
Re: What’s Up Johnny?

Covert Content Attacks on Email End-to-End Encryption

Jens Müller1, Marcus Brinkmann1, Damian Poddebniak2, Sebastian Schinzel2,

and Jörg Schwenk1

1 Ruhr University Bochum, Germany
{jens.a.mueller,marcus.brinkmann,joerg.schwenk}@rub.de

2 Münster University of Applied Sciences, Germany
{damian.poddebniak,schinzel}@fh-muenster.de

Abstract. We show practical attacks against OpenPGP and S/MIME
encryption and digital signatures in the context of email. Instead of tar-
geting the underlying cryptographic primitives, our attacks abuse legiti-
mate features of the MIME standard and HTML, as supported by email
clients, to deceive the user regarding the actual message content. We
demonstrate how the attacker can unknowingly abuse the user as a de-
cryption oracle by replying to an unsuspicious looking email. Using this
technique, the plaintext of hundreds of encrypted emails can be leaked
at once. Furthermore, we show how users could be tricked into signing
arbitrary text by replying to emails containing CSS conditional rules.
An evaluation shows that 17 out of 19 OpenPGP-capable email clients,
as well as 21 out of 22 clients supporting S/MIME, are vulnerable to at
least one attack. We provide different countermeasures and discuss their
advantages and disadvantages.

Keywords: PGP · S/MIME · Decryption Oracles · Signing Oracles.

1 Introduction

Email was designed as a plaintext protocol, which allows eavesdroppers to read or

modify the communication on the channel. While it is common today that traffic

between mailservers is TLS encrypted,3 transport encryption is not sufficient to

protect against strong attackers, such as a man-in-the-middle (MitM) within the

infrastructure (e.g., a dishonest mail server operator), or an attacker who gains

access to leaked user emails. OpenPGP [2] and S/MIME [9] are the two major

standards used in such scenarios and provide end-to-end cryptographic protec-

tion. Both standards are designed to guarantee confidentiality, integrity, and

authenticity of messages, even in hostile environments such as a compromised

or untrustworthy mail server by encrypting and digitally signing emails.

3 According toGoogle’s transparency report, 88%of the email trafficwasTLS encrypted
in the fourth quarter of 2018: https://transparencyreport.google.com/safer-email/

https://transparencyreport.google.com/safer-email/

2 J. Müller et al.

Research Question. Both standards are based on asymmetric encryption; only

the user has access to the private key and, therefore, can decrypt messages en-

crypted with the public key or sign messages. However, email usage involves

interaction with multiple communication partners, including potentially dishon-

est parties. Example: a mail server operator, Eve, who is in possession of the

ciphertext messages sent from Alice to Bob can simply re-send the encrypted

message from her address and have Bob decrypt it.4 If Bob simply replied to

Eve while quoting the original message, he would leak the plaintext of his com-

munication with Alice. Such message takeover attacks under a new identity are

well-known issues in email end-to-end encryption (see [6, 7]). However, they are

generally considered an acceptable risk because it is assumed that given the

context of the message (e.g., “Hi Bob, [...] Yours, Alice”) Bob can tell that this

message is not originally from Eve and could easily discover the deception.

Therefore, the research question arises: Is it possible to hide the original text

to trick a user into unintentionally acting as a decryption oracle? A schematic

illustration of such an attack is given in Figure 1.

Fig. 1: Covert content attacks against email encryption.

Contributions. In this work, we show simple, yet practical, attacks against

email encryption and digital signatures, and discuss the countermeasures. We

demonstrate how an attacker can wrap ciphertext into a specially crafted email

which looks benign but leaks the plaintext of hundreds of encrypted emails at

once if replied to. Furthermore, we show how to turn the victim into a signing

oracle by having him sign quoted covert content. The attacker can put this

content into a different context based on CSS conditional rules, resulting in

arbitrary text to be displayed as correctly signed by the victim. Our evaluation

shows that 17 out of 19 OpenPGP capable email clients, as well as 21 out of 22

clients supporting S/MIME are vulnerable to at least one attack. Our attacks

raise concerns about the overall security of encryption and digital signatures in

the context of email, even though the security guarantees of the cryptography

behind them remains untouched.

Responsible Disclosure. We reported our attacks to the affected vendors

and proposed appropriate countermeasures. Our findings regarding email end-

to-end encryption resulted in CVE-2019-10731 to CVE-2019-10741. Our attacks

on digital signatures are documented as CVE-2019-10726 to CVE-2019-10730.

4 Note that digital signatures do not prevent this attack because Eve can strip them
and re-sign the message under her identity as discussed in section 8.1 of this paper.

Re: What’s Up Johnny? 3

2 Background

In this section, we provide the fundamentals and the historical context of the

OpenPGP and S/MIME encryption schemes, as well as MIME and HTML email.

2.1 OpenPGP

Pretty Good Privacy (PGP) was invented in 1991 by Phil Zimmermann and

played a major political role in the ‘crypto wars’ of the mid-1990s. Until today,

it has a high reputation among activists, journalists, and privacy enthusiasts.

PGP was standardized as OpenPGP in RFC4880 which comes in two flavors: For

PGP/Inline, the plaintext in the email body is simply replaced by its encrypted

counterpart. This is done separately for each body part (or attachment) in case

of multipart emails. For PGP/MIME, the whole MIME structure including all

body parts is encrypted into a single part of content type multipart/encrypted.

