arXiv:1902.01080v2 [stat.ML] 29 Dec 2019

Predictive Uncertainty Quantification with Compound Density Networks

Agustinus Kristiadi! Sina Diiubener?> Asja Fischer >

Abstract

Despite the huge success of deep neural networks
(NNGs), finding good mechanisms for quantifying
their prediction uncertainty is still an open prob-
lem. Bayesian neural networks are one of the
most popular approaches to uncertainty quantifi-
cation. On the other hand, it was recently shown
that ensembles of NNs, which belong to the class
of mixture models, can be used to quantify predic-
tion uncertainty. In this paper, we build upon these
two approaches. First, we increase the mixture
model’s flexibility by replacing the fixed mixing
weights by an adaptive, input-dependent distri-
bution (specifying the probability of each com-
ponent) represented by NNs, and by considering
uncountably many mixture components. The re-
sulting class of models can be seen as the con-
tinuous counterpart to mixture density networks
and is therefore referred to as compound density
networks (CDNs). We employ both maximum
likelihood and variational Bayesian inference to
train CDNs, and empirically show that they yield
better uncertainty estimates on out-of-distribution
data and are more robust to adversarial examples
than the previous approaches.

1. Introduction

Deep neural networks (NNs) have achieved state-of-the-art
performance in many application areas, such as computer
vision (Krizhevsky et al., 2012) and natural language pro-
cessing (Collobert et al., 2011). However, despite achieving
impressive prediction accuracy on these supervised machine
learning tasks, NNs do not provide good ways of quanti-
fying predictive uncertainty. This is undesirable for many
mission-critical applications, where taking wrong predic-
tions with high confidence could have fatal consequences
(e.g. in medical diagnostics or autonomous driving).

"Department of Computer Science, University of Tiibingen,
Germany Department of Mathematics, Ruhr University
Bochum, Germany. Correspondence to: Agustinus Kristiadi
<agustinus.kristiadi @uni-tuebingen.de>.

A principled and the most explored way to quantify the
uncertainty in NNs is through Bayesian inference. In the so-
called Bayesian neural networks (BNNs) (Neal, 1995), the
NN parameters are treated as random variables and the goal
of learning is to infer the posterior probability distribution of
the parameters given the training data. Since exact Bayesian
inference in NNs is computationally intractable, different
approximation techniques have been proposed (Neal, 1995;
Blundell et al., 2015; Hernandez-Lobato & Adams, 2015;
Ritter et al., 2018, etc.). Given the (approximate) posterior,
the final predictive distribution is obtained as the expected
predictive distribution under the posterior. This expecta-
tion can be seen as an ensemble of an uncountably infinite
number of predictors, where the prediction of each model is
weighted by the posterior probability of the corresponding
parameters.

Based on a Bayesian interpretation of dropout (Srivastava
et al., 2014), Gal & Ghahramani (2016) proposed to apply it
not only during training but also when making predictions
to estimate predictive uncertainty. Interestingly, dropout
has been also interpreted as ensemble model (Srivastava
et al., 2014) where the predictions are averaged over the
different NNs resulting from different dropout-masks. In-
spired by this, Lakshminarayanan et al. (2017) proposed
to use a simple NN ensemble to quantify the prediction
uncertainty, i.e. to train a set of independent NNs using a
proper scoring rule and defining the final prediction as the
arithmetic mean of the outputs of the individual models,
which corresponds to defining a uniformly-weighted mix-
ture model. It is argued, that the model is able to encode two
sources of uncertainty by calibrating the target uncertainty
(i.e. uncertainty in target y given input x) in each compo-
nent and capturing the model uncertainty by averaging over
the components.

In this paper, we therefore aim at further investigating the
potential that lies in employing mixture distributions for
uncertainty quantification. The flexibility of the mixture
model can be increased by learning input-conditioned mix-
ture weights like it is done by mixture density networks
(MDNs) (Bishop, 1994). Furthermore, one can consider un-
countably many component distributions instead of a finite
set, which turns the mixture distribution into a compound
distribution. We combine both by deriving the continuous
counterpart of MDNs, which we call compound density

Predictive Uncertainty Quantification with Compound Density Networks

networks (CDNs). These networks can be trained by like-
lihood maximization. Moreover, variational Bayes can be
employed to infer the posterior distribution over the CDN
parameters, leading to a combination of the mixture model
and the Bayesian approach to uncertainty modeling. We
experimentally show that CDNs allow for better uncertainty
quantification and are more robust to adversarial examples
than previous approaches.

This paper is organized as follows. In Section 2 we give
a brief introduction to MDNs. We then formally define
CDNss in Section 3. We review related work in Section 4
and present a detailed experimental analysis in Section 5.
Finally, we conclude our paper in Section 6.

2. Mixture Density Networks

Let D = {X,,yn}Y_; be an i.i.d dataset. Let us define the
following conditional mixture model

K
py[x) =Y p(y;dr(x) plor(x)im(x)), (1)
k=1

and an NN that maps x onto both the parameters 7 (x)
of the mixing distribution and the parameters {¢y,(x)} 5,
of the K mixture components. The complete system is
called mixture density network (MDN) and was proposed
by Bishop (1994). That is, an MDN is an NN parametrizing
a conditional mixture distribution, where both the mixture
components and the mixture coefficients depend on input
x.! MDNs can be trained by maximizing the log-likelihood
of the parameters of the NN given the training set D us-
ing gradient-based optimizers such as stochastic gradient
descent (SGD) and its variants.

