channel (CWC) is an appropriate model. In the following, we give a brief literature overview

of the CWC and the AVWC, without claiming completeness.

In [62], random codes for the AVWC are considered. The authors presented a single letter formula for achievable

CR assisted secrecy rates. Furthermore, the authors provided a single letter formula for the CR assisted secrecy

capacity for the strongly degraded case with independent states. In [63], the AVWC under the average error criterion

is investigated. The authors combined strong secrecy requirements with Ahlswede’s ET, and were able to derive

a single letter formula for the CR assisted achievable secrecy rates. Additionally, the authors presented a multi

letter formula for the deterministic code secrecy capacity. In [64], continuity properties of the secrecy capacities

of CWCs and AVWCs are studied . The authors were able to show that for the CWC the secrecy capacity is

continuous with respect to the channel states. In contrast to the compound case, the authors were able to prove

that the deterministic code secrecy capacity of an AVWC possesses discontinuity properties with respect to the

channel state. The authors presented an example in which the deterministic code secrecy capacity equals zero for a

specific choice of the convex combination of channel states, while approaching this convex combination of channel

states from above, the deterministic code secrecy capacity remains strictly lager than zero. In [65], the AVWC is

investigated and multi letter formulas for the CR and deterministic code secrecy capacities for the case that the

eavesdropper is kept ignorant about the CR are derived. The authors proved that even though the deterministic code

secrecy capacity possesses discontinuities, it is still stable around its positivity points. Furthermore, the authors

provided a complete characterization of AVWCs which might possess the Super-Activation (SA) property. In [66],

a multi letter formula for the CR assisted secrecy capacity in the general case and a single letter formula for the

CR assisted secrecy capacity in the strongly degraded case are proved. The authors considered both, average and

maximum error criteria, and showed that the capacities are equivalent under both criteria. In [67], multiple access

AVWC is considered. The authors derived a single letter achievable secrecy rate region and an multi letter upper

bound. Furthermore, the authors calculated the secrecy capacity for the special case of a semi-noiseless WTC.

E. Arbitrarily Varying Wiretap Channels (AVWCs) with Side Information

In the literature, also different cases of side information at the transmitter and/or the jammer have been considered

with secrecy constraints.

In [68], the binary WTC of type II with an active eavesdropper, who observes a fraction of the transmitted

codeword causally, is considered. The authors specifically investigated the cases where the eavesdropper erases his

observed symbols, and where the eavesdropper flips his observed symbols. For these models, achievable secrecy

rates are proved. In [69], an AVWC, where the active adversary has access to the CR, is studied. This work relates
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the dichotomy behavior of the deterministic code capacity of AVC to the case with secrecy requirements. The authors

showed, that the if the AVWC is symmetrizable then the CR secrecy capacity of the AVWC with knowledge of

the commone randomness at the active adversary equals zero. Otherwise, it equals the CR secrecy capacity of the

AVWC. In [70], the CWC with different CSI cases is investigated. In the case of no CSI, the authors derived a

multi letter formula for the secrecy capacity. For different CSIT cases, authors determined a single letter formula

for the secrecy capacity. In [71], the effects of causal knowledge of the CR and SA of AVWCs are studied. The

authors showed that the causal secrecy capacity equals the CR assisted secrecy capacity. Furthermore, the authors

demonstrated how the capacity of AVWCs, when encoding jointly over the AVWCs instead of encoding individually,

can be strictly larger than the sum of the individual capacities. This phenomenon, known from the quantum case,

is called SA. Additionally, it is shown that weaker forms (e.g. correlated CR instead of perfectly shared CR) is

sufficient to achieve the randomness assisted code capacity of an AVWC. In [72], the deterministic list code secrecy

capacity of an AVWCis investigated . The authors provided a multi letter formula and presented a symmetrizability

condition on the list size for the secrecy capacity to be zero. In [73], a WTC with non-causal CSIT is investigated.

Under the maximum error and semantic security criteria a single letter formula for the achievable secrecy rate is

derived. In [74], an AVWC with causal CSIT is considered. Based on the causal side information at the transmitter,

a joint learning transmission scheme is established in order to learn the adversary’s strategy. The authors showed

that this transmission scheme leads to achievable rates (for some channel models), where the adversary’s jamming

choice is known non-causally at the transmitter.

F. Arbitrarily Varying Wiretap Channels (AVWCs) with Constraints

In [75], the discrete memoryless CWCs, Gaussian CWCs, and MIMO Gaussian CWCs are investigated. The

authors derived single letter achievable secrecy rates for the general case and provided a single letter formula for

the secrecy capacity for the strongly degraded case. For the Gaussian CWC, they assumed peak input constraints

(average transmit power constraints), provided a capacity formula for the strongly degraded, and calculated the secure

degrees of freedom. For the MIMO Gaussian CWC, the authors assumed peak input constraints, i.e. constraints

on the transmit covariance matrix. They provided a secrecy capacity formula for the strongly degraded case, and

presented a lower bound for the secure degrees of freedom. In [76], a MIMO Gaussian WTC is considered, where

the eavesdropping channel is an AVC. Under peak input constraints (constraints on the input covariance matrix), the

authors contributed a single letter formula for achievable secrecy rates and calculated the secure degrees of freedom.

In [77], the channel model of secret key generation, where the eavesdropping channel is an AVC, is considered.

For the cases of finite alphabets and for MIMO Gaussian with peak input constraints (average transmit power

constraints) the authors provided achievable secret key rates, and for the latter the secure degrees of freedom. In

[78], a CWC with a distortion constraint and derived an achievable secrecy rate is considered. The authors studied

symbol-, peak-, and average constraints on the state, and computed the jammer’s best attack strategy. In each

case, the attacker’s best strategy is to flip each symbol with an i.i.d. strategy. Furthermore, the Gaussian CWC with

equivalent constraints is investigated . Here, the jammer’s best strategy is to jam every symbol with the same power.

In [79], the AVWC with input and state peak constraints is investigated . The authors derived a multi letter formula
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for the achievable secrecy rate. In [80], the author scrutinized a variation of the AVWC, in which an adversary

receives a fraction of the codeword perfectly (in terms of WTC of type II) and modifies another fraction of the

codeword, where the adversary can use his observed side information. For this model, the author determined upper

and lower bounds on the semantic secrecy capacity. In [81], the authors used a strong soft covering lemma to derive

a single letter formula of the random code semantic secrecy capacity of an AVWC with type constrained states. In

[82], deterministic wiretap codes for the AVWC with input and state peak constraints are considered. The authors

provided a single letter formula for achievable secrecy rates.

G. Contribution

In this work, we consider the AVWC with non-causal side information at the jammer. Non-causal side information

means that codewords are known at an active adversary before they are transmitted. We provide the single letter

random code secrecy capacity under the maximum error criterion for the case that there exists a best channel to

the eavesdropper. By considering the maximum error criterion, we allow the active attacker to know the messages,

as well. We use methods of [43], hence random coding arguments instead of list codes, [34], which might be an

alternative approach. Furthermore, we derive a single letter random code secrecy capacity formula for the case that

the eavesdropping channel is strongly degraded, strongly noisier, or strongly less capable with respect to the main

channel. We compare our results to the random code secrecy capacity for the cases of maximum error criterion

but without non-causal side information at the jammer, maximum error criterion with non-causal side information

of the messages at the jammer, and the case of average error criterion without non-causal side information at

the jammer. By considering this model, we are able to describe situations, in which a communication system is

subject to two different simultaneous attacks, eavesdropping and jamming attacks. For both, we individually assume

worst case scenarios. By requiring a best channel to the eavesdropper, we also consider the case of colluding

jammer and eavesdropper. The eavesdropper obtains a perfect observation of the CR shared between the legitimate

communication partners. Hence, the CR cannot be used as a key to encrypt the data.

In Table I, we set our work into context. For this overview, we only considered state dependent channels with

secrecy requirements, whose states are influenced by an external entity. But keep in mind, that there are publications

without secrecy requirements, which are still highly related to this work, i.e, [34], [35], [36]. Since our work does

not include constraints on the input or states, we excluded those works from the table, as well.

The paper is organized as follows. We present the system model in Section II and state our main result in Section

III. Finally in Section IV, we compare our results to the the standard AVWC, provide an example, and close with

a discussion. The proofs of the main results can be found in the appendices.

Notation: We folow the notation of [66], and a list of the used symbols and their meanings can be found in

Appendix H. In particular, all logarithms are taken to the base 2. Equivalently, the exp {.} function means 2{.}. Sets

are denoted by calligraphic letters. The cardinality of a set U is denoted by |U|. The set of all probability measures

on a set U is denoted by P(U). For p ∈ P(U) we define pn ∈ P(Un) as pn(xn) =
∏
i p(xi). The entropies, and

mutual information terms will be written in terms of the involved probability functions or in terms of the involved
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Reference CWC/AVWC Side Information Error Result

[62] AVWC - a sl - r AR, r sd C

[68] BAC, type II CI a sl - d AR

[63] AVWC - a sl - r AR, ml - d C

[70] CWC d-CSI a ml - C, sl - C for special cases

[66] AVWC - a/m ml - r C, sl - r sd C

[80] BAC , type I/II CI a sl - d AR

[74] AVWC CSIT a r C

[43] CQAVC MII/CII/MCII a/m sl C

[73] AVWC non-causal CSIT m sl - r AR, C (sp. cases)

[67] AVWC, MAC - a sl - r AR, r C (sp. cases)

This work AVWC MII/CII/MCII a/m sl - r C

TABLE I: Literature overview related to the presented manuscript (without constraints and with secrecy require-

ments). Notation: Side Information - d-CSI (different CSI cases at the transmitter and receiver), MII/CII/MCII

(message / channel input / message and channel input non-causally known at the jammer), PCI (a fraction of the

channel input causally known at the jammer). Error - a (average error criterion), m (maximum error criterion). Result

- sl (single letter), ml (multi letter), AR (achievable rate), C (capacity), r (randomness assisted), d (deterministic),

sd (strongly degraded).

random variables. For example

H(W |p) := −
∑

x,y

p(x)W (y|x) logW (y|x)

I(p;W ) := H(pW )−H(W |p).

Furthermore, let the type of a sequence sn = (s1, s2, ..., sn) be the probability measure q ∈ P(S) defined by

q(a) = 1
n
N(a|sn), where N(a|sn) denotes the number of occurrences of a in the sequence sn. The set of all

possible types of sequences of length n is denoted by Pn0 (S). Additionally, for a p ∈ P(X ) and δ > 0, we define

the typical set T n
p,δ ⊂ Xn as the set of sequences xn ∈ Xn satisfying for all a ∈ X the conditions
∣∣∣∣
1

n
N(a|xn)− p(a)

∣∣∣∣ ≤ δ, if p(a) > 0, and N(a|xn) = 0 if p(a) = 0.

Similarly, for a W ∈ P(Y|X ) and a δ > 0 we define the conditionally typical set T n
W,δ(x

n) ⊂ Yn as the set of

sequences yn ∈ Yn satisfying for all a ∈ X , b ∈ Y the conditions
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Common Randomness Un

Wn(yn|xn, sn)

V n(zn|xn, sn)

EncoderJ Decoder

Decoder

Ĵ

Ĵ′

Alice Bob

Eve

u u

u

snJim

Xn
u

Xn
u

Y n
sn

Zn
sn

Fig. 1: System model. Jammer has non-causal knowledge about the channel input.

∣∣∣∣
1

n
N(a, b|xn, yn)−W (b|a)

1

n
N(a|xn)

∣∣∣∣ ≤ δ, if W (b|a) > 0,

N(a, b|xn, yn) = 0 if W (b|a) = 0.

See also [83, Chapter 2] for the method of types and the definitions of typical sequences.

II. SYSTEM MODEL

We consider a CR assisted AVWC as depicted in Fig. 1. A transmitter Alice tries to communicate reliably and

securely with a legitimate receiver Bob in the presence of an eavesdropper Eve. The communication is done via state

dependent DMCs Wn(yn|xn, sn) and V n(zn|xn, sn), where sn is the channel state, xn is the channel input, and

yn and zn are the received sequences at Bob and Eve, respectively. Alice, Bob, and Eve have access to a common

source of randomness Un, whose realization can not be used as a key for encryption, since Eve also has access to

it. The channel state sn is controlled by an external jammer Jim, who has non-causal access to the channel input

Xn
u . The channel input of length n is dependent on the the CR realization, and hence indexed by it. Note that this

system model is considered without secrecy constraints by Sarwate [34], using a connection between deterministic

list codes and random codes. Furthermore, this system model also is considered without secrecy constraints for the

classical-quantum case by Boche et al. [43]. In the latter case, the authors use random coding arguments.

Remark 1. By requiring a best channel to the eavesdropper, we can show that the jammer is not able to encode

information about the channel input into the choice of the state sequence. Hence, if there is no other channel

between the jammer and the eavesdropper, we also cover the situation of colluding attackers.

Definition 1 (Arbitrarily Varying Wiretap Channel). We describe an Arbitrarily Varying Wiretap Channel by

(X ,S,W ,V ,Y,Z). Let X ,S,Y,Z be finite sets. The family of channels to the legitimate receiver is described

by W = {(Ws : X → P(Y)) : s ∈ S}. The family of channels to the illegitimate receiver is described by
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V = {(Vs : X → P(Z)) : s ∈ S}. The channel is memoryless in the sense that the probability of receiving the

sequences yn = (y1, y2, ..., yn) and zn = (z1, z2, ..., zn), when sending xn = (x1, x2, ..., xn) is

Wn(yn|xn, sn) =
n∏

i=1

W (yi|xi, si) =
n∏

i=1

Wsi(yi|xi) =Wn
sn(y

n|xn),

V n(zn|xn, sn) =
n∏

i=1

V (zi|xi, si) =
n∏

i=1

Vsi (zi|xi) = V nsn(z
n|xn).

By (W ,V), we mean the AVWC defined above.

Definition 2 (Deterministic Wiretap-Code). An (n, Jn) deterministic wiretap-code Kn consists of a stochastic

encoder E : Jn → P(Xn) and mutually disjoint decoding sets Dj ⊂ Yn, Dj ∩ Dj′ = ∅, j, j′ ∈ Jn. We define

EWn
sn : Jn → P(Yn) by

EWn
sn(y

n|j) =
∑

xn∈Xn

E(xn|j)Wn(yn|xn, sn).

The maximum error e(Kn) for the AVWC can be expressed as

e(Kn) := max
sn∈Sn

max
j∈Jn

∑

xn∈Xn

E(xn|j)Wn(Dc
j |x

n, sn)

If the jammer has non-causal knowledge about the channel input xn, then the maximum error probability has to

be expressed as

ê(Kn) := max
f∈F

max
j∈Jn

∑

xn∈Xn

E(xn|j)Wn(Dc
j |x

n, f(xn)),

for all deterministic jamming functions F : Xn → Sn.

Definition 3 (Common Randomness Assisted Wiretap Code). An (n, Jn,Un, pU ) CR assisted wiretap code Kran
n

consists of a family of stochastic encoders E = {(Eu : Jn → P(Xn)) : u ∈ Un} and mutually disjoint (for fixed

u) decoding sets Dj,u ⊂ Yn, Dj,u ∩ Dj′,u 6= ∅, j, j′ ∈ Jn, u ∈ Un with message set Jn := {1, ..., Jn}, and

pU ∈ P(U). Note that for different realizations of the CR Un, u 6= u′, the decoding sets do not have to be disjoint,

Dj,u∩Dj′,u′ 6= ∅ The maximum error probability averaged over all possible randomly chosen deterministic wiretap

codebooks e(Kran
n ) can be written as

e(Kran
n ) := max

sn∈Sn
max
j∈Jn

∑

u∈Un

pU (u)
∑

xn∈Xn

Eu(x
n|j)Wn(Dc

j,u|x
n, sn).