2.2 S/MIME

In the late 1990s, S/MIME was specified as an Internet standard for email en-

cryption and digital signatures based on X.509 public key certificates and a PKI.

Besides having a more centralized trust model than OpenPGP, both standards

have a lot in common. S/MIME and OpenPGP are both hybrid cryptosystems,

consisting of a symmetric cipher such as AES and an asymmetric cipher like

RSA. S/MIME encrypts the whole MIME structure into a single body part of

content type application/pkcs7-mime. It is supported natively by various mail

clients and used in business environments and organizations, such as universities.

2.3 MIME Email

Historically, RFC822 email was limited to ASCII messages. This did not fit the

needs of users to send other file formats such as binary data. Therefore, in 1992

Multipurpose Internet Mail Extensions (MIME) were born, enabling emails that

consist of multiple parts of various content types. An example HTML email with

inline images, additional text parts, and a PDF attachment is given in Figure 2.

multipart/mixed

multipart/related

multipart/alternative

text/plain text/html

image/jpeg image/gif

application/pdf

displayed inline by client

displayed as attachment

text/plain

Fig. 2: Exemplary MIME tree of a multipart email.

4 J. Müller et al.

In the context of end-to-end encryption, the flexibility of multipart mails can

be dangerous. Neither OpenPGP nor the S/MIME standard cover the edge-case

of partially encrypted messages: e.g., ciphertexts can be wrapped as a sub-part

within the MIME tree, which is the foundation of our attacks on encryption.

2.4 HTML Email

HTML in emails was introduced by Netscape in 1995 to format messages, e.g.,

to provide bold or colored text. It competed with the text/enriched MIME type

as defined in RFC1563 and Microsoft’s proprietary Rich Text Format (RTF).

HTML email was eventually adopted by the general public, despite opposition

by tech enthusiasts (as expressed, e.g., in the ASCII ribbon campaign). Today

most mail clients support HTML emails by default.5 However, until today, there

is no standard that defines which HTML elements should be enabled in email.

For example, some email clients even execute script tags within emails (see [8]).

3 Related Work

In 2000 Katz, Schneier, and Jallad [6, 7] presented chosen-ciphertext attacks

against OpenPGP and S/MIME, in which they make use of the malleability fea-

ture of CFB and CBC mode to modify encrypted messages resulting in ‘garbage’

plaintext. A victim replying to the garbled plaintext unwittingly acts as a decryp-

tion oracle, allowing the receiver to reconstruct the original plaintext. Heiderich

et al. [5] showed that this attack is possible even without ciphertext masking.

Recently, Poddebniak et al. [8] demonstrated that the malleability of CFB/CBC

can be used to modify encrypted emails such that their plaintext is automatically

exfiltrated to the attacker when opened in a vulnerable email client, using HTML

and other backchannels. They, furthermore, showed that some email clients con-

catenate encrypted and unencrypted MIME parts, allowing an attacker to leak

the plaintext of OpenPGP and S/MIME encrypted messages by loading them as

the resource of a remote URL. Message takeover attacks for signed emails have

been discussed by Davis [3] in 2001. He showed that a signed message “Let’s

break up” from Bob to Eve can simply be re-send by Eve to scare Alice (Bob’s

new girlfriend). Furthermore, Davis demonstrated that signatures can simply be

removed in many scenarios and the message can be re-signed by the attacker.

In 2017, Ribeiro [10] showed that the displayed content of signed HTML emails

can be changed subsequently if the mail client fetches external CSS stylesheets.

4 Attacker Model

Attacks based on decryption oracles require the attacker to somehow have ob-

tained PGP or S/MIME encrypted emails. In practice, this could be achieved via

an untrustworthy or compromised SMTP or IMAP server, via a third party com-

ponent such as cloud-based antivirus solutions scanning transiting emails, or via

5 According to an email marketing statistics and metrics study conducted by Juniper
Research, 97% of all email clients used in 2007 supported HTML messages.

Re: What’s Up Johnny? 5

a compromised mailbox (e.g., based on weak passwords or XSS on the webmail

service). While this is a strong attacker model, the only reason to use end-to-end

encryption at all is that an untrusted communication channel is presumed.

After having obtained ciphertext messages, the attacker, Eve, can re-send

them in her own name to one of the original communication parties, Alice or

Bob. Note that both can act as a decryption oracle because emails are usually

encrypted with the public key of both, the sender and the receiver, as both parties

want to be able to decrypt it later. Eve can perform additional changes to the

encrypted messages such as wrapping them within a multipart mail. In addition,

Eve may apply social engineering to lure the victim – Alice or Bob – into replying

to her (benign-looking) message. Note that this is a weak requirement as it is

a basic function of email to reply to communication partners, even previously

unknown ones. It is clear that the security of a cryptographic protocol should

not be dependent on the assumption that no communication is made. Signing

oracle-based attacks only require the victim to reply to a benign-looking email.