MDN:s belong to a broader class of models called mixture
of experts (MoE) (Jacobs et al., 1991) which differ from
standard mixture models by assuming that the mixture co-
efficients depend on the input.” Because of its formulation
as a mixture distribution, the predictive distribution of an
MDN can handle multimodality better than a standard dis-
criminative neural network.

3. Compound density networks

We aim at generalizing the MDN from a finite mixture dis-
tribution to a mixture of an uncountable set of components.
The continuous counterpart of a conditional mixture dis-
tribution in eq. (1) is given by the conditional compound

"For instance, as in the original publication, the mixture com-
ponents could be K Gaussians, with ¢, (x) being input-specific
means and variances, and the mixture probabilities could be given
by (applying the softmax function to the unnormalized) mixing
weights 7r(x), both computed by one NN.

2See Bishop (2006, ch. 5.6 and ch. 14.5.3) and Murphy (2012,
ch. 11.2.4) for a detailed discussion of MDNs.

probability distribution

p(ylx) = / P(y: $))p(d(x): m(x)) db(x) . (2)

where ¢(x) turns from a discrete into a continuous random
variable.

We now want to follow the approach of MDNs to model the
parameters of the components and the mixing distribution
by NNs. To handle the continuous state space of ¢(x) in
the case of a compound distribution, the key idea is now
to let ¢»(x) be given by a stochastic NN f(x;60) = ¢(x)
with stochastic parameters 8. Since given x, f is a deter-
ministic map from 6 to ¢(x), it is possible to replace the
mixing distribution p(¢(x); w(x)) = p(f(x; 0); 7(x)) by
a distribution p(@; 7w(x)) over 8. We further assume, that
the parameters 7w(x) of the mixing distribution are given
by some parametrized function g(x;) = w(x) which can
also be modeled based on NNs. In correspondence to MDN,
the complete system is called compound density network
(CDN) and it is summarized by the following equation

p(ylx;) == / Py £(x: 0))p(8: g(x:) dB

= Ep0:9(xi0) [2(y; f(x0))] . 3)

As MDNs, CDNSs can be trained by maximizing the log-
likelihood of 1) given the data set D. Moreover, one can add
a regularization term encouraging the mixing distribution
to stay close to some distribution p(@), which leads to the
objective

N
L () =Y 108 Eposgt, i) [P f (%03 0)]

n=1
N

~ A" Dirlp(8:; g(xa: %)) p(0)] . (4)

n=1

where) is a hyperparameter controlling the strength of the
regularization.’

Alternatively, we can turn CDNSs into Bayesian models by
defining a prior p(¢) over ¢ and employing variational
Bayes (VB) (Hinton & Van Camp, 1993) to infer an ap-
proximate posterior ¢(t; w) & p(1|D) by maximizing the
evidence lower bound (ELBO):

N
Lyp(@) = D By [108 Epasg i [P [(X0 0)]]

n=1

— Dxwlg(; w)l| p(4)] - (5)

3Note, that the objective gets equivalent to the one proposed
by Alemi et al. (2017) when it is approximated based on a single
sample of 6. We experimentally show that this objective leads to
better results than theirs (when approximated with more samples)
in the supplement.

Predictive Uncertainty Quantification with Compound Density Networks

Algorithm 1 The training procedure of CDNs with Ly .

Require:
Mini-batch size M, number of samples S of 6, regular-
ization strength), and learning rate a.
while the stopping criterion is not satisfied do
{xnu Ym}%:1 ~D
form=1,....M;s=1,...,5do
ems ~ p(07 g(Xm; fd’))
¢s (Xm) = f(xm7 ems)
end for
/ s
L) = Yy log 30 p(¥mi ds(xm)) —
M
A me1 Dxu[p(0; 9(xim;) Ip(0))]
P — P +aVL(Y)

: end while

NN RN

o ®

Given the approximate posterior the predictive distribution
of the Bayesian CDN is defined as

p(ylx) = / p(y|%; 9)q(eh; w) dep ©)

which is approximated based on samples of 1) and 6.

We present pseudocode for training CDNs with Ly in
Algorithm 1.* Note that CDNs correspond to an abstract
framework for modeling compound distributions with NN,
i.e. we still need to concretely define the stochastic NN
f(x;0) and choose the statistical models for the mixture
components and the mixing distribution.

3.1. Probabilistic hypernetworks

Ha et al. (2017) proposed to (deterministically) generate the
parameters of an NN by another NN, which they call the
hypernetwork’. We would like to follow this approach for
modeling a CDN, that is, we aim at modeling the mixing
distribution p(8; g(x; 1)) over network parameters by NNs.
Since now the hypernetworks map x to a distribution over
parameters instead of a specific value 8, we refer to them
as probabilistic hypernetworks. In the following, we will
describe this idea in more detail.

Let f be a multi-layer perceptron (MLP) with L-layers,
parametrized by a set of layers’ weight matrices® 8 =
{W,}£_,, that computes the parameters ¢(x) = f(x;6)
of the CDNs component distribution in eq. (3). Let
hy,...,h;_; denote the states of the hidden layers, and
let us define hg = x, and h, = f(x;0). We now assume

“4Pseudocode for training CDNs with Lyg is presented in the
supplement.

3Specifically, they propose to apply a hypernetwork to compute
the weight matrix of a recurrent NN at each time-step, given the
current input and the previous hidden state.