Here, the jammer does not know the channel input non-causally.

We define the channel pXnU|J : Jn → P(Xn × U) as

pXnU|J (x
n, u|j) = pXn|JU (x

n|j, u)pU (u) = Eu(x
n|j)pU (u).

Let F : Xn → Sn describe the family of all deterministic mappings from Xn to Sn. If the jammer has non-causal

knowledge of the channel input xn, then the maximum error probability has to be adapted to

ê(Kran
n ) := max

f∈F
max
j∈Jn

∑

xn∈Xn

pXn|J(x
n|j)

∑

u∈Un

pU|Xn,J(u|x
n, j)Wn(Dc

j,u|x
n, f(xn)).
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Remark 2. In contrast to the standard AVWC, here in the case of non-causal knowledge at the jammer the

maximization of sn is done within each term of the sum. Since the jammer knows the channel input, he can

adopt to that specific codeword choice.

Furthermore, let F ′ be the family of all deterministic mappings Jn × Xn → Sn, and F ′′ be the family of all

deterministic mappings Jn → Sn. From of Lemma 2, we have

e(Kn) = max
sn∈Sn

max
j∈Jn

∑

xn∈Xn

E(xn|j)Wn(Dc
j |x

n, sn)

= max
j∈Jn

max
f ′′∈F ′′

∑

xn∈Xn

E(xn|j)Wn(Dc
j |x

n, f ′′(j)), and

ê(Kn) = max
f∈F

max
j∈Jn

∑

xn∈Xn

E(xn|j)Wn(Dc
j |x

n, f(xn))

= max
j∈Jn

max
f ′∈F ′

∑

xn∈Xn

E(xn|j)Wn(Dc
j |x

n, f ′(xn, j)).

That implies the following statement. Considering the maximum error probability (with respect to the messages)

corresponds to the case, where the jammer additionally knows the messages, because the maximization orders

can be exchanged according to Lemma 2 (see also [35]). Furthermore, the inner optimization is done for fixed

parameter of the outer optimization. That means for each given message j ∈ Jn, the worst case state sequence will

be considered. This implies the above equalities. Equivalent statements hold for the CR assisted codes.

Definition 4 (Achievable Common Randomness Assisted Secrecy Rates and Common Randomness Assisted Secrecy

Capacities). A nonnegative number RS is called an achievable CR assisted secrecy rate for the AVWC if there

exists a sequence (Kran
n )∞n=1 of (n, Jn,Un, pU ) CR assisted codes for uniformly distributed messages, such that the

following requirements are fulfilled

lim inf
n→∞

1

n
log Jn ≥ RS , (1)

lim
n→∞

e(Kran
n ) = 0, (2)

lim
n→∞

max
sn∈Sn

max
u∈Un

I(pJ ;EuV
n
sn) = 0. (3)

A nonnegative number
̂̂
RS is called an achievable CR assisted secrecy rate for the AVWC with non-causal

knowledge of the channel input at the jammer if there exists a sequence (Kran
n )∞n=1 of (n, Jn,Un, pU ) CR assisted

codes for uniformly distributed messages, such that the following requirements are fulfilled

lim inf
n→∞

1

n
log Jn ≥

̂̂
RS , (4)

lim
n→∞

ê(Kran
n ) = 0, (5)

lim
n→∞

max
f∈F

max
u∈Un

I(pJ ;EuV
n
f ) = 0. (6)

The supremum of all achievable CR assisted secrecy rates for the AVWC is called the CR assisted secrecy capacity

of the AVWC (W ,V) and is denoted by Ĉran
S (W ,V), when the jammer has no knowledge about the channel input,

and
̂̂
C

ran

S (W ,V) if the jammer has non-causal knowledge of the channel input.
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The secrecy capacity Ĉran
S (W ,V) is lower bounded by

̂̂
C

ran

S (W ,V). Note that the eavesdropper has access to the

CR, too. Hence, the randomness cannot be used as a key to ensure secure communication between Alice and Bob.

We explicitly do not bound the cardinality of the CR. In [43], the authors provide capacity formulas for quantum

channels with an informed jammer but without secrecy constraints. The authors additionally relate and compare

the capacity formulas for the cases that the jammer knows additionally the messages and that the jammer does not

know the messages.

Lemma 1. Let P(Sn|Xn) be the set of all conditional probability distributions of the state sequences sn ∈ Sn

given the channel input xn ∈ Xn. We can in fact consider the maximization over θ ∈ P(Sn|Xn) instead of

considering the maximization over all deterministic mappings F : Xn → Sn.

Proof of Lemma 1. See Appendix E.

Definition 5 (Convex closure and row convex closure [12]). Let p ∈ P(S) and p̂ ∈ P(S|X ) be probability measures.

The convex closure and the row convex closure of the AVC are defined as

Ŵ :=

{
Wp(·|·) :

∑

s∈S

p(s)W (·|·, s), p ∈ P(S)

}
(7)

̂̂
W :=

{
Wp̂(·|x) :

∑

s∈S

p̂(s|x)W (·|x, s), p̂(s|x) ∈ P(S|X ), x ∈ X ,

}
(8)

Example 1. Let X = Y = S = {0, 1}, and

W (·|·, S = 0) =




1 0

0 1



, W (·|·, S = 1) =




0 1

1 0



.

The convex closure and the row convex closure are given respectively as

Ŵ =




W (·|·) :




α 1− α

1− α α



, α ∈ [0, 1]




,
̂̂
W =




W (·|·) :




α 1− α

1− β β



, α, β ∈ [0, 1]




.

Definition 6 (k-Letter extension of
̂̂
W). The k-letter extension of

̂̂
W is defined as the set

W̃k :=



W

k
p̂ (Y

k|Xk) :
∑

sk∈Sk

p̂(sk|xk)W k(·|xk, sk), p̂(sk|xk) ∈ P(Sk|X k), xk ∈ X k



 (9)

Remark 3. Note that W̃k 6=
̂̂
W

k

. It can be shown that the operations of the Kronecker product and taking the row

convex closure are not commutative.
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Example 1 (continued). We have

W (·|·, S = 0)⊗W (·|·, S = 0) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




W (·|·, S = 1)⊗W (·|·, S = 1) =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




W (·|·, S = 0)⊗W (·|·, S = 1) =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




W (·|·, S = 1)⊗W (·|·, S = 0) =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




Hence, when taking the row convex closure now, we obtain

W̃2 =








α1 α2 α3 1− α1 − α2 − α3

β1 β2 β3 1− β1 − β2 − β3

γ1 γ2 γ3 1− γ1 − γ2 − γ3

δ1 δ2 δ3 1− δ1 − δ2 − δ3




: αi, βi, γi, δi ∈ [0, 1], i ∈ {1, 2, 3},
3∑

i=1

αi =

3∑

i=1

βi =

3∑

i=1

γi = 1





In contrast, when taking the row convex closure first, and then calculating the two letter extension, we obtain

̂̂
W 1(·|·)⊗

̂̂
W 2(·|·)) =




α1 1− α1

1− β1 β1




⊗




α2 1− α2

1− β2 β2




̂̂
W

2

=








α1α2 α1(1− α2) (1− α1)α2 (1− α1)(1− α2)

α1(1 − β2) α1β2 (1 − α1)(1 − β2) (1− α1)β2

(1− β1)α2 (1− β1)(1 − α2) β1α2 β1(1− α2)

(1− β1)(1− β2) (1− β1)β2 β1(1− β2) β1β2




: αi, βi ∈ [0, 1], i ∈ {1, 2}





.

It is easy to see that the row

[
1
3

1
3

1
3 0

]
is achievable in W̃2 but not in

̂̂
W

2

.
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Remark 4 (Notation). With slight abuse of notation, we use the subscripts of V and W to show the dependence on

the state sequence sn, the deterministic mapping f ∈ F , F : Xn → Sn and stochastic mappings θ ∈ P(Sn|Xn).

Since we use certain notations interchangeably, we clarify them in the following (shown for V ).

V n(zn|xn, sn) = V nsn(z
n|xn), (10)

V n(zn|xn, f(xn)) = V nf (zn|xn), (11)

V nθ (zn|xn) =
∑

sn∈Sn

θ(sn|xn)V n(zn|xn, sn), (12)

V nf (zn|j) = EuV
n
f =

∑

xn∈Xn

Eu(x
n|j)V n(zn|xn, f(xn)), (13)

V nθ (zn|j) = EuV
n
θ =

∑

xn∈Xn

Eu(x
n|j)

∑

sn∈Sn

θ(sn|xn)V n(zn|xn, sn). (14)

Here, (10) denotes the AVC V n to the eavesdropper if the channel input equals xn, the channel state is sn, and

the channel output equals zn. We use the notation in (10) interchangeably. In (11) we consider the same AVC,

but under the condition that the jammer applies the deterministic mapping f ∈ F , F : Xn → Sn. Again, we

use the notation in (11) interchangeably. In (12), we consider a stochastic mapping θ ∈ P(Sn|Xn) instead of a

deterministic mapping. Hence, we consider the averaged channel with respect to the channel state sn in dependence

on the channel input xn. In (13), we denote the conditional probability of obtaining the output sequence zn under

the conditions that we transmitted the secure message j ∈ Jn and that the jammer applies the deterministic jamming

strategy f ∈ F . Since we use the stochastic encoder Eu, we average with respect to the channel input xn ∈ Xn. In

(14), the jammer applies a stochastic jamming strategy θ ∈ P(Sn|Xn) instead of a deterministic mapping. Since

we use again a stochastic encoder Eu, we average with respect to the channel input xn and with respect to the

channel states sn.

Definition 7 (Best Channel to the Eavesdropper). Let Znθ be the output of the channel V nθ . If there exists for

all n ∈ N a θ∗,n ∈ Pn(S|X ) with θ∗,n(sn|xn) =
∏n
i=1 θ

∗
i (si|xi) =

∏n
i=1 θ

∗(si|xi) such that for all other

θ ∈ P(Sn|Xn) the Markov chain

Xn ↔ Znθ∗,n ↔ Znθ , (15)

holds, then we say that there exists a best channel to the eavesdropper and all channels V nθ are degraded with

respect to the channel V nθ∗,n .

Remark 5. Since the mutual information is convex (row convex) with respect to the channel for fixed input/ input

distribution, the optimal jamming strategy is deterministic.

θ∗,n(sn|xn) = 1s∗,n(x
n)

In other words, the optimal state sequence (in terms of the secrecy constraint) results in a boundary point of Ṽn and

taking convex combinations of channel states does not increase the mutual information. A similar statement can be

made with respect to the error probability. Since the mutual information is convex (row convex) with respect to the
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channel for fixed input/ input distribution, the optimal jamming strategy with respect to the reliability constraint is

deterministic again, but is not a boundary point of Ṽn.

Next, we will introduce the notions of strongly degraded, strongly noisier, and strongly less capable with

independent states, respectively. Independent states mean that the states in the main and the eavesdropping channel

can be chosen individually.

Definition 8 (Strongly Degraded). An AVWC is strongly degraded (with independent states, see [62]) if the

following Markov chain holds

Xn ↔ Y nθ ↔ Znθ′ , ∀θ, θ′ ∈ P(Sn|Xn), ∀n ∈ N.

Definition 9 (Strongly Noisier with Independent States). The family of channels to the illegitimate receiver V =

{(Vs : X → P(Z)) : s ∈ S} is strongly noisier with independent states than the family of channels to the legitimate

receiver W = {(Ws : X → P(Y)) : s ∈ S} if for every random variable An such that An ↔ Xn ↔ (Y nθ , Z
n
θ′)

we have for all θ, θ′ ∈ P(Sn|Xn)

I(pnAn ;Wn
θ ) ≥ I(pnAn ;V nθ′ ), ∀n ∈ N.

Definition 10 (Strongly Less Capable with Independent States). The family of channels to the illegitimate receiver

V = {(Vs : X → P(Z)) : s ∈ S} is strongly less capable with independent states than the family of channels to the

legitimate receiver W = {(Ws : X → P(Y)) : s ∈ S} if for every p ∈ P(Xn) we have for all θ, θ′ ∈ P(Sn|Xn)

I(p;Wn
θ ) ≥ I(p;V nθ′ ), ∀n ∈ N.

Remark 6. If there exist a θ ∈ P(S|X ) fulfilling the strongly degraded, strongly less noisier, or strongly less capable

condition, then there exists for all n ∈ N a θn ∈ Pn(S|X ), with θn =
∏n
i=1 θi, fulfilling the strongly degraded,

strongly less noisier, or strongly less capable condition, respectively.

Remark 7. Just as in the stateless case [84], we have the following implication chain:

Strongly Degraded → Strongly Noisier → Strongly Less Capable.

Here, X → Y means X implies Y , but not vice versa.

III. MAIN RESULTS

In the following, we state our main results. First, we present the secrecy capacity formulas for the general, and

the strongly less capable cases, respectively, when the jammer has non-causal knowledge of the channel input.

Then we provide the corresponding secrecy capacity formulas, when the jammer has no side information or only

possesses knowledge of the messages.
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ρn(xn|ψn
u )Encoder · · ·J

Alice

u

.

.

.

Ψn
u Xn

Xn

Fig. 2: Adopted system model with prefixing at Alice. With CR realization u, Alice encodes a secure message J

into a codeword Ψnu, of length n. The codeword serves as the input of a prefix channel ρ(xn|)ψnu , and is mapped

to the channel input Xn. Other parts remain the same.

A. Capacity Formulas for the General and the Less Capable Cases

Theorem 1. If there exists a best channel to the eavesdropper, the CR assisted code secrecy capacity for the AVWC

with side information at the jammer
̂̂
C

ran

S (W ,V) is given by

̂̂
C

ran

S (W ,V) = max
pΨ,ρ(X|Ψ)

(
min
W∈

̂̂
W

I(pΨ; ρW )−max
V ∈

̂̂
V

I(pΨ; ρV )

)
, (16)

with Ψ as a prefixing random variable and concatenated channels ρW and ρV , respectively.

Proof of Theorem 1. See Appendix F.

Theorem 2. Let an AVWC (W ,V) be given. If for (W ,V), the channel V is strongly less capable with respect to

the channel W and if there exists a best channel to the eavesdropper, then the CR assisted code secrecy capacity

̂̂
C

ran

S (W ,V) is given by

̂̂
C

ran

S (W ,V) = max
pX

(
min
W∈

̂̂
W

I(pX ;W )−max
V ∈

̂̂
V

I(pX ;V )

)
(17)

Proof of Theorem 2. See Appendix G.

The secrecy capacity
̂̂
C

ran

S (W ,V) depends on the row convex closures
̂̂
W and

̂̂
V .

B. Capacity Formulas without Side Information at the Jammer, or where the Jammer only knows the Messages

Corollary 1. Let an AVWC (W ,V) be given. If there exists a best channel to the eavesdropper and if the jammer

does not possess non-causal side information, or if there exists a best channel to the eavesdropper and the jammer

possesses non-causal side information of the messages, then the CR assisted code secrecy capacity under the

maximum error criterion is given by

Ĉran
S (W ,V) = max

pΨ,ρ(X|Ψ)

(
min
W∈Ŵ

I(pΨ; ρW )−max
V ∈V̂

I(pΨ; ρV )

)
, (18)

If the AVWC is additionally strongly degraded, then the CR assisted code secrecy capacity under the maximum

error criterion simplifies to

Ĉran
S (W ,V) = max

pX

(
min
W∈Ŵ

I(pX ;W )−max
V ∈V̂

I(pX ;V )

)
. (19)
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Proof of Corollary 1. By simple modifications in Lemma 13, as well as in the converses, it is easy to see that the

theorem holds.

