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Abstract
Machine learning has made remarkable progress in the last
years, yet its success has been overshadowed by different at-
tacks that can thwart its correct operation. While a large body
of research has studied attacks against learning algorithms,
vulnerabilities in the preprocessing for machine learning have
received little attention so far. An exception is the recent work
of Xiao et al. that proposes attacks against image scaling. In
contrast to prior work, these attacks are agnostic to the learn-
ing algorithm and thus impact the majority of learning-based
approaches in computer vision. The mechanisms underlying
the attacks, however, are not understood yet, and hence their
root cause remains unknown.

In this paper, we provide the first in-depth analysis of
image-scaling attacks. We theoretically analyze the attacks
from the perspective of signal processing and identify their
root cause as the interplay of downsampling and convolution.
Based on this finding, we investigate three popular imaging
libraries for machine learning (OpenCV, TensorFlow, and
Pillow) and confirm the presence of this interplay in different
scaling algorithms. As a remedy, we develop a novel defense
against image-scaling attacks that prevents all possible at-
tack variants. We empirically demonstrate the efficacy of this
defense against non-adaptive and adaptive adversaries.

1 Introduction

Machine learning techniques have enabled impressive
progress in several areas of computer science, such as in
computer vision [e.g., 11, 12, 13] and natural language pro-
cessing [e.g., 7, 18, 31]. This success, however, is increas-
ingly foiled by attacks from adversarial machine learning that
exploit weaknesses in learning algorithms and thwart their
correct operation. Prominent examples of these attacks are
methods for crafting adversarial examples [6, 32], backdoor-
ing neural networks [10, 15], and inferring properties from
learning models [9, 27]. While these attacks have gained
significant attention in research, they are unfortunately not
the only weak spot in machine learning systems.

Recently, Xiao et al. [35] have demonstrated that data
preprocessing used in machine learning can also suffer from
vulnerabilities. In particular, they present a novel type of
attack that targets image scaling. The attack enables an ad-
versary to manipulate images, such that they change their
appearance when scaled to a specific dimension. As a result,
any learning-based system scaling images can be tricked into
working on attacker-controlled data. As an example, Figure 1
shows an attack against the scaling operation of the popular
TensorFlow library. The manipulated image (left) changes to
the output (right) when scaled to a specific dimension.

Attacks on image scaling pose a threat to the security of
machine learning: First, scaling is omnipresent in computer
vision, as learning algorithms typically require fixed input
dimensions. Second, these attacks are agnostic to the learning
model, features, and training data. Third, the attacks can be
used for poisoning data during training as well as misleading
classifiers during prediction. In contrast to adversarial ex-
amples, image-scaling attacks do not depend on a particular
model or feature set, as the downscaling can create a perfect
image of the target class. As a consequence, there is a need
for effective defenses against image-scaling attacks. The un-
derlying mechanisms, however, are not understood so far and
the root cause for adversarial scaling is still unknown.

In this paper, we provide the first comprehensive analysis
of image-scaling attacks. To this end, we theoretically ana-
lyze the attacks from the perspective of signal processing and
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Figure 1: Example of an image-scaling attack. Left: a manipulated image
showing a cat. The scaling operation produces the right image with a dog.



identify the root cause of the attacks as the interplay of down-
sampling and convolution during scaling. That is, depending
on the downsampling frequency and the convolution kernel
used for smoothing, only very specific pixels are considered
for generating the scaled image. This limited processing of
the source image allows the adversary to take over control
of the scaling process by manipulating only a few pixels. To
validate this finding, we investigate three popular imaging
libraries for machine learning (OpenCV, TensorFlow, and
Pillow) and confirm the presence of this insecure interplay in
different scaling algorithms.

Based on our theoretical analysis, we develop defenses for
fending off image-scaling attacks in practice. As a first step,
we analyze the robustness of scaling algorithms in the three
imaging libraries and identify those algorithms that already
provide moderate protection from attacks. In the second step,
we devise a new defense that is capable of protecting from all
possible attack variants. The defense sanitizes explicitly those
pixels of an image that are processed by a scaling algorithm.
As a result, the adversary loses control of the scaled content,
while the quality of the source image is largely preserved.
We demonstrate the efficacy of this strategy in an empirical
evaluation, where we prevent attacks from non-adaptive as
well as adaptive adversaries.

Finally, our work provides an interesting insight into re-
search on secure machine learning: While attacks against
learning algorithms are still hard to analyze due to the com-
plexity of learning models, the well-defined structure of scal-
ing algorithms enables us to fully analyze scaling attacks and
develop effective defenses. As a consequence, we are opti-
mistic that attacks against other forms of data preprocessing
can also be prevented, given a thorough root-cause analysis.

Contributions. In summary, we make the following contri-
butions in this paper:

• Analysis of image-scaling attacks. We conduct the first
in-depth analysis of image-scaling attacks and identify
the vulnerability underlying the attacks in theory as well
as in practical implementations.
• Effective Defenses. We develop a theoretical basis for

assessing the robustness of scaling algorithms and de-
signing effective defenses. We propose a novel defense
that protects from all possible attack variants.
• Comprehensive Evaluation. We empirically analyze scal-

ing algorithms of popular imaging libraries under attack
and demonstrate the effectivity of our defense against
adversaries of different strengths.

The rest of this paper is organized as follows: We review
the background of image scaling and attacks in Section 2. Our
theoretical analysis is presented in Section 3, and we develop
defenses in Section 4. An empirical evaluation of attacks and
defenses is given in Section 5. We discuss related work in
Section 6, and Section 7 concludes the paper.

Table 1: Scaling algorithms in deep learning frameworks.

Framework Caffe PyTorch TensorFlow
Library OpenCV Pillow tf.image
Library Version 4.1 6.0 1.14

Nearest • •(‡) •
Bilinear •(*) •(*) •(*)
Bicubic • • •
Lanczos • •
Area • • •

(*) Default algorithm. (‡) Default algorithm if Pillow is used directly without PyTorch.

2 Background

Before starting our theoretical analysis, we briefly review the
background of image scaling in machine learning and then
present image-scaling attacks.

2.1 Image Scaling in Machine Learning
Image scaling is a standard procedure in computer vision and
a common preprocessing step in machine learning [21]. A
scaling algorithm takes a source image S and resizes it to
a scaled version D. As many learning algorithms require a
fixed-size input, scaling is a mandatory step in most learning-
based systems operating on images. For instance, deep neural
networks for object recognition, such as VGG19 and Incep-
tion V3/V4 expect inputs of 224×224 and 299×299 pixels,
respectively, and can only be applied in practice if images are
scaled to these dimensions.

Generally, we can differentiate upscaling and downscaling,
where the first operation enlarges an image by extrapolation,
while the latter reduces it through interpolation. In practice,
images are typically larger than the input dimension of learn-
ing models and thus image-scaling attacks focus on down-
scaling. Table 1 lists the most common scaling algorithms.
Although these algorithms address the same task, they differ
in how the content of the source S is weighted and smoothed
to form the scaled version D. For example, nearest-neighbor
scaling simply copies pixels from a grid of the source to the
destination, while bicubic scaling interpolates pixels using a
cubic function. We examine these algorithms in more detail
in Section 3 when analyzing the root cause of scaling attacks.

Due to the central role in computer vision, scaling algo-
rithms are an inherent part of several deep learning frame-
works. For example, Caffe, PyTorch, and TensorFlow imple-
ment all common algorithms, as shown in Table 1. Techni-
cally, TensorFlow uses its own implementation called tf.image,
whereas Caffe and PyTorch use the imaging libraries OpenCV
and Pillow, respectively. Other libraries for deep learning
either build on these frameworks or use the imaging libraries
directly. For instance, Keras uses Pillow and DeepLearning4j
builds on OpenCV. As a consequence, we focus our analysis
on these major imaging libraries.