SWe assume that the bias parameters are absorbed into the
weight matrix.

x >m ¥ P(x)

Wi ~ p(Wy; (%)) Wy ~ p(Wa; ma(h))

| (|

(%) = g1(x: 1) my(h) = ga(hiepy)

Figure 1: An example of a probabilistic hypernetwork ap-
plied to a two-layer MLP.

the weight matrices { W, }~_, to be random variables and to
be independent of each other given the state of the previous
hidden layer. We define a series of probabilistic hypernet-
works g = {g;}£_, (parametrized by ¥ = {4, }-_,), where
¢; maps h;_; to the parameters of the distribution of Wy,
and let the joint distribution over 8 be given by

p(6;9(x;9)) = [[p(Wis g (huvs o). (7)

=1

An illustration of a stochastic two-layer network f(x;8)
computing ¢(x), where the distribution of the parameters is
given by probabilistic hypernetworks as defined in eq. (7),
is given in Figure 1.

3.2. Probabilistic hypernetworks with matrix variate
normals

A statistical model that was recently applied as the posterior
over weight matrices in BNNs (Louizos & Welling, 2016;
Sun et al., 2017; Zhang et al., 2018; Ritter et al., 2018) is the
matrix variate normal (MVN) distribution (Gupta & Nagar,
1999). An MVN is parametrized by three matrices: a mean
matrix M and two covariance factor matrices A and B. It
is connected to the multivariate Gaussian by the following
equivalence

X ~ MN(X;M, A, B)
<~ vec(X) ~ N(vec(X);vec(M),B® A), (8)

where vec(X) denotes the vectorization of matrix X. Due
to the Kronecker factorization of the covariance, an MVN
requires fewer parameters compared to a multivariate Gaus-
sian, which motivates us to use it as the distribution over
weight matrices in this work. Furthermore, we assume that
the covariance factor matrices are diagonal matrices, fol-
lowing Louizos & Welling (2016). That is, we choose the
mixture distribution of the CDN to be

L
p(0; 9(x; %)) = [[MN (Wi gi(by—1;91)))

I
=1

MN (W My, diag(a,), diag(by)) ,

1

Predictive Uncertainty Quantification with Compound Density Networks

where g; maps the state h;_; of the previous hidden layer
onto the [-th MVN’s parameters {M,, a;, b;} defining the
distribution over W;. Suppose W; € R"*€, then the cor-
responding MVN distribution has rc + r + ¢ parameters,
which is more efficient compared to rc + rc parameters
when modeling W, as fully-factorized Gaussian random
variable. To further reduce the model complexity we use a
vector-scaling parametrization similar to the one used by Ha
et al. (2017) and Krueger et al. (2017) for the mean matrices
{M,}£_,. We detail this parametrization in the supplement.

For the regularization during ML training (eq. (4)), we de-
fine the prior over 0 to be p(0) := Hlel MN(W;0,L1).
Meanwhile, to perform variational Bayes (eq. (5)), the prior
over 1 is assumed to be the product of standard MVNs
(similar to p(@)), while the variational posterior is defined
as product of diagonal MVNs with variational parameters
w, following Louizos & Welling (2016). That is, for CDNs
trained with VB, we assume each probabilistic hypernet-
work ¢; to be a variational matrix Gaussian (VMG), the
BNN proposed by Louizos & Welling (2016).

Note that using the mixing distribution and approximate pos-
terior as defined above allows us to apply the reparametriza-
tion trick (Louizos & Welling, 2016). Furthermore, the
KL-divergence term in eq. (5) can be computed in closed
form, as also noted by Louizos & Welling (2016).

4. Related work

Various approaches for quantifying predictive uncertainty
in NNs have been proposed. Applying Bayesian infer-
ence to NN, i.e. treating the network parameters as ran-
dom variables and estimating the posterior distribution
given the training data based on Bayes’ theorem, results
in BNNs(MacKay, 1992; Neal, 1995; Graves, 2011; Blun-
dell et al., 2015; Louizos & Welling, 2016; Sun et al., 2017;
Louizos & Welling, 2017; Ritter et al., 2018; Zhang et al.,
2018, etc). Since the true posterior distribution is intractable,
BNN:Ss are trained based on approximate inference methods
such as variational inference (VI) (Peterson, 1987; Hinton
& Van Camp, 1993; Graves, 2011; Blundell et al., 2015),
Markov Chain Monte Carlo (Neal, 1995), or Laplace ap-
proximation (MacKay, 1992; Ritter et al., 2018). The final
prediction is then given by the expectation of the network
prediction (given the parameters) w.r.t. the approximate
posterior distribution. In VI, many modeling choices for
BNNSs’ approximate posterior have been proposed. Louizos
& Welling (2016) proposed to train BNNs with an MVN as
the approximate posterior of each weight matrix (leading to
a model they refer to as VMG). Multiplicative normalizing
flow (MNF) (Louizos & Welling, 2017) models the approxi-
mate posterior as a compound distribution, where the mixing
density is given by a normalizing flow. Zhang et al. (2018)
also use an MVN approximate posterior and apply approx-

imate natural gradient (Amari, 1998) based maximization
on the VI objective, which results in an algorithm called
noisy K-FAC. Meanwhile, the Kronecker-factored Laplace
approximation (KFLA) (Ritter et al., 2018) extends the clas-
sical Laplace approximation by using an MVN approximate
posterior with tractable and efficiently computed covariance
factors, based on the Fisher information matrix.