The secrecy capacity Ĉran
S (W ,V) depends on the convex closures Ŵ and V̂ .

Remark 8 (Input and State Constraints). The extension of the results to the case of input and state constraints

is not straight forward. While the modifications in the sense of [81] might be possible and may lead to a single

letter random code secrecy capacity, the restrictions on the jammer’s strategy are very strict. In [81], the jammer

is restricted to a type constrained jamming strategy. In [82], the authors considered deterministic wiretap codes for

the AVWC with input and state peak constraints. They provided a single letter formula for achievable secrecy rates.

The converse for the general case is still open. In [79], a general multi letter formula for the achievable random

code secrecy rate with input and state peak constraints is presented. The converse for the general case remains an

open problem.

Remark 9 (From Random to Deterministic - Not Elimination). In [12], Ahlswede proposes the Elimination of

Correlation technique to reduce the amount of CR to only n2. He then uses a prefix code to inform the receiver

which realization of the randomness is used. This leads to the following dichotomy result: The deterministic code

capacity (under the average error criterion) equals its random code capacity, or is equal to zero if the AVC is

symmetrizable. Note that this technique cannot be used in our system model. If a prefix code were used to inform

the receiver which deterministic code is used, the jammer would obtain this information as well and we obtain once

again the situation of the maximal error criterion for deterministic codes.

The authors of [43] present a technique to reduce the amount of CR to only a polynomial order.

The authors draw codewords not from the complete set of typical sequences, but from a "suitable" subset. The

reduction of the amount of CR is meaningful, since in practical implementations CR might be expensive, or just not

available. Hence, from a system design point of view, it makes sense to reduce the necessary amount of CR. In [34],

the authors provide an upper bound on the amount of CR which corresponds to O(log n), even when the jammer

knows the codewords non-causally, but without secrecy constraints. However, deriving deterministic code results

or the minimal amount of CR is not the intention of this work. Instead, we assume that there exists a sufficient

amount of CR to compute fundamental results on the secrecy capacities for different knowledge-scenarios at the

jammer.

IV. DISCUSSION

A. Relation to the secrecy capacity under average error criterion

In the following, we provide the secrecy capacity formula under the average error criterion, and set the capacity

formulas into relation to each other.

Corollary 2 (Common Randomness Assisted Secrecy Capacity under the Average Error Criterion if the Family

of Channels to the Illegitimate Receiver is Strongly Degraded, Strongly Noisier, or Strongly Less Capable with

Independent States). If for an AVWC the family of channels to the illegitimate receiver V is strongly degraded,
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strongly noisier, or strongly less capable with independent states, then the CR assisted secrecy capacity under the

average error criterion for the standard AVWC is given by

Ĉran
S,av(W ,V) = max

pX

(
min
W∈Ŵ

I(pX ;W )−max
V ∈V̂

I(pX ;V )

)
.

Corollary 3. Let an AVWC (W ,V) be given. If there exists a best channel to the eavesdropper, then

Ĉran
S,av(W ,V) = Ĉran

S (W ,V) ≥
̂̂
C

ran

S (W ,V). (20)

where Ĉran
S,av(W ,V) denotes the CR assisted code secrecy capacity under the average error criterion.

Proof. It is easy to see that Ŵ ⊂
̂̂
W and V̂ ⊂

̂̂
V.

B. Example

To clarify the fundamental difference between the capacity formulas mentioned above, and to show that the

inclusion can be strict, we provide an explicit example. First, we define I(·)(·) as the convex hull of the row of

channel matrices as follows.

Definition 11 ([12]). For a given x ∈ X , let Iw(x) denote the convex hull of the set {W (·|x, s) : s ∈ S} of

probability distributions on Y , i.e., Iw(x) = conv (W (·|x, s) : s ∈ S).

Example 2. We consider the following example. Let the channel matrices be given as follows.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Iw(x1)

Iw(x2)

Iw(x3)

Iv(x1)

Iv(x2)

Iv(x3)

δ1

δ 2

Fig. 3: Difference of capacities if the channel input is known or unknown at the jammer.

w(·|·, s1) =




0.1 0.9

0.7 0.3

0.8 0.2




, w(·|·, s2) =




0.2 0.8

0.85 0.15

0.9 0.1



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v(·|·, s1) =




0.25 0.75

0.4 0.6

0.6 0.4




, v(·|·, s2) =




0.3 0.7

0.45 0.55

0.65 0.35




It is easy to see that this channel AVWC fulfills the strongly less capable property. We have

Ŵ = αw(·|·, s1) + (1− α)w(·|·, s2) =




0.2− 0.1α 0.8 + 0.1α

0.85− 0.15α 0.15 + 0.15α

0.9− 0.1α 0.1 + 0.1α




,

V̂ = βv(·|·, s1) + (1− β) =




0.3− 0.05β 0.7 + 0.05β

0.45− 0.05β 0.55 + 0.05β

0.65− 0.05β 0.35 + 0.05β




.

The secrecy capacity Ĉran
S (W ,V) of this AVWC can be calculated to Ĉran

S (W ,V) ≈ 0.3 bits per channel use,

pX(0) = pX(2) = 0.5, pX(1) = 0, α = 0.5, β ≈ 1. In contrast to that, one can easily see that the channels

̂̂
W =




0.2 0.8

0.8 0.2

0.8 0.2




̂̂
V =




0.25 0.75

0.4 0.6

0.65 0.35




correspond to the worst and the best channels to Bob and Eve, respectively, if the channel input is non-causally

known at the jammer. In this case, the secrecy capacity for the AVWC can be calculated to
̂̂
C

ran

S (W ,V) ≈ 0.26

bits per channel use (which is strictly smaller than Ĉran
S (W ,V)), with input distribution pX(0) = pX(1) = 0.5,

pX(2) = 0. The second input symbol is used for the case with non-causal side information at the jammer instead

of the third one as for the AVWC without side information.

C. Summary

In this work, we derive a single letter formula for the random code secrecy capacity under the maximum error

criterion for an active attacker with non-causal side information of the codewords, provided there exists a best

channel to the eavesdropper. Additionally, we provide a formula for the random code secrecy capacity for the

case that the eavesdropping channel is strongly degraded, strongly noisier, or strongly less capable with respect to

the main channel. We further allow that the messages might also be known at the jammer. We apply and extend
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methods of [43] and [66]. We show that the derived secrecy capacities depend on the row convex closures of

the sets of channels to Bob and Eve for the general and the strongly degraded cases, respectively, if the input is

non-causally known at the jammer and depend on the convex closures of the sets of channels if the channel input

is not non-causally known at the jammer.

We compare our results to the random code secrecy capacity for the cases of maximum error criterion but

no non-causal side information at the jammer, maximum error criterion with non-causal side information of the

messages at the jammer, and the standard AVWC. In the considered system model, the worst case occurs if the

codewords (channel inputs) are non-causally known at the jammer. As we have shown, it does not matter if the

jammer additionally knows the messages. The random code secrecy capacity is determined with respect to the row

convex closures of the channel sets. In contrast, if the jammer does not know the channel input non-causally, then

for the cases of maximum error criterion but without non-causal side information at the jammer, maximum error

criterion with non-causal side information of the messages at the jammer, and the case of average error criterion

without non-causal side information at the jammer, the random code secrecy capacity is determined with respect

to the convex closure of the channel sets. We provided an example to illustrate this fundamental difference. It is

quite obvious that optimizing over a larger set, here the row convex closure compared to the convex closure of the

channel sets, may lead to a smaller random code secrecy capacity.

From a resource theory point of view, the necessary amount of CR is of interest. We do not upper bound the

amount of CR. To ensure that codewords occur in sufficiently many codebooks in order to confuse the jammer, we

give a lower bound on the amount of CR. This CR is known at the eavesdropper, and hence cannot be used as key

to achieve a secure transmission. Secrecy is achieved by wiretap coding.

APPENDIX A

EXCHANGEABILITY OF MAXIMIZATION ORDERS

Lemma 2. Let the sequence (ai,j)i∈A,
j∈B

, ai,j ∈ R be given, where A,B ⊂ N are finite sets. Then

max
i∈A

max
j∈B

(ai,j)i∈A,
j∈B

= max
j∈B

max
i∈A

(ai,j)i∈A,
j∈B

.

Proof. Let J ∗ and I∗ be given as

J ∗ =

{
max
i∈A

(ai,j) : j ∈ B

}

I∗ =

{
max
j∈B

(ai,j) : i ∈ A

}

Then it is easy to see that

max
j∈B

J∗ = max
i∈A

I∗

Intuitively, the result follows when imagining a matrix. If the global maximum is unique, then the operations of

collecting the maximum in each column in the set J ∗ and then taking the maximal element of J ∗ is equivalent to

collecting the maximum in each row in the set I∗ and then taking the maximal element of I∗.

If the global maximum is not unique, the result remains the same, but the indices (i, j) ∈ A×B might change.
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APPENDIX B

VARIATION DISTANCE, MARKOV, CHERNOFF, AND CHERNOFF-HOEFFDING BOUNDS

Definition 12 (Variation Distance). The variation distance of two distributions P1, P2 on X is defined as

||P1 − P2||V =
∑

x∈X

|P1(x) − P2(x)|. (21)

Lemma 3 ([83, Lemma 2.7]). If ||P1 − P2||V = τ ≤ 1
2 , then

|H(P1)−H(P2)| ≤ −τ log
τ

|X |
.

We give a reminder on Markov’s inequality.

Lemma 4 (Markov’s Inequality [85, Lemma 83]). Let X be a Random Variable (RV) with mean E[X ] = µ and

let a be a positive number. Then

Pr{X ≥ a} ≤
µ

a
.

Chernoff bounds are given as follows.

Lemma 5 (Chernoff bounds, [86], [43, Lemma 2]). Let X1, X2, ..., Xn be i.i.d. RVs with values in {0, 1}, with

Pr{Xi = 1} = p. For all ǫ ∈ (0, 1) and p0 < p < p1, the following bounds hold

Pr

{
1

n

n∑

i=1

Xi > (1 + ǫ)p1

}
< expe

{
−
ǫ2

8
np1

}
, (22)

Pr

{
1

n

n∑

i=1

Xi < (1− ǫ)p0

}
< expe

{
−
3ǫ2

8
np0

}
. (23)

The Chernoff-Hoeffding bound is widely used in the proof. Therefore, it shall be stated here.

Lemma 6 (Chernoff-Hoeffding bounds, [87, Theorem 1.1],[88]). Let X1, X2, ..., Xn be i.i.d. RVs with values in

[0, b], where b is a positive number. Further, let E[Xi] = µ, and 0 < ǫ < 1
2 . Then

Pr

{
1

n

n∑

i=1

Xi 6∈ [(1± ǫ)µ]

}
≤ 2 expe

(
−n

ǫ2µ

3b

)
, (24)

where [(1± ǫ)µ] means the interval [(1 − ǫ)µ, (1 + ǫ)µ].

APPENDIX C

TYPICAL SETS

We summarize some known facts of typicality properties. Let δ > 0.

Lemma 7 (Properties of typical sets I, [83, Lemma 2.13, Problem 2.5]). Let xn ∈ T n
p,δ . Then for any W : X → P(Y)

|T n
pW,2|X |δ| ≤ exp{n(H(pW ) + f1(δ))},

Wn(yn|xn) ≤ exp{−n(H(W |p)− f2(δ))} ∀yn ∈ T n
W,δ(x

n),

for some functions f1(δ), f2(δ) > 0 with limδ→0 f1(δ) = 0 and limδ→0 f2(δ) = 0.
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Lemma 8 (Properties of typical sets II, [89, Lemma III.1.3]). For every p ∈ P(X ), W : X → P(Y) and xn ∈ Xn

pn(T n
p,δ) ≥ 1− (n+ 1)|X | exp{−ncδ2},

Wn(T n
W,δ(x

n)|xn) ≥ 1− (n+ 1)|X ||Y| exp{−ncδ2}.

with c = 1
2 ln 2 . Furthermore, there exists an n0 and a c′ > 0, depending on |X |, |Y| and δ, such that for all n > n0

for each p ∈ P(X ) and W : X → P(Y)

pn(T n
p,δ) ≥ 1− exp{−nc′δ2}, (25)

Wn(T n
W,δ(x

n)|xn) ≥ 1− exp{−nc′δ2}. (26)

Lemma 9 (Properties of typical sets III, [83, Lemma 2.2]). Let Pn0 (S) be the set of all possible types of n-length

sequences on Sn. The cardinality of the set of all possible types of length n is upper bounded by

|Pn0 (S)| ≤ (n+ 1)|S|.

Lemma 10 (Properties of typical sets IV, [90, Lemma 3][70, Lemma 3]). Assume, the distributions p, p ∈ P(X )

and the two matrices W,W : X → P(Y) are given. For any positive integer n and sufficiently small δ > 0,

(pW )n(T n
W,δ

(xn)) ≤ (n+ 1)|X ||Y| exp{−n(I(p;W )− f3(δ))},

for all xn ∈ T n
p,δ holds, with some f3(δ) > 0 and limδ→0 f3(δ) = 0. Furthermore, there exist an n0 and a ν > 0,

depending on |X |, |Y| and δ, such that for all n > n0,

(pW )n(T n
W,δ

(xn)) ≤ exp{−n(I(p;W )− ν))}. (27)

Lemma 11 (Properties of typical sets V, [36, Lemma 2]). Let the sequences xn ∈ Xn, sn ∈ Sn, and δ, δ̂ > 0 be

given. Further, let (Ψ, X) be distributed according to pΨ,X = pΨρX|Ψ. Define the channel

θ(s|x) :=
1

N(x|xn)

n∑

i=1

1(si = s, xi = x).

Then,

Pr
{
(Ψn, xn, sn) /∈ T n

pΨ×ρX|Ψ×θ,δ|(Ψ
n, xn) ∈ T n

pΨ×ρX|Ψ,δ̂

}
≤ exp{−nh(δ)}, (28)

where h(δ) → 0 as δ → 0.

Proof. Follows for example by [83, Lemma 2.10, Lemma 2.12].

Lemma 12. Let (Ψn, Xn, Sn) ∈ Ψ
n×Xn ×Sn be distributed according to pnΨρ

n
X|ΨpSn|Ψn,Xn . Let A be defined

as the following event.

A := {∄θ ∈ P0(S
n|Xn) : (Ψn, Xn, Sn) ∈ T n

pΨ×ρX|Ψ×θ,δ}.

Then

Pr{A} ≤ exp{−nc′δ̂2}+ (n+ 1)|X ||S| exp

{
−n min

θ∈P0(Sn|Xn)
hθ(δ)

}
,

April 15, 2022 DRAFT



26

where h(δ) → 0 if δ → 0.

Proof.