2.2 Image-Scaling Attacks
Recently, Xiao et al. [35] have shown that scaling algorithms
are vulnerable to attacks and can be misused to fool machine
learning systems. The proposed attack carefully manipulates
an image, such that it changes its appearance when scaled
to a specific dimension. In particular, the attack generates
an image A by slightly perturbing the source image S, such
that its scaled version matches a target image T . This process
is illustrated in Figure 2, which also serves as a running
example throughout this paper. In addition, Table 2 provides
an overview of our notation.

Solve

Source Image S

Target Image T

Attack Image A
Output Image D

scale

A ∼ S

scale(A)∼ T

Figure 2: Principle of image-scaling attacks: An adversary computes A such
that it looks like S but downscales to T .

2.2.1 Capabilities and Knowledge

The attack is agnostic to the employed learning model and
does not require knowledge of the training data or extracted
features. Yet, the adversary needs to know two parameters:
(a) the used scaling algorithm and (b) the target size m′×n′ of
the scaling operation. Xiao et al. describe how an adversary
can easily deduce both parameters with black-box access to
the machine learning system by sending specifically crafted
images [see 35]. Moreover, Table 1 shows that common open-
source libraries have a limited number of scaling options,
and thus only a few attempts are necessary to discover the
correct setup. In some settings, a fixed algorithm can be even
enforced by specific image sizes, as we show in Appendix A.

2.2.2 Attack Scope

As the image is manipulated before any feature extraction,
image-scaling attacks can effectively mislead all subsequent
steps in a machine-learning pipeline, allowing different at-
tacks during train and test time. That is, an attacker can
conceal data poisoning attacks [see 24]. For instance, she can
modify the training data such that a backdoor pattern becomes
present in the downscaled image which was not visible in the
unscaled training image before.

Furthermore, she can trigger false predictions during the
application of a learning model by creating a downscaled
image of another, targeted class. Compared to adversarial
examples [32], both attacks accomplish the same goal. How-
ever, image-scaling attacks considerably differ in the threat

Table 2: Table of symbols for scaling attacks.

Symbol Size Description

S m×n The source image that is used to create
the attack image.

T m′×n′ The target image that the adversary wants
to obtain after scaling.

A m×n The attack image, a slightly perturbed
version of S

D m′×n′ The output image of the scaling function
scale.

model: The attacks are model-independent and do not depend
on knowledge of the learning model, features, or training
data. Furthermore, image-scaling attacks are effective even if
neural networks were robust against adversarial examples, as
the downscaling can create a perfect image of the target class.
Finally, we note that these attacks are of particular concern in
all security-related applications where images are processed.

2.2.3 Attack Strategy

There exist a strong and a weak strategy for implementing
image-scaling attacks. In the strong strategy, the adversary
can choose the source and target image. In the weak version,
the adversary can only choose the target, and the calculated
attack image is meaningless and easily detectable. We thus
focus on the stronger attack strategy in our paper, which is of
particular concern in real-world applications.

Objectives. Formally, image-scaling attacks need to pursue
the following two objectives:

(O1) The downscaling operation on A needs to produce the
target image: scale(A)∼ T .

(O2) The attack image A needs to be indistinguishable from
the source image: A∼ S.

The first objective ensures that the target image T is ob-
tained during scaling, while the second objective aims at
making the attack hard to detect. We verify objective O1 by
checking if the prediction of a neural network corresponds to
the target image’s class. Note that without the second objec-
tive, the attack would be trivial, as the adversary could simply
overwrite S with T . In this case, however, the attack would
be easily detectable and thus not effective in practice.

Strong Attack Strategy. The adversary seeks a minimal
perturbation ∆ of S, such that the downscaling of ∆ + S = A
produces an output similar to T . Both goals can be summa-
rized as the following optimization problem:

min(‖∆‖2
2)

s.t. ‖scale(S+∆)−T‖∞ 6 ε . (1)



Additionally, each pixel value of A needs to remain within the
fixed range (e.g., [0,255] for 8-bit images). This problem can
be solved with Quadratic Programming [5]. When successful,
the adversary obtains an image A that looks like the source
but matches the target after scaling.

Horizontal and Vertical Optimization. Common imaging
libraries, such as OpenCV or Pillow, implement downscaling
by first resizing images horizontally and then vertically. This
implementation technique enables approximating the scaling
operation from Eq. (1) by a closed-form expression which is
based on a simple matrix multiplication:

D = scale(S+∆) = L · (S+∆) ·R (2)

with L ∈ Rm′×m, R ∈ Rn×n′ and D ∈ Rm′×n′ . The matrices L
and R contain fixed coefficients that depend on the selected
scaling algorithm. Both matrices can be computed in advance
and are reusable. We refer to Xiao et al. [35] for a description
how to calculate L and R.

Based on this matrix multiplication, the attack can also
be decomposed into a horizontal and vertical manipulation,
which are conducted in reverse order to the scaling, as shown
in Figure 3. The attack proceeds by first computing a resized
version of S, that is, S

′
= scale(S) ∈ Rm×n′ . Here, we solve

Eq. (1) with S
′

as source image and T as target. Due to the
decomposition, we only need the coefficient matrix L and
thus arrive at the following optimization problem

min(‖∆′‖2
2) s.t. ‖L ·

(
S′+∆′

)
−T‖∞ 6 ε . (3)

Next, the horizontal direction is considered. To this end, the
adversary calculates the final attack image A with S as source
image, but A

′
as target, analogue to Eq. (3).

A A
′ D

m

n

m

n′

m′
n′

Horiz. Vert.

Attack image generation

Downscaling Direction

Figure 3: Libraries resize an image horizontally first, and then vertically. The
attack creates A in reverse order: first the intermediate image A

′
, and then A.

Column-based Optimization. In order to further decrease
the computational effort, the optimization can be further de-
composed into individual dimensions. We start again with
the vertical scaling direction where we resize S′ ∈ Rm×n′ to
D∈Rm′×n′ . Instead of considering the whole matrix, we solve
the problem from Eq. (3) for each column of S′ separately:

min(‖∆′∗, j‖2
2) s.t. ‖L ·

(
S′∗, j +∆′∗, j

)
−T∗, j‖∞ 6 ε , (4)

where the subscript in X∗, j specifies the j-th matrix column
of a matrix X . This optimization is repeated for the horizontal
direction and finally computed for all color channels.

3 Attack Analysis

After introducing the background of image-scaling attacks,
we are ready to investigate their inner workings in more de-
tail. Our aim is to find out which vulnerability image-scaling
attacks exactly exploit to be successful. We start off by ob-
serving that the presented attacks must exploit a vulnerability
that is shared by many scaling algorithms. As the implemen-
tations of the algorithms differ, this vulnerability needs to be
linked to the general concept of scaling. To better grasp this
concept, we require a broader perspective on image scaling
and thus examine it from the viewpoint of signal processing.

3.1 Scaling as Signal Processing

Images can be viewed as a generic signal, similar to audio and
video. While audio is described by a one-dimensional time
series, an image represents a discrete and two-dimensional
signal. Typically, images are encoded in the spatial domain
of pixels. However, any signal can be described by a sum of
sinusoids of different frequencies, and hence images can also
be represented in the frequency domain [e.g., 19, 29].

Scaling reduces the dimension of an image. As a result,
the frequency mixture of the image changes and higher fre-
quencies are lost. This process is closely related to downsam-
pling in signal processing, where a high-frequency signal is
transformed to a lower frequency. A major problem of down-
sampling is that the reduced resolution might not be able to
describe all relevant frequencies in the image. According
to the Nyquist–Shannon theorem [19], it is only feasible to
reconstruct a signal s(t) from a discrete number of sampled
points, if the sampling rate fT is at least twice as high as the
highest frequency fmax in the signal: fT ≥ 2 · fmax.