Models with similar functional form as CDNs,
ie. p(ylx;v) = [p(ylx;0)p(0|x;1)db, have been
previously studled in various settings. The deep variational
information bottleneck (VIB) (Alemi et al., 2017) assumes
0 to be the hidden units of a certain layer instead of
the parameters of an NN and trains the model with
an objective derived from the information bottleneck
method (Tishby et al., 2001). Interestingly, this objective
gets equivalent to the ML objective for CDNs when
approximated based on a single sample of 8. Malinin
& Gales (2018) proposed Prior Networks (PNs) which
can be described by p(y|x) = [p(y; 0)p(8|x;1) d0 and
aim at modeling data uncertainty with the component
distribution and what they call “distributional uncertainty”
(i.e. uncertainty due to mismatch between the distributions
of test and training data) with the mixture distribution.
Specifically, they propose Dirichlet Prior Networks (DPNs)
for uncertainty quantification in classification tasks,
where p(0|x;1)) is assumed to be Dirichlet distribution.
In contrast to CDNs, DPNs use only a single NN to
parametrize the model and an objective that augments
likelihood maximization/KL-divergence minimization by a
term explicitly making use of out-of-distribution samples.
Depeweg et al. (2017; 2018) investigated BNNs with
latent variables @ (referred to as BNN+LV), which can be
described by p(y|x) = [p(y|x, 6; %)p(6]x)p(th) dO dep.
This model is similar to VB-CDNSs, but in contrast assumes
that @ is independent of v, which serves as additional
input to the component distribution instead. Furthermore,
BNN+LV employ an a-divergence-based objective, instead
of the ELBO.

There have been several concurrent works (Krueger et al.,
2017; Louizos & Welling, 2017; Pawlowski et al., 2017;
Sheikh et al., 2017) applying hypernetworks (Jia et al., 2016;
Ha et al., 2017) to model the posterior distribution over
network parameters in BNNs. Krueger et al. (2017) and
Louizos & Welling (2017) use normalizing flows, while
Pawlowski et al. (2017) and Sheikh et al. (2017) use arbitrary
NNs as their hypernetworks. Note, that in Bayesian CDN’s
the hypernetworks themselves become BNNs.

Gal & Ghahramani (2016) developed a theoretical frame-
work that relates dropout training in NNs to approximate
Bayesian inference and, as a result, proposed to approximate
the predictive distribution by an average over the different
networks resulting from independently sampled dropout-

Predictive Uncertainty Quantification with Compound Density Networks

-6 -4 -2 0 2 4 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4

-6 -4 -2 0 2 4 -6 -4 -2 0 2 4 -6 -4 -2 0 2 4

(a) ML-CDN (b) VB-CDN (c) noisy K-FAC (d) VMG (e) Deep Ensemble (f) MC-dropout
| B | | BT | ST | BT | T
(g) ML-CDN (h) VB-CDN (1) Noisy K-FAC (G) VMG (k) DeepEnsemble (1) MC-dropout

Figure 2: Comparison of the predictive distributions given by the CDNs and the baselines on toy datasets with homoscedastic
noise and few samples (first row) and heteroscedastic noise and more samples (second row). Black lines correspond to the
true noiseless function, red dots correspond to samples, orange lines and shaded regions correspond to the empirical mean
and the +3 standard deviation of the predictive distribution, respectively. The VB-CDN is the only model able to capture
both the epistemic uncertainty on the first and the aleatoric on the second dataset.

masks, a technique which they referred to as MC-dropout
(MCD) and which they applied to estimate the prediction un-
certainty in NNs. Recently, Lakshminarayanan et al. (2017),
proposed to use an ensemble of NNs in conjunction with
a proper scoring rule and adversarial training to quantify
the prediction uncertainty of deep NN, leading to a model
referred to as Deep Ensemble (DE). The DE provides a non-
Bayesian way to quantify prediction uncertainty, and is in
this sense related to the approaches of Guo et al. (2017) and
Hendrycks & Gimpel (2017).

5. Experiments

We consider several standard tasks in our experimental anal-
ysis: 1D toy regression problems inspired by Herndndez-
Lobato & Adams (2015) (Section 5.1), classification under
out-of-distribution data (Section 5.2), and detection of and
defense against adversarial examples (Szegedy et al., 2014)
(Section 5.3). We refer to the CDNs that are trained via Ly,
(eq. (4)) and Lyg (eq. (5)) as ML-CDNs and VB-CDNs,
respectively. The following recent models (described in Sec-
tion 4) are considered as the baselines: VMG, MNF, DPN,
noisy K-FAC, MC-dropout, and Deep Ensemble.’

We estimate the predictive distribution p(y|x) of the CDNs,
based on 100 joint samples of ¥ ~ ¢(¢;w),0 ~
p(0; g(x;)) for VB-CDNs and 100 samples of 8 ~
p(0; g(x;1)) for ML-CDNs. We also draw 100 sam-
ples from the posterior to approximate the predictive
distribution of BNN baselines. If not stated otherwise,
we use a single sample to perform Monte Carlo inte-
gration during training. We pick the regularizaion hy-
perparameter A for ML-CDNs (eq. (4)) out of the set

7 Additional baselines are investigated in the supplement.

{1074,107°,107%,10~7,10~8} which maximizes the val-
idation accuracy. We use Adam (Kingma & Ba, 2015) with
default hyperparameters for optimization in all experiments
and the implementations provided by Louizos & Welling
(2017)8 and Zhang et al. (2018)° for MNF and noisy K-FAC,
respectively. Where mini-batching is necessary, e.g. on
MNIST and CIFAR-10, we use mini-batches of size 200.
All models are optimized over 10000 iterations in the toy
regression experiments, 20000 iterations (=67 epochs) in ex-
periments on MNIST and Fashion-MNIST, and 100 epochs
in experiments on CIFAR-10. We chose ReLU and hy-
perbolic tangent as the nonlinearity of the ML-CDNs’ and
VB-CDNSs’ hypernetworks, respectively. For the details on
the selection of the model-specific hyperparameters of the
baselines, we refer the reader to the supplementary mate-
rial. The source code for all our experiments is available at
https://anonymous.comn.