Pr{A} = Pr
{
(Ψn, Xn) /∈ T n

pΨ×ρX|Ψ,δ̂

}
Pr
{
A|(Ψn, Xn) /∈ T n

pΨ×ρX|Ψ,δ̂

}

+ Pr
{
(Ψn, Xn) ∈ T n

pΨ×ρX|Ψ,δ̂

}
Pr
{
A|(Ψn, Xn) ∈ T n

pΨ×ρX|Ψ,δ̂

}

(a)

≤ Pr
{
(Ψn, Xn) /∈ T n

pΨ×ρX|Ψ,δ̂

}

+
∑

(xn,sn)∈Xn×Sn

p(xn, sn)Pr
{
(Ψn, xn, sn) /∈ T n

pΨ×ρX|Ψ×θ,δ|(Ψ
n, xn) ∈ T n

pΨ×ρX|Ψ,δ̂

}

(b)

≤ exp{−nc′δ̂2}+
∑

p̂∈P0(X
n)

θ∈P0(S
n|Xn)

(xn,sn)∈T n
p̂×θ

p̂(xn)θ(sn|xn)Pr{(Ψn, xn, sn) /∈ T n
pΨ×ρX|Ψ×θ,δ|(Ψ

n, xn) ∈ T n

pΨ×ρX|Ψ,δ̂
}

(c)

≤ exp{−nc′δ̂2}+
∑

p̂∈P0(X
n)

θ∈P0(S
n|Xn)

exp{−nhθ(δ)}

(d)

≤ exp{−nc′δ̂2}+ (n+ 1)|X ||S| exp

{
−n min

θ∈P0(Sn|Xn)
hθ(δ)

}
.

Here, (a) follows by upper bounding Pr
{
A|(Ψn, Xn) /∈ T n

pΨ×ρX|Ψ,δ̂

}
and Pr

{
(Ψn, Xn) ∈ T n

pΨ×ρX|Ψ,δ̂

}
by 1.

Note that θ in (a) is dependent on the sequences (xn, sn) according to Lemma 11, and hence different for different

conditional types of (xn, sn). (b) follows because of Lemma 8, (c) follows because of Lemma 11, and (d) follows

by type counting.

APPENDIX D

Lemma 13. For any conditional type θ ∈ P0(Sn|Xn), define the probability measure pΨ × ρ× θ as

(pΨ × ρ× θ)(ψ, x, s) = pΨ(ψ)ρ(x|ψ)θ(s|x).

Let δ > 0 and let pΨXS be a type fulfilling pΨ = pΨ and

||pΨXS − pΨXS ||V ≤ δ. (29)

Moreover, let Ψ′n be uniformly distributed on T n
pΨ

. Then there exist an n0 and a ν, depending on |X |, |Y|,|Ψ |, |S|

and δ, such that for all n > n0 we have for any (xn, sn) ∈ T n
pXS

,

E


Wn




 ⋃

θ∈P0(Sn|Xn)

T n
ρWθ ,δ

(Ψ′n)



∣∣∣∣xn, sn




 ≤ exp

{
−n

(
min

θ∈P0(Sn|Xn)
I(pΨ; ρWθ)− ν

)}

≤ exp

{
−n

(
min

θ∈P(S|X )
I(pΨ; ρWθ)− ν

)}
.

Proof of Lemma 13. We divide the proof into two steps. First we provide an upper bound, and show then secondly

that this upper bound holds for arbitrary sequences of the same type.
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Let (Ψn, Xn, Sn) be uniformly distributed according to pnΨ × ρn × θn and independent of Ψ′n. First, we have

E


Wn




 ⋃

θ∈P0(Sn|Xn)

T n
ρWθ ,δ

(Ψ′n)



∣∣∣∣Xn, Sn






(a)

≤
∑

θ∈P0(Sn|Xn)

E

[
Wn

(
T n
ρWθ ,δ

(Ψ′n)

∣∣∣∣Xn, Sn
)]

(b)
=

∑

θ∈P0(Sn|Xn)

∑

ψ′n∈Ψn

pΨn(ψ′n)
∑

(ψnxnsn)∈Ψn×Xn×Sn

pnΨXS(ψ
n, xn, sn)Wn

(
T n
ρWθ,δ

(Ψ′n)

∣∣∣∣xn, sn
)

(c)
=

∑

θ∈P0(Sn|Xn)

∑

ψ′n∈Ψn

pΨn(ψ′n)
∑

(ψnxnsn)∈Ψn×Xn×Sn

pnΨ(ψ
n)ρn(xn|ψn)θn(sn|xn)Wn

(
T n
ρWθ ,δ

(ψ′n)

∣∣∣∣xn, sn
)

(d)
=

∑

θ∈P0(Sn|Xn)

∑

ψ′n∈Ψn

pΨn(ψ′n)(pΨρWθ)
n
(
T n
ρWθ ,δ

(ψ′n)
)

(e)

≤
∑

θ∈P0(Sn|Xn)

exp
{
−n
(
I(pΨ; ρWθ)− ν̂

)} ∑

ψ′n∈Ψn

pΨn(ψ′n)

(f)

≤ (n+ 1)|X ||S| exp

{
−n

(
min

θ∈P0(Sn|Xn)
I(pΨ; ρWθ)− ν̂

)}

(g)

≤ exp

{
−n

(
min

θ∈P0(Sn|Xn)
I(pΨ; ρWθ)− ν

)}

Here, (a) follows by the union bound. (b) follows by evaluating the expectation. (c) follows by assumption that

(Ψn, Xn, Sn) is uniformly distributed according to pnΨ×ρn×θn and independent of Ψ′n. (d) follows by expressing

the probability function
∑

(ψnxnsn)∈Ψn×Xn×SnpnΨ(ψ
n)ρn(xn|ψn)θn(sn|xn)Wn

((
T n
ρWθ ,δ

(ψ′n
) ∣∣∣∣xn, sn

)
as the

output probability function (pΨρWθ)
n
(
T n
ρWθ ,δ

(ψ′n)
)

. (e) follows by Lemma 10, (f), and (g) follow by Lemma

9.

Next, assume that (Ψn, Xn, Sn) is uniformly distributed on T n
pΨXS

. We will show that the above inequality also

holds in this case up to small terms. Due to (29) and Lemma 3, we have

H(pΨXS) ≥ H(pΨXS) + δ log
δ

|Ψ ||X ||S|

=: H(pΨXS) + δ′.

Furthermore, because of (29), we have T n
pΨXS

⊂ T n
pΨXS ,δ

. Hence, for any nonnegative function f(ψn, xn, sn), we

have

E[f(Ψn, Xn, Sx)] =
∑

(ψn,xn,sn)∈T n
p
ΨXS

pn
ΨXS

(ψn, xn, sn)f(ψn, xn, sn)

=
1

|T n
pΨXS

|

∑

(ψn,xn,sn)∈T n
p
ΨXS

f(ψn, xn, sn)

≤ (n+ 1)|Ψ ||X ||S| exp{−nH(pΨXS)}
∑

(ψn,xn,sn)∈T n
p
ΨXS

f(ψn, xn, sn)

≤ (n+ 1)|Ψ ||X ||S| exp{−n(H(pΨXS)− δ′)}
∑

(ψn,xn,sn)∈T n
pΨXS,δ

f(ψn, xn, sn)
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≤ (n+ 1)|Ψ ||X ||S| exp{nδ′′}
∑

(ψn,xn,sn)∈T n
pΨXS,δ

pnΨ(ψ
n)ρn(xn|ψn)θn(sn|xn)f(ψn, xn, sn)

≤ (n+ 1)|Ψ ||X ||S| exp{nδ′′}
∑

(ψn,xn,sn)∈Ψn×Xn×Sn

pnΨ(ψ
n)ρn(xn|ψn)θn(sn|xn)f(ψn, xn, sn).

With

f(ψn, xn, sn) =
∑

θ∈P0(Sn|Xn)

∑

ψ′n∈Ψn

pΨn(ψ′n)Wn

((
T n
ρWθ,δ

(Ψ′n
) ∣∣∣∣xn, sn

)
,

this shows

E


Wn




 ⋃

θ∈P0(Sn|Xn)

T n
ρWθ ,δ

(Ψ′n)



∣∣∣∣Xn, Sn




 ≤ exp

{
−n

(
min

θ∈P0(Sn|Xn)
I(pΨ; ρWθ)− ν

)}
.

Secondly, for an arbitrary permutation of the index set {1, 2, ..., n} we have per definition

π
(
T n
ρWθ ,δ

(ψ′n)
)
:=

{
π(yn) ∈ Yn :

∣∣∣∣
1

n
N(a, b|ψ′n, yn)− ρWθ(b|a)

1

n
N(a|ψ′n)

∣∣∣∣ ≤ δ, ∀a ∈ Ψ , b ∈ Y

}

=

{
yn ∈ Yn :

∣∣∣∣
1

n
N(a, b|ψ′n, π−1(yn))− ρWθ(b|a)

1

n
N(a|ψ′n)

∣∣∣∣ ≤ δ, ∀a ∈ Ψ , b ∈ Y

}

=

{
yn ∈ Yn :

∣∣∣∣
1

n
N(a, b|π(ψ′n), yn)− ρWθ(b|a)

1

n
N(a|π(ψ′n))

∣∣∣∣ ≤ δ, ∀a ∈ Ψ , b ∈ Y

}

=: T n
ρWθ ,δ

(π(ψ′n)) .

Therefore, for a (x̃n, s̃n) with (ψn, x̃n, s̃n) ∈ T n
pΨXS

and an arbitrary permutation π, we have

EΨ′n


Wn




 ⋃

θ∈P0(Sn|Xn)

T n
ρWθ,δ

(Ψ′n)



∣∣∣∣x̃n, s̃n




 =

∑

ψ′n∈T n
P

pΨn(ψ′n)Wn




 ⋃

θ∈P0(Sn|Xn)

T n
ρWθ,δ

(Ψ′n)



∣∣∣∣x̃n, s̃n




=
∑

ψ′n∈T n
p

pΨn(ψ′n)Wn




 ⋃

θ∈P0(Sn|Xn)

π
(
T n
ρWθ ,δ

(ψ′n)
)


∣∣∣∣π(x̃n, s̃n)




=
∑

ψ′n∈T n
p

pΨn(ψ′n)Wn




 ⋃

θ∈P0(Sn|Xn)

T n
ρWθ,δ

(π(ψ′n))



∣∣∣∣π(x̃n, s̃n)




(a)
=

∑

ψ′n∈T n
p

pΨn(ψ′n)Wn




 ⋃

θ∈P0(Sn|Xn)

T n
ρWθ ,δ

(ψ′n)



∣∣∣∣π(x̃n, s̃n)




= EΨ′n


Wn




 ⋃

θ∈P0(Sn|Xn)

T n
ρWθ ,δ

(Ψ′n)



∣∣∣∣π(x̃n, s̃n)




 ,

where (a) follows because we sum up over all ψ′n with the same type4 (hence, pΨn(ψ′n) is identical for all ψ′n

of the same type).

Hence, we can rewrite the expectation as

E


Wn




 ⋃

θ∈P0(Sn|Xn)

T n
ρWθ ,δ

(Ψ′n)



∣∣∣∣Xn, Sn






4Types are permutation invariant.
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=
∑

(ψn,xn,sn)∈T n
pΨXS

pΨnXnSn(ψn, xn, sn)EΨ′n


W




 ⋃

θ∈P0(Sn|Xn)

T n
ρWθ ,δ

(Ψ′n)



∣∣∣∣xn, sn






= E


W




 ⋃

θ∈P0(Sn|Xn)

T n
ρWθ ,δ

(Ψ′n)



∣∣∣∣x̃n, s̃n




 ,

for all (ψn, x̃n, s̃n) ∈ T n
pΨXS

.

APPENDIX E

PROOF OF LEMMA 1

Proof of Lemma 1. We consider both, the error probability and the information leakage. Let the maximum error

probability and the information leakage, respectively, be given as

ê(Kn) := max
f∈F

max
j∈Jn

∑

xn∈Xn

E(xn|j)Wn(Dc
j |x

n, f(xn)),

lim
n→∞

max
f∈F

max
u∈Un

I(pJn
;EuV

n
f ) = 0

Using the same (n, Jn) deterministic wiretap code Kn, fulfilling the above criteria and considering now the

maximization over θ ∈ P(Sn|Xn) we can express the maximum error probability of transmitting one codeword as

max
j∈Jn

∑

xn∈Xn

E(xn|j)Wn
θ (D

c
j |x

n) = max
j∈Jn

∑

xn∈Xn

∑

sn∈Sn

E(xn|j)θ(sn|xn)Wn(Dc
j |x

n, sn),

and hence we have

max
j∈Jn

∑

xn∈Xn

∑

sn∈Sn

E(xn|j)θ(sn|xn)Wn(Dc
j |x

n, sn) ≤ max
f∈F

max
j∈Jn

∑

xn∈Xn

E(xn|j)Wn(Dc
j |x

n, f(xn))

≤ max
θ∈P(Sn|Xn)

max
j∈Jn

∑

xn∈Xn

E(xn|j)Wn
θ (D

c
j |x

n)

= ê(Kn)

Since the mutual information is convex (row convex) with respect to the channel for fixed input/ input distribution,

the optimal jamming strategy with respect to the reliability constraint is achieved at the boundary of the probability

polytope,i.e., is deterministic, [91, Proposition 2.4.1]. Hence, even though the set of stochastic jamming strategies

is larger than the set of deterministic jamming strategies, both will lead to the same error expression.

Since

EuV
n
f =

∑

xn∈Xn

Eu(x
n|j)V n(zn|xn, f(xn)),

V nθ =
∑

sn∈Sn

θ(sn|xn)V n(zn|xn, sn),

EuV
n
θ =

∑

xn∈Xn

Eu(x
n|j)

∑

sn∈Sn

θ(sn|xn)V n(zn|xn, sn),
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for the leakage we can show that

max
f∈F

I(pJn
;EuV

n
f ) = max

θ∈P(Sn|Xn)
I(pJn

;EuV
n
θn)

because the mutual information is convex in V n(zn|xn, sn) for fixed input distribution. Hence, taking convex

combinations of V n(zn|xn, sn) does not increase the leakage term. Using Jensen’s inequality and the fact that each

value of I(pJn
;EuV

n
f ) can also be achieved by I(pJn

;EuV
n
θn), since the deterministic mappings F are a subset

of the stochastic mappings P(Sn|Xn), F ⊂ P(Sn|Xn), the equality is established, [62].

APPENDIX F

PROOF OF THEOREM 1

The extension from the standard AVWC to the case where the jammer knows additionally the channel input

is not trivial. When using standard proof techniques from the AVWC, the jammer might be able to locate a

channel input xn to a specific deterministic wiretap codebook Kn. This automatically leads to the consideration

of the deterministic code secrecy capacity of an AVWC under the maximum error criterion. Even without secrecy

constraints, this problem remains unsolved, [12], [65]. To ensure that the confusion at the jammer with respect to

the used codebook is sufficiently high, even if the channel input xn is non-causally known, we fulfill an additional

requirement in contrast to the standard AVWC. The used codewords xn occur in multiple codebooks Kn,Un
, where

Un is the set of codebooks containing xn as codeword.

We use random coding arguments as in [43] and generate random sets of deterministic wiretap codebooks. Note

that we have to take into account that the jammer possesses non-causal knowledge about the channel input (and

we allow knowledge of the messages, since we consider the maximum error), which results in a different error

probability. For the prefixing we follow [2, Lemma 4 and its proof], or [84, p.97, Addition of prefix channel]

with slight modifications. In the original system model (Figure 1) the jammer knows the channel input Xn
u . If we

concatenate a channel with the AVWC, and call the prefix variable Ψnu, then the jammer does not know the channel

input Ψnu of the concatenated channel but an intermediate variable Xn, which is in fact the channel input of the

original channel. However, we adopt the codebook generation and decoding regions according to the concatenated

channels ρW and ρV , respectively, with

ρW =
∑

x∈X

ρ(x|ψ)W (y|x, s)

ρV =
∑

x∈X

ρ(x|ψ)V (z|x, s).