If the frequency fT is below that threshold, the signal can-
not be unambiguously reconstructed. In this case, the sampled
points do not provide enough information to distinguish be-
tween the original signal and other possible signals. Figure 4
shows an example of this phenomenon, where it is impossible
to decide which one of the two signals s(t) and ŝ(t) is de-
scribed by the sampled points. Ultimately, the reconstructed
signal can differ significantly from the original signal, which
is known as the aliasing effect [19]. As we see in the next
sections, image-scaling attacks build on this very effect by
cleverly manipulating a signal, such that its downsampled
version becomes a new signal.

s(t)

ŝ(t)

Figure 4: An example of an undersampled signal s(t). Based on the sampling
points, it is not possible to distinguish between s(t) and ŝ(t).



3.2 Scaling and Convolution
It is clear that scaling algorithms do not merely reduce the
frequencies in an image. These algorithms carefully interpo-
late the pixels of the source image before downscaling it in
order to mitigate the aliasing effect. This computation can be
described as a convolution between the source signal and a
kernel function [19]. For each position in the scaled image,
the kernel combines a set of pixels (samples) from the source
using a specific weighting. All scaling algorithms given in
Table 1 can be expressed using this concept.

Without loss of generality, we focus on the horizontal scal-
ing of a single row in the following, that is, a row s ∈ Rn from
the source image is scaled to d ∈ Rn′ . We denote by β the
respective scaling ratio: β = n/n′. The goal of downscaling
is to determine the value for each pixel in d from a set of
samples from s. This process can be described using a kernel
function w as follows

(s?w)(t) =
∞

∑
u=−∞

w(t−u)s(u). (5)

Intuitively, w represents a weighting function that is moved
over s as a sliding window. We denote the size of this window
as the kernel width σ. Each pixel within this window is
multiplied by the respective weight at this position. Figure 5
exemplifies this process for a bilinear kernel with σ = 2. The
first pixel in d is the aggregated result from the third and
fourth pixel in s, while the second pixel in d is only estimated
from the seventh pixel in s.

1 2 3 4 5 6 7 8 9 x

s and w

1 2 x

s?w

0.5 · (s[3]+ s[4])
1 · s[7]

Figure 5: Scaling with convolution. The triangle illustrates the kernel with
its relative weighting. It has a width of 2 and is shifted by a step size of β.

As the downscaling of an image produces a smaller number
of pixels, the window of the kernel function needs to be shifted
on s by a specific step size, similar to the process of sampling
in signal processing. The scaling ratio defines this step size
so that each sampling position is given by

g(p) = p ·β, (6)

where p is the target pixel in d and g(p) a position in s around
which we place the kernel window. Note that the position
g(p) is not necessarily discrete and can also fall between two
pixels, as shown in Figure 5. The downscaled output image
is then computed as follows:

dp = (s?w)(g(p)) p = 0,1, . . . ,n′. (7)
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Figure 6: Visualization of kernel functions using in scaling algorithms.

Each scaling algorithm is defined by a particular kernel
function. Figure 6 depicts the standard kernels for common
scaling algorithms. For instance, nearest-neighbor scaling
builds on the following kernel function:

w(x) =

{
1 for −0.5 6 x < 0.5,
0 otherwise .

(8)

Only the value that is the closest to g(p) is used by this scaling
algorithm. In other words, nearest-neighbor scaling simply
copies pixels from s on a discrete grid to d. Overall, each
kernel differs in the number of pixels that it uses and the
respective weighting of the considered pixels.

3.3 Root-Cause Analysis
Based on our insights from signal processing, we can start
to investigate the root cause of image-scaling attacks. We
observe that not all pixels in the source image equally con-
tribute to its scaled version. Only those pixels close to the
center of the kernel receive a high weighting, whereas all
remaining pixels play a limited role during scaling. If the step
size exceeds the kernel width, some pixels are even ignored
and irrelevant for the scaling operation. Figure 5 illustrates
this situation: Only three out of nine pixels are considered for
computing the scaled output.

This imbalanced influence of the source pixels provides a
perfect ground for image-scaling attacks. The adversary only
needs to modify those pixels with high weights to control
the scaling and can leave the rest of the image untouched.
This strategy is sufficient for achieving both objectives of
the attack: (O1) a modification of pixels with high weights
yields scale(A) ∼ T , and (O2) depending on the sparsity of
those pixels the attack image A visually matches the source
image S.

From the perspective of signal processing, image-scaling
attacks can thus be interpreted as targeted aliasing, where the
adversary selectively manipulates those regions of the signal
that are sampled during downscaling. These regions create a
high-frequency signal in the source image that is not visible
in the spatial domain but precisely captures the sampling rate
of the downscaling process.

We can deduce that the success of image-scaling attacks
depends on the sparsity of pixels with high weight. If these



pixels are dense, the adversary may still achieve objective
O1 but will fail to satisfy O2, as the attack becomes visible.
Reviewing the general concept of scaling, we identify two
factors that determine the sparsity of these pixels: the scaling
ratio β and the kernel width σ. For images, we formally bound
the ratio r of pixels that are considered during scaling by

r ≤ (βh βv)
−1 (σh σv). (9)

The terms βh, βv as well as σh and σv denote the respective
scaling ratio and kernel width horizontally and vertically. If
the direction is irrelevant, we consider quadratic images for
our analysis and use β and σ for both axis. Moreover, note that
the right term may exceed one if the windows of the kernels
overlap and pixels in the source are considered multiple times.

Scaling ratio. The larger the ratio β, the fewer pixels are
considered during scaling if the kernel width is bounded. In
particular, the number of pixels that are discarded growths
quadratically with β. An adversary can thus easily control the
ratio r by increasing the size of the source image.

Figure 7(a)-(c) show the influence of the scaling ratio on
the attack for a kernel with σ = 1. All images fulfill objec-
tive O1, that is, the images are scaled down to the “cat” image.
Depending on the scaling ratio, however, their success to
objective O2 changes. For a large ratio of β = 4, the attack
image looks like the source, and the cat is not visible. For a
smaller scaling ratio, the manipulated image becomes a mix
of the source and target. For β = 1, the attack obviously fails.

Kernel width. The smaller the kernel width σ, the fewer
pixels are considered during each convolution. While σ is
typically not controlled by the adversary, several implementa-
tions of scaling algorithms make use of very small constants
for this parameter. For example, the nearest-neighbor, bilin-
ear, and bicubic kernels of the TensorFlow framework have a
width of 1, 2, and 4, respectively.

Figure 7(d)-(f) depict the influence of the kernel width
on the attack for a fixed scaling ratio of β = 4. Again, all
images fulfill objective O1 and are scaled down to the “cat”
image. For σ = 1, the attack also satisfies objective O2 and is
invisible. If two pixels are considered by the kernel, however,
the cat becomes visible. For σ = 4, all pixels need to be
manipulated and the attack fails.

Interestingly, our analysis is not limited to the scaling algo-
rithms considered in this work. Any algorithm is vulnerable
to image-scaling attacks if the ratio r of pixels with high
weight is small enough. Our analysis thus allows developers
to check quickly if their algorithms are vulnerable to these
attacks. Overall, we are thus the first to provide a general
understanding of this attack type in practice. This understand-
ing enables us to compare different scaling algorithms and
ultimately develop effective defense strategies.

(a) β = 4 3 (b) β = 1.3 5 (c) β = 1 5

(d) σ = 4 5 (e) σ = 2 5 (f) σ = 1 3

Figure 7: Influence of the scaling ratio and kernel size (see Figure 2 for the
setting of this example); β and σ are the same horizontally and vertically.
Plot (a)–(c) show manipulated images under varying ratios. Plot (d)–(f)
show manipulated images under varying kernel sizes. The symbols 3and 5
indicate if the attack is successful.