5.1. Toy regression

Following Hernandez-Lobato & Adams (2015), we generate
the first toy regression dataset as follows: We sample 20
input points z ~ U[—4, 4] and their target values y = 23 +e,
where € ~ N(0,32), i.e. the data noise is homoscedastic.
We aim at analyzing how well the target function is modeled
over the larger interval [—6, 6]. Having only few data points,
it is a desirable property of a model to express high (epis-
temic) uncertainty in regions with no or only few samples,
e.g. between —6 and —4 or 4 and 6. The second toy regres-
sion dataset is constructed by sampling 100 data points as
above, this time with different scale of noise in different

$https://github.com/AMLab-Amsterdam/MNF_
VBNN

‘https://github.com/gd-zhang/noisy-K-FAC

https://anonymous.com
https://github.com/AMLab-Amsterdam/MNF_VBNN
https://github.com/AMLab-Amsterdam/MNF_VBNN
https://github.com/gd-zhang/noisy-K-FAC

Predictive Uncertainty Quantification with Compound Density Networks

—— ML-CDN (97) n. K-FAC (97) —— ML-CDN n. K-FAC

VB-CDN (97) MCD (97) VB-CDN MCD
MNF (98) DE (98) MNF DE
DPN (94) VMG (97) DPN VMG
1.0 ———— 1.0 =
0.8+ / - 0.8+
o o
3] 4 8
% 0.6 = 0.6
2 2
< <
‘50.44 ‘50.449
& &
0.2+ 0.2
0.0-—% T T T T 0.0-=% T T T T
0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0 2.5
Predictive uncertainty Predictive uncertainty
(a) MNIST (b) notMNIST

—— ML-CDN (87) n. K-FAC (89) —— ML-CDN n. K-FAC

VB-CDN (85) MCD (88) VB-CDN MCD
MNF (87) DE (90) MNF DE
DPN (81) VMG (86) DPN VMG
= — 1.0 —~
w w 0.8 4
o o
]] Y/
= 0.6
8 8 /
= =
= 5 0.4
& &
0.2
7
0.0 0.0

T T T T T T — T T T T
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 15 2.0 25
Predictive uncertainty

(c) Fashion-MNIST

Predictive uncertainty

(d) Flipped Fashion-MNIST

Figure 3: CDFs of the empirical entropy of the predictive distribution of the models, trained on MNIST (the first two figures)
and Fashion-MNIST (the last two figures). The caption of each figure indicates the test set used, the y-axis denotes the
fraction of predictions having entropy less than the corresponding value on the x-axis, and the number next to each model

name indicates its test accuracy, in percent.

intervals: € ~ N(0,32), if z > 0. and € ~ N(0,15?%),
otherwise. This dataset is designated for testing whether a
model can capture heteroscedastic aleatoric uncertainty.

In these experiments, we use a two-layer MLP with 100
hidden units as the predictive network, while the hypernet-
works of the CDNSs (g; and g2) are modeled with two-layer
MLPs with 10 hidden units each. Three samples of 8 (along
with a single sample of 1 in the case of the VB-CDN) are
used to approximate the objectives during training of both
CDNs and BNNs.!? A regularization hyperparameter of
A = 1073 is used for training the ML-CDNs.

The results for the first data set (shown in the first row of Fig-
ure 2) demonstrate that the VB-CDN is capable of capturing
the epistemic uncertainty like other Bayesian models. This
is not the case for the ML-CDN (which displays high con-
fidence everywhere) and the DE (which captures only the
uncertainty on the left side). This demonstrates the benefits
of using a Bayesian approach for capturing parameter uncer-
tainty. On the other hand, the mixture models, i.e. the CDNs
and the DE, are the only ones able to capture the aleatoric
uncertainty on the second dataset, as shown in the second
row of Figure 2. This can be explained by the ability of
CDNs and DEs to model input-dependent variance.

To further investigate the different roles in uncertainty mod-
eling of the mixing distribution and the approximate poste-
rior of VB-CDNs, we compare their average variance (over
parameters and samples).!! On the first data set, the aver-

'%On these toy datasets, we found that using more than one
sample is crucial for the results of the CDNs (i.e. results for using
just one sample look similar to that of the VMG and Noisy K-FAC
as can be seen in the supplement), while it does not significantly
change the behaviour of the BNNs.

""We picked 1000 evenly spaced points from [—6,6] and
[—4, 4] respectively and approximated the means over the pos-
terior with 100 samples.

age variance of the mixing distribution is 0.356 and that of
the posterior distribution is 0.916. On the second data set
the average variance of the posterior distribution is 0.429
and that of the mixing distribution is 0.618 for z < 0 and
0.031 for « > 0. Therefore, the variance of the posterior is
reduced on the second data set (as desired for more training
data) while the mixing distribution successfully captures
the higher data uncertainty for x < 0, indicating that the
approximate posterior successfully models epistemic and
the mixing distribution aleatoric uncertainty.

5.2. Out-of-distribution classification

Following Lakshminarayanan et al. (2017), we train all mod-
els on the MNIST training set'? and investigate their perfor-
mance on the MNIST test set and the notMNIST dataset!3,
which contains images (of the same size and format as
MNIST) of letters from the alphabet instead of handwritten
digits. On such an out-of-distribution (OOD) test set, the
predictive distribution of an ideal model should have max-
imum entropy, i.e. it should have a value of In 10 ~ 2.303
which would be achieved if all ten classes are equally prob-
able. The predictive NN used for this experiment is an MLP
with a 784-100-10 architecture.