For the secrecy analysis, we have to show that the leakage to the eavesdropper vanishes asymptotically. For the

leakage analysis, we consider the mutual information I(pJn
;EuρV

n
θ∗) Last, we show that the probability of obtaining

codes for which both the decoding error probability and the leakage vanish asymptotically approaches one. For the

converse, we modify the standard converse proof for the WTC.

A. Codebook Generation

We assume that for all u ∈ Un, pU (u) =
1

|Un|
. Let p ∈ P(Ψ) be given. Partition the set of typical sequences T n

p,δ

into disjoint subsets C(j,l) of size |C(j,l)| =
|T n

p,δ|

|Jn||Ln|
. Here j ∈ Jn = {1, 2, . . . , Jn} and l ∈ Ln = {1, 2, . . . , Ln}
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correspond to the secure and confusing messages, respectively. We have Jn ·Ln = exp {nR}, and the transmission

rate R will determined later. Let the random variable Ψnujl denote the codeword for the message pair (j, l) ∈ Jn×Ln,

if the CR has the realization U = u. The codewords Ψnujl and Ψnu(jl)′ are independent of each other for all

(j, l) 6= (j, l)′. Let χ̂ := {Ψnujl : j ∈ Jn, l ∈ Ln, u ∈ Un} be the family of RV, representing the random codewords.

We start by generating a deterministic wiretap code for each u ∈ Un (still random in terms of random coding

arguments). To indicate that each codebook at this point is a random variable, we add the argument χ̂. For each

codebook Kn,u(χ̂), we draw Jn ·Ln codewords Ψnujl uniformly from the subsets C(j,l). For each Ψnujl we generate

the conditional typical set T n
ρ,δ(Ψ

n
ujl) and choose randomly Xn uniformly distributed over T n

ρ,δ(Ψ
n
ujl) as the channel

input.

B. Decoding regions

Let D̂′
ujl(χ̂) be given as

D̂′
ujl(χ̂) =

⋃

θ∈P0(Sn|Xn)

T n
ρWθ ,δ

(Ψnujl).

with5 (ρWθ)(y|ψ) =
∑

x∈X
s∈S

ρ(x|ψ)θ(s|x)W )(y|x, s).

Then, we can define the decoding sets D̂ujl(χ̂) as follows.

D̂ujl(χ̂) = D̂′
ujl(χ̂)

⋂




⋃

(jl)′∈Jn×Ln

(jl)′ 6=(jl)

D̂′
u(jl)′ (χ̂)




c

(30)

C. Codebook properties for reliability

As already mentioned, we have to make sure, that every codeword occurs in multiple codebooks. By generating

the codebooks Kn,u(χ̂), u ∈ Un as above, there are at most

|T n
p,δ|

Jn · Ln
= exp {n(H(Ψ)−R+ ǫ1(n))}

nonoverlapping codebooks in the worst case, where R corresponds to the code rate of a code with Jn ·Ln messages.

Intuitively, to ensure the occurrence of each codeword in k codebooks (on average), we should use an amount of

CR which corresponds roughly to

|Un| ≥ k exp {n(H(Ψ)−R + ǫ1(n))}.

Later, we will derive a lower bound on the amount of CR, explicitly. We follow and extend the ideas of [63], [70]

and [43]. Here, in contrast to the classical DMC, we have three error terms:

• given the received sequence Y n, we do not find sequences Ψnujl and a channel input Xn ∈ T n
ρ,δ(Ψ

n
ujl), such

that Y n is conditional typical given Ψnujl and Xn ∈ T n
ρ,δ(Ψ

n
ujl),

5Note that θ(s|x), x ∈ X , s ∈ S is a single letter distribution on the set of all possible conditional types of sn given xn.
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• given the received sequence Y n which is conditional typical given the codeword Ψnujl and the channel input

Xn ∈ T n
ρ,δ(Ψ

n
ujl), we find another codeword Ψn

u(jl)′ and channel input X ′n ∈ T n
ρ,δ(Ψ

n
u(jl)′ ), such that Y n is

conditional typical given Ψnu(jl)′ and X ′n ∈ T n
ρ,δ(Ψ

n
u(jl)′ ),

• given the received sequence Y n, there exist CR realizations u, such that for some messages (j, l) ∈ Jn×Ln,

the codeword Ψnujl = ψn, the channel input Xn ∈ T n
ρ,δ(Ψ

n
ujl), X

n = xn, and the state sequence Sn = sn,

the probability of Y n ∈ D̂c
ujl(χ̂) is lower bounded by some λ.

Since we apply random codes, we do actually not know which codebook realizations (in terms of random coding

arguments) lead to a good error performance. But we know that the error probability vanishes averaged over a set

of codebooks. Since the codewords occur in multiple codebooks, we have to take care of the situation that the

codewords perform well in some codebooks, but not so well in others.

First, let us fix a pair (j, l) ∈ Jn × Ln. Randomly pick and fix the sequences ψn ∈ C(j,l), x
n ∈ T n

ρ,δ(ψ
n) and

sn ∈ Sn. The probability, that ∃θ ∈ P0(Sn|Xn) : (ψn, xn, sn) ∈ TpΨ×ρ×θ,δ is close to one according to Lemma

12. For now, assume that ∃θ ∈ P0(Sn|Xn) : (ψn, xn, sn) ∈ TpΨ×ρ×θ,δ We have to show that if the sequence ψn

is a codeword (occurring in multiple codebooks), then the state sequence is bad only for few codebooks, such that

averaged over all codebooks, the error probability still vanishes. This has to hold for all pairs (j, l), sequences

ψn ∈ C(j,l), x
n ∈ T n

ρ,δ(ψ
n), and sn ∈ Sn for which there exists θ ∈ P0(Sn|Xn) : (ψn, xn, sn) ∈ TpΨ×ρ×θ,δ. We

now can define the sets U(j, l, ψn, xn, χ̂) and U0(j, l, ψ
n, xn, sn, χ̂) as

U(j, l, ψn, xn, χ̂) :=
{
u : Ψnujl = ψn, Xn = xn

}
,

U0(j, l, ψ
n, xn, sn, χ̂) :=

{
u : Ψnujl = ψn, Xn = xn, and Wn(D̂c

ujl(χ̂)|x
n, sn) > λ

}
.

Here, U(j, l, ψn, xn, χ̂) denotes the set of all codebooks, for which the sequence ψn is the codeword for

the message pair (j, l) and xn is the corresponding channel input, and U0(j, l, ψ
n, xn, sn, χ̂) is the set of all

codebooks,for which the sequence ψn is the codeword for the message pair (j, l), xn is the corresponding channel

input, and the error bound λ is not met.

We can define the binary random variable B(u, j, l, ψn, xn, χ̂) as

B(u, j, l, ψn, xn, χ̂) =




1 if u ∈ U(j, l, ψn, xn, χ̂)

0 else.

(31)

Pr{B(u, j, l, ψn, xn, χ̂) = 1} = Pr{Ψnujl = ψn}Pr{Xn = xn|Ψnujl = ψn} (32)

=
1

|C(j,l)|

1

|T n
ρ,δ(ψ

n)|
, ∀u ∈ Un, ∀(j, l) ∈ Jn × Ln. (33)

It indicates whether the sequences ψn and xn are the prefix variable and the channel input realizations for the

codebook realization u and the message pair (j, l). By the Chernoff bound we obtain

Pr {|U(j, l, ψn, xn, χ̂)| ≤ (1− ǫ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}}

= Pr

{∑

u∈Un

B(u, j, l, ψn, xn, χ̂) ≤ (1− ǫ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}

}
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≤ expe

{
−
3ǫ22n|Un|Jn · Ln exp{−n(H(X |Ψ)+ δ)}

8|T n
p,δ|

}

≤ expe

{
−
3

8
ǫ22n|Un| exp{−n(H(X,Ψ)−R+ δ̃)}

}
.

Next, we will upper bound the probability that |U0(j, l, ψ
n, xn, sn, χ̂)| exceeds its expected value. We define the

binary random variable B̃(j, l, ψn, xn, sn, u, λ, χ̂) as

B̃(j, l, ψn, xn, sn, u, λ, χ̂) =




1 if u ∈ U0(j, l, ψ

n, xn, sn, χ̂)

0 else.

(34)

Pr
{
B̃(j, l, ψn, xn, sn, u, λ, χ̂) = 1

}
= Pr{B(u, j, l, ψn, xn, χ̂) = 1}· (35)

· Pr
{
Wn(D̂c

ujl(χ̂)|x
n, sn) > λ|B(u, j, l, ψn, xn, χ̂) = 1

}
. (36)

It indicates whether the sequences ψn and xn are the prefix variable and the channel input realizations for the

codebook realization u and the message pair (j, l), and the error bound λ is not met.

We consider the case that the error bound is not met for a fixed u ∈ Un. By the Markov inequality Lemma 4

and by Lemma 13 we have

Pr
{
Wn(D̂c

ujl(χ̂)|x
n, sn) > λ|B(u, j, l, ψn, xn, χ̂) = 1

}

(a)

≤
E
[
Wn(D̂c

ujl(χ̂)|x
n, sn)|B(u, j, l, ψn, xn, χ̂) = 1

]

λ

≤

E

[(
Wn

(
D̂′c
ujl(χ̂)|x

n, sn
)
+Wn

(
⋃

(j,l)′∈Jn×Ln

(j,l)′ 6=(j,l)

D̂′
u(jl)′ (χ̂)|x

n, sn

))∣∣∣B(u, j, l, ψn, xn, χ̂) = 1

]

λ

(b)

≤
exp{−nc′δ′2}

λ
+

∑
(j,l)′∈Jn×Ln

(j,l)′ 6=(j,l)

E
[(
Wn

(
D̂′
u(jl)′ (χ̂)|x

n, sn
)) ∣∣∣B(u, j, l, ψn, xn, χ̂) = 1

]

λ

≤
exp{−nc′δ′2}

λ
+

∑
(j,l)′∈Jn×Ln

(j,l)′ 6=(j,l)

E


Wn




 ⋃

θ∈P0(Sn|Xn)

T n
ρθW,δ(Ψ

n
u(jl)′)



∣∣∣∣xn, sn



∣∣∣B(u, j, l, ψn, xn, χ̂) = 1




λ

(c)

≤
exp{−nc′δ′2}

λ
+

∑

(j,l)′∈Jn×Ln

(j,l)′ 6=(j,l)

exp
{
−n
(
min

W∈
̂̂
W
I(pΨ; ρW )− ν

)}

λ

≤
exp{−nc′δ′2}

λ
+

exp
{
−n
(
min

W∈
̂̂
W
I(pΨ; ρW )− R− ν

)}

λ
.

Here, (a) follows by the Markov inequality (Lemma 4), (b) follows by Lemma 8 and the union bound, and (c)

follows by Lemma 13 and the fact that Ψnu(jl)′ and Ψnujl are independent of each other.

Then, identifying p1 in Lemma 5 as

p1 =
exp{−nc′δ′2}

λ
+

exp
{
−n
(
min

W∈
̂̂
W
I(pΨ; ρW )−R− ν

)}

λ
,
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we can bound the probability that |U0(j, l, ψ
n, xn, sn, χ̂)| exceeds a certain value as

Pr {|U0(j, l, ψ
n, xn, sn, χ̂)| ≥ (1 + ǫ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1}

= Pr

{∑

u∈Un

B̃(j, l, ψn, xn, sn, u, λ, χ̂) ≥ (1 + ǫ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1

}

≤ expe




−

ǫ22n|Un| exp{−n(H(X,Ψ)−R+ δ̃)}

(
exp{−nc′δ′}

λ
+

exp
{
−n

(
min

W∈
̂̂
W
I(pΨ;ρW )−R−ν

)}

λ

)

8




.

Hence for all |Un| fulfilling

|Un| > exp {n(H(X,Ψ)−R+ δ̃)}


exp{−nc′δ′}

λ
+

exp
{
−n
(
min

W∈
̂̂
W
I(pΨ; ρW )−R− ν

)}

λ




−1

the probabilities that codewords do not occur in at least 1− ǫ2 times the expected number of codebooks and that

codewords occur in more than 1 + ǫ2 times the expected number of codebooks for which the error bound is not

met, vanish super exponentially fast.

The above described events have to hold for all (j, l) ∈ Jn × Ln, ψn ∈ C(j,l) x
n ∈ T n

ρ,δ(ψ
n) and sn ∈ Sn, for

which there exists θ ∈ P0(Sn|Xn) : (ψn, xn, sn) ∈ TpΨ×ρ×θ,δ . Hence,

Pr





⋂

(j,l)∈Jn×Ln

⋂

ψn∈C(j,l)

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ

{|U0(j, l, ψ
n, xn, sn, χ̂)| ≤ (1 + ǫ2)|Un| · Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1}





= 1− Pr








⋂

(j,l)∈Jn×Ln

⋂

ψn∈C(j,l)

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ

{|U0(j, l, ψ
n, xn, sn, χ̂)| ≤ (1 + ǫ2)|Un| · Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1}




c


(a)

≥ 1− |Jn||Ln|
|T n
p,δ|

|Jn||Ln|
|T n
ρ,δ||S

n| expe

{
−
ǫ22n|Un| exp {−n(H(X,Ψ)−R+ ǫ1(n))}

8

exp{−nc′δ′}

λ
+

exp
{
−n
(
min

W∈
̂̂
W
I(pΨ; ρW )−R− ν

)}

λ







= 1− |T n
p,δ||T

n
ρ,δ||S

n| expe

{
−
ǫ22n|Un| exp {−n(H(X,Ψ)−R+ ǫ1(n))}

8

exp{−nc′δ′}

λ
+

exp
{
−n
(
min

W∈
̂̂
W
I(pΨ; ρW )−R− ν

)}

λ







and

Pr





⋂

(j,l)∈Jn×Ln

⋂

ψn∈C(j,l)

⋂

xn∈T n
ρ,δ

(ψn)

⋂

sn∈Sn

{|U(j, l, ψn, xn, χ̂)| ≤ (1 − ǫ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}}




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= 1− Pr






 ⋂

(j,l)∈Jn×Ln

⋂

ψn∈C(j,l)

⋂

xn∈T n
ρ,δ

(ψn)

⋂

sn∈Sn

{|U(j, l, ψn, xn, χ̂)| ≤ (1− ǫ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}})c}

(b)

≥ 1− |Jn||Ln|
|T n
p,δ|

|Jn||Ln|
|T n
ρ,δ||S

n| expe

{
−
3ǫ22n|Un|Jn · Ln
8|T n

p,δ||T
n
ρ,δ|

}

= 1− |T n
p,δ||T

n
ρ,δ||S

n| expe

{
−
3ǫ22n|Un|Jn · Ln
8|T n

p,δ||T
n
ρ,δ|

}
.

Here, (a) and (b) follow by the union bound and summing over all (j, l) ∈ Jn × Ln, ψn ∈ C(j,l) x
n ∈ T n

ρ,δ(ψ
n)

and sn ∈ Sn.