4 Defenses

We continue with the development of defenses that build
on our analysis and address the root cause of image-scaling
attacks—rather than fixing their symptoms. Our defenses
aim to prevent attacks without interfering with the typical
workflow of deep learning frameworks. They can thus serve
as a plug-in for existing scaling algorithms. Note that the
mere detection of attacks is not sufficient here, as the systems
would need to cope with rejected inputs.

Consequently, we first derive requirements for secure scal-
ing and use these to validate the robustness of existing al-
gorithms (Defense 1). As only a few algorithms realize a
secure scaling, we proceed to develop a generic defense that
reconstructs the source image and thereby is applicable to any
scaling algorithm as preprocessing (Defense 2).

4.1 Attacker Model

For the construction and evaluation of our defenses, we con-
sider two types of adversaries: a non-adaptive adversary who
uses existing image-scaling attacks, and an adaptive adversary
who is aware of our defense and adapts the attack strategy
accordingly. Both adversaries have full knowledge of the
scaling algorithm and the target size. In the adaptive scenario,
the adversary additionally has full knowledge of the applied
defense. Finally, we expect the adversary to freely choose the
source and target image so that she can find the best match
for conducting attacks in a given setup.

We note that these assumptions are realistic due to the
open-source nature of deep learning frameworks and the use
of several well-known learning models in practice, such as
VGG19 and Inception V3/V4. With black-box access to the
scaling and learning models, an adversary can even deduce
the scaling algorithm and target size by sending a series of
specially crafted images to the learning system [see 35].



4.2 Defense 1: Robust Scaling Algorithms

Let us start with the conception of an ideal robust scaling algo-
rithm which serves as a prototype for analyzing the properties
of existing algorithms.

An ideal scaling algorithm. In the ideal case, an algorithm
investigates each pixel of the source image at least once for
downscaling. The robustness of the scaling increases further
if the employed convolution kernels overlap, and thus one
pixel of the source contributes to multiple pixels of the scaled
version. Technically, this requirement can be realized by
dynamically adapting the kernel width σ to the scaling ratio β,
such that σ ≥ β holds. That is, the larger the ratio between
the source and the scaled image, the wider the convolution
kernel needs to become to cover all pixels of the image.

In addition to processing all pixels, an ideal algorithm also
needs to weight all pixels equally; otherwise, a kernel with
small support would leave pixels untouched if their weights
become zero. For example, pixels close to the edge of the
convolution window typically receive a very low weighting,
as shown in Figure 6. As a result, the convolution of an ideal
algorithm should be uniform and combine all pixels in the
current kernel window with equal weight.

Although both properties—considering all pixels and a
uniform convolution—can be technically implemented, they
introduce challenges that can limit their practical utility: First,
processing all pixels of an image slows down the scaling
process. This is not necessarily a problem in applications
where large neural networks are trained, and the overhead of
scaling is minimal anyway. However, in real-time settings,
it might be prohibitive to go over all pixels during scaling.
Second, the flattened weighting of the convolution can blur the
image content and remove structure necessary for recognizing
objects. As a consequence, we identify a trade-off between
security and performance in image scaling.

Existing scaling algorithms. Based on the concept of an
ideal algorithm, we examine the source code of the three con-
sidered imaging libraries and analyze their scaling algorithms
with respect to the processed pixels and the employed con-
volution kernels. In particular, we inspect the source code
of OpenCV version 4.1, Pillow 6.0, and tf.image 1.14 from
TensorFlow. Table 3 shows the results of this investigation.

Table 3: Kernel width σ for the scaling algorithms implemented by the
imaging libraries OpenCV, tf.image (TensorFlow) and Pillow.

Library OpenCV TF Pillow

Nearest 1 1 1
Bilinear 2 2 2 ·β
Bicubic 4 4 4 ·β
Lanczos 8 — 6 ·β
Area β β β

We observe that several scaling algorithms are imple-
mented with fixed-size convolution kernels. For example,
OpenCV and TensorFlow implement nearest-neighbor, bilin-
ear, and bicubic scaling with a kernel width of 1, 2, and 4,
respectively. Consequently, these algorithms become vulnera-
ble once the scaling ratio exceeds the kernel width, and pixels
of the source image are omitted during scaling.

Fortunately, however, we also identify one algorithm that
is implemented with a dynamic kernel width of β in all frame-
works: area scaling. This algorithm scales an image by
simply computing the average of all pixels under the ker-
nel window, which corresponds to a uniform convolution, as
shown in Figure 6 for β = 4. Moreover, area scaling cor-
responds to a low-pass filter which mitigates the aliasing
effect. As a result, area scaling provides strong protection
from image-scaling attacks, and the algorithm is a reasonable
defense if the uniform weighting of the convolution does not
impact later analysis steps. We demonstrate the robustness of
area scaling in our empirical evaluation in Section 5.

Our analysis provides another interesting finding: Pillow
stands out from the other imaging library, as it implements
a dynamic kernel width for all algorithms except for nearest-
neighbor scaling. The dynamic kernel width σ is chosen such
that the convolution windows substantially overlap, for exam-
ple, for bicubic and Lanczos scaling by a factor of 4 and 6,
respectively. Although the used convolutions are not uniform
for these algorithms, this overlap creates a notable obstruc-
tion for the attacker, as dependencies between the overlapping
windows need to be compensated. Figure 8 schematically
shows the dynamic kernel width of Pillow in comparison to
the implementations of OpenCV and TensorFlow.

Disadvantages. While area scaling and the Pillow library
provide a means for robust scaling, they also induce draw-
backs. As exemplified in Figure 9, the algorithms cannot
entirely remove all traces from the attacks. Small artifacts
can remain, as the manipulated pixels are not cleansed and
still contribute to the scaling, though with limited impact.
Our evaluation shows that these remnants are not enough to
fool the neural network anymore. The predicted class for the
scaled images, however, is not always correct due to the noise
of the attack remainings. As a remedy, we develop an alterna-
tive defense in the next section that reconstructs the source
image and thus is applicable to any scaling algorithm. This
reconstruction removes attack traces, and thus the classifier
predicts the original class again.

1 2 3 4 5 6 7 8 9 10

CV/TF Kernel

Pillow Kernel

x

Figure 8: Comparison of bilinear scaling for Pillow, OpenCV and TensorFlow.
The latter two fix σ to 2, while Pillow uses a dynamic kernel width.



(a) Nearest (b) Area (c) Pillow

Figure 9: Comparison of scaling algorithms: (a) insecure nearest-neighbor
scaling, (b) robust area scaling, and (c) robust scaling from Pillow. Note the
visible attack traces in (b) and (c).

4.3 Defense 2: Image Reconstruction

We construct our defense around the main working principle
of image-scaling attacks: The attacks operate by manipu-
lating a small set of pixels that controls the scaling process.
With knowledge of the scaling algorithm, we can precisely
identify this set of pixels in the attack image. The naive de-
fense strategy to remove this set effectively blocks any attack,
yet it corrupts the scaling, as all relevant pixels are removed.
Instead, we first identify all pixels processed by a scaling algo-
rithm and then reconstruct their content using the remaining
pixels of the image.

Reconstructing pixels in images is a well-known problem
in image processing, and there exist several methods that
provide excellent performance in practice, such as techniques
based on wavelets and shearlets [e.g., 26, 30]. These involved
approaches, however, are difficult to analyze from a security
perspective, and their robustness is hard to assess. Hence, we
propose two simple reconstruction methods for the considered
pixels that possess transparent security properties: a selective
median filter and a selective random filter.