5 Decryption Oracles

Replying to a decrypted email and quoting the original message can leak the

plaintext to a third party in case the From: or Reply-To: header had been re-

placed with the attacker’s email address. Such message takeover attacks under

a new identity are well-known (see [6, 7]). However, they can often be detected

based on the message content. It is generally assumed that trained users should

get suspicious and discover the deception instead of replying to ‘out of context’

messages. In this paper we show how to hide the original plaintext and instead

show a meaningful message, asking the user to reply and, therefore, leak the

(hidden) plaintext. We do this by abusing the MIME standard in combination

with HTML email. Encrypted messages can themselves be a sub-part within a

MIME tree which may include further non-encrypted parts. Even though there

are hardly meaningful use cases for such ‘partially encrypted’ emails, they are a

valid feature. This allows an attacker to integrate captured ciphertext messages

into a MIME tree under her control and re-send this new email to the victim (i.e.,

the original sender or receiver). A MIME tree containing an attacker-controlled

message, as well as S/MIME and OpenPGP encrypted parts, is given in Figure 3.

multipart/mixed

text/html application/pkcs7-mime

encrypted content

attacker-controlled content

multipart/encrypted text/plain

S/MIME PGP/MIME PGP/INLINE

Fig. 3: MIME tree of a partially encrypted email.

6 J. Müller et al.

Plaintext Merged with Attacker’s Text. If a client receives a multipart

email, it decrypts the ciphertext parts and afterwards merges all ASCII and

HTML parts into a single document which is quoted upon replying.6 This im-

plementation approach of the MIME standard can be considered dangerous: Eve

can prepend her own message, followed by a lot of newlines, to the captured ci-

phertext part. If Alice replies without scrolling down in her reply quoting the

text, she unintentionally acts as a decryption oracle and leaks the plaintext.

Other obfuscation techniques include hiding the ciphertext somewhere between

the attacker’s message parts: Emails, especially forwarded mails, can contain a

long conversation history and top-posting without reading the whole conversa-

tion history is common user behavior. A user replying to a ‘mixed content’ con-

versation can thereby leak the plaintext of encrypted messages wrapped within

the attacker-controlled text.

Plaintext Hidden Using HTML and CSS. In the context of HTML email,

mixed content attacks are more serious than in ASCII emails. An attacker who

can inject her own HTML/CSS code into the same document where the plaintext

is displayed can completely hide it, e.g., by wrapping it within an iframe. An

example email is given in Figure 4. The result for Apple Mail is shown in Figure 5.

1 From: eve@evil.com
2 To: johnny@good.com
3 Content-Type: multipart/mixed; boundary=“BOUNDARY”
4
5 --BOUNDARY
6 Content-Type: text/html
7
8 Hello Johnny,

9 I’m interested in your work. Could you explain to me how...

10 <iframe height=“1” frameborder=“0”>
11 --BOUNDARY
12 Content-Type: application/pkcs7-mime; smime-type=enveloped-data
13 Content-Transfer-Encoding: base64
14
15 [... ciphertext ...]

16 --BOUNDARY--

(a) Attacker-prepared multipart email received by victim’s mail client.

1
2
3
4 Hello Johnny,

5 I’m interested in your work. Could you...

6 <iframe height=“1” frameborder=“0”>
7 Secret message, for Johnny’s eye only...

(b) HTML code after decryption.

1 Dear Eve, ...

2
3 On 01/05/19 08:27, Eve wrote :
4 > Hello Johnny,

5 > I’m interested in your work. Could you...

6 <iframe height=“1” frameborder=“0”>
7 Secret message, for Johnny’s eye only...

(c) HTML code in reply message.

Fig. 4: Email structure to hide S/MIME ciphertext in an invisible iframe. After

decryption the plaintext will be included as ‘covert content’ in the quoted reply.

6 There are alternative ways to handle multipart messages. The email client “The
Bat!” shows a new tab for each body part, while Outlook only displays the very first
part. However, a majority of the evaluated clients follows the described approach.

Re: What’s Up Johnny? 7

(a) Johnny receives a benign-looking email from Eve.

(b) Johnny replies to Eve. (c) Eve obtains the plaintext.

Fig. 5: Covert content attack using Apple Mail as S/MIME decryption oracle.

Note that a closing </iframe> tag is not required. However, it could easily be

added by placing another attacker-controlled text/html part at the end of the

message. Iframes are just one way to hide the original plaintext. Other options

include wrapping it into HTML comments or other elements such as <audio> or

<canvas> which do not display the content between opening and closing tags –

while it is still kept when replying to the email. Other, more advanced, techniques

to hide the plaintext using CSS properties are shown for attacks on signatures

in section 6. A comprehensive list of CSS blinding options is given in Table 1.

Breaking Mixed-Content Isolation with References. In cases where mul-

tiple MIME parts are not automatically concatenated by the client, this behav-

ior can be enforced by creating a multipart/related email structure referencing

the ciphertext via cid: URI schemes (see RFC2392). Such Content-ID resource

locators are typically used to embed and display inline images within HTML

emails. They are generally seen as more compatible than referencing remote im-

ages which are blocked in most email clients for privacy reasons. In the example

email given in Figure 6, the attacker’s text/html part includes the ciphertext as

an ‘image’. Because the resulting plaintext is not a valid image file, it cannot

be displayed by the client. However, the decrypted inline ‘image’ is included

in reply emails, therefore leaking the plaintext. A resulting screenshot of the

8 J. Müller et al.

wrapped PGP/MIME message being opened in Thunderbird is given in Fig-

ure 10 in the appendix. The attacker is not limited to images; the plaintext can

also be referenced as the content of an iframe, object, embed, and other elements.