Furthermore, we bound the probability that the amount of sequences (ψn, xn, f(xn)) for which there does not

exist a θ ∈ P0(Sn|Xn) : (ψn, xn, f(xn)) ∈ TpΨ×ρ×θ,δ is not ǫ3 close to its expected value, vanishes super

exponentially fast. More explicitly, for any (j, l) ∈ Jn × Ln we have

Pr
{∣∣{(ψn, xn, f(xn)) : ∄θ ∈ P0(S

n|Xn) : (ψn, xn, f(xn)) ∈ TpΨ×ρ×θ,δ}
∣∣ ≥

(1 + ǫ3)|C(j,l)||T
n
ρ,δ(ψ

n)|(n+ 1)|X ||S| exp{−n min
θ∈P0(Sn|Xn)

hθ(δ)}

}

≤ expe

{
−
ǫ23n|C(j,l)||T

n
ρ,δ(ψ

n)|(n+ 1)|X ||S| exp{−nminθ∈P0(Sn|Xn) hθ(δ)}

8

}

≤ expe

{
−
ǫ23n exp{n(H(ΨX)−R+ ǫ1(n))}(n+ 1)|X ||S| exp{−nminθ∈P0(Sn|Xn) hθ(δ)}

8

}

= expe

{
−
ǫ23n exp{n(H(ΨX)−R+ ǫ1(n)− λ̂)}

8

}
,

where the last inequality vanishes super exponentially fast in n.

D. Codebook realization

Now, let Kran
n be a codebook realization of Kran

n (χ̂), fulfilling the aforementioned properties (codewords occur in

sufficiently many (deterministic) codebooks, indexed by the realization of the CR, and are bad only for few), with

D′
ujl as

D̂′
ujl =

⋃

θ∈P0(Sn|Xn)

T n
ρWθ ,δ

(ψnujl).

with6 (ρWθ)(y|ψ) =
∑

x∈X
s∈S

ρ(xψ)θ(s|x)W )(y|x, s)

and decoding sets Dujl, being as follows.

Dujl = D′
ujl

⋂




⋃

(jl)′∈Jn×Ln

(jl) 6=(jl)′

D′
u(jl)′




c

(37)

6Note that θ(s|x), x ∈ X , s ∈ S is a single letter distribution on the set of all possible conditional types of sn given xn.
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E. Adaptation of the error criterion

We will modify the error criterion and require that both the secret message J and the confusing message L

should be successfully decoded at Bob.

Hence, we have

max
j∈Jn

max
l∈Ln

max
f∈F

∑

u∈Un

pU (u)
∑

ψn∈Ψn

Eu(ψ
n|j)

∑

xn∈T n
ρ,δ

(ψn)

1

|T n
ρ,δ(ψ

n)|
Wn(Dc

ujl|x
n, f(xn))

= max
j∈Jn

max
l∈Ln

max
f∈F

∑

ψn∈Ψn

∑

xn∈T n
ρ,δ

(ψn)

∑

u∈Un

pU (u)E(ψn|j, l, u)
1

|T n
ρ,δ(ψ

n)|
Wn(Dc

ujl|x
n, f(xn))

= max
j∈Jn

max
l∈Ln

max
f∈F

∑

u∈Un

pU (u)
∑

ψn∈Ψ
n

xn∈T n
ρ,δ(ψ

n)

∃θ∈P0(S
n|Xn):(ψn,xn,f(xn))∈TpΨ×ρ×θ,δ

E(ψn|j, l, u)
1

|T nρ,δ(ψ
n)|

Wn(Dc
ujl|x

n, f(xn))

+ max
j∈Jn

max
l∈Ln

max
f∈F

∑

u∈Un

pU (u)
∑

ψn∈Ψ
n

xn∈T n
ρ,δ(ψ

n)

∄θ∈P0(S
n|Xn):(ψn,xn,f(xn))∈TpΨ×ρ×θ,δ

E(ψn|j, l, u)
1

|T n
ρ,δ(ψ

n)|
Wn(Dc

ujl|x
n, f(xn))

≤ max
j∈Jn

max
l∈Ln

max
f∈F

∑

u∈Un

pU (u)
∑

ψn∈Ψ
n

xn∈T n
ρ,δ(ψ

n)

∃θ∈P0(S
n|Xn):(ψn,xn,f(xn))∈TpΨ×ρ×θ,δ

E(ψn|j, l, u)
1

|T nρ,δ(ψ
n)|

Wn(Dc
ujl|x

n, f(xn))

+ max
j∈Jn

max
l∈Ln

max
f∈F

∑

ψn∈C(j,l)

xn∈T n
ρ,δ(ψ

n)

∄θ∈P0(S
n|Xn):(ψn,xn,f(xn))∈TpΨ×ρ×θ,δ

1

|C(j,l)|

1

|T n
ρ,δ(ψ

n)|

(a)

≤ max
j∈Jn

max
l∈Ln

max
f∈F

∑

u∈Un

pU (u)
∑

ψn∈Ψ
n

xn∈T n
ρ,δ(ψ

n)

∃θ∈P0(S
n|Xn):(ψn,xn,f(xn))∈TpΨ×ρ×θ,δ

E(ψn|j, l, u)
1

|T n
ρ,δ(ψ

n)|
Wn(Dc

ujl|x
n, f(xn))

+ max
j∈Jn

max
l∈Ln

(1 + ǫ3)|C(j,l)||T
n
ρ,δ(ψ

n)|(n+ 1)|X ||S| exp{−nminθ∈P0(Sn|Xn) hθ(δ)}

|C(j,l)||T
n
ρ,δ(ψ

n)|

= max
j∈Jn

max
l∈Ln

max
f∈F

∑

u∈Un

pU (u)
∑

ψn∈Ψ
n

xn∈T n
ρ,δ(ψ

n)

∃θ∈P0(S
n|Xn):(ψn,xn,f(xn))∈TpΨ×ρ×θ,δ

E(ψn|j, l, u)
1

|T nρ,δ(ψ
n)|

Wn(Dc
ujl|x

n, f(xn))

+ (1 + ǫ3)(n+ 1)|X ||S| exp{−n min
θ∈P0(Sn|Xn)

hθ(δ)}

≤ max
j∈Jn

max
l∈Ln

max
f∈F

∑

ψn∈Ψ
n

xn∈T n
ρ,δ(ψ

n)

∃θ∈P0(S
n|Xn):(ψn,xn,f(xn))∈TpΨ×ρ×θ,δ

∑

u∈Un

pUJLΨnXn(u, j, l, ψn, xn)Wn(Dc
u,j,l|x

n, f(xn)) + exp{−nλ̂}

= max
j∈Jn

max
l∈Ln

max
f∈F

∑

ψn∈Ψ
n

xn∈T n
ρ,δ(ψ

n)

∃θ∈P0(S
n|Xn):(ψn,xn,f(xn))∈TpΨ×ρ×θ,δ

∑

u∈Un

pU|JLΨnXn(u|j, l, ψn, xn)pJLΨnXn(j, l, ψn, xn)Wn(Dc
ujl|x

n, f(xn)) + exp{−nλ̂}

≤ max
j∈Jn

max
l∈Ln

max
f∈F

max
ψn∈Ψ

n

xn∈T n
ρ,δ(ψ

n)

∃θ∈P0(S
n|Xn):(ψn,xn,f(xn))∈TpΨ×ρ×θ,δ

∑

u∈Un

pU|ΨnXnJL(u|ψ
n, xn, j, l)Wn(Dc

ujl|x
n, f(xn)) + exp{−nλ̂}
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≤ max
j∈Jn

max
l∈Ln

max
ψn∈Ψ

n

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ

∑

u∈Un

pU|ΨnXnJL(u|ψ
n, xn, j, l)Wn(Dc

ujl|x
n, sn) + exp{−nλ̂}

:= ˆ̂e(Kran
n )

We first split the error probability into two terms with respect to sequences (ψn, xn, f(xn)). In the first term,

there exists a θ ∈ P0(Sn|Xn) : (ψn, xn, f(xn)) ∈ TpΨ×ρ×θ,δ, in the second term there does not exist such a

θ ∈ P0(Sn|Xn). Here, we have implicitly shown in Appendix F-C, that (a) follows with probability 1, where

Lemma 12 is applied.

Secondly, we consider the maximization over all terms ((ψn, xn, sn)). Our motivation to do so is to reduce the

size of the space, over which should be optimized. The family F = {f : Xn → Sn} consists of |F| = |Sn||X
n|

elements, hence it grows doubly exponentially with n. By considering the maximum with respect to xn, it is

sufficient to consider the state sequence sn maximizing the error probability. Hence, we can reduce the space size

used for optimization to Xn × Sn, which grows only exponentially in n.

F. Error Analysis

For the error probability we can overall conclude

ˆ̂e(Kran
n ) = exp{−nλ̂}+ max

j∈Jn

max
l∈Ln

max
ψn∈Ψ

n

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ

∑

u∈U(j,l,xn,ψn)

pU|ΨnXnJL(u|ψ
n, xn, j, l)Wn(Dc

ujl|x
n, sn)

= exp{−nλ̂}+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψ

n

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ


 ∑

u∈Uc
0 (j,l,ψ

n,xn,sn)

pU|ΨnXnJL(u|ψ
n, xn, j, l)Wn(Dc

ujl|x
n, sn)

+
∑

u∈U0(j,ψn,l,xn,sn)

pU|ΨnXnJL(u|ψ
n, xn, j, l)Wn(Dc

ujl|x
n, sn)




≤ exp{−nλ̂}+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψn

max
xn∈T n

ρ,δ
(ψn)

max
sn∈Sn

∑

u∈U0(j,ψn,l,xn,sn)

pU|ΨnXnJL(u|ψ
n, xn, j, l)Wn(Dc

ujl|x
n, sn)

≤ exp{−nλ̂}+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψ

n

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ

∑

u∈U0(j,ψn,l,xn,sn)

pU|ΨnXnJL(u|ψ
n, xn, j, l)

= exp{−nλ̂}+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψ

n

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ

∑

u∈U0(j,ψn,l,xn,sn)

pUΨnXnJL(u, ψ
n, xn, j, l)

pΨnXnJL(ψn, xn, j, l)

= exp{−nλ̂}+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψ

n

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ

∑
u∈U0(j,ψn,l,xn,sn) pUΨnXnJL(u, ψ

n, xn, j, l)
∑
u′∈U(j,l,ψn,xn) pUΨnXnJL(u′, ψn, xn, j, l)
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= exp{−nλ̂}+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψ

n

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ

∑
u∈U0(j,ψn,l,xn,sn) pU (u)pΨn|UJL(ψ

n|u, j, l)pXn|Ψn(xn|ψn)
∑

u′∈U(j,l,ψn,xn) pU (u
′)pΨn|UJL(ψn|u′, j, l)pXn|Ψn(xn|ψn)

= exp{−nλ̂}+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψ

n

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ

∑
u∈U0(j,ψn,l,xn,sn) pU (u)∑
u′∈U(j,l,ψn,xn) pU (u

′)

= exp{−nλ̂}+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψ

n

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ

|U0(j, l, ψ
n, xn, sn)|

|U(j, l, ψn, xn)|
.

In Appendix F-C, we have implicitly shown, that the probability

Pr

{
|U0(j, l, ψ

n, xn, sn)|

|U(j, l, ψn, xn)|
≥

(1 + ǫ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1
(1− ǫ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}

}

vanishes super exponentially fast. Hence, with probability 1, we can upper bound ˆ̂e(Kran
n ) as

ˆ̂e(Kran
n ) ≤ exp{−nλ̂}+ λ+ max

j∈Jn

max
l∈Ln

max
ψn∈Ψ

n

xn∈T n
ρ,δ(ψ

n)

sn∈Sn

∃θ∈P0(S
n|Xn):(ψn,xn,sn)∈TpΨ×ρ×θ,δ

(1 + ǫ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1
(1− ǫ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}

= exp{−nλ̂}+ λ+
1 + ǫ2
1− ǫ2


exp{−nc′δ′}

λ
+

exp
{
−n
(
min

W∈
̂̂
W
I(pΨ; ρW )−R− ν

)}

λ




We choose

R ≤ min
W∈

̂̂
W

I(pΨ; ρW )− ν

λ = exp{−n
τ

2
},

τ < min

{
c′δ′, min

W∈
̂̂
W

I(pΨ; ρW )−R− ν

}

and have shown an exponential vanishing error probability.

G. Codebook properties for secure communication

We have to show that the leakage to the eavesdropper vanishes asymptotically. Therefore, we make use of the

fact that there exists a best channel to the eavesdropper and the fact that the probability that the implied probability

distributions are not in an ǫ region around the expected typical ones can be upper bounded using Chernoff bounds.

Then we apply Lemma 3. If the variation distance of the channel output probability distribution and the conditional

channel output probability distribution can be upper bounded, then the leakage can be upper bounded as well. To

upper bound the variation distance, the triangle inequality will be used in combination with properties of typical

sequences. Note that the existence of a best channel to the eavesdropper is crucial at this point to reduce the

jammer’s possible choices of jamming sequence from double exponentially many to exactly one, for the case of a

best channel to the eavesdropper.
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Notice that in contrast to the error analysis we do not average with respect to the CR when considering the leakage.

In other words, the leakage has to vanish for all u ∈ Un, hence we will omit indexing on u. Operationally, that

means the eavesdropper may have access to the CR. It is sufficient to consider the best channel to the eavesdropper,

invoked by θ∗,n ∈ Pn(S|X ), since fulfilling the secrecy requirement for the best channel to the eavesdropper

implies that the secrecy requirement is fulfilled for all other channels to the eavesdropper by the data processing

inequality, as well.

For a fixed u ∈ Un, we have

I(pJn
;EuV

n
θ∗,n) = H(pJn

EuV
n
θ∗,n)−H(EuV

n
θ∗,n |pJn

) (= H(Znθ∗,n)−H(Znθ∗,n |J))

=
1

Jn

∑

j∈Jn

(H(pJn
EuV

n
θ∗,n)−H(EuV

n
θ∗,n |j))

=
1

Jn

∑

j∈Jn


H


 1

Jn

∑

j∈Jn

∑

ψn∈Ψn

∑

xn∈Tρ,δ(ψn)

pu(ψ
n|j)ρ(xn|ψn)Vθ∗,n(·|x

n)




−H


 ∑

ψn∈Ψn

∑

xn∈Tρ,δ(ψn)

pu(ψ
n|j)ρ(xn|ψn)Vθ∗,n(·|x

n)






=
1

Jn

∑

j∈Jn

(
H
(
ρV̄θ∗,n(·)

)
−H

(
ρV̂θ∗,n(·|j)

))
,

where we define

1

Jn

∑

j∈Jn

∑

ψn∈Ψn

∑

xn∈Tρ,δ(ψn)

pu(ψ
n|j)

1

|T n
ρ,δ(ψ

n)|
Vθ∗,n(·|x

n) = ρV̄θ∗,n(·)

∑

ψn∈Ψn

∑

xn∈Tρ,δ(ψn)

pu(ψ
n|j)

1

|T n
ρ,δ(ψ

n)|
Vθ∗,n(·|x

n) = ρV̂θ∗,n(·|j).