Selective median filter. Given a scaling algorithm and a
target size, our filter identifies the set of pixels P in the input
image that is processed during scaling. For each of the pixels
p ∈ P , it determines a window Wp around p, similar to a
convolution kernel, and computes the median pixel value for
this window. To make the computation robust, we define the
size of this window as 2βh×2βv, which ensures that half of
the pixels overlap between the different windows and thus
hinders existing scaling attacks. Furthermore, we take care
of other manipulated points p′ ∈ P in Wp and exclude them
from the computation of the median. Figure 10 depicts the
basic principle of our selective median filter.

Pixel
p ∈ P
p′ ∈ P

Wp

Figure 10: Image reconstruction using a selective median filter. Around
each point p that is considered by the downscaling algorithm (red), we take
the median of all values in a window around it (green), except for other
candidates that are present in the window.

(a) Nearest (b) Median filter (c) Random filter

Figure 11: Examples of our defense: (a) insecure nearest-neighbor scaling,
(b) robust scaling using a median filter, and (c) a random filter. Note that
attack traces are not visible anymore.

In comparison to other approaches for reconstructing the
content of images, this defense builds on the statistical ro-
bustness of the median operation. Small groups of pixels
with high or low values are compensated by the median. On
average, the adversary is required to change about 50% of
the pixels in a window to reach a particular target value for
the median. Our evaluation demonstrates that non-adaptive
as well as adaptive adversaries are not capable of effectively
manipulating these median values without introducing strong
visible artifacts (see Section 5).

The robustness of the median filter comes at a price: Com-
puting the median for all pixels in each window Wp for all
p ∈ P yields a run-time complexity of O(|P | ·βh ·βv). That
is, the run-time growths quadratically with the scaling ra-
tio. While this overhead might be neglectable when working
with large neural networks, there also exist applications in
which more efficient scaling is necessary. Providing secure
and efficient scaling, however, is a challenging task, as the
robustness of a scaling algorithm increases with the number
of considered pixels.

Selective random filter. To tackle the problem of efficiency,
we also propose a selective random filter that takes a random
point from each window instead of the median. This filter
is suitable for applications that demand a very efficient run-
time performance and might tolerate a loss in visual quality.
Appendix B outlines the filter in more detail.

In summary, we present two defenses that target the core
of image-scaling attacks. As exemplified by Figure 11, both
restore the pixels that an adversary changes and prevent the
attacks. These defenses can be easily used in front of existing
scaling algorithms, such that almost no changes are necessary
to the typical workflow of machine learning systems.

5 Evaluation

We continue with an empirical evaluation of our defenses
against image-scaling attacks. In Section 5.2 and 5.3, we
study the security of robust scaling algorithms (Defense 1). In
Section 5.4 and 5.5, we examine our novel defense based on
image reconstruction (Defense 2). For each defense, we start
the evaluation with a non-adaptive adversary that performs
regular image-scaling attacks and then proceed to investigate
an adaptive adversary who tries to circumvent our defenses.



5.1 Experimental Setup

To evaluate the efficacy of our defenses, we consider the
objectives O1 and O2 of image-scaling attacks presented in
Section 2.2.3. If a defense is capable of impeding one of these
objectives, the attack fails. For example, if the control of the
adversary over the source is restricted, such that the classifi-
cation of the scaled version is not changed, the defense has
foiled O1. Similarly, if the embedded target image becomes
clearly visible, the defense has thwarted O2. Consequently,
we design our experiments along with these two objectives.

Dataset & Setup. We use the ImageNet dataset [25] with a
pre-trained VGG19 model [28] for our evaluation. This deep
neural network is a standard benchmark in computer vision
and expects input images of size 224× 224× 3. From the
dataset, we randomly sample 600 images as an unmodified
reference set and 600 source images for conducting attacks.
For each source image, we randomly select a target image
from the dataset, ensuring that both images have different
classes and predictions. As we are interested in investigating
different scaling ratios, we sample the images such that we
obtain 120 images for each of the following five intervals
of ratios: [2,3), [3,4), [4,5), [5,7.5), [7.5,10). Since we have
two ratios along the vertical and horizontal direction for each
image, we consider the minimum of both for this assignment.

We implement image-scaling attacks in the strong variant
proposed by Xiao et al. [35]. We make a slight improvement
to the original attacks: Instead of using a fixed ε value, we
increase its value gradually from 1 up to 50 if the quadratic
programming solver cannot find a solution. During our eval-
uation, we observe that single columns or rows may require
a larger ε to find a feasible solution. In this way, we can
increase the attack’s success rate, if only a single part of an
image requires a higher ε value.

As scaling algorithms, we consider the implementations
of nearest-neighbor, bilinear, bicubic, and area scaling from
the libraries OpenCV (version 4.1), Pillow (version 6.0), and
tf.image (version 1.13) from TensorFlow. We omit the Lanc-
zos algorithm, as it provides comparable results to bicubic
scaling in our experiments due to the similar convolution
kernel and kernel width (see Figure 6).

Evaluation of O1: Predictions using VGG19. To assess
objective O1 of the attacks, we check if the deep neural net-
work VGG19 predicts the same class for the scaled image
scale(A) and the target image T . As there are typically minor
fluctuations in the predicted classes when scaling with differ-
ent ratios, we apply the commonly used top-5 accuracy. That
is, we check if a match exists between the top-5 predictions
for the target image T and the scaled image scale(A).

Evaluation of O2: User Study. To investigate objective O2,
we conduct user studies with 36 human subjects. The group
consists of female and male participants with different profes-

sional background. The participants obtain 3 attack images
for each interval of scaling ratio and are asked to visually iden-
tify one or more of three classes, where one class corresponds
to the source image, one to the embedded target image and the
third to an unrelated class. We consider an attack successful,
if a participant selects the class of the source image only and
does not notice the target image.

Evaluation of O2: PSNR. As quantitative measurement, we
additionally use the Peak Signal to Noise Ratio (PSNR), a
common metric in image processing [8], to measure the differ-
ence between the unmodified source image and the attacked
image. Formally, the PSNR for the attack image A and the
source image S is defined as

PSNR(A,S) = 10 log10

(
I2
max

1
N ‖ A−S ‖2

2

)
. (10)

The denominator represents the mean squared error between
both images with N as the total number of pixels, and Imax as
the maximum of the pixel range. A high PSNR value (larger
than 25 dB) indicates a strong match between two images.
As a conservative choice, we consider the attack unsuccessful
if the PSNR value is below 15 dB. We also experimented
with more advanced methods for comparing the quality of
images, such as feature matching based on SIFT analysis [16].
This technique, however, shows the same trends as the simple
PSNR measurement, and thus we omit these measurements.

5.2 Defense 1: Non-Adaptive Attack
In our first experiment, we examine the robustness of existing
scaling algorithms from OpenCV, TensorFlow, and Pillow
against image-scaling attacks. Note that we investigate area
scaling in the following Section 5.3, as it is not vulnerable to
standard image-scaling attacks.

Evaluation O1. Figure 12 shows the performance of the
attack as the ratio of classifications with the wanted target
class after scaling. The attack is successful with respect to
O1 for all scaling algorithms from OpenCV, TensorFlow, and
Pillow. An exception is Pillow’s bilinear scaling where the
success rate is 87%, as a feasible solution is not found for
all source and target pairs here. Overall, our results confirm
that an attacker can successfully manipulate an image such
that its scaled version becomes a target image, irrespective of
the scaling algorithm or library. This manipulation, however,
is not sufficient for a successful attack in practice, as visual
traces may clearly indicate the manipulation and undermine
the attack. We thus also evaluate O2 in this experiment.