1 From: eve@evil.com
2 To: johnny@good.com
3 Content-Type: multipart/related; boundary=“BOUNDARY”
4
5 --BOUNDARY
6 Content-Type: text/html
7
8 What’s up Johnny?

9
10 <style>fieldset ,br{display :none}</style>
11
12 --BOUNDARY
13 Content-ID: <target>
14 Content-Type: multipart/encrypted; protocol=“application/pgp-encrypted”; boundary=“PGPMIME”
15
16 --PGPMIME
17 Content-Type: application/pgp-encrypted
18
19 Version: 1
20 --PGPMIME
21 Content-Type: application/octet-stream; name=“encrypted.asc”
22 Content-Disposition: inline; filename=“encrypted.asc”
23
24 -----BEGIN PGP MESSAGE-----

25 [... ciphertext ...]

26 -----END PGP MESSAGE-----

27 --PGPMIME--
28 --BOUNDARY--

Fig. 6: Email structure to hide PGP/MIME ciphertext in a referenced ‘image’.

Note that the attack does not require a ‘partially encrypted’ email because

Eve can also encrypt her malicious parts with the victim’s public PGP key

or S/MIME certificate. The attack is even successful if the victim replies to

Eve with an encrypted email because Eve’s public key is used for re-encryption.

These attacks apply not only for single ciphertext messages in the middle part of

a multipart email, but hundreds of encrypted emails can be hidden as sub-parts

and their plaintext can be leaked with a single reply.7 Furthermore, the attack

does not require an active MitM, but rather, the obtained ciphertext could be

years-old. For example, a nation-state actor could have captured a target user’s

encrypted emails over years and later decides to expose them by sending a single

benign-looking email which lures the user into replying. While the attacks use

email to exfiltrate the plaintext, their scope is not limited to exfiltrating de-

crypted emails. The attacks also work with non-email ciphertexts such as PGP

encrypted files. Covert content attacks are independent of the applied encryption

scheme, even though email clients and crypto plugins may handle multipart mes-

sages differently, depending on whether S/MIME and OpenPGP is used. While

the attacks require user interaction, they do not require any ‘unusual’ behavior,

but instead normal usage of email as a communication medium. They also do

not require complex cryptographic attacks like the CBC gadgets discussed in [8].

7 At some point, the SMTP server may enforce a resource limit, e.g., 25 MB for Gmail.

Re: What’s Up Johnny? 9

6 Signing Oracles

Digital signatures should guarantee integrity, authenticity, and non-repudiation

of messages. To give an example, Johnny could be a commander-in-chief who

takes information security seriously. All his emails are digitally signed, making

it hard to impersonate him in order to send forged statements or instructions.

The goal of our attacker Eve is to start false-flag warfare. Therefore, she needs

to obtain a digitally signed ‘declaration of war’ which she can forward to the

armed forces. Every time Johnny replies to a message he already acts – to a

certain extent – as a signing oracle when quoting the original text. For example,

consider the following message from Eve to Johnny:

1 I hereby declare war.

Johnny replies with a signed message, thereby quoting the original text:

1 Sorry Eve, You can' t do that .
2
3 On 01/05/19 09:42, Eve wrote :
4 > I hereby declare war.

In the reply, commander Johnny unintentionally signed Eve’s quoted text. Cer-

tainly, given the message context and the quote prefix (>...) it is clear that

declaring war is not his intention. However, Eve can try to hide her malicious

content using CSS blinding options while a benign text message, such as “What’s

up Johnny?”, is added to be shown. Similarly, the benign text can be hidden

while showing the malicious content, based on CSS conditional rules which are

satisfied only for a third party. If Johnny replies to such a specially-crafted

HTML/CSS email, he signs arbitrary covert content along with visible content.

This signed message can then be forwarded by Eve to a third party (e.g., the

armed forces) where it displays the previously hidden malicious content “I hereby

declare war”, while hiding the benign content. A schematic illustration of such

covert content attacks on email signatures is given in Figure 7.

Fig. 7: Covert content attacks against email signatures.

A simple HTML email containing conditional CSS code to display different con-

tent based on the device’s screen resolution is given in Figure 8. It can be used

to obtain a signed email from a mobile device, where a benign message is shown.

The reply message instead displays a (signed) declaration of war when shown

on a desktop mail client. A screenshot of the attack using iOS Mail as a signing

oracle and the resulting signed email shown in Thunderbird is given in Figure 9.

10 J. Müller et al.

1 From: eve@evil.com
2 To: johnny@good.com
3 Content-Type: text/html
4
5 <style>
6 /* hide malicious content on mobile devices */
7 @media (max-device-width: 834px) {
8 .covert {visibility: hidden;}
9 }

10 /* but show on desktop/large-screen devices */
11 @media (min-device-width: 835px) {
12 * {visibility: hidden;}
13 .covert {visibility: visible !important; position: absolute; top: 8px; left: 8px;}
14 }
15 </style>
16
17 What’s up Johnny?

18 <div class=“covert” style=“visibility: hidden”>I hereby declare war.</div>

(a) Attacker-prepared HTML/CSS email sent to Johnny.
1 What’s up Johnny?