Now, if we can show that

||ρV̄θ∗,n(·)− ρV̂θ∗,n(·|j)||V ≤ ǫ3 ≤
1

2

then we can apply Lemma 3 and obtain

|H(ρV̄θ∗,n(·))−H(ρV̂θ∗,n(·|j))| ≤ −ǫ3 log
ǫ3

|Z|n

We extend [66] to prove that the secrecy requirement is fulfilled. For some Ω(Zn) that will be defined later in this

section, we have

||ρV̄θ∗,n(·)− ρV̂θ∗,n(·|j)||V ≤ ||ρV̂θ∗,n(·|j)− Ω(·)||V + ||Ω(·)− ρV̄θ∗,n(·)||V . (38)

We will concentrate on the first term, since

||Ω(·)− ρV̄θ∗,n(·)||V = ||
1

Jn

∑

j∈Jn

(
ρV̂θ∗,n(·|j)− Ω(·)

)
||V

≤
1

Jn

∑

j∈Jn

||ρV̂θ∗,n(·|j) − Ω(·)||V .
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Let (ψn, sn) have type p0 ∈ Pn0 (Ψ
nSn), with

p0(ψ
n, sn) = pn(ψn)

∑

xn∈Tρ,δ(ψn)

1

|Tρ,δ(ψn)|
θ∗,n(sn|xn)

= pn(ψn)
∑

xn∈Tρ,δ(ψn)

1

|Tρ,δ(ψn)|

n∏

i=1

θ∗i (si|xi)

(a)
= pn(ψn)

∑

xn∈Tρ,δ(ψn)

1

|Tρ,δ(ψn)|

n∏

i=1

θ∗(si|xi),

where (a) follows because of Definition 7. This effectively transforms the channel Vθ∗,n(z
n|xn) to a DMC with

transition probability Vθ∗,n(z
n|xn) =

∏n
i=1

∑
s∈S θ

∗(si|xi)V (zi|xi, si). We define the set ε1(ψ
n) and Ω̃(zn) as

ε1(ψ
n) = T n

ρVθ∗ ,δ
(ψn), (39)

Ω̃(zn) = EΨn [ρV nθ∗,n(z
n|Ψn)1ε1(Ψn)(z

n)], (40)

where we take the expectation over all ψn ∈ T n
p,δ , and ρV nθ∗,n(z

n|ψn) is defined as

ρV nθ∗,n(z
n|ψn) =

∑

xn∈T n
ρ,δ

(ψn)

1

|Tρ,δ(ψn)|

∑

sn∈Sn

θ∗,n(sn|xn)V n(zn|xn, sn)

Further, we define the set

ε2 :=
{
zn ∈ TZθ∗,n ,2|X ||Ψ|δ : Ω̃(z

n) ≥ exp{−nc′δ2} exp{−n(H(Zθ∗) + f1(δ))}
}
, (41)

with

|TZθ∗,n ,2|X ||Ψ|δ| ≤ exp{n(H(Zθ∗) + f1(δ))},

ǫn = exp{−nc′δ2}.

where these bounds follow by Lemmas 7 and 8, respectively. We set

Ω(zn) = Ω̃(zn)1ε2(z
n). (42)

By definition, Ω(zn) ≥ ǫn exp{−n(H(Zθ∗) + f1(δ))}, for all zn ∈ ε2, else Ω(zn) = 0. Note, that when summing

up over all zn ∈ ε2 we get

∑

zn∈ε2

Ω(zn) = Ω(ε2)

= Ω̃(ε2)

= Ω̃
(
TZθ∗,n ,2|X ||Ψ|δ

)
− Ω̃

(
TZθ∗,n ,2|X ||Ψ|δ \ ε2

)

≥ 1− 2ǫn,

where the inequality follows by the properties of typical sets and sequences, Lemma 8, hence by Ω̃
(
TZθ∗,n ,2|X ||Ψ|δ

)
≥

1− ǫn, and Ω̃
(
TZθ∗,n ,2|X ||Ψ|δ \ ε2

)
≤ ǫn. Similar to [66] we obtain a modification of ρV nθ∗,n as

Qθ∗,n(z
n|ψn) := ρV nθ∗,n(z

n|ψn)1ε1(ψn)(z
n)1ε2(z

n), (43)

April 15, 2022 DRAFT



41

and can define the event

ι1(j, z
n) :=

{
1

Ln

Ln∑

l=1

Qθ∗,n(Ψ
n
jl|z

n) ∈ [(1± ǫn)Ω(z
n)]

}
(44)

Lemma 14. For τa > 0, the probability that ι1(j, z
n) is not fulfilled can be upper bounded as

Pr{ι1(j, z
n)c} ≤ 2 expe

{
−
1

3
exp{nτa}

}
(45)

Proof. We will apply a Chernoff-Hoeffding bound, Lemma 6.

Pr

{
1

Ln

Ln∑

l=1

Qθ∗,n(z
n|Ψnjl) /∈ [(1± ǫn)Ω(z

n)]

}
≤ 2 expe

(
−Ln

ǫ2nΩ(z
n)

3bn

)
.

We can plug in the bounds for Qθ∗,n(Ψ
n
jl, z

n) according to ε1(ψ
n), and Ω(zn) according to ε2,

Qθ∗,n(z
n|Ψnjl) ≤ exp{−n(H(Zθ∗|Ψ)− f2(δ))},

Ω(zn) ≥ ǫn exp{−n(H(Zθ∗) + f1(δ))},

and obtain for the exponent

−Ln
ǫ2nΩ(z

n)

3bn
≤ −

1

3
Lnǫ

3
n exp{−n(H(Zθ∗) + f1(δ))} exp{n(H(Zθ∗ |Ψ)− f2(δ))}

= −
1

3
Ln exp{−n(H(Zθ∗)−H(Zθ∗ |Ψ) + f1(δ) + f2(δ)) + 3c′δ2}

= −
1

3
Ln exp{−n(I(Zθ∗; Ψ) + f1(δ) + f2(δ)) + 3c′δ2}.

If we choose Ln to be

Ln ≥ exp{n(I(Zθ∗ ; Ψ) + f1(δ) + f2(δ) + 3c′δ2 + τa)},

lim
δ→0

f1(δ) = lim
δ→0

f2(δ) = lim
δ→0

3c′δ2 = 0,

then the probability that ι1(j, z
n) is not fulfilled vanishes doubly exponentially fast.

We define the event ι0 as the event that ι1(j, z
n) holds for all j ∈ Jn, zn ∈ Zn, and u ∈ Un

ι0 :=
⋂

j∈Jn

⋂

zn∈Zn

⋂

u∈Un

ι1(j, z
n). (46)

We can bound the probability of ι0 from below as

Pr{ι0} = 1− Pr{ιc0}

= 1− Pr




⋃

j∈Jn

⋃

zn∈Zn

⋃

u∈Un

ιc1(j, z
n)





≥ 1− 2Jn|Z|n|Un| expe{−
1

3
exp{nτa}}.

Since Jn, |Z|n, and |Un| grow only exponentially fast in n, but Pr {ιc1(j, z
n)} vanishes doubly exponentially fast

in n, the probability that ι0 holds, approaches one.
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a) Leakage analysis: Let Kran
n be a realization of the random CR assisted code Kran

n (χ̂), fulfilling the required

properties for guaranteeing secrecy. Furthermore, let ψnjl be the codeword realization for the message pair (j, l) ∈

Jn × Ln for the CR assisted code Kran
n for a specific realization of u ∈ Un. Keep in mind that the leakage has to

vanish for all u ∈ Un, and that we omit the indexing on u as before. We can bound the first term in equation (38)

for any j ∈ Jn as

∥∥∥ρV̂θ∗,n(·|j)− Ω(·)
∥∥∥
V
≤

∥∥∥∥∥
1

Ln

Ln∑

l=1

Qθ∗,n(·|ψ
n
jl)− Ω(·)

∥∥∥∥∥
V

(47)

+

∥∥∥∥∥
1

Ln

Ln∑

l=1

ρV nθ∗,n(·|ψ
n
jl)1ε1(ψn

jl
)(·)(1Zn(·)− 1ε2(·))

∥∥∥∥∥
V

(48)

+

∥∥∥∥∥
1

Ln

Ln∑

l=1

ρV nθ∗,n(·|ψ
n
jl)(1Zn(·)− 1ε1(ψn

jl
)(·))

∥∥∥∥∥
V

. (49)

In the following, we bound the right hand side of (47), and the terms in (48), (49), individually.

The right hand side of (47) can be bounded by the result of Lemma 14 to
∥∥∥∥∥

1

Ln

Ln∑

l=1

Qθ∗,n(·|ψ
n
jl)− Ω(·)

∥∥∥∥∥
V

=
∑

zn∈Zn

∣∣∣∣∣
1

Ln

Ln∑

l=1

Qθ∗,n(z
n|ψnjl)− Ω(zn)

∣∣∣∣∣

≤
∑

zn∈Zn

ǫnΩ(z
n)

≤ ǫn

For (48), we obtain
∥∥∥∥∥

1

Ln

Ln∑

l=1

ρV nθ∗,n(·|ψ
n
jl)1ε1(ψn

jl
)(·)(1Zn(·) − 1ε2(·))

∥∥∥∥∥
V

=
∑

zn∈Zn

∣∣∣∣∣
1

Ln

Ln∑

l=1

ρV nθ∗,n(z
n|ψnjl)1ε1(ψn

jl
)(z

n)(1Zn(zn)− 1ε2(z
n))

∣∣∣∣∣

=
1

Ln

Ln∑

l=1

∑

zn∈Zn

ρV nθ∗,n(z
n|ψnjl)1ε1(ψn

jl
)(z

n)1Zn(zn)−
∑

zn∈Zn

1

Ln

Ln∑

l=1

ρV nθ∗,n(z
n|ψnjl)1ε1(ψn

jl
)(z

n)1ε2(z
n)

≤ 1−
∑

zn∈Zn

1

Ln

Ln∑

l=1

Qθ∗,n(z
n|ψnj,l)

≤ 1−
∑

zn∈Zn

(1− ǫn)Ω(z
n)

≤ 1− (1− ǫn)(1 − 2ǫn)

≤ 3ǫn − 2ǫ2n

≤ 3ǫn.

For (49), we obtain
∥∥∥∥∥

1

Ln

Ln∑

l=1

ρV nθ∗,n(·|ψ
n
jl)(1Zn(·)− 1ε1(ψn

jl
)(·))

∥∥∥∥∥
V

(a)
=

1

Ln

Ln∑

l=1

ρV nθ∗,n(ε
c
1(ψ

n
jl)|ψ

n
jl)
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(b)
=

1

Ln

∑

l∈Ln

ρV nθ∗,n(T
c
ρVθ∗,n,δ

(ψnjl)|ψ
n
jl)

(c)

≤
1

Ln

∑

l∈Ln

exp{−nc′δ2}

(d)
= ǫn.

Here, (a) follows by summing up only over zn ∈ εc1(·). (b) follows by the definition of ε1(ψ
n
jl). (c) follows since

the probability of not obtaining a conditional typical zn can be upper bounded. (d) follows since the upper bound

in (c) is valid for all ψnjl.

Therefore, for (38) we obtain

||ρV̄θ∗,n(Z
n)− ρV̂θ∗,n(Z

n|j)||V ≤ 10ǫn

I(pJn
;EuV

n
θ∗,n) ≤ 10nǫn log (|Z|)− 10ǫn log (10ǫn) ,

which vanishes as n goes to infinity because ǫn vanishes exponentially in n.

H. Existence of codes fulfilling both the error and the secrecy requirement

It remains to show that there exist codes fulfilling the error requirement and the secrecy requirement simultane-

ously.

Therefore, we define the following event.

ι̃ :=




ˆ̂e(Kran

n ) ≤ λ+
1 + ǫ2
1− ǫ2


exp{−nc′δ′}

λ
+

exp
{
−n
(
min

W∈
̂̂
W
I(pΨ; ρW )−R− ν

)}

λ







ι̂ := ι0 ∩ ι̃

Here, we can apply the union bound and obtain

Pr{ι̂} = 1− Pr{ι̂c} = 1− Pr{ιc0 ∪ ι̃
c} ≥ 1− Pr{ιc0} − Pr{ι̃c},

where both, Pr{ιc0} and Pr{ι̃c} vanish super exponentially fast. Hence, there exist codes fulfilling the aforemen-

tioned criteria simultaneously. Finally, we get the achievable CR assisted code secrecy rate as

̂̂
R
ran

S ≤ max
Ψ↔X↔(Y,Z)

(
min

θ∈P(S|X )
I(Ψ;Yθ)− max

θ∈P(S|X )
I(Ψ;Zθ)

)

= max
pΨρ(X|Ψ)

(
min
W∈

̂̂
W

I(pΨ; ρW )− min
V ∈

̂̂
V

I(PΨ; ρV )

)
.

I. Converse

What remains is to show the converse.

We adopt the standard converse of the WTC. As usual, we assumed strong secrecy in the achievability part and

show in the converse, that even with weak secrecy the upper and lower bounds match.
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Let nRL ≥ maxu∈U I(J ;Z
n
θ∗ |U = u). We consider a sequence (Kran

n )∞n=1 of (n, Jn,Un, pU ) wiretap codes for

which e(Kran
n ) = 0 and RL ≤ ǫ for an ǫ > 0, as n→ ∞.

nRs = H(J)

(a)

≤ min
θ∈P(Sn|Xn)

I(J ;Y nθ |U) + 1 + ǫ̂H(J),

→ nRs ≤
1

1− ǫ̂

(
min

θ∈P(Sn|Xn)
I(J ;Y nθ |U)− I(J ;Znθ∗ |U) + max

u∈U
I(J ;Znθ∗ |U = u) + 1

)

(b)

≤
1

1− ǫ̂

(
min

θ∈P(Sn|Xn)
I(J ;Y nθ |U)− I(J ;Znθ∗ |U) + nRL + 1

)

(c)

≤
1

1− ǫ̂

(
min

θ∈P(Sn|Xn)
I(J ;Y nθ |U)− I(J ;Znθ∗ |U) + nǫ+ 1

)

(d)
=

1

1− ǫ̂

(
min

θ∈P(Sn|Xn)
I(J, U ;Y nθ |U)− I(J, U ;Znθ∗|U) + nǫ+ 1

)

(e)
=

1

1− ǫ̂

(
min

θ∈P(Sn|Xn)
I(Ψ̃n;Y nθ |U)− I(Ψ̃n;Znθ∗ |U) + nǫ+ 1

)

(f)

≤
1

1− ǫ̂

(
max
u∈U

(
min

θ∈P(Sn|Xn)
I(Ψ̃n;Y nθ |U = u)− I(Ψ̃n;Znθ∗ |U = u) + nǫ+ 1

))

(g)
=

1

1− ǫ̂

(
min

θ∈P(Sn|Xn)
I(Ψ̃n;Y nθ )− I(Ψ̃n;Znθ∗) + nǫ+ 1

)

(h)

≤
1

1− ǫ̂

(
min

θn∈Pn(S|X )
I(Ψ̃n;Y nθn)− I(Ψ̃n;Znθ∗) + nǫ+ 1

)

=
1

1− ǫ̂

(
min

θn∈Pn(S|X )

n∑

i=1

I(Ψ̃n;Yi,θi |Y
i−1
θi−1)−

n∑

i=1

I(Ψ̃n;Zi,θ∗i |Z
n
i+1,θn,∗

i+1
) + nǫ+ 1

)

=
1

1− ǫ̂

(
min

θn∈Pn(S|X )

n∑

i=1

(
I(Ψ̃n, Zn

i+1,θn,∗
i+1

;Yi,θi |Y
i−1
θi−1)− I(Zn

i+1,θn,∗
i+1

;Yi,θi |Ψ̃
n, Y i−1

θi−1)
)

−
n∑

i=1

I(Ψ̃n;Zi,θ∗
i
|Zi+1
θi+1,∗) + nǫ+ 1

)

=
1

1− ǫ̂

(
min

θn∈Pn(S|X )

n∑

i=1

(
I(Ψ̃n, Zn

i+1,θn,∗
i+1

;Yi,θi |Y
i−1
θi−1)− I(Zn

i+1,θn,∗
i+1

;Yi,θi |Ψ̃
n, Y i−1

θi−1)
)

−
n∑

i=1

(
I(Ψ̃n, Y i−1

θi−1 ;Zi,θ∗
i
|Zi+1
θi+1,∗) + I(Y i−1

θi−1 ;Zi,θ∗
i
|Ψ̃n, Zi+1

θi+1,∗)
)
+ nǫ+ 1

)