Evaluation O2. Figure 13 shows the results from our user
study investigating the visual perception of the generated at-
tack images. In line with our theoretical analysis, the attack
is successful against OpenCV and TensorFlow, once a certain
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Figure 12: Success rate of image-scaling attacks with respect to objective
O1: the number of classifications with target class after scaling.

scaling ratio is reached (red bars in Figure 13). We observe
that for ratios exceeding 5, most attack images are not de-
tected by the participants. However, for the implementations
of bilinear and bicubic scaling in the Pillow library, the partic-
ipants always spot the attack and identify the embedded target
class in the source image. This result confirms our analysis
of the implementations in Section 4.2 and the vital role of the
dynamic kernel width used by Pillow.

In addition, Figure 19 in Appendix D reports the PSNR
values between the attack and source image over the entire
dataset. We observe the same trend as in the user study. For
OpenCV and TensorFlow, the images become similar to each
other with a larger β, reaching PSNR values above 25 dB.

Summary. We can confirm that image-scaling attacks are
effective against several scaling algorithms in popular imag-
ing libraries. The attacks succeed in crafting images that are
classified as the target class. However, the visibility of the at-
tacks depends on the scaling ratio and the kernel width. In the
case of Pillow, the attack fails for bilinear, bicubic, and Lanc-
zos scaling to hide the manipulations from a human viewer.
We thus conclude that these implementations of scaling al-
gorithms can be considered robust against a non-adaptive
adversary in practice.

5.3 Defense 1: Adaptive Attacks
In our second experiment, we consider an adaptive adversary
that specifically seeks means for undermining robust scaling.
To this end, we first attack the implementation of the Pillow
library (Section 5.3.1) and then construct attacks against area
scaling in general (Section 5.3.2 and 5.3.3).

5.3.1 Attacking the Pillow Library

Our analysis shows that image-scaling attacks fail to satisfy
objective O2 when applied to the Pillow library. The dynamic
kernel width forces the attack to aggressively change pixels
in the source, such that the target image becomes visible.
As a remedy, we propose to limit the number of changed
pixels. To build on the successful attacks against OpenCV
and TensorFlow, we allow 2 pixels to be freely changed in the
optimization from Eq. (4) while using images with β ∈ [4,5).
The goal is to find a modification for these pixels, such that
the convolution over the whole kernel yields the target value.
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Figure 13: User study on image-scaling attacks with respect to objective O2.
The attack is successful if only the source image S is visible (red).

To increase the chances to obtain a feasible solution, we
additionally allow the remaining pixels to be changed by at
most 10. We rerun the experiment from the previous section
with this new constraint and report results for 120 image pairs
with β ∈ [4,5) for bilinear and bicubic scaling, respectively.

Results. The added constraint severely impacts the success
rate of the attack. The rate drops to 0% for bilinear scaling
and to 0.83% for bicubic scaling. That is, the objective O1
is not reached anymore. In the majority of cases, no feasible
solution exists and several columns of the source image are
not modified. Only in a single case, the attack is successful
for bicubic scaling. However, the attack image shows obvious
traces from the target image, clearly revealing the attack.

5.3.2 Attacking Area Scaling

Area scaling stands out from the other algorithms as it em-
ploys a uniform weighting of pixels and operates on rectan-
gular blocks instead of columns and rows. As a result, the
original attack by Xiao et al. [35] is not applicable to this
scaling algorithm. To attack area scaling, we thus propose
two novel attack strategies.

The first strategy aims at slightly changing all pixels of
a block to control its average. That is, we seek a minimal
perturbation under the L1 norm such that the average of the
block becomes the targeted value. For a target value t, we
solve the following optimization problem:

min(‖∆̃‖1) s.t.
∥∥avg(S̃+ ∆̃)− t

∥∥
∞ 6 ε , (11)

where S̃ is the current block, ∆̃ its perturbation and ε a small
threshold. The L1 norm in Eq. (11) leads to an equally dis-
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Figure 14: Adaptive attack against area scaling: (a) Distribution of PSNR
values and (b) the average number of changed pixels by the L0-based attack.

tributed manipulation of the pixels in each block. The results
for the L2 norm are equivalent and thus omitted.

The second strategy aims at adapting only a few pixels
of a block while leaving the rest untouched. In this case,
we optimize the L0 norm, since only the number of changed
pixels counts. Our attack works as follows for a current image
block: if the target value is larger than the current average,
the adversary iteratively sets pixels in the source to Imax until
the target is reached. If the target is smaller, we iteratively
set pixels to 0. Note that the last value generally needs to be
adapted, such that the average becomes the target value.

Results. With respect to objective O1, both the L1 and L0
attack are successful in 100% of the images. However, both
variants fail reaching objective O2 in all of the cases. A man-
ual inspection of the images reveals that the source is largely
overwritten by both attacks and parts of the target become vis-
ible in all attack images. Figure 14(a) provides results on this
experiment by showing the distribution of PSNR values over
all source-attack image pairs. The average PSNR is 8.6 dB
for L1 and 6.7 dB for L0, which corresponds to a very low
similarity between the source and the attack image. In addi-
tion, Figure 14(b) depicts the distribution of changed pixels
for the L0 attack. While for the majority around 50% of the
pixels are changed, a few images only require to change 28%.
Still, this is too much to achieve objective O2. Figure 20 in
Appendix D shows the five best images from our evaluation
with the smallest number of changed pixels. In all cases, the
source image cannot be recognized anymore.

5.3.3 Selective Source Image

In addition to the two adaptive attacks, we also examine area
scaling under a more challenging scenario. In this scenario,
the adversary selects the most suitable source image for a fixed
target. As a result, the class of the source image is arbitrary
and potentially suspicious, yet the attack becomes stronger
due to the selected combination of source and target. We
implement this strategy as follows: For each target image T ,
we choose the source image S, for which the scaled version
has the smallest average distance to the target image. Fewer

changes are thus required to obtain a similar output after
scaling. We report results for the 100 best novel source-target
pairs in the following.

As before, both the L1 and L0 attack are successful in 100%
of all cases regarding objective O1. However, the attack again
largely overwrites the source image, such that the target is
visible in all cases. The examples from Figure 21 in Ap-
pendix D underline that the attack fails to keep the changes
minimal, although the source and target are similar to each
other. The average PSNR value is 16 dB for L1 and 12 dB
for L0. Both are slightly higher than in the non-selective sce-
nario but still far too low compared to successful examples
from Section 5.2.

Summary. We conclude that area scaling is robust against
the different adaptive attacks considered in this work, as well
as the selection of source images. These attacks are a best
effort for assessing the security of area scaling and confirm
our theoretical analysis from Section 4.2. In summary, we
recommend using area scaling when the uniform weighting
of pixels does not impact any following analysis steps.

5.4 Defense 2: Non-Adaptive Attack

We proceed with evaluating our novel defenses for recon-
structing images (Section 4.3). In particular, we combine the
selective median and random filter with a vulnerable scaling
algorithm and test the robustness of the combination. As at-
tacks, we consider all manipulated images from Section 5.2
that satisfy the objectives O1 and O2 for one scaling algo-
rithm. This includes attacks against nearest-neighbor scaling
from all imaging libraries as well as attacks against bilinear
and bicubic scaling from OpenCV and TensorFlow.

Evaluation O1. Our two defenses prevent all attacks. When
they are employed, no attack image succeeds in reaching
objective O1 for the respective scaling algorithm. The image
reconstruction effectively removes the manipulated pixels and
thereby prevents a misclassification of the images.

Evaluation O2. As the original image content is recon-
structed, the visual difference between the source and the
reconstructed images are minimal. Figure 15 depicts the dis-
tribution of PSNR values between each source and attack
image—before and after reconstruction. The quality con-
siderably increases after restoration and reaches high PSNR
values above 25 dB. Figure 22 in Appendix D provides some
examples before and after reconstruction.