(b) Content seen by Johnny on his mobile email client.
1 I’m fine, thanks.

2
3 On 01/05/19 09:53, Eve wrote:

4 > What’s up Johnny?

(c) Content seen by Johnny when replying to the message.
1 I hereby declare war.

(d) Signed content seen by a third party on a desktop client.

Fig. 8: Malicious HTML/CSS email to obtain a signed ‘declaration of war’.

(a) Johnny replies to Eve’s email. (b) Eve obtains a signed reply email for arbitrary text.

Fig. 9: Covert content attack abusing iOS Mail as S/MIME signing oracle.

In the given example, email clients with a screen width of less than 835px (e.g.,

a mobile phone or tablet) show a different text than desktop mail clients based

on the @media conditional rule. If the email client includes this conditional CSS

in the reply message it can be misused as a signing oracle, therefore allowing the

attacker to obtain signed messaged for arbitrary (displayed) content.

Re: What’s Up Johnny? 11

Conditional Rules. The W3C specifies CSS conditional rules [12] like @media,
which allow different formatting based on conditions such as screen width or

orientation. For example, a different text can be shown whether a mobile phone

is held in portrait or landscape mode, or whether the document is displayed

on a screen or printed out. Besides media queries, we can show different text

in different email clients using the @support conditional rule, which applies

formatting based on CSS feature support in the client. For example, an email

can be shown in red if two property-value pairs are supported:

1 @supports (property1 : value1) and (property2 : value2) {* {color : red}}

We assembled a list of over 1,000 CSS property-value pairs to fingerprint the

features supported by clients. This allows us to selectively enable certain CSS

code for every client that interprets the @support rule. A further conditional

rule introduced by Mozilla is @document. It allows CSS code to be executed

based on the document location. In the context of email clients, this even allows

us to show different text for each user because the location contains an imap://

URI scheme with the email address. For example, to apply a red color solely for

the emails of general@good.com the following CSS code can be used:

1 @-moz-document url - prefix ("imap://general@good .com") {* {color : red}}

In case CSS conditional rules are not supported, email clients may support their

own proprietary conditional statements. For example, Outlook interprets HTML

and CSS code within <!--[if mso]>...<![endif]-->, while other clients will ignore

it. A listing of other conditional features is given in Figure 11 in the appendix.

Blinding Options. We identified seven CSS properties which can be used for

covert content attacks, as shown in Table 1. However, this list is unlikely to be

complete because CSS is very complex and offers more possibilities to hide text.

property show hide

display: initial; none;
visibility: visible; hidden;
opacity: 1; 0;
clip-path: initial; polygon(0px 0px, 0px 0px, 0px 0px, 0px 0px);
position: static; absolute; top: -9999px; left: -9999px;
color: initial; transparent;
font-size: initial; 0;

Table 1: CSS properties to hide text.

The proposed attacks allow an attacker to obtain valid signatures for arbitrary

content to be displayed. This can be used to trick a third party, which relies

on the authenticity and integrity of signed messages, to perform certain actions

(such as starting a war). A forensic analysis can reveal the deception, but then

it may already be too late (i.e., war is already declared). Note that the covert

content attacks to obtain signatures do not require any MIME wrapping, but

rather depend on HTML emails, and on support for (internal) CSS styles.

12 J. Müller et al.

7 Evaluation

To evaluate the proposed attacks, we selected 19 widely-used email clients with

OpenPGP support and 22 clients supporting S/MIME from a comprehensive list

of over 50 email clients assembled from public software directories for all major

platforms (Windows, Linux, macOS, Android, iOS, and Web). Email clients were

excluded if they were not updated for several years, or if the cost to obtain them

would be prohibitive (e.g., appliances). All clients were tested in the default

settings with an additional PGP or S/MIME plugin installed where required.

The results from the tested clients regarding covert content attacks, (i.e., tricking

a user into acting as an oracle for decryption or signing) are shown in Table 2.

Support Decryption Signatures

S/MIME PGP S/MIME PGP S/MIME PGP

Windows Thunderbird (52.5.2) native Enigmail
Outlook 2016 (16.0.4266) native GpgOL # # G# G#
Win. 10 Mail (17.8730) native – # – G# –
Win. Live Mail (16.4.3528) native – # – –
The Bat! (8.2.0) native GnuPG # # # #
Postbox (5.0.20) native Enigmail
eM Client (7.1.31849.0) native native # # G# G#

Linux KMail (5.2.3) native GPGME G# G# # #
Evolution (3.22.6) native GnuPG G# G# G# G#
Trojitá (0.7-278) native GPGME G# G# G# G#
Claws (3.14.1) plugin GPG plugin G# G# # #
Mutt (1.7.2) native GPGME G# G# # #

macOS Apple Mail (11.2) native GPGTools G# G#
MailMate (1.10) native GPGTools
Airmail (3.5.3) plugin GPG-PGP

iOS Mail App (11.2.2) native – – –

Android K-9 Mail (5.403) – OpenKeychain – # –
R2Mail2 (2.30) native native # G# G#
MailDroid (4.81) Flipdog Flipdog # #
Nine (4.1.3a) native – # – –