We present the results in Figure 3a and b, where we plotted
the cumulative distribution function (CDF) of the empirical
entropy of the predictive distribution, following Louizos &
Welling (2017). A CDF curve close to the top-left corner
of the figure implies that the model yields mostly low en-
tropy predictions, indicating that the model is very confident.
While one wishes to observe high confidence on data points
similar to those seen during training, the model should ex-
press uncertainty when exposed to OOD data. That is, we

2We use Fashion-MNIST as OOD data for training the DPN.
Bhttp://yaroslavvb.blogspot.com/2011/09/
notmnist-dataset.html.

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

Predictive Uncertainty Quantification with Compound Density Networks

prefer a model to have a CDF curve closer to the bottom-
right corner on notMNIST, as this implies it makes mostly
uncertain (high entropy) predictions, and a curve closer to
the upper-left corner for MNIST. As the results show, the
VB-CDN yields high confidence on the test set of MNIST
while having significantly lower confidence on notMNIST
compared to all baseline models, except the DPN. Note
however, that training DPNs requires additional data (which
makes the comparison unfair) and that the DPN’s predic-
tion accuracy and confidence on the MNIST test set are
low compared to all other models. For the ML-CDN, we
observe that it is more confident than all other models on
within-distribution data, at the expense of showing lower
uncertainty on OOD data than the VB-CDN.

Quantitaively, we calculated the mean maximal confidence
for in-distribution (MMC-in) and OOD data (MMC-out)
as well as the area under receiver operating characteristic
(AUROQC). The results can be found in Table 1.

Table 1: Mean maximal confidence (MMC) for in distribu-
tion (MNIST) and OOD data (notMNIST) and area under
receiver operating characteristic (AUROC).

Algorithm MMC-in MMC-out AUROC
CDN 0.978 0.430 0.993
VMG 0.938 0.507 0.964
MNF 0.959 0.504 0.977
MCD 0.950 0.665 0.928
DE 0.970 0.740 0.862
noisy-KFAC 0.949 0.744 0.848

Our model clearly has the highest MMC value for in-
distribution data and the highest AUROC, while having
the lowest MMC value for OOD data.

On the more challenging OOD task introduced by Alemi
et al. (2018) where Fashion-MNIST (Xiao et al., 2017) is
used as training set'*, while the vanilla and the up-down
flipped test set of Fashion-MNIST are used for evaluation
(Figure 3c and d), the results are less pronounced, but the
CDN:s still show a performance competitive to that of the
baseline models.

5.3. Adversarial examples

To investigate the robustness and detection performance of
CDNs w.r.t. adversarial examples (Szegedy et al., 2014), we
apply the Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2015) to a 10% fraction (i.e. 1000 samples) of the
MNIST, Fashion-MNIST (Xiao et al., 2017), and CIFAR-10

'“We use MNIST as OOD data for training the DPN.

—e— ML-CDN noisy K-FAC = ML-CDN noisy K-FAC
VB-CDN #— Deep Ensemble VB-CDN = Deep Ensemble
@~ MNF MC-Dropout =~ MNF MC-Dropout
@~ DPN o~ VMG - == DPN VMG
1.0 Q25
9 L
0.8 S 2.04
[
bl >
E 0.6 5151
2 ©
g 0.4 g 1.0
[}
024 L\& 20.54
Sp=p-o o 2| O]
E T

g
o

T T ; T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength Perturbation strength

(a) Accuracy (b) Entropy

Figure 4: Prediction accuracy and average entropy of mod-
els trained on MNIST when attacked by FGSM-based ad-
versarial examples (Goodfellow et al., 2015) with varying
perturbation strength.

test set.”> We do so, by making use of the implementation
provided by Cleverhans (Papernot et al., 2018). We employ
a transfer learning scheme by using DenseNet-121 (Huang
etal., 2017) trained on ImageNet, as a fixed feature extractor
for CIFAR-10. The predictive network for both MNIST and
CIFAR-10 is a two-layer MLP with 100 hidden units. The
probabilistic hypernetworks are two-layer MLPs with 50
hidden units. Note, that we do not use adversarial training
when training the Deep Ensemble in this experiment to allow
for a fair comparison. Furthermore, we use SVHN (Netzer
et al., 2011) as the OOD training set for DPN baseline.

MNIST: Figure 4 presents the accuracy and the average em-
pirical entropy of the predictive distribution w.r.t. adversarial
examples for MNIST with varying levels of perturbation
strength (between 0 and 1). We observe that the CDNs are
more robust to adversarial examples than all baseline mod-
els. More specifically, the ML-CDN is significantly more
robust in terms of accuracy to adversarial examples than
all other models, while showing a competitive and nicely
increasing entropy. The VB-CDN has only slightly better
prediction accuracy but attains higher uncertainty than all
the baselines except the DPN. Moreover, it shows uncertain-
ties close to that of the DPN, while having higher accuracy
and without needing additional data during training. Fur-
thermore, we found that using more samples of 8 during
training is beneficial for the robustness of both ML-CDN5s
and VB-CDNs, as shown in Figure 5. This behavior is sig-
nificantly more pronounced for CDNs than for BNNs (as
exemplary shown for Noisy K-FAC and VMG). When using
10 samples per iteration during training the accuracy stays
over 0.7 and 0.5 for ML-CDNs and VB-CDNS respectively,
even for strong perturbations. As shown in Figure 6, even
when the adversarial examples are stronger, i.e. estimated

5We generate the adversarial examples based on a single
forward-backward pass.

Predictive Uncertainty Quantification with Compound Density Networks

|y
=3

o
©
1

o
o
1

o
IS
1

e
N
!