Reconstruction Accuracy. Table 4 depicts the success rate
of reconstructing the attack image’s original prediction, that
is, we obtain the prediction of its actual source image. The
median filter recovers the predictions in almost all cases suc-
cessfully. For the random filter, the success rate is slightly
reduced due to the noise from the reconstruction.
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Figure 15: PSNR distribution before and after attack image reconstruction
for median and random filter on OpenCV’s scaling algorithms. Results for
the other scaling algorithms are similar and thus omitted.

In addition, we also measure the impact of both filters
on benign, unmodified images. The median filter runs with
almost no loss of accuracy. The random filter induces a small
loss which can be acceptable if a low run-time overhead of
this defense is an important criterion in practice.

Run-time Evaluation. Finally, we evaluate the run-time per-
formance of the two proposed defenses. To this end, we
apply the defenses along with different scaling algorithms to
2,000 images and measure the average run-time per image.
The test system is an Intel Xeon E5-2699 v3 with 2.4 GHz.
Our measurements are shown in Figure 16 on a logarithmic
scale in microseconds. Area scaling as well as our defenses
introduce a notable overhead and cannot compete with the
insecure nearest-neighbor scaling in performance. However,
in comparison to a pass through the VGG19 model, our de-
fenses are almost an order of magnitude faster and induce a
neglectable overhead for deep learning systems.

Summary. This experiment shows that the median and ran-
dom filter provide effective defenses against non-adaptive
attacks. In contrast to robust scaling, the defenses prevent the
attack and reconstruct the original prediction.

Library Algorithm
Median Random

Attacks Unmod. Attacks Unmod.

OpenCV
Nearest 99.6% 99.0% 89.3% 89.1%
Bilinear 100.0% 99.4% 97.7% 98.0%
Bicubic 100.0% 99.2% 91.4% 93.4%

TF
Nearest 99.6% 99.0% 88.9% 89.1%
Bilinear 100.0% 98.9% 97.7% 97.7%
Bicubic 100.0% 99.4% 91.7% 92.0%

Pillow Nearest 100.0% 99.6% 88.1% 90.4%

Table 4: Performance of defense in terms of recovering correct outputs from
the attack images, and impact on benign images.
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Figure 16: Run-time performance of nearest-neighbor and area scaling as
well as our defenses in combination with nearest-neighbor scaling. Addition-
ally, a forward pass of VGG19 is shown.

5.5 Defense 2: Adaptive Attacks
Finally, it remains to investigate the robustness of the two pro-
posed defenses against an adaptive adversary who is aware
of the defenses and adapts her attack accordingly. We thus
develop two strategies that aim at misleading the image re-
construction of attack images. Both strategies attempt to ma-
nipulate the reconstruction of the pixels p ∈ P , such that they
keep their value after applying the median or random filter.

Median Filter. Our attack strategy for the median filter is as
follows: Given a window Wp around p ∈ P , we denote by m
the current median of Wp. Note that p is not part of Wp (see
Figure 10). The adversary seeks a manipulation of the pixels
in Wp, such that m = p. Hence, applying the median filter
will not change p and the adversarial modification remains.
Without loss of generality, we assume that m < p. In order to
increase m, the adversary needs to set more pixels to the value
of p. We start with the highest pixel value that is smaller than
p and set it to p. We continue with this procedure until the
median equals p. In Appendix C, we show that this attack
strategy is optimal regarding the L0, L1, and L2 norm if the
windows Wp do not overlap. A smaller number of changes
to the image cannot ensure that m = p. These results give
a first intuition on the robustness of the median filter. A
considerable rewriting is necessary to change the median,
even in the overlapping case where an adversary can exploit
dependencies across windows.

In our experiments, we vary the maximum fraction δ of
allowed pixel changes per window. This bound allows us to
measure the defense’s robustness depending on the L0 norm.

Random Filter. For the random filter, our attack strategy
increases the probability that the target value in a window Wp
is selected. To this end, we let the adversary set a fraction δ
of all pixels in Wp to p. To minimize the number of changes
to the image, we replace only those pixels in the window with
the smallest absolute distance to p. This strategy is optimal in
the sense that manipulation with fewer changes would result
in a lower probability for hitting the target value p.

Results. Figure 17 shows the success rate of the adaptive
attacks regarding objective O1 for OpenCV and TensorFlow.
The results for Pillow’s nearest-neighbor scaling are similar
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Figure 17: Success rate of the adaptive attacks against defenses with respect
to objective O1. Note that O2 is not satisfied (see Figure 18).

and thus omitted. The adaptive attacks need to considerably
modify pixels so that the manipulated images are classified
as the target class. The median filter is robust until 40%
of the pixels in each window can be changed. Against the
random filter, a higher number of changed pixels is necessary
to increase the probability of being selected.

With respect to goal O2, both defenses withstand the adap-
tive attacks and thus remain secure. Rewriting 20% of the
pixels already inserts clear traces of manipulation, as exem-
plified by Figure 23 in Appendix D. In all cases, the attack
image is a mix between source- and target class. In addition,
Figure 18 shows the results from our user study for the me-
dian filter. The participants identify the attacks in the vast
majority of the cases. In a few cases, the participants only
recognized the source class. A closer analysis reveals that
the distortion in these cases is so strong that the detection of
particular classes is difficult. As a result, the participants did
not specify the source class.

Summary. We conclude that the two proposed defenses are
robust against the different adaptive attacks. These attacks
are both optimal with respect to the number of changes and
thus provide strong empirical evidence for the robustness of
the defenses. If a vulnerable scaling algorithm needs to be
used in a machine-learning system or the reconstruction of
the original class is essential, we thus recommend using one
of the defenses as a preprocessing step.

2 3 4 5

0

50

100

Scaling Ratio

Sp
ec

ifi
ed

[%
]

OpenCV—Nearest

2 3 4

0

50

100

Scaling Ratio

OpenCV—Linear

only S visible both visible only T visible

2 3 4

0

50

100

Scaling Ratio

OpenCV—Cubic

Figure 18: User study to determine the success rate of the adaptive attack
against the median filter with respect to O2.

6 Related Work

Closest to our work are different attacks and defenses from
the area of adversarial machine learning [see 3, 21]. For ex-
ample, approaches for creating and detecting adversarial ex-
amples share related objectives [e.g., 4, 6, 14, 17, 23]. More-
over, techniques for manipulating machine learning models
revolve around a similar problem setting. These techniques
change training data or model parameters to obtain targeted
responses [e.g., 2, 10, 15, 34]. While not directly related,
methods for memberships and property inference [e.g., 9, 27]
as well as model inversion and extraction [e.g., 20, 33] also
constitute threats to machine learning. Our work extends this
line of research by examining the preprocessing step. We pro-
vide a comprehensive analysis of image-scaling attacks and
derive defenses for prevention. In a concurrent work [24], we
study the application for the poisoning scenario. Moreover,
we note that image-scaling attacks further bridge the gap be-
tween adversarial learning and multimedia security where the
latter also considers adversarial signal manipulations [1, 22].

Finally, image-scaling attacks differ from prior work in
two important properties: (a) The attacks affect all further
steps of a machine learning system. They are thus agnostic to
feature extraction and learning models, giving rise to general
adversarial examples and poisoning. (b) Fortunately, we can
show that the vulnerability underlying image-scaling attacks
can be effectively mitigated by defenses. This rare success
of defenses in adversarial machine learning is rooted in the
well-defined structure of image scaling that fundamentally
differs from the high complexity of deep learning models.

7 Conclusion

Image-scaling attacks exploit vulnerabilities in the prepro-
cessing of machine learning with considerable impact on
computer vision. In this paper, we provide the first in-depth
analysis of these attacks. Based on insights from this analysis,
we propose different defenses that address the root cause of
the attacks rather than fixing their symptoms.