Web Exchange/OWA (15.1.1034) plugin – # – –
Roundcube (1.3.4) plugin Enigma – G# G# G#
Horde/IMP (6.2.21) native GnuPG # # G# G#
Mailpile (1.0.0rc2) – GnuPG – # – #

decryption
oracles

{︁
 Plaintext can be completely hidden Covert rules are kept in reply message

}︁
signing
oraclesG# Plaintext merged with attacker-text G# Covert rules only for received message

– Cryptosystem not available # No vulnerabilities found

Table 2: Evaluation of covert content attacks on email encryption and signatures

All tested email clients quote the original message when replying, which is the

precondition for our attacks. Of the overall tested 24 clients, 20 display HTML

emails in the default settings without any additional user interaction, but only

16 clients reply with HTML formatted content. While only five clients download

external CSS style sheets by default, all HTML capable clients support internal

and/or inline CSS, and at least one blinding option to hide text. All but two

HTML capable clients support conditional rules or other features to conditionally

show or hide text. Full details on HTML and CSS support for the various tested

email clients are given in Table 3 in the appendix.

Re: What’s Up Johnny? 13

7.1 Decryption Oracles

All email clients, excluding Microsoft products and “The Bat!”, merge multiple

ASCII text or HTML parts into a single document when replying, making them

potentially vulnerable to covert content attacks. However, not all clients decrypt

ciphertext sub-parts within the MIME tree, thereby disabling the attack. From

discussions with application developers, we learned that this was initially not

meant as a security precaution. Instead, the case of partially encrypted mes-

sages was simply not considered in the implementation of S/MIME or the PGP

plugin. As a consequence, clients that are more feature complete, have higher

compatibility, and require a larger implementation effort are more likely to be

misused as decryption oracles. We consider clients as vulnerable if the plaintext

of encrypted messages can either be completely hidden, or if it is concatenated

with attacker-controlled text.

For seven clients, including popular applications such as Apple Mail or Thun-

derbird, we could completely hide the ciphertext within a multipart mail us-

ing HTML/CSS and show arbitrary content instead. A user replying to such

a benign-looking email unknowingly leaks the plaintext of up to hundreds of

encrypted emails at once. For another six vulnerable clients, HTML formatted

replies are deactivated in the default settings or not supported at all. In such

cases, our attacks are limited because the decrypted message cannot be com-

pletely hidden. However, it can be appended to the attacker’s text, separated

by a lot of newlines, or wrapped somewhere within the conversation history.

All affected clients, except R2Mail2, show consistent behavior, independently of

whether S/MIME or OpenPGP is used as encryption scheme.

7.2 Signing Oracles

We classify clients as vulnerable not only if they can act as a signing oracle, but

also if they show different text for signed messages based on conditional CSS.

Both vulnerabilities are required for the attack, but they do not need to exist in

the same client. In fact, because the targeted users (e.g., Johnny and General)

in each of these cases are different, they are likely to use different clients.

Ten clients, including popular applications such as Thunderbird, K-9 Mail,

the iOS Mail App, and Outlook Web Application (OWA), the GUI for Microsoft

Exchange, keep the original <style> element in replies, allowing an attacker to

misuse them as signing oracles.8 Of the remaining clients, six convert internal

CSS style information into inline styles when replying and eight clients reply to

HTML emails with ASCII text in the default settings. Once a signed email with

conditional CSS has been obtained, it can be used to trick 18 of the 20 clients

displaying HTML in the default settings (all but Mailpile and “The Bat!”) as

well as the HTML-to-text converter used by Horde/IMP into selectively show-

ing/hiding certain text. We could observe the same behavior for all email clients,

independent of the applied encryption scheme.

8 It must be noted that for two clients, MailMate and Airmail, some additional effort
was required to bypass filters which would otherwise strip internal CSS styles.

14 J. Müller et al.

8 Countermeasures

Building a secure encryption protocol on top of email is very challenging. There

are many pitfalls and edge-cases to be considered. In this section, we provide best

practices to counter the attacks previously described. These practices should be

of help to guide implementations of OpenPGP or S/MIME capable clients.

8.1 Decryption Oracles

All-or-Nothing Encryption. Partially encrypted messages can be considered

harmful. Therefore, email clients must not decrypt emails unless they contain a

single encrypted part (i.e., the root node in the MIME tree). This can be stan-

dardized and enforced for S/MIME and PGP/MIME. For PGP/Inline however,

the only way to send a multipart message is to separately encrypt each part. Un-

fortunately, every PGP/MIME message can be interpreted in the context of a

PGP/Inline message (i.e., a downgrade attack). Hence, email clients supporting

PGP/Inline must enforce a strict separation between multiple body parts, for

example, by opening each part in a separate window or tab. When replying to

multipart messages, only the very first body part may be quoted and, therefore,

included in the reply to prevent unintended leakage of covert plaintext content.

Accepting ASCII Text Only. Active content such as HTML within emails

is dangerous. Disabling HTML prevents most attacks described in this work.

Unfortunately, this does not meet today’s usage of email. HTML email has be-

come the norm and in ten of the tested email clients – for example, in Apple

Mail and iOS Mail – there is not even an option to disable HTML for incom-

ing emails. It must be additionally noted that modern email clients also display

text/plain emails within an HTML widget component. One major problem is

that no definition for ‘HTML email’ exists. Developing a standard describing a

‘safe’ subset of HTML which can be used in emails to allow basic formatting,

but forbid potentially harmful features, would be a step in the right direction.