(i)
=

1

1− ǫ̂

(
min

θn∈Pn(S|X )

n∑

i=1

I(Ψ̃n, Zni+1,θn,∗
i+1

;Yi,θi |Y
i−1
θi−1)−

n∑

i=1

I(Ψ̃n, Y i−1
θi−1 ;Zi,θ∗i |Z

i+1
θi+1,∗) + nǫ+ 1

)

=
1

1− ǫ̂

(
min

θn∈Pn(S|X )

n∑

i=1

(
I(Zni+1,θn,∗

i+1
;Yi,θi |Y

i−1
θi−1) + I(Ψ̃n;Yi,θi |Y

i−1
θi−1 , Z

n
i+1,θn,∗

i+1
)

−I(Y i−1
θi−1 ;Zi,θ∗i |Z

i+1
θi+1,∗)− I(Ψ̃n;Zi,θ∗

i
|Zi+1
θi+1,∗ , Y

i−1
θi−1)

)
+ nǫ+ 1

)

(j)
=

1

1− ǫ̂

(
min

θn∈Pn(S|X )

n∑

i=1

(
I(Ψ̃n;Yi,θi |Y

i−1
θi−1 , Z

n
i+1,θn,∗

i+1
)− I(Ψ̃n;Zi,θ∗i |Z

i+1
θi+1,∗ , Y

i−1
θi−1)

)
+ nǫ+ 1

)

(k)
=

1

1− ǫ̂

(
min

θn∈Pn(S|X )

n∑

i=1

(
I(Ψ̃n;Yi,θi |Vi)− I(Ψ̃n;Zi,θ∗i |Vi)

)
+ nǫ+ 1

)
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=
1

1− ǫ̂

(
min

θn∈Pn(S|X )

n∑

i=1

(
I(Ψ̃n, Vi;Yi,θi |Vi)− I(Ψ̃n, Vi;Zi,θ∗

i
|Vi)
)
+ nǫ+ 1

)

(l)
=

1

1− ǫ̂

(
min

θn∈Pn(S|X )

n∑

i=1

(
I(Ψ′

i;Yi,θi |Vi)− I(Ψ′
i;Zi,θ∗i |Vi)

)
+ nǫ+ 1

)

(m)
=

1

1− ǫ̂

(
min

θn∈Pn(S|X )
n(I(Ψ′

Q;YQ,θQ |VQ)− I(Ψ′
Q;ZQ,θ∗Q |VQ, Q)) + nǫ+ 1

)

=
1

1− ǫ̂

(
min

θn∈Pn(S|X )
n(I(Ψ′;Yθ|V )− I(Ψ′;Zθ∗ |V )) + nǫ+ 1

)

≤
1

1− ǫ̂

(
min

θn∈Pn(S|X )
nmax
V=v

(I(Ψ′;Yθ|V = v)− I(Ψ′;Zθ∗ |V = v)) + nǫ+ 1

)

=
1

1− ǫ̂

(
n min
θ∈P(S|X )

I(Ψ′;Yθ)− nI(Ψ′;Zθ∗) + nǫ+ 1

)

≤
1

1− ǫ̂

(
max

Ψ↔X↔(Yθ,Zθ∗ )

(
n min
θ∈P(S|X )

I(Ψ′;Yθ)− nI(Ψ′;Zθ∗)

)
+ nǫ+ 1

)

⇒ Rs ≤
1

1− ǫ̂

(
max

Ψ′↔X↔(Y,Z)

(
min

θ∈P(S|X )
I(Ψ′;Yθ)− I(Ψ′;Zθ∗)

)
+

1

n
+ ǫ

)

Here, (a) follows by Fano’s inequality, where ǫ̂ approaches zero as n → ∞, (b) follows by the definition of

the leakage to the eavesdropper, (c) follows because the leakage to the eavesdropper vanishes with n. Now, (d)

follows because J and U are independent, (e) by defining Ψ̃ = (J, U), (f) follows naturally. (g) follows because

Ψ̃ ↔ Xn ↔ (Y nθ , Z
n
θ∗) forms a conditional Markov chain, given u ∈ U . To see this we evaluate the following

term.

pΨ̃,Xn,Y n
θ
,Zn

θ∗
|U (·|u) = pΨ̃|U (·|u)pXn|Ψ̃,U (·|·, u)pY n

θ
,Zn

θ∗
|Xn,Ψ̃,U (·|·, u)

(i)
= pΨ̃|U (·|u)pXn|Ψ̃,U (·|·, u)pY n

θ
,Zn

θ∗
|Xn,U (·|·, u)

(i) follows because Xn and (Y nθ , Z
n
θ∗) are connected through a memoryless channel. Remember that when upper

bounding the capacity, only the marginals are of interest. Then, we can invoke the same marginals property and can

describe the input output relation between Xn and (Y nθ , Z
n
θ∗) by the channels Wn

θ (y
n|xn), V nθ∗(z

n|xn). Finally, (h)

follows since minθ∈P(Sn|Xn) I(Ψ̃
n;Y nθ ) ≤ minθn∈Pn(S|X ) I(Ψ̃

n;Y nθn), with θn(sn|xn) =
∏n
i=1 θi(si|xi). (i) and

(j) follow because of Csiszar’s Sum Identity, (k) follows by identifying Vi = (Zi+1
θi+1,∗ , Y

i−1
θi−1), (l) by identifying

Ψ′
i = (Ψ̃n, Vi), and (m) follows by introducing a uniformly distributed time sharing variable Q.

APPENDIX G

PROOF OF THEOREM 2

A. Achievability

Since strongly degraded implies strongly less capable, we use the same approach as in [84]. We have

I(X ;Yθ) ≥ I(X ;Zθ∗),

I(Ψ;Yθ) = I(Ψ, X ;Yθ)− I(X ;Yθ|Ψ)
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= I(X ;Yθ) + I(Ψ;Yθ|X)− I(X ;Yθ|Ψ)

= I(X ;Yθ)− I(X ;Yθ|Ψ),

I(Ψ;Zθ∗) = I(X ;Zθ∗)− I(X ;Zθ∗|Ψ),

I(Ψ;Yθ)− I(Ψ;Zθ∗) = I(X ;Yθ)− I(X ;Zθ∗) + I(X ;Zθ∗|Ψ)− I(X ;Yθ|Ψ),

where we can upper bound

I(X ;Zθ∗|Ψ)− I(X ;Yθ|Ψ) ≤ max
pΨX

(I(X ;Zθ∗ |Ψ)− I(X ;Yθ|Ψ))

= max
pΨX


∑

ψ∈Ψ

pΨ(ψ)I(X ;Zθ∗ |Ψ = ψ)− I(X ;Yθ|Ψ = ψ)




= max
pX

(I(X ;Zθ∗)− I(X ;Yθ))

≤ 0.

Hence, in total we obtain the following

max
pΨ,ρX|Ψ

(I(Ψ;Yθ)− I(Ψ;Zθ∗)) ≤ max
pX

(I(X ;Yθ)− I(X ;Zθ∗)),

with equality if we choose Ψ = X as the channel input.

APPENDIX H

NOMENCLATURE

Symbols Meaning

log (·) Logarithm to base 2, log2 (·), unless stated otherwise.

exp {·}, expe {·} 2{·}, e{·}.

X , x The random variable X and its realization x.

U The set U , sets are denoted by calligraphic letters.

|U| The cardinality of a set U .

P(U) The set of all probability measures on a set U .

pn(xn) For p ∈ P(U) we define pn ∈ P(Un) as pn(xn) =
∏n
i p(xi).

pW , pW (y) Induced output probability function by pX and the channel W (y|x),

pW (y) =
∑
x∈X p(x)W (y|x).
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H(X), H(pX) Entropy of the RV X , written in terms of the involved RV or the involved

probability function pX .

H(W |p) The conditional Entropy of Y given X , H(W |p) =

−
∑
x,y p(x)W (y|x) logW (y|x).

I(p;W ), I(X ;Y ) Mutual information between channel input and channel output, written in

terms of the involved probability functions or the involved RV.

N(a|sn) Number of occurrences of the symbol a in the sequence sn.

Pn0 (S) The set of all possible types of sequences of length n.

T n
p,δ ⊂ Xn For a p ∈ P(X ) and δ > 0, this denotes the δ-typical set.

T n
W,δ(x

n) ⊂ Yn For a W ∈ P(Y|X ) and a δ > 0 this denotes the δ-conditionally typical set,

given the sequence xn.

Jn, Ln Secure and confusing message sets.

Ψj,l,u , ψj,l,u Codeword (RV and realization) for the messages j ∈ Jn and l ∈ Ln with

CR realization u ∈ Un.

X ,S,Y,Z Channel input set, channel state set, channel output set at Bob, channel output

set at Eve. All are finite sets.

ρn(xn|ψnj,l,u) Mapping from codeword to channel input.

Wn(yn|xn, sn), V n(zn|xn, sn) DMCs from Alice to Bob and Alice to Eve, here sn is the channel state, xn

is the channel input, and yn and zn are the received sequences at Bob and

Eve, respectively.

Un Common source of randomness, shared between Alice, Bob and Eve.

W = {(Ws : X → P(Y)) : s ∈

S}

The family of channels to the legitimate receiver.

V = {(Vs : X → P(Z)) : s ∈ S} The family of channels to the illegitimate receiver.
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(W ,V) The AVWC.

Kn An (n, Jn) deterministic wiretap-code Kn.

E : Jn → P(Xn) A stochastic encoder for an (n, Jn) deterministic wiretap-code Kn.

Dj , Dj,u, Djlu, j ∈ Jn, l ∈ Ln,

u ∈ Un

Mutually disjoint decoding sets for an (n, Jn) deterministic wiretap-code

Kn, an (n, Jn,Un, pU ) CR assisted wiretap code Kran
n , and an (n, Jn,Un, pU )

CR assisted wiretap code Kran
n with the requirement that confusing message

should also be decoded at Bob.

EWn
sn : Jn → P(Yn) Channel from the secure messages to Bob, EWn

sn(y
n|j) =

∑
xn∈Xn E(xn|j)Wn(yn|xn, sn).

e(Kn) The maximum error probability for the AVWC for an (n, Jn) deterministic

wiretap-code Kn.

F : Xn → Sn Set of all deterministic functions, mapping from the channel inputs to the

channel states. Equivalently the set of all deterministic jamming strategies.

ê(Kn) Maximum error probability of (n, Jn) deterministic wiretap-code Kn for an

AVWC if the jammer has non-causal knowledge about the channel input xn.

Kran
n An (n, Jn,Un, pU ) CR assisted wiretap code Kran

n

E = {(Eu : Jn → P(Xn)) : u ∈

Un}

Family of stochastic encoders for an (n, Jn,Un, pU ) CR assisted wiretap

code Kran
n .

e(Kran
n ) The maximum error probability of an (n, Jn,Un, pU ) CR assisted wiretap

code Kran
n averaged over all possible randomly chosen deterministic wiretap

codebooks.

ê(Kran
n ) Maximum error probability of an (n, Jn,Un, pU ) CR assisted wiretap code

Kran
n averaged over all possible randomly chosen deterministic wiretap

codebooks if the jammer has non-causal knowledge of the channel input

xn.
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ˆ̂e(Kran
n ) Upper bound of ê(Kran

n ), results in the consideration of the maxima with

respect to Jn, Ln, Ψn, T n
ρ,δ(ψ

n) and Sn.

F ′ The family of all deterministic mappings Jn ×Xn → Sn

F ′′ The family of all deterministic mappings Jn → Sn

RS An achievable CR assisted secrecy rate for the AVWC.

̂̂
RS An achievable CR assisted secrecy rate for the AVWC with non-causal

knowledge of the channel input at the jammer.

Ĉran
S (W ,V) The CR assisted secrecy capacity of the AVWC (W ,V) with maximum error

probability criterion, when the jammer has not non-causal knowledge about

the channel input (or only knows the messages).

Ĉran
S,av(W ,V) The CR assisted secrecy capacity of the AVWC (W ,V) with average error

probability criterion, when the jammer has not non-causal knowledge about

the channel input (or only knows the messages).

̂̂
C

ran

S (W ,V) The CR assisted secrecy capacity of the AVWC (W ,V) with maximum error

probability criterion if the jammer has non-causal knowledge of the channel

input.

P(Sn|Xn) The set of all stochastic jamming strategies.

Ŵ Convex closure of W .

̂̂
W Row convex closure of W .

min
W∈

̂̂
W
I(p;W )=

minθ∈P(S|X ) I(p;Wθ)

Worst case mutual information.

θ∗,n ∈ Pn(S|X ), V nθ∗,n Best jamming strategy, leading to a best channel to the eavesdropper.

π(·) Permutation.

C(j,l), j ∈ Jn, l ∈ Ln Disjoint subsets of the typical sequences T n
p,δ of size |C(j,l)| =

|T n
p,δ|

|Jn||Ln|
.
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χ̂ = {Ψnujl : j ∈ Jn, l ∈ Ln, u ∈

Un}

The family of RV, representing random codewords. Also used as argument,

when we use random coding arguments.

Kran
n (χ̂) Random (n, Jn,Un, pU ) CR assisted code.

U(j, l, ψn, xn, χ̂) The set of all codebooks, for which the sequence ψn is the codeword for

the message pair (j, l) and xn is the corresponding channel input.

U0(j, l, ψ
n, xn, sn, χ̂) The set of all codebooks, for which the sequence ψn is the codeword for

the message pair (j, l), xn is the corresponding channel input, and the error

bound λ is not met.

B(u, j, l, ψn, xn, χ̂) Binary RV, equals 1 if u ∈ U(j, l, ψn, xn, χ̂).

B̃(j, l, ψn, xn, sn, u, λ, χ̂) Binary RV, equals 1 if u ∈ U0(j, l, ψ
n, xn, sn, χ̂).

ε1(ψ
n) The set of typical output sequences zn for which the conditional probability

of obtaining the sequence zn given the codeword ψn can be upper bounded

in terms of the conditional entropy of Zθ∗ given Ψ.

Ω̃(zn) Expectation (with respect to the codeword Ψn) of the conditional probability

of obtaining the sequence zn given the codeword Ψn. We consider only those

summands in the expectation, for which the sequence zn is in the set ε1(ψ
n).

ε2 The set of typical output sequences zn for whichΩ̃(zn) can be lower bounded

in terms of the entropy of Zθ∗ .

Ω(zn) Equals Ω̃(zn), if zn is element of ε2, otherwise it equals zero. In other

words, Ω(zn) equals the expectation (with respect to the codeword Ψn) of

the conditional probability of obtaining the sequence zn given the codeword

Ψn under the condition that the conditional probability of obtaining the

sequence zn given the codeword ψn can be upper bounded in terms of the

conditional entropy of Zθ∗ given Ψ, and that this expectation can be lower

bounded terms of the entropy of Zθ∗ .

Qθ∗,n(z
n|ψn) The conditional probability of the sequence zn given ψn, under the condition

that the sequence zn belongs to ε1(ψ
n) and ε2. Equals zero otherwise.
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ι1(j, z
n) Event that the expectation of Qθ∗,n(z

n|Ψnjl) with respect to the confusing

messages Ln is in an ǫn-region of its expected value, Ω(zn).

ι0 Event that ι1(j, z
n) holds for all j ∈ Jn, zn ∈ Zn, and u ∈ Un.

ι̃ Event that a realization Kran
n of a Kran

n (χ̂) fulfills the reliability constraint.

ι̂ Event that a realization Kran
n of a Kran

n (χ̂) fulfills the reliability and secrecy

constraints, simultaneously.

f(·)(δ) Function with limδ→0 f(·)(δ) = 0.

TABLE II: Notation, Symbols and Meanings
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