For evaluating our defenses, we consider an adaptive ad-
versary who has full knowledge about the implementation of
scaling algorithms and our defense strategy. Our empirical
results show that image-scaling attacks can be prevented effec-
tively under this threat model. The proposed defenses can be
easily combined with existing imaging libraries and require
almost no changes to machine learning pipelines. Further-
more, our findings are not limited to the considered scaling
algorithms and enable developers to vet their own scaling
techniques for similar vulnerabilities.

Overall, our work provides novel insights into the security
of preprocessing in machine learning. We believe that further
work is necessary to identify and rule out other vulnerabilities
in the different stages of data processing to strengthen the
security of learning-based systems.



Availability

We make our dataset and code publicly available at
http://scaling-attacks.net to encourage further re-
search on secure image scaling. Our defenses are also im-
plemented in C++ with Eigen, such that they can be easily
employed as plug-ins for TensorFlow.
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A Downgrade Attack to Nearest Scaling

As part of our analysis, we identified a side effect in the imple-
mentation of g(p) (see Eq. (6)) in OpenCV and TensorFlow.
An adversary can enforce the usage of nearest scaling by
choosing a respective scaling factor although the library is
supposed to use bilinear, bicubic or Lanczos scaling. In partic-
ular, if the scaling ratio is an uneven integer, β= 2z+1, z∈N,
OpenCV is effectively using nearest scaling. In TensorFlow,
each integer with β ∈ N leads to the same effect. Thus, if the
adversary can control the source image size, she can resize
her image before to obtain the respective scaling factor. This
in turn allows her to perform a more powerful scaling attack
by creating attack images with less distortion, as the ratio
of considered pixels decreases (see Section 3.3). Note that

we do not exploit this issue in our evaluation. We test over
a variety of scaling factors to draw general conclusions on
scaling attacks.

Table 5: Implementation of g(p) in OpenCV, TensorFlow and Pillow

Library g(·)
OpenCV g(p) = (p+0.5) ·β−0.5
TensorFlow g(p) = p ·β (*)
Pillow g(p) = (p+0.5) ·β

(*) The scaling function in TensorFlow can be changed to the definition from
OpenCV. However, this option is not exposed in tf.image.resize_images, the
high level resizing API.

To understand its reason, we need to consider the mapping
g(p) and the kernel w. Table 5 shows the slightly different
implementations of g(p) in OpenCV, TensorFlow and Pillow.
For OpenCV, for instance, if β is an uneven integer, g(p)
will always be an integer. Thus, only one pixel will be used
for the convolution. A closer look on the definition of the
kernels in Figure 6 reveals the underlying reason. Each kernel
is zero for integer positions. Thus, if g(p) is an integer and
the kernel is exactly positioned here, each neighboring pixel
obtains a weight of zero. Thus, only the pixel at position g(p)
is used. This behavior corresponds to nearest scaling. We
observe this effect for bilinear, bicubic and Lanczos scaling
in OpenCV and TensorFlow. On the contrary, Pillow makes
use of a dynamic kernel width, so that we do not observe this
behavior in this case.

B Selective Random Filter

Our random filter is identical to the selective median filter,
except for that it takes a random point from each window in-
stead of the median. That is, given a point p ∈ P , we consider
a window Wp around p of size 2βh×2βv and randomly select
a point as a reconstruction of p. Again, we exclude points
p′ ∈ P from this window to limit the attacker’s influence.

Randomly selecting a point for reconstruction obviously
comes with problems. First, the reconstruction becomes non-
deterministic. Second, the scaled image might suffer from
poor quality. Our evaluation, however, shows that the loss
due to random sampling is small and might be acceptable for
the benefit of a very efficient run-time performance. The filter
reconstructs an image with a complexity of O(|P |), which is
independent of the scaling ratio. Furthermore, the filter also
provides strong protection from attacks. If an image contains
|P | relevant points, there exist |P | ·4βhβv possible combina-
tions for its reconstruction. If we consider a scaling ratio of 5
and a target size of 200×200, this already amounts to 4 mil-
lion different combinations an attacker needs to guess from.
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C Adaptive Attack Against Median Filter

In the following, we analyze our adaptive attack against the
median-based defense. We demonstrate that the attack is
optimal regarding the L0, L1, and L2 norm if each window Wp
does not overlap with other windows. An adversary cannot
make less changes to control the output of the median filter.

For a given attack image and window Wp, the adversary
seeks to manipulate the pixels in Wp such that the median m
over Wp still corresponds to p. In this way, the modifications
from the image-scaling attack remain even after applying the
median filter. Without loss of generality, we assume that
m < p and further unroll Wp to a one-dimensional signal.
We consider a signal with uneven length k and denote the
numerical order by brackets, so that the signal is given by:

x(1), · · · , x( k
2 )
, m( k+1

2 ), x( k+2
2 ), · · · , x(l), · · · , x(k) (12)

We denote by x(l) the largest pixel in the sorted signal that is
smaller than p. The objective is to change the signal with the
fewest possible changes such that m = p.

We start by observing that we need to change l− k+1
2 +1

pixels to move the median to p. Less changes do not impact
the numerical order sufficiently. We can thus conclude that
the minimal L0 norm for an attack is given by

L0 = l− k+1
2 +1 . (13)

Next, we show that setting all pixels between m and x(l) to
p successfully moves the median as well as minimizes the
L1 and L2 norm in addition. First, we observe that if we
replace pixels with indices in [1,k/2] by a value smaller than

m, the median is not changed. Likewise, replacing pixels
larger than x(l) by a value larger than m does not change the
median. Two methods remain: (1) We can replace pixels
with indices in [1,(k+1)/2] by a value larger than m. (2) We
can set all pixels with index [(k+1)/2, l] to p. While both
methods can move the median to p, the latter induces less
changes regarding the L1/L2 norm, as these values are closer
to p. Thus, our adaptive attack uses the optimal strategy for
the L1/L2 norm by setting all pixels between m and x(l) to p.
Furthermore, we can derive a simple bound for the L2 norm:

(L2)
2 = ∑

( k+1
2 )6i6l

(
x(i)− p

)2
6 L0 (m− p)2 . (14)

Overall, we can exactly compute the number and amount
of required changes for a successful attack. Our analysis,
however, also shows that the attack always depends on the
concrete pair of a source and a target image, and there is no
notion of a class boundary. Consequently, we cannot derive a
general bound, as achieved with certifiable defenses against
adversarial examples. Yet, our empirical results in Section 5.5
demonstrate that the necessary changes are very large if target
and source images show realistic content, so that the median
m and the target value p are not close to each other.

D Additional Figures

Figures 19 to 23 give further information and examples from
our evaluation. In particular, they provide visual examples of
successful and failed attacks, thereby highlighting the work-
ing principle of image-scaling attacks.
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Figure 19: Success rate of attack regarding objective O2: the similarity between source image and attack image, measured by the PSNR value.
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Figure 20: Best images of the L0 version of our adaptive attack against area scaling. The attack fails in all cases with respect to objective O2, as each attack
image is not similar to the source image anymore.
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Figure 21: Selective source scenario against area scaling with our L1 attack (first two columns) and L0 attack (last three columns). The attack fails in all cases
with respect to objective O2. While traces from the source image are visible, the attack image overwrites the source image considerably.
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Figure 22: Randomly selected examples before and after restoration with our median filter (first three columns) and random filter (last two columns). Without
restoration, the attack is successful, as the downscaling of the attack image produces an unrelated target image (1st and 2nd row). With restoration, the attack
fails in all cases with respect to objective O1, as the downscaled output from the restored attack image produces the respective content and not an unrelated
image (3rd and 4th row). Moreover, the filtering improves quality, as it removes traces from the attack.
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Figure 23: Successful examples regarding objective O1 from the adaptive attack against the median filter if 20% of the pixels in each block can be changed. The
target class is detected, but the attack image is a mix between source and target class. The results thus violate objective O2.
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