Enforcing Digital Signatures. In theory, signed emails offer protection

against covert content attacks. If Bob received an email originating from Eve,

but one message part was signed by Alice, he may get suspicious and not reply

to Eve. In practice, email clients miserably fail when it comes to verifying signa-

tures for multipart messages. Our tests show that most email clients either do

not show a signature at all for partially signed messages, or show the first avail-

able signature in the MIME tree – which can originate from Eve because she can

simply re-sign the message. Even in cases where the client explicitly shows inline

information regarding which part is signed, we managed to hide the signature

information itself using CSS. Moreover, S/MIME signatures can be stripped by

targeted modifications of the CBC-ciphertext as shown by Strenzke [11]. Never-

theless, digital signatures – if done right – can enhance message authenticity and

integrity. For example, a company could set up a policy to discard all incoming

messages if they do not contain exactly one single sign-then-encrypt message

Re: What’s Up Johnny? 15

part, including signed email headers which can be enforced using extensions

such as Memory Hole for OpenPGP [4] or Secure Header Fields for S/MIME [1].

It is important to note that the described countermeasures must be implemented

by all involved parties. Usually, a user has no control over the security precau-

tions taken by his communication partners. In the context of email end-to-end

encryption, this is problematic because both the sender and the receiver can act

as a decryption oracle for captured ciphertext. Even if Bob discarded partially

encrypted messages and disabled HTML, Alice may still be vulnerable.

8.2 Signing Oracles

Dropping CSS Support. Conditional CSS makes it easy for an attacker to hide

certain text within a signed message while showing different text. Ideally, clients

would ignore CSS in received emails. However, this is an unrealistic scenario

given today’s usage of email, especially in a business context, where it is expected

that emails can have any sort of formatting – technically implemented with CSS.

Sanitizing conditional CSS rules and properties which can be used to hide content

is feasible, but it may be insufficient as web technologies are constantly evolving.

Nevertheless, it is important to display digitally signed content equally to all

viewers. The S/MIME and OpenPGP standards, which are from a time-period

where messages were ASCII text, fail to address this and should be extended.

Only ASCII Text in Replies. It should not harm the user experience if mail

clients converted quoted messages into ASCII text when replying to an email.

Eight of the tested clients (e.g., Roundcube) are actually doing this. Thus, we

recommend that security-focused mail clients should adopt this behavior. They

must not sign any quoted HTML/CSS input from the original message, so that

they cannot be misused as signing oracles.

9 Conclusion

Email is complex. The MIME standard and HTML, as supported by modern

email clients, provide a high level of flexibility and allow arbitrary wrapping,

nesting, and hiding of encrypted or to-be-signed content. This complexity and

the conjoined attack surface are not dealt with in the security considerations of

the OpenPGP and S/MIME standards, which primarily focus on cryptographic

algorithms and their parameters such as key sizes. However, relying on the secu-

rity of cryptographic primitives, such as AES or ECDH, is not enough for secure

email end-to-end encryption and signatures. The developers of email clients have

to handle a plethora of critical edge-cases – without being able to consult any

published best practices. Our work aims to close this research gap. We reveal im-

plementation pitfalls in the “no man’s land” between cryptography and email,

as used today, and give guidance and best practices in order to improve the

security of S/MIME and OpenPGP capable email clients.

16 J. Müller et al.

Acknowledgements

The authors thank Juraj Somorovsky for his valuable feedback and insightful

discussions. Jens Müller was supported by the research training group ‘Human

Centered System Security’ sponsored by the state of North-Rhine Westfalia. In

addition, this work was supported by the German Research Foundation (DFG)

within the framework of the Excellence Strategy of the Federal Government and

the States – EXC 2092 CASA.
Note this is a draft version. The final version of this work will be published at the

17th International Conference on Applied Cryptography and Network Security.

References

[1] Cailleux, L., Bonatti, C.: Securing Header Fields with S/MIME (April

2015), http://tools.ietf.org/rfc/rfc7508.txt, RFC7508
[2] Callas, J., Donnerhacke, L., Finney, H., Thayer, R.: OpenPGP Message

Format (November 1998), http://tools.ietf.org/rfc/rfc2440.txt, RFC2440
[3] Davis, D.: Defective Sign & Encrypt in S/MIME, PKCS#7, MOSS, PEM,

PGP, and XML. In: Proceedings of the General Track: 2001 USENIX An-

nual Technical Conference. pp. 65–78. USENIX Association, Berkeley, CA,

USA (2001), http://dl.acm.org/citation.cfm?id=647055.715781
[4] Gillmor, D.K.: Memory Hole spec and documentation. https://github.

com/autocrypt/memoryhole (2014)
[5] Heiderich, M., Krein, N., Weißer, D., Fäßler, F., Kobeissi, N., Inführ, A.,

Hong, Magazinius, J.: Pentest-Report Thunderbird & Enigmail 09.2017.

https://cure53.de/pentest-report_thunderbird-enigmail.pdf (2017)
[6] Jallad, K., Katz, J., Schneier, B.: Implementation of Chosen-Ciphertext At-

tacks against PGP and GnuPG. In: Chan, Agnes Huiand Gligor, V. (ed.)