Accuracy or % of max entropy
Accuracy or % of max entropy

o
=

T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

(b) VB-CDN

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

(a) ML-CDN

- 1 3 —— 5 —e 10

g
=3
Iy
o

e o
o ®
1 1
e o
o ®
1 1

1N
'S
1
°
'S
1

°
N
1

P

§
¥
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

(c) BNN (Noisy K-FAC)

Accuracy or % of max entropy
=)
=)

Accuracy or % of max entropy

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

(d) BNN (VMG)

Figure 5: Accuracy and average entropy of CDNs and a
BNN (Noisy K-FAC) under FGSM attack, with varying
number of samples of 0 used during training. Circles indi-
cate accuracy, while crosses indicate entropy. The y-axis
represents both the accuracy and the entropy relative to the
maximum entropy (i.e. In 10). While using more samples
during training significantly improves the overall perfor-
mance of CDNS, it only has litle impact for BNNs (Noisy
K-FAC and VMG).

by averaging over multiple forward-backward passes, the
performance of both CDNs is only marginally decreased
(for VB-CDNe, it stays almost unchanged).

Fashion-MNIST: The results on Fashion-MNIST are
shown in Figure 7: Overall the same observations and con-
clusions can be made as for MNIST. We note that strangely,
the DPN’s uncertainty estimate is decreasing with increasing
perturbation strength.

CIFAR-10: The results shown in Figure 8 demonstrate that
the VB-CDN is competitive to other state-of-the-art models
on CIFAR-10. The ML-CDN does not reflect uncertainty
very well but has slightly higher accuracy than other models.

6. Conclusion

We introduce compound density networks (CDNs), a new
class of models that allows for better uncertainty quantifi-
cation in neural networks (NNs) and corresponds to a com-
pound distribution (i.e. a mixture with uncountable com-
ponents) in which both the component distribution and the
input-dependent mixing distribution are parametrized by
NNs. CDNs are inspired by the success of recently pro-

!

|y
=3

o
©
1

o
o
1

o
IS
1

e
N
!

0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength

(b) VB-CDN

o
=

Accuracy or % of max entropy
Accuracy or % of max entropy

=
=)

T T T T T
0.0 0.2 0.4 0.6 0.8
Perturbation strength

(a) ML-CDN

Figure 6: Prediction accuracy and average entropy of CDNs
for stronger adversarial examples, constructed by averaging
over multiple forward-backward passes.

—e— ML-CDN &~ noisy K-FAC —— ML-CDN noisy K-FAC

VB-CDN #— Deep Ensemble VB-CDN Deep Ensemble
&~ MNF MC-Dropout »— MNF MC-Dropout
@~ DPN o~ VMG =~ DPN VMG
25
204 /=

Accuracy
=
o w

T

o
w»
1

A P
NN~ - o—
A\ =s=="=c =1
T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 10

Perturbation strength Perturbation strength

(b) Entropy

Average predictive entropy
o
=)

(a) Accuracy

Figure 7: Prediction accuracy and average entropy of models
trained on Fashion-MNIST when attacked by FGSM-based
adversarial examples with varying perturbation strength.

posed ensemble methods and represent a continuous gen-
eralization of mixture density networks (MDNs) (Bishop,
1994). They can be implemented by using hypernetworks
to map the input to a distribution over the parameters of
the target NN, that models a predictive distribution. For
training CDNgs, regularized maximum likelihood or vari-
ational Bayes can be employed. Extensive experimental
analyses showed that CDNs are able to produce promising
results in terms of uncertainty quantification. Specifically,
Bayesian CDNs are able to capture epistemic as well as
aleatoric uncertainty, and yield very high uncertainty on
out-of-distribution samples while still making high confi-
dence predictions on within-distribution samples. Further-
more, when facing FGSM-based adversarial attacks, the
predictions of CDNs are significantly more robust in terms
of accuracy than those of previous models. This robust-
ness under adversarial attacks is especially pronounced for
CDN s trained with a maximum likelihood objective, but
also clearly visible for Bayesian CDNs, which also provide
a better chance of detecting the attack by showing increased
uncertainty compared to the baselines. These promising
experimental results indicate the benefits of applying a mix-
ture model approach in conjunction with Bayesian inference

Predictive Uncertainty Quantification with Compound Density Networks

—e— ML-CDN
VB-CDN
@~ DPN

#— Deep Ensemble == ML-CDN = Deep Ensemble
»— MC-Dropout VB-CDN MC-Dropout
o~ VMG == DPN = VMG

I
n

g
o
1

Accuracy
g =
o w
T

Average predictive entropy

o
0
1
\)
XX

o
1=

T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Perturbation strength Perturbation strength

(a) Accuracy (b) Entropy

Figure 8: Prediction accuracy and average entropy of mod-
els trained on CIFAR-10 when attacked by FGSM-based
adversarial examples with varying perturbation strength.

for uncertainty quantification in NNs. We will investiage
other implementations of CDNs and adaptions to recurrent
and convolutional NN in future.

Acknowledgements

SD and AF are funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy - EXC 2092 CASA -
390781972.

References

Alemi, A., Fischer, 1., Dillon, J., and Murphy, K. Deep
variational information bottleneck. In /ICLR, 2017. URL
https://arxiv.org/abs/1612.00410.

Alemi, A. A., Fischer, 1., and Dillon, J. V. Uncertainty in
the variational information bottleneck. arXiv preprint
arXiv:1807.00906, 2018.

Amari, S.-I. Natural gradient works efficiently in learning.
Neural computation, 10(2):251-276, 1998.

Bishop, C. M. Mixture density networks. 1994.

Bishop, C. M. Pattern Recognition and Machine Learning.
Springer, 2006. ISBN 978-0387-31073-2.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. Weight uncertainty in neural networks. pp. 1613-1622,
2015.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. Natural language pro-
cessing (almost) from scratch. Journal of Machine Learn-
ing Research, 12(Aug):2493-2537, 2011.