Information Security. pp. 90–101. Springer Berlin Heidelberg, Berlin, Hei-

delberg (2002)
[7] Katz, J., Schneier, B.: A Chosen Ciphertext Attack Against Several e-Mail

Encryption Protocols. In: Proceedings of the 9th Conference on USENIX

Security Symposium - Volume 9. pp. 18–18. SSYM’00 (2000)
[8] Poddebniak, D., Dresen, C., Müller, J., Ising, F., Schinzel, S., Fried-

berger, S., Somorovsky, J., Schwenk, J.: Efail: Breaking S/MIME and

OpenPGP Email Encryption using Exfiltration Channels. In: 27th USENIX

Security Symposium (USENIX Security 18). pp. 549–566. USENIX As-

sociation, Baltimore, MD (2018), https://www.usenix.org/conference/
usenixsecurity18/presentation/poddebniak

[9] Ramsdell, B.: S/MIME Version 3 Message Specification (June 1999), http:
//tools.ietf.org/rfc/rfc2633.txt, RFC2633

[10] Ribeiro, F.: The Ropemaker Email Exploit (2017)
[11] Strenzke, F.: Improved Message Takeover Attacks against S/MIME (Feb

2016), https://cryptosource.de/posts/smime_mta_improved_en.html
[12] W3C: CSS Conditional Rules Module Level 3 (2013), https://www.w3.

org/TR/css3-conditional/

http://tools.ietf.org/rfc/rfc7508.txt
http://tools.ietf.org/rfc/rfc2440.txt
http://dl.acm.org/citation.cfm?id=647055.715781
https://github.com/autocrypt/memoryhole
https://github.com/autocrypt/memoryhole
https://cure53.de/pentest-report_thunderbird-enigmail.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
http://tools.ietf.org/rfc/rfc2633.txt
http://tools.ietf.org/rfc/rfc2633.txt
https://cryptosource.de/posts/smime_mta_improved_en.html
https://www.w3.org/TR/css3-conditional/
https://www.w3.org/TR/css3-conditional/

REFERENCES 17

A Screenshots of Decryption Oracles

A.1 Plaintext Hidden in a Referenced Inline ‘Image’.

Figure 10 depicts a covert content attack against Thunderbird/Enigmail based

on the example email given in Figure 6. The ciphertext is hidden in an embedded

‘image’ file, referenced from the attacker’s part via a cid: URI scheme. The

OpenPGP plugin – Enigmail – detects the ‘image’ as PGP/MIME content and

decrypts it. The decrypted ‘image’ is then Base64 encoded by Thunderbird and

included in the reply message, therefore leaking the plaintext.

(a) Johnny receives a benign-looking
email with an embedded invisible ‘image’
which contains PGP/MIME ciphertext.

(b) Johnny replies to Eve, thereby un-
knowingly leaking the plaintext within
the invisible inline image.

(c) Eve obtains the reply email, including
the Base64 encoded ‘image’ which con-
tains the plaintext.

(d) Eve decodes the Base64 encoded
data, resulting in the original plaintext
MIME message.

Fig. 10: Convert content attack using Thunderbird as PGP decryption oracle.

18 J. Müller et al.

B HTML/CSS Email Support

HTML CSS styles blinding options conditional rules
view reply external internal inline display visibility opacity clip-path position color font-size @media @supports @document other

W
in
do

w
s Thunderbird G#

Outlook 2016 G# # # # # # # #
Win. 10 Mail G# # # # # # # #
W. Live Mail # # # # #
The Bat! # # # # # # # # # # #
Postbox G# # # #
eM Client G# # # #

L
in
ux

KMail G# # G# G# G# G# G# # G# G# G# G# # # #
Evolution G# G# # # #
Trojitá # G# # # # #
Claws # # # # # # # # # # # # # # # #
Mutt # # # # # # # # # # # # # # # #

M
ac Apple Mail # # #

MailMate G# # # #
Airmail # # #

iOS Mail App # # #

A
nd

ro
id K-9 Mail # # # # #

R2Mail2 # # # # # # #
MailDroid G# # # # #
Nine # # # #

W
eb

Exchange/OWA # # # # # # #
Roundcube G# # #
Horde/IMP G# G# # G# G# G# G# G# G# G# G# G# G# G# G# #
Mailpile # # # # # # #

Not supported by client Supported in default settings G# Supported in non-default settings

Table 3: HTML and CSS support in various email clients.

C Other Conditional Features

1 <html><head>
2 <! - -[i f IE]><style >.wlm {color : red;}</style > <![endif] - - > <! - - Windows Live Mail -->
3 <! - -[i f mso]><style >. ol {color : red;}</style > <![endif] - - > <! - - Outlook / W10Mail -->
4 <style>
5 . ExternalClass .owa, [owa] .owa {color : red;} /* Exchange (OWA) */
6 .moz- text -html . tb {color : red;} /* Thunderbird */
7 </style>
8 </head>
9 <body>

10 <div class="wlm"> RED text only in Windows Live Mail </div>
11 <div class="ol"> RED text only in Outlook / W10Mail </div>
12 <div class="owa"> RED text only in Exchange (OWA) </div>
13 <div class="tb"> RED text only in Thunderbird </div>
14 </body></html>

Fig. 11: Proprietary features and CSS to target only certain clients.

	Re: What's Up Johnny?