Depeweg, S., Hernandez-Lobato, J. M., Doshi-Velez, F.,
and Udluft, S. Learning and policy search in stochastic
dynamical systems with bayesian neural networks. In

Proceedings of the Second International Conference on
Learning Representations (ICLR 2017), 2017.

Depeweg, S., Hernandez-Lobato, J.-M., Doshi-Velez, F.,
and Udluft, S. Decomposition of uncertainty in bayesian
deep learning for efficient and risk-sensitive learning. In
International Conference on Machine Learning, pp. 1192—

1201, 2018.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pp.
1050-1059, 2016.

Goodfellow, I., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations, 2015.

Graves, A. Practical Variational Inference for Neural Net-
works. In Advances in Neural Information Processing
Systems 24, pp. 2348-2356. 2011.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In Proceedings of
the 34th International Conference on Machine Learning,
volume 70, pp. 1321-1330, 06-11 Aug 2017.

Gupta, A. K. and Nagar, D. K. Matrix variate distributions.
Chapman and Hall/CRC, 1999.

Ha, D., Dai, A., and Le, Q. V. HyperNetworks. In Proceed-
ings of the Second International Conference on Learning
Representations (ICLR 2017), 2017.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. In Proceedings of International Conference on
Learning Representations, 2017.

Hernandez-Lobato, J. M. and Adams, R. Probabilistic back-
propagation for scalable learning of bayesian neural net-
works. In International Conference on Machine Learning,

pp. 18611869, 2015.

Hinton, G. E. and Van Camp, D. Keeping the neural net-
works simple by minimizing the description length of the
weights. In Proceedings of the sixth annual conference on
Computational learning theory, pp. 5-13. ACM, 1993.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2261-2269. IEEE, 2017.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
Adaptive mixtures of local experts. Neural computation,
3(1):79-87, 1991.

https://arxiv.org/abs/1612.00410

Predictive Uncertainty Quantification with Compound Density Networks

Jia, X., De Brabandere, B., Tuytelaars, T., and Gool, L. V.
Dynamic filter networks. In Advances in Neural Informa-
tion Processing Systems, pp. 667-675, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Proceedings of the 3rd International
Conference for Learning Representations, 2015.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,

pp. 1097-1105, 2012.

Krueger, D., Huang, C.-W., Islam, R., Turner, R., La-
coste, A., and Courville, A. Bayesian Hypernetworks.
arXiv:1710.04759 [cs, stat], October 2017. arXiv:
1710.04759.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In Advances in Neural Information Process-
ing Systems, pp. 6402-6413, 2017.

Louizos, C. and Welling, M. Structured and efficient vari-
ational deep learning with matrix gaussian posteriors.
In International Conference on Machine Learning, pp.

1708-1716, 2016.

Louizos, C. and Welling, M. Multiplicative normalizing
flows for variational Bayesian neural networks. In Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, pp. 2218-2227, 2017.

MacKay, D. J. A practical bayesian framework for backprop-
agation networks. Neural computation, 4(3):448-472,
1992.

Malinin, A. and Gales, M. Predictive uncertainty estimation
via prior networks. arXiv preprint arXiv:1802.10501,
2018.

Murphy, K. P. Machine Learning: A Probabilistic Per-
spective. The MIT Press, 2012. ISBN 0262018020,
9780262018029.

Neal, R. M. BAYESIAN LEARNING FOR NEURAL NET-
WORKS. PhD thesis, University of Toronto, 1995.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on

deep learning and unsupervised feature learning, volume
2011, pp. 5, 2011.

Papernot, N., Faghri, F., Carlini, N., Goodfellow, 1., Fein-
man, R., Kurakin, A., Xie, C., Sharma, Y., Brown, T.,
Roy, A., Matyasko, A., Behzadan, V., Hambardzumyan,
K., Zhang, Z., Juang, Y.-L., Li, Z., Sheatsley, R., Garg,

A., Uesato, J., Gierke, W., Dong, Y., Berthelot, D., Hen-
dricks, P., Rauber, J., and Long, R. Technical report on
the cleverhans v2.1.0 adversarial examples library. arXiv
preprint arXiv:1610.00768, 2018.

Pawlowski, N., Brock, A., Lee, M. C. H., Rajchl, M., and
Glocker, B. Implicit Weight Uncertainty in Neural Net-
works. arXiv:1711.01297 [cs, stat], November 2017.
arXiv: 1711.01297.

Peterson, C. A mean field theory learning algorithm for
neural networks. Complex systems, 1:995-1019, 1987.

Ritter, H., Botev, A., and Barber, D. A scalable laplace
approximation for neural networks. In International Con-
ference on Learning Representations, 2018.

Sheikh, A.-S., Rasul, K., Merentitis, A., and Bergmann, U.
Stochastic maximum likelihood optimization via hyper-
networks. In Advances in Neural Information Processing
Systems, 2017.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929-1958, 2014.

Sun, S., Chen, C., and Carin, L. Learning structured weight
uncertainty in bayesian neural networks. In Artificial
Intelligence and Statistics, pp. 1283-1292, 2017.

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan,
D., Goodfellow, 1., and Fergus, R. Intriguing properties
of neural networks. 2014.

Tishby, N., C. Pereira, F., and Bialek, W. The information
bottleneck method. Proceedings of the 37th Allerton Con-
ference on Communication, Control and Computation,
49, 07 2001.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017.

Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. Noisy nat-
ural gradient as variational inference. In Proceedings of
the 35th International Conference on Machine Learning,
pp. 5852-5861, 2018